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1. INTRODUCTION

The Extensible Markup Language (XML) is rapidly emerging as the new stan-
dard for data representation and exchange on the Internet. The simple, self-
describing nature of the XML standard promises to enable a broad suite of
next-generation Internet applications, ranging from intelligent Web searching
and querying to electronic commerce. In many respects, XML represents an
instance of semistructured data [Goldman and Widom 1997]: the underlying
data model comprises a labeled graph of element nodes, where each element
can be either an atomic data item (i.e., raw values stored with elements) or a
composite data collection consisting of references (represented as graph edges)
to other elements in the graph. Further, labels (or tags) stored with XML data
elements describe the actual semantics of the data rather than simply speci-
fying how the element is to be displayed (as in HTML). Thus, XML data, like
semistructured data, is graph-structured and self-describing.

Sophisticated query-processing engines that allow users and applications to
effectively tap into the large amounts of data stored in XML databases around
the globe are going to be crucial in fulfilling the full potential of XML. Realizing
such Internet-scale XML query processors, such as, Xyleme (www.xyleme.com),
Niagara [Naughton et al. 2001], or TIMBER [Jagadish et al. 2002], in turn,
hinges on providing effective support for high-level, declarative XML query
languages. A variety of languages have been proposed for querying semistruc-
tured and XML databases, including XQuery [Boag et al. 2005], Lorel [Goldman
and Widom 1997], and UnQL [Buneman et al. 1996]. A common characteris-
tic of all existing language proposals is the existence of a pattern-specification
language (e.g., XPath [Clark and DeRose 1999]) built around path and sub-
tree (“twig”) expressions. These expressions replace the traditional SQL FROM
clause and enable selections based on value predicates as well as path navi-
gation and branching through the XML data graph in order to reach the rel-
evant data elements. While simple path queries were popularized in the con-
text of object-oriented databases, the pattern-specification languages proposed
for XML data are substantially more complex. In particular, the XPath lan-
guage [Clark and DeRose 1999] (which lies at the core of XQuery [Boag et al.
2005] and XSLT [Clark 1999], the dominant W3C language proposals for XML
querying and transformation) allows branching regular path expressions that
enable queries to navigate along paths in the data graph using label names,
wildcards, value predicates, and branching predicates on the existence of spe-
cific sibling paths. As a concrete example, in a bibliography database, the XPath
expression //author[book]/paper/vldb[year > 1997]/title selects the set of
all VLDB article titles published after 1997 by authors that have published
at least one book (specified by the author[book] branch).

Optimizing XML queries with complex path expressions depends crucially
on the ability to obtain effective compile-time estimates for the selectivity of
these expressions over the underlying (large) graph-structured XML database.
Similar to relational query optimization, selecting an efficient query-execution
plan relies on the accurate estimation of the number of XML elements that
are accessed from (i.e., “satisfy”) a path-expression specification. To be feasible
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at query-optimization time, this estimation process has to depend on a concise
and accurate statistical synopsis of the structure and value content of the XML
data graph that can provide such selectivity estimates within the memory and
time constraints of the optimizer. Of course, such a synopsis can also be an
invaluable tool for providing users with fast approximate answers and quick
feedback to their queries, either before or during query execution.

In this article, we propose a novel approach to building and using concise sta-
tistical synopses for effectively estimating the selectivity of complex XPath ex-
pressions with branching and value predicates, over general, graph-structured
XML data. Our proposed synopsis model, termed XSKETCH, exploits localized
graph stability in conjunction with small-space value summaries to accurately
capture (in limited space) the important statistical characteristics of the path,
branching, and value distribution in the XML data graph. Hence, an XSKETCH

summary can enable selectivity estimates for complex path expressions that
query both the structure and the value content of large XML data graphs. We
develop a systematic estimation framework for approximating path-expression
selectivities over concise XSKETCH synopses, and propose an efficient algorithm
for XSKETCH construction. We should note that the problem of XML summariza-
tion has received considerable attention within the database community, and
recent studies have introduced a host of relevant techniques [Aboulnaga et al.
2001; Chen et al. 2001; Freire et al. 2002; Lim et al. 2002; Wang et al. 2003;
Wu et al. 2002]. To the best of our knowledge, however, our work is the first
to deal with the most general version of the summarization problem, namely,
graph-structured XML data and path expressions with both branching and
value predicates. More concretely, our key contributions can be summarized as
follows.

