
Online Appendix to:
Extended Wavelets for Multiple Measures

ANTONIOS DELIGIANNAKIS

University of Athens

MINOS GAROFALAKIS

Intel Research

and

NICK ROUSSOPOULOS

University of Maryland

A. ANALYSIS OF THE GREEDYL2 ALGORITHM

We now present the detailed proof of Theorem 1, as well as a useful corollary
of our analysis that is employed in the discussion of the time/space complexity
of GreedyL2.

PROOF OF THEOREM 1. Our proof bears similarities to the corresponding proof
for the 0-1 Knapsack problem. A significant observation is that whenever we
select a set Picked Set of coefficient values from a combined coefficient Coeff
for storage, any candidate set subOpt of Coeff that will later be inserted into the
max-heap for consideration cannot have a larger per-space benefit than that of
PickedSet. We will prove this by contradiction. Assume that subOpt has a larger
per-space benefit than Picked Set. By the way the candidate sets are formed,
the following observations hold:

(1) The sets PickedSet and subOpt cannot share any coefficient values.
(2) The largest benefit of a coefficient value of subOpt cannot be larger than

the smallest benefit of a coefficient value of PickedSet.
(3) The space overhead of subOpt does not include the size of the header, while

for PickedSet, this depends on whether it is the first set of Coeff selected
for storage.

If we depict the benefits of the coefficient values of Picked Set as v1, v2, . . . , vk

and the benefits of the coefficient values of subOpt as v′
1, v′

2, . . . , v′
p, then the

per-space benefits of the two sets are, correspondingly,
∑k

i=1 vi

δ×H+k and
∑p

i=1 v′
i

p , where
δ has a value of 1 or 0, depending on whether PickedSet is the first set of Coeff
selected for storage. Since, by hypothesis, subOpt has a larger per-space benefit
than PickedSet:

∑p
i=1 v′

i

p
>

∑k
i=1 vi

δ × H + k
=⇒

p∑
i=1

v′
i × (δ × H + k) >

k∑
i=1

vi × p. (1)

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



2 • A. Deligiannakis et al.

At the time PickedSet was selected, a candidate set notPicked of Coeff with
k+p subitems existed, having a benefit at least equal to the set union containing
all subitems in PickedSet and subOpt. Comparing the per-space benefits of
notPicked and PickedSet, we have

benefit(notPicked) − benefit(PickedSet) ≥ benefit(union) − benefit(PickedSet)

=
∑k

i=1 vi + ∑p
i=1 v′

i

δ × H + (k + p)
−

∑k
i=1 vi

δ × H + k
=

∑p
i=1 v′

i × (δ × H + k) − ∑k
i=1 vi × p

(δ × H + (k + p)) × δ × H + k
> 0.

(2)
The last part of formula (2) follows immediately from the inequality of formula
(1). At this point, we have reached a contradiction, since PickedSet should not
have a smaller per-space benefit than the set notPicked. Therefore, subOpt
cannot have a larger per space benefit than PickedSet.

The previous observation also implies that each candidate set inserted in
the max-heap after the first set selection made by the algorithm cannot have a
larger per-space benefit than those which have already been selected. To prove
this, consider any such set nowInserted that is inserted into the max-heap fol-
lowing the selection for storage of another set nowStored , of the same candidate
combined coefficient Coeff, and consider the following two observations:

(1) Following the preceding proof, the set nowInserted cannot have a larger
per-space benefit than any set already picked for storage from the same
candidate combined coefficient Coeff.

(2) Consider any candidate set otherSet already selected for storage which cor-
responds to a candidate combined coefficient other than Coeff. At the mo-
ment otherSet was selected for storage, the candidate set of Coeff with the
largest per-space benefit which was at that time in the max-heap could not
have a larger per-space benefit than otherSet, since it would have been se-
lected for storage instead, and cannot have a smaller per-space benefit than
nowStored.

Now, consider that GreedyL2 solution has selected to store the sets
S1, S2, . . . , Sl , and that Sl+1 is that set with the largest per-space benefit, which
cannot be stored due to space constraints.1 Let BenStored = ∑l

i=1 Si.psb ×
Si.space denote the sum of benefits of the l sets included in the solution (us-
ing the notation of Figure 4), BenFraction = Sl+1.psb × Sl+1.space denote the
benefit of set Sl+1, and BenOptimal denote the benefit of the optimal solution.
If the remaining storage space at this point of our algorithm is SpaceLeft, it
can easily be shown2 that the optimal solution has, at most, benefit equal to
BenStored + BenFraction × SpaceLeft

Sl+1.space .