—XSKETCH synopsis model and estimation framework. We give a formal def-
inition of our XSKETCH synopses for XML data that exploit the concepts of
localized backward and forward graph stability [Paige and Tarjan 1987]
and value-distribution summaries to effectively explore the space between
extremely coarse (but inaccurate) and extremely detailed (but large) sum-
marizations of graph-structured data. We develop a systematic estimation
framework that uses the information in the XSKETCH synopsis to parse a
complex path expression and produce an approximate selectivity estimate.
Like any estimation technique that uses concise data synopses (e.g., his-
tograms [Poosala et al. 1996]), our proposed framework relies on a set of
appropriate statistical (uniformity and independence) assumptions to com-
pensate for the lack of detailed distribution information.

—XSKETCH construction: hardness and efficient heuristic algorithm. Construct-
ing effective XSKETCH synopses turns out to be a difficult optimization prob-
lem: we demonstrate that the problem of building an accuracy-optimal
XSKETCH for a given space budget isN P -hard, even for the simpler “structure-
only” case. Given this intractability result, we propose an efficient heuris-
tic algorithm for XSKETCH construction based on greedy forward selection.
Briefly, our algorithm constructs an XSKETCH synopsis in a top-down fash-
ion, by successive refinements of the label-split graph, the coarsest summary
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of the XML data graph. Our refinement operations act locally and attempt
to capture important statistical correlations between data paths. The end
result is an XSKETCH synopsis that, abstractly, is more refined where corre-
lations are stronger and less refined where data paths are independent and
uniformity assumptions are valid.

—Experimental results verifying the effectiveness of XSKETCHes. We present the
results of an extensive experimental study of XSKETCHes with several syn-
thetic and real-life data sets that validate our approach. Our results show
that XSKETCHes are accurate, concise synopses for general graph-structured
XML data, achieving estimation errors as low as 3% for low space budgets
around 30–40 kB. The generated summaries are built utilizing small path
samples from the original document, thus ensuring the efficiency of the XS-
KETCH construction algorithm. We experiment with both complex and simple
path expressions and show that the constructed summaries yield accurate
estimates in all cases; furthermore, our XSKETCHes perform better and more
consistently than earlier approaches for the simpler problem of handling
simple path expressions over tree-structured XML data.

2. PRELIMINARIES

2.1 XML Data Model

Following previous work on XML and semistructured data [Goldman and
Widom 1997; Kaushik et al. 2002b; Milo and Suciu 1999], we model an XML
database as a directed, node-labeled data graph G = (VD, ED). Each node in VD

corresponds to an XML element in the database and is characterized by (a) a
unique object identifier (oid), (b) a label (assigned from some alphabet of string
literals) that captures the element’s semantics, and (c) (possibly) a raw data
value for the element. (We use label(v), value(v) to denote the label and value
of v ∈ VD.) Without loss of generality, we assume that the root of the database
is labeled with a distinct tag ρ that does not appear in any other element.

Edges in ED are used to capture both the element-subelement relation-
ships (i.e., element nesting or explicit element references through id/idref at-
tributes or XLink constructs [Bray et al. 2000; DeRose et al. 2001; Kaushik
et al. 2002b; Goldman and Widom 1997]) and the element-value relationships
in the XML data. Given a data-graph node u, we define its predecessors as
pred(u) = {v | (v, u) ∈ ED} and its successors as succ(u) = {w | (u, w) ∈ ED};
this is extended naturally to a set of nodes U = {ui} as pred(U ) = ∪ipred(ui)
and succ(U ) = ∪isucc(ui). Note that nontree edges, such as those implemented
through id/idref constructs, form an integral part of the XML data model and
are often of equal importance for the modeling of complex data sets (a typical
example is the representation of a part/subpart hierarchy, where nesting is used
for the description of individual parts while id/idref edges implement the inclu-
sion relationship). As a result, nontree edges are treated as a “first-class citizen”
in our model and are not differentiated from normal tree edges. We therefore
focus on the most general case of XML data graphs (rather than just trees)
for the remainder of this article. Of course, our model implies the existence of
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Fig. 1. (a) Example XML document, (b) data graph of document, (c) example query tree and its

XPath notation.

meta-data that enable the discovery of nontree edges, for example, in the case
of id/idref links, a DTD is necessary in order to identify and interpret correctly
the ID and IDREF attributes. This point is orthogonal to our framework and
we henceforth assume that such metadata is readily available.

Figure 1 depicts an example XML document and the corresponding data
graph. The sample document is modeled after the Internet Movie Database
(IMDB) XML data set (www.imdb.com) and includes information on two movies
and three actors. The graph node corresponding to a data element is named
with an abbreviation of the element’s label and a unique id number. Also, as
shown, each movie (M) element is associated with two values (i.e., title and
boxOffice sales), and each actor (A) element is associated with one value (i.e.,
name of the actor); the specific values for each element are not shown to avoid
cluttering the figure. Dashed lines are used for graph edges corresponding to
id-idref relationships.

We say that an XML data graph is resursive if there exist at least two ele-
ments e and e′ that lie on the same path and label(e) = label(e′). An example
of a recursive data set is our sample data graph of Figure 1, as a movie element
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can reach another movie element through a common actor reference. (The same
holds for actor elements.) We note that recursion may appear in tree-structured
data as well, and is not exclusive to graph structures.

2.2 XML Query Model

An XML path expression Q (e.g., in XQuery [Boag et al. 2005]) defines a navi-
gational path over the XML data graph, specifying conditions on the labels and
(possibly) the value(s) of data elements. More formally, a path expression (or
query) Q is defined as a node- and edge-labeled tree GQ (VQ , TQ ). Each node (or
step) qi ∈ VQ (1 ≤ i ≤ NQ ) carries a label label(qi) and essentially represents
the selection of document elements with a matching tag. In our model, label(qi)
can be either a document tag, or the special wildcard label ‘∗’ that matches any
tag.1 (We assume that the distinguished root node q1 always carries the root
label ρ.) A step can also be annotated with an optional value predicate σi that
further restricts the set of selected elements.

An edge (qi, qj ) ∈ EQ denotes a structural relationship between the two steps
and is labeled with child axis (/) or descendant axis (//). (We use axis(qi, qj ) to
denote the edge label.) In a nutshell, a child axis (respectively, descendant axis)
specifies that the elements of qj must have a parent (resp. ancestor) in the ele-
ments of qi. We say that Q is a recursive query if at least one edge carries a de-
scendant annotation. We assume that Q contains a distinguished root-to-node
path, termed the main branch and denoted by L, whose last node determines
the elements returned by the query. The remaining paths are attached to the
nodes of the main branch and are termed the branching predicates of the query.
Essentially, a branching predicate at node qi requires the existence of sibling
paths for the elements that qi selects.

Figure 1(c) shows an example query over the IMDB data set and its transla-
tion in the XPath language. We note that our notation is slightly different from
that of XPath, as we are using {} to distinguish value predicates from element-
branching predicates (denoted by []). The tree-based representation denotes a
descendant axis with a double arc, while a dashed arc is used for edges that
belong to branching predicates. As shown, the example query contains two
branching predicates at steps q7 and q2, and one selection predicate at step q8.
Following the semantics of the XPath language, the results of this query can be
defined as follows. The first step q1 generates the root node of the document,
while the second step q2 of the main branch selects all the Actor descendants of
the root that have at least one child (step q3) with a Link descendant (step q4).
The following step q5 selects all the MovieRef descendants of such actors, while
q6 returns all the ID children of these movie-reference elements. The final step
q7 of the main branch selects all Movie children of the previously computed IDs
that satisfy the branching predicate [B > 100K], that is, they have at least one
BoxOffice child with value greater than 100K. The resulting elements form the
result of the query.