Obviously, Sl .psb ≤ BenStored
B−SpaceLeft ≤ BenStored

max{H+1,B−(H+M )} (since the space of the
stored sets must be at least H + 1 and at least equal to B − (H + M )), and,
since the per-space benefit of Sl+1 cannot be larger than that of Sl , Sl+1.psb ≤
Sl .psb ⇒ BenFraction × SpaceLeft

Sl+1.space ≤ (H + M ) × Sl .psb ≤ BenStored×(H+M )
max{H+1,B−(H+M )} .

1For simplicity, consider that Sl+1 could fit by itself within the original storage constraint.
2The proof is identical to the optimal proof for the fractional Knapsack problem.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 3

Therefore,

BenOptimal ≤ BenStored + BenFraction × SpaceLeft
Sl+1.space

≤ BenStored ×
(

1 + H + M
max{H + 1, B − (H + M )}

)
.

For B ≥ 2H + M + 1, the proof of the approximation ratio bound is complete.
For B < 2H + M + 1, the solution Z = max{BenFraction, BenStored } has at
least half the benefit of the optimal solution, since

BenOptimal ≤ BenFraction + BenStored ≤ 2 × max{BenFraction, BenStored}.
�

COROLLARY 1. Let B − (H + M ) < Bused ≤ B denote the space occupied by
the GreedyL2 algorithm’s solution at the time the first PickedSet (that requires
space larger than SpaceLeft = B − Bused ) is selected. The GreedyL2 algorithm
always selects the optimal solution for the space constraint Bused .

PROOF. Using the notation of the previous proof, for a space constraint Bused ,
there is no unused space (i.e., SpaceLeft′ = 0). From the preceding proof, we
can then infer that BenFraction = 0, resulting in BenOptimal ≤ BenStored +
BenFraction = BenStored. �

B. PRACTICAL CONSIDERATIONS

Providing fairness and error guarantees. While the optimization problems of
Sections 3 and 4.2 might be desirable objectives in many problems, certain
cases may arise when both of our corresponding (for each minimization problem)
greedy and dynamic programming algorithms will significantly favor certain
measures at the expense of others. This usually happens when two or more mea-
sures with significantly different magnitudes of value occur within the same
dataset. In such cases, measures with the largest data values typically exhibit
not only significantly larger (in magnitude) coefficient values, but also larger
error in their approximations. Note that in such datasets, both the DynProgL2

and GreedyL2 algorithms will almost exclusively store coefficient values corre-
sponding to the measure with the largest coefficient values. A similar behavior
will be observed if we slightly modify our PODPRel and GreedyRel algorithms to
minimize the maximum absolute-error of the approximation.3 Finally, a similar
behavior can be observed, even for the maximum relative-error metric, if the
value of the sanity bound S is chosen to be the same for all measures. Note that
in this case, those two measures whose data (and therefore, whose coefficient)
values are linearly correlated, and thus equally hard to approximate, may ex-
hibit significantly different maximum relative-errors due to the common value
of the sanity bound.

3According to the corresponding algorithms in Garofalakis and Gibbons [2004], this just requires
a small modification to Eq. (1).

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



4 • A. Deligiannakis et al.

A plausible solution to this problem would be to normalize the values of all
measures such that all measures have the same energy. The energy of a mea-
sure is defined to be the sum of its squared values. A natural way to normalize
two or more measures is to subtract from each measure’s data values the mea-
sure’s average value, and then properly scale the produced data values so that
all measures have the same energy. Alternative techniques to achieve a similar
normalization process would be to either divide the weighted benefit of each
coefficient value by the energy of the corresponding measure (for the minimiza-
tion problem of Section 3) or to select the sanity bound of each measure (for the
minimization problem of Section 4.2) based on the magnitude of its actual data
values (i.e., select the 5%-quantile of the measure’s data values).