1It is straightforward to extend our framework so that each step corresponds to a set of document

tags. We omit this extension to keep the presentation simple.
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More formally, we define the result of a query through the concept of a data
embedding that represents the matching of a query tree against the data graph.
A tuple of elements (ek1

: ek2
: . . . : ekNQ

) forms a data embedding of Q if (a)

label(eki ) matches label(qi), (b) the value of eki satisfies the optional predicate
σi, and (c) elements eki and ek j match axis(qi, qj ), that is, ek j is a child (re-
spectively, descendant) of eki if axis(qi, qj ) = / (respectively, axis(qi, qj ) = //).
Intuitively, a data embedding is an assignment of elements to query nodes that
respects the structural and value constraints of the query. The result of Q is
simply defined as the set M(Q) of elements that are assigned by data embed-
dings to the last node of the main branch L.

There are three points of interest with respect to the semantics of XPath
expressions. First, branching predicates are essentially existential quantifiers,
as they specify the existence of at least one sibling path. To see this, note that
the number of data paths that match branching predicates does not affect the
selectivity of the query. Second, the result contains only the elements that are
mapped to the very last step of the main branch. Finally, the result is a set
of elements and hence it becomes important to distinguish between the set of
elements in M(Q) and the set of paths that reach the elements in M(Q). Even
though these two are essentially equivalent for tree-structured data, the same
does not hold for graph structures where the same element can be reached by
several paths.

3. THE XSKETCH SYNOPSIS MODEL

This section presents our proposed XSKETCH model for summarizing the path
and value distribution of large XML databases. At an abstract level, an XSKETCH

summary is an instantiation of a generic graph synopsis, that captures the basic
characteristics of the underlying data graph, augmented with detailed distri-
bution information in order to enable selectivity estimates for complex XPath
expressions. An example is presented in Figure 2(c), which depicts an XSKETCH

summary for the sample data graph of the previous section. In a nutshell, a
synopsis node corresponds to a subset of XML elements with the same tag, for
example, M(3) denotes a subset of three Movie elements, while an edge denotes
the existence of document edges between the corresponding element sets. As
we discuss later, the statistical information stored in the synopsis comprises
the element counts of nodes and the B and F edge annotations that essentially
describe key properties of element connectivity. The goal is to carefully select
a partitioning of XML elements to synopsis nodes, so that the induced statisti-
cal information models accurately the important properties of the underlying
data distribution. The following sections describe the XSKETCH model in more
detail. We first introduce a framework for summarizing the graph structure of
the XML data, and then extend the proposed model to the general case of data
graphs with values.

3.1 Summarizing Graph Structure

3.1.1 Graph Synopsis Model. Abstractly, our general model of a synopsis
for an XML data graph G = (VG , EG) is a node-labeled, directed graph structure
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Fig. 2. Synopses for XML data of Figure 1: (a) label-split graph, (b) B/F-bisimilar graph, (c) XSKETCH

based on the label-split graph.

S(G) = (VS , ES ), where each node in v ∈ VS corresponds to a subset of iden-
tically labeled nodes in a partitioning of VG (termed the extent of v) and an
edge in (ei, e j ) ∈ EG is represented in ES as an edge between the nodes whose
extents contain the two endpoints ei and e j . To enable selectivity estimates for
complex path expressions, each node v of S(G) only captures summary infor-
mation about G in the form of a count field (count(v)) that records the number
of elements in G that map to v, that is, the size of v’s extent. (We use v and
extent(v) interchangeably in what follows.)

Definition 3.1. A (structural) graph synopsis for G = (VG , EG) is a node-
labeled, directed graph S(G) = (VS , ES ), where each node v ∈ VS corresponds to
a set extent(v) ⊆ VG such that (1) all elements in extent(v) have the same label2

(denoted by label(v), that is, the label of the synopsis node); (2) ∪v∈VSextent(v) =
VG and extent(u) ∩ extent(v) = φ for each u, v ∈ VS ; (3) (u, v) ∈ ES if and only
if there exist u′ ∈ extent(u) and v′ ∈ extent(v) such that (u′, v′) ∈ EG ; and (4)
each node v ∈ VS stores only an element count count(v) = |extent(v)|.

Figures 2(a) and 2(b) show two possible graph synopses for our example XML
document, where each synopsis node is depicted by its label followed by its
count attribute in parentheses. (The choice of the particular summaries will be-
come apparent later.) Several recently proposed path-index structures for XML
data, including 1-indexes [Milo and Suciu 1999], and A(k)-indexes [Kaushik
et al. 2002b], are based on the “node-partitioning” technique described in our
general graph-synopsis definition. As an example, the 1-index and the A(k)-
index are based on the bisimilarity and k-bisimilarity partition of G, respec-
tively. (Briefly, bisimilarity groups together data nodes that have identically
structured incoming paths from the document root [Milo and Suciu 1999],
whereas k-bisimilarity is based on a more relaxed rule that essentially consid-
ers incoming paths of length at most k [Kaushik et al. 2002b].) However, given
the stringent space limitations for our compile-time, selectivity-estimation

2In the general case, it is straightforward to parameterize this definition with an abstract function

P that determines whether two elements are “compatible” and can thus appear in the same extent.

We omit this generalization in order to keep our presentation simple.
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problem, the graph synopsis can only store the extent counts (rather than the
entire extents, typically stored in the aforementioned index structures). Our
goal is to be able to evaluate the selectivity of complex path expressions over
the data graph G based solely on a compact graph synopsis of G.

At this point, it is interesting to consider the two extreme points in our model
space of graph synopses for summarizing the path structure of XML databases.
At one extreme, the label-split graph represents a very succinct but, at the same
time, coarse and inaccurate synopsis of the data graph; at the other extreme,
the Backward/Forward-bisimilar (B/F-bisimilar) graph represents an exact
but prohibitively large synopsis for branching-path selectivities.

—The coarsest graph synopsis: label-split graph (S0(G)). The label-split (or 0-
bisimilar [Kaushik et al. 2002a]) graph synopsis groups data nodes into syn-
opsis nodes based solely on their node labels; that is, all nodes in G sharing
the same label are mapped onto a unique node in S0(G). The label-split graph
is a very succinct representation of the data graph, as the number of nodes in
S0(G) is exactly the number of distinct labels in G. Unfortunately, the label-
split graph also presents a very poor picture of the path distribution in G
since, exactly due to its coarseness, it typically contains several false paths
and cycles (that did not exist in the original data graph).

—The perfect graph synopsis: B/F-bisimilar graph (SB/F (G)). The B/F-bisimilar
partitioning maps data nodes to the same node of SB/F (G) only if they share
the same set of incoming and outgoing paths in G. This represents a re-
finement of the well-known Backward-bisimilarity (B-bisimilarity or, sim-
ply, bisimilarity) partitioning, that has been used, for example, in the exact
1-index for simple paths [Milo and Suciu 1999]). It is easy to verify that such
a B/F-bisimilar graph synopsis captures the exact path structure of the un-
derlying data graph and can thus enable zero-error selectivity estimates for
any branching path expression. As a previous study [Kaushik et al. 2002a]
has shown, however, the size of the B/F-bisimilar graph can grow close to
the size of the original data; given the stringent time and memory con-
straints of a query optimizer, therefore, its use as a concise summary becomes
problematic.

Figure 2 depicts the two extremes of synopsis graphs for the example document
of Figure 1. Figure 2(a) depicts the label-split graph, the coarsest summary of
the document. We observe that it captures only part of the original path struc-
ture, while introducing a number of false paths (e.g., A/MR/IR/A). Figure 2(b)
shows the B/F-bisimilar graph which represents an exact summary. Note that
the summary groups together actor elements A6,A7 since they cannot be dis-
tinguished based on their incoming and outgoing paths and the same holds for
elements (MR12, MR13), (IR19, IR20), (AR10, AR11), and (IR17, IR18). Overall,
the B/F-Bisimilar graph contains all the paths of the original document and no
false paths, yet its size can be close to that of the original data graph.

3.1.2 Structural XSKETCH Model. Our proposed XSKETCH synopsis struc-
tures represent specific instantiations of this general graph-synopsis model.
Two key concepts underlying XSKETCHes are those of backward- and
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forward-stability (B- and F-stability, respectively) [Paige and Tarjan 1987] that
we define formally below.