Another solution involves adapting our proposed algorithms to provide cer-
tain guarantees on the quality of the produced solution. It turns out that all
of our algorithms can be modified such that the resulting weighted benefit (or
maximum squared NSE) for each measure is at least equal to the one produced
by the Individual algorithm when the storage allocated to each measure is pro-
portional to the measure’s weight (which is set equal to 1 for the maximum
relative-error minimization problem). This requires first computing the actual
solution that the Individual algorithm would produce by using the aforemen-
tioned space allocation policy among measures. Then, the solution produced
by our algorithms can be tested to verify whether for each measure the ben-
efit (or maximum squared NSE) criterion has been met. If this is not the case
for all measures, the algorithm can proceed by splitting these measures into
two sets: those where the benefit (or maximum squared NSE) criterion has been
satisfied, and those where it has not. The algorithms can then be called re-
cursively for each of these two sets, with the storage constraint allocated to
each set being proportional to the weights of its measures. If at some point an
input set contains just one measure, then the algorithm may store the coeffi-
cients in the same format as does the Individual algorithm. Thus, in the worst
case, for any measure we can guarantee that the benefit (or maximum squared
NSE) we achieve is at least the same as the one produced by the Individual
algorithm.

Improving space utilization. The space utilization of our algorithms can be
further improved at the expense of query response time. For a dataset with M
measures, we can split the produced coefficients into M + 2 groups of coeffi-
cients. One group will be created for each measure and include all extended
wavelet coefficients that have stored a coefficient value only for the correspond-
ing measure. Another group will contain the extended coefficients that have
stored coefficient values for all M measures, while the final group will include
extended coefficients that have stored from 2 to M − 1 coefficient values. From
these M +2 groups, the bitmap is necessary only for the last group. In the other
groups, we can simply store the coefficients in the same way that the Individual
and Combined algorithms would, without the bitmap. The proposed algorithms
then only require a slight modification when calculating the size needed to store
a coefficient value (for the DynProgL2 algorithm) or a set of coefficient values (for
the remaining algorithms). A query involving X measures would then have to
probe X + 2 groups of coefficients in search for coefficient values that influence

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 5

the query result. This overhead in response time is, in most cases, negligible,
given the small response times that queries exhibit when using wavelet syn-
opses [Chakrabarti et al. 2001].

C. EXTENSIONS TO MULTIDIMENSIONAL WAVELETS

We now discuss the key ideas for extending our relative-error synopsis con-
struction techniques to multidimensional data.

Extending PODPRel. Our PODPRel algorithm for multidimensional datasets
generalizes the corresponding multidimensional MinRelVar strategy in Garo-
falakis and Gibbons [2004] in a way analogous to the one-dimensional case. In
a nutshell, PODPRel needs to consider, at each internal node of the error tree, the
optimal allocation of space to the ≤ 2D − 1 wavelet coefficients of the node and
its ≤ 2D child subtrees. The extension of PODPRel to multidimensional datasets
is therefore a fairly simple adaptation of the multidimensional MinRelVar algo-
rithm. However, as discussed in Section 4.3, PODPRel needs to maintain, for each
node i and each possible space allotment B, a collection R[i, B] of incomparable
solutions. This requirement, once again, makes the time/space requirements of
PODPRel significantly higher than those of MinRelVar.

Extending GreedyRel. The first modification involved in extending our
GreedyRel algorithm to multidimensional datasets has to do with the compu-
tation of G[i, j ], which now involves examining the estimated NSE2 values over
≤ 2D child subtrees and maintaining the maximum such estimate. Let S(i) de-
note the set of ≤ 2D − 1 coefficients of node i, and let i1, . . . , ip be the indexes of
i’s child nodes in the error tree. Then,

G[i, j ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎨
⎪⎪⎩

∑
ck∈S(i)

Var(ckj , ykj )

Norm(i1, j )
+ G[i1, j ]

. . .∑
ck∈S(i)

Var(ckj , yi j )

Norm(ip, j )
+ G[ip, j ]

i < N

0 i ≥ N

.

The only other necessary modification involves the estimation of marginal error-
gains at each node. In Section 4.4, we consider a total of three possible choices for
forming potSet[i, j ] for each (node, measure) combination. Now, each node has
up to 2D child subtrees, resulting in a total of 2D +1 possible choices of forming
potSet[i, j ]. The first choice is to increase the retention probability for measure
j of one of the ≤ 2D − 1 coefficients in node i. In this case, we simply include
in potSet[i, j ] the coefficient in node i that is expected to exhibit the largest
marginal gain for measure j . For each of the remaining 2D possible choices of
forming potSet[i, j ], the kth choice (1 ≤ k ≤ 2D) considers the marginal gain of
increasing the retention probabilities in the child subtrees through which the k
maximum NSE2 values occur, as estimated in the righthand-side of the preceding
equation for G[i, j ]. At each node, the computation of Gpot[i, j ], potSpace[i, j ],
and choicei j incurs a worst-case time cost of O(D×2D) due to the possible ways of
forming potSet[i, j ], and the required sorting operation of 2D quantities. Again,
let N denote the total number of cells in the multidimensional data array and

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



6 • A. Deligiannakis et al.