Definition 3.2. Let V , U be sets of elements in an XML data graph G. We
say that V is backward-stable (B-stable) with respect to U , if and only if, for
each e ∈ V there exists a e′ ∈ U such that the edge (e′, e) is in G. Similarly,
U is said to be forward-stable (F-stable) with respect to V , if and only if for
each e ∈ U there exists a e′ ∈ V such that the edge (e, e′) is in G. Given a
graph synopsis S(G) of G, we define a node u in the synopsis to be B-stable
(F-stable) with respect to another synopsis node v if and only if extent(u) is
B-stable (respectively, F-stable) with respect to extent(v).

Note that, by Definitions 3.1 and 3.2, a node in a graph synopsis S(G) can only
be B-stable (F-stable) with respect to its parent (respectively, child) nodes in
S(G). Thus, a synopsis node u is B-stable with respect to its parent v if and only
all data elements mapped to u have a parent data element mapped to v in S(G);
in other words, the number of data elements in extent(u) that are reached by
an edge from data elements in extent(v) in G is exactly count(u) = |extent(u)|.
Similarly, the F-stability condition inS(G) guarantees the countfield of a parent
synopsis node u is an exact estimate for the number of elements in u’s extent
that reach (by an edge in G) elements mapping to a child node in the synopsis.

Example 3.1. Consider again the label-split graph of Figure 2(a). We ob-
serve that all elements in extent(MR) have a parent element in extent(A) and,
therefore, MR is B-stable with respect to A. As a result of this stability, the count
associated with MR obviously yields an exact estimate for the number of ele-
ments reached by the path expression A/MR; in fact, since we can show that A is
in turn B-Stable with respect to IR (all Actor elements are reached by an IDREF
attribute), MR’s count gives an exact estimate for the selectivity of IR/A/MR as
well. Node IR, on the other hand, is not B-stable with any of its parent nodes;
thus, the count associated with IR does not give an exact selectivity estimate
for any path expression that ends in IR.

We can make similar observations about forward stabilities. All elements,
for example, in extent(MR) have a child element in extent(IR) and, therefore, MR
is F-stable with respect to IR; as a result, MR’s count yields an exact selectivity
estimate for the path expression MR[IR]. Note, however, that F-stability does
not say anything about the number of elements in IR reached by elements in
MR; it only guarantees that the path MR/IR exists for all elements in MR.

It is interesting to note that there is an obvious connection between the con-
cepts of stability and graph bisimilarity. Essentially, stability can be seen as a
localized notion of bisimilarity since, for a given synopsis node, it only considers
paths of length one to/from specific child/parent node(s) in the synopsis. In fact,
stability plays a central role in known efficient algorithms for computing the
bisimilarity partition of a graph (e.g., Paige and Tarjan [1987]), where the basic
operation is to stabilize a subset in the partition with respect to other subsets
and the final bisimilarity partition is reached when every subset is stable with
respect to its neighboring subsets (e.g., parent subsets for B-bisimilarity). As
will become clear later in this section, it is precisely this localized character of
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stability that we exploit in our XSKETCHes to ensure that the limited space avail-
able for the synopsis is judiciously allocated to those portions of the data graph
where our estimation assumptions are particularly inappropriate. To allow for
such localized refinements at different levels of resolution, our XSKETCH syn-
opses augment our general graph-synopsis model with a 2-bit edge label that
is used to indicate possible B-stability, F-stability, or both (i.e., B/F-stability)
between neighboring nodes in the synopsis.

Definition 3.3. A structural XSKETCH X S(G) = (VXS , EXS) for a data graph
G is an edge-labeled graph synopsis for G, where the label for each edge (u, v) ∈
EXS is a 2-bit indicator whose value is defined as follows: (1)label(u, v) = {B}, if
v is B-stable with respect to u; (2)label(u, v) = {F}, if u is F-stable with respect
to v; (3)label(u, v) = {B, F}, if both (1) and (2) hold; and (4)label(u, v) = φ

(empty), otherwise.

An example structural XSKETCH synopsis for the XML data graph in Fig-
ure 1(b) is depicted in Figure 2(c); note that, in this specific example, the XS-
KETCH is simply the label-split graph of Figure 2(a) augmented with the appro-
priate B/F-stability labels.