Nmax denote the maximum domain size of any dimension. Then, the running
time complexity of GreedyRel becomes O(D×2D× (N M+ BMq log Nmax)). Note,
of course, that in most real-life scenarios using wavelet-based data reduction,
the number of dimensions is typically a small constant (e.g., four–six).

Improving the complexity of GreedyRel. In the wavelet decomposition process
of a multidimensional dataset, the number of nonzero coefficients produced
may be significantly larger than the number Nz of nonzero data values. In
Garofalakis and Gibbons [2004], the authors proposed an adaptive coefficient
thresholding procedure that retains, at most, Nz wavelet coefficients with-
out introducing any reconstruction bias. Using this procedure, the authors in
Garofalakis and Gibbons [2004] demonstrated how the MinRelVar algorithm can
be modified so that its running time and space complexities have a depen-
dency on Nz , and not on N (i.e., the total number of cells in the multidimen-
sional data array). It would thus be desirable if the GreedyRel algorithm could
be modified in a similar way, in order to decrease its running time and space
requirements.

Let Nz denote the number of error-tree nodes that contain nonzero coeffi-
cient values, possibly after the aforementioned thresholding process. We will
first illustrate that for any node in the error tree containing zero coefficient
values, and which has (at most) one node in its subtree that contains nonzero
coefficient values, no computation is needed. Equivalently, our algorithm will
need to compute G, G pot values in only: (i) nodes containing nonzero coefficient
values; or (ii) nodes that contain zero coefficient values, but which are the least
common ancestor of at least two nonzero tree nodes beneath them in the error
tree.

Let k be a node that is the only node in its subtree with nonzero coefficient
values. Obviously, we do not need to consider the G, G pot values in the de-
scendant nodes of k, since they will be zero. An important observation is that
for any ancestor of k which contains just a single nonzero error tree beneath it
(which is certainly the subtree of node k), no computation is necessary, since the
G, G pot values of k can always be used instead. The only additional computa-
tion is needed in any node n with zero-coefficients that has at least two nonzero
error-tree nodes beneath it in the error tree (in different subtrees). In this case,
the G, G pot values of node n need to be calculated, using as input the G, G pot

values of its nonzero descendant tree nodes. It is easy to demonstrate that at
most Nz − 1 such nodes may exist. Thus, the GreedyRel algorithm will need to
calculate the G, G pot values in at most O(2Nz −1) = O(Nz ) nodes, thus yielding
running time and space complexities of O(D × 2D × (Nz M + BMq log Nmax))
and O(Nz M ), respectively. We here need to note that in order to implement our
algorithm as described here, we need to sort the Nz coefficients based on their
postorder numbering in the error tree. This requires additional O(Nz log Nz )
time for the sorting process. However, this running time is often significantly
smaller than the benefits of having running time and space dependencies based
on Nz , rather than on N .

Table I contains a synopsis of the running time and space complexities of
both our GreedyRel and the MinRelVar algorithm of Garofalakis and Gibbons
[2004].

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 7

Table I. GreedyRel and MinRelVar Complexities

Algorithm Space Runtime
GreedyRel O(Nz M ) O(D2D× (Nz M+ BMq log Nmax ))
MinRelVar O(Nz M B2Dq) O(Nz BM2Dq(q log(qB) + D2D))

D. COMPARING GREEDYREL AND GREEDYL2

When comparing the GreedyL2 and GreedyRel algorithms, we can observe that
while the two algorithms share some common characteristics, there are distinct
differences in the way they operate. Both algorithms operate on all measures of
the dataset simultaneously and utilize the notion of extended wavelets in order
to achieve better storage utilization, and thus, increased accuracy. Moreover,
both algorithms allocate, at each step, space to a group of coefficient values.
The GreedyL2 algorithm, at each step, stores a group of coefficient values corre-
sponding to the same coefficient coordinates, since this grouped space allocation
policy often results in better per-space benefits than storing individual coeffi-
cient values one-by-one. On the other hand, the GreedyRel algorithm increases,
at each step, the retention probabilities of a group of coefficient values corre-
sponding to the same measure. The intuition behind this allocation policy is
that a group assignment may result in a larger per-space decrease of the maxi-
mum squared NSE value than increasing the retention probabilities of individual
coefficient values, especially in cases where two or more subtrees have similar
maximum NSE values. The storage dependencies among coefficient values are
taken into account when calculating the per-space benefits of each space assign-
ment on each node. We thus expect that the improvements in accuracy of the
obtained approximation will be larger in the case of minimizing the weighted
sum-squared error, since the intracoefficient storage dependencies are more di-
rectly taken into account. While nonzero coefficient values always have some
benefit in reducing the weighted sum-squared error of the approximation, this
is often not true when trying to minimize the maximum relative-error of any
data value, since these nonzero coefficient values need to lie on root-to-leaf paths
with high NSE values in order for the algorithm to increase their retention prob-
abilities. Finally, both algorithms naturally extend to multidimensional data,
either directly (GreedyL2) or through simple modifications to account for the
more complex error-tree structure (GreedyRel).

E. ADDITIONAL EXPERIMENTS

E.1 Weighted Sum-Squared Error Algorithms

Variance in weights. We varied the weight of the first measure from 0.5 to
4 to identify the impact on accuracy of the produced result. Figures 1 and 2
present the results. GreedyL2 exhibits weighted absolute errors that are con-
sistently about 1.5 times smaller than those of the closest competitor (97.36
versus 147.15 for weight = 3.5). For average weighted sum-squared errors,
the GreedyL2 algorithm consistently provides a three-fold improvement, and as
high as 3.23 (71,530.3 versus 22,148.4 for weight = 2). It is interesting to note
that the GreedyL2 and IndSorted methods exhibit the greatest improvement in

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



8 • A. Deligiannakis et al.

Fig. 1. Sensitivity to weights: sum-squared error.

Fig. 2. Sensitivity to weights: absolute error.

accuracy when the weights are varied significantly, both reducing their errors
by about 19%.

It is interesting to see for this experiment how well each measure is ap-
proximated by the different algorithms. Figure 3 presents the average absolute
error for each measure, for the case when the first measure is assigned a weight
value of 4. To calculate the average weighted error for all measures, the error
of Measure 1 (M1) needs to be multiplied by a factor of 4, and the resulting
quantity divided by the value 9, which is the sum of the measures’ weights. As
Figure 3 shows, the Ind algorithm exhibits the smallest error for the measure
with the largest weight, about half of the error that GreedyL2 achieves, while the
Combined algorithm performs the worst for this measure. However, GreedyL2

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 9

Fig. 3. Errors for different measures.

Fig. 4. Sensitivity to number of measures.

achieves the lowest errors for the remaining five measures, thus displaying that
even though it can adjust its choices in cases of measures with large weights,
it does so without severely impacting the accuracy of the remaining measures.
Another interesting observation is that the second measure, which follows a
distribution similar to the heavily weighted Measure 1, benefited significantly
in the GreedyL2 algorithm, a behavior not observed in the other algorithms.

Number of measures. In Figures 4 and 5, we present the average weighted
sum-squared and absolute errors as the number of measures is varied from
two to six. The initial two measures are those with distributions Normal
and Middle, and the measures that are later added are: PipeOrgan, Altered-
Normal, Altered-PipeOrgan, and Altered-Middle. As the number of measures

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



10 • A. Deligiannakis et al.

Fig. 5. Sensitivity to number of measures.

Fig. 6. Skew 0.2, AllNormal.

increases, the improvement on accuracy of GreedyL2 over competitive methods
increases.

E.2 Maximum Relative-Error Algorithms

In Figure 6, we plot the maximum relative-errors for both biased and unbiased
versions of the GreedyRel and IndDP algorithms as the average number of coef-
ficient values which the IndDP algorithm uses per measure is varied from 10 to
60, and for the AllNormal selection of Zipfian distribution shapes with a skew
parameter of 0.2. In Figures 7 and 8, we show the corresponding results for
the AllNoPerm and AllNormal combinations of used data distributions and for

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.



Extended Wavelets for Multiple Measures • 11

Fig. 7. Skew 0.8, AllNoPerm.

Fig. 8. Skew 0.8, AllNormal.

a skew parameter of 0.8. In all cases, the benefits achieved by the GreedyRel

algorithm over the IndDP algorithm are significant.

ACM Transactions on Database Systems, Vol. 32, No. 2, Article 10, Publication date: June 2007.