Overall, edge stabilities are the basic mechanism of our proposed XSKETCH

framework for summarizing the path structure of the XML data graph. The
key intuition is that, by definition, a stable edge identifies a subset of the XML
data with specific properties on element connectivity and thus a careful data-
node partitioning, along with the induced stabilities, can capture skew in the
underlying data distribution. This idea is analogous to the bucketization of a
frequency distribution in histogram-based synopses, where a bucket essentially
represents a group of values that have similar frequencies. We will revisit this
point in Section 5, where we present a framework for refining an XSKETCH

summary and using edge stabilities to capture areas of structural skew.

3.2 Capturing Value-Distribution Information

The previous section introduced our structural XSKETCH model, for summarizing
the path distribution of a large XML data graph. Clearly, this represents only
a partial solution to the general XML summarization problem, as it ignores a
key part of XML data, namely, the value content of elements and attributes. In
this section, we extend our proposed summarization model to the general case
of XML hierarchies with values.

A naive solution to adding information on element values would be to di-
rectly apply our structural XSKETCH framework, simply treating different data
values as different “labels” in the graph. Of course, the problem with such an
approach is that the number of distinct values in an XML database is typi-
cally far greater than the number of distinct element labels; thus, such a naive
solution is likely to cause an explosion in the size of any structural graph syn-
opsis. Even the coarsest graph synopsis (i.e., the label-split graph that simply
groups data nodes by label) can become too large to be useful as an optimization-
time structure, whereas the perfect graph synopsis (i.e., the fully B/F-bisimilar
graph) can easily be as large as the database itself. Instead, the key idea of our
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proposed approach is to incorporate compressed value-distribution information
(using, e.g., histograms) in the nodes of an XSKETCH synopsis in order to effec-
tively capture the distribution of element values in nodes’ extents. Despite its
deceptive simplicity, this turns out to be a rather difficult problem since, to be
effective, the resulting XSKETCH synopses need to accurately capture complex
correlation patterns that may exist in the underlying graph-structured data.
More specifically, there are two key forms of correlations that our synopses need
to model.

—Path/value correlations. Given a node v in the XSKETCH, the characteristics
of the value distribution for data elements in extent(v) can vary drastically
depending on the specific label path(s) that reach these elements (or, leave
from these elements) in the data. For example, consider a bookstore database
and a book-labeled node v in the synopsis that records book-pricing informa-
tion; obviously, the prices of elements in extent(v) reached through the label
path cs/textbooks/book will be very different from those reached through
poetry/rare − collections/book. Thus, just maintaining a histogram for the
complete set of prices under v is very likely to produce inaccurate estimates
for selections on book prices that specify either of the two label paths.

—Value correlations. Given a node v in the XSKETCH, the distribution char-
acteristics for elements in extent(v) that are reached through (or, lead
to) a specific label path, can depend to a large extent on the values
of other elements on that path. Continuing with our bookstore exam-
ple, assume that we have separated out in a node v′ of our synopsis
all book elements that are reached through the label path publisher/cs/
textbooks/book, and that we have both an “expensive” and a “cheap” pub-
lisher in our database; then, clearly, the prices under node v′ are cor-
related to the names at the publisher node that lead to them. Thus,
the selectivity of the path expression publisher{name = X}/cs/textbooks/
book{price>$100} estimated at v′ can be very different depending on whether
X = “expensive” or X = “cheap”.

Correlations in (flat) relational-data synopses are typically modeled using
concise, multidimensional representations (e.g., histograms, wavelets) for the
joint distribution of correlated attributes [Deshpande et al. 2001; Poosala and
Ioannidis 1997; Vitter and Wang 1999]. As the above discussion demonstrates,
the graph-structured nature of XML data poses additional challenges for the
effective summarization of element-value distributions in an XSKETCH, as we
need to capture correlations across both data values and data structure. More
specifically, consider the set of all elements in the extent of a specific XSKETCH

node v. Different subsets of elements in extent(v) (with, possibly, different
value characteristics) may be reachable by different label paths in the data
(path/value correlations) and different value predicates on different labels on
the path (value correlations). Clearly, keeping separate joint-distribution in-
formation (e.g., multidimensional histograms or wavelet synopses) for subsets
of elements in extent(v) for all possible combinations of incoming label paths
and value-predicate assignments is impractical—the number of combinations
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Fig. 3. Example XSKETCH value-distribution information: the histogram at v5 records correlations

along a subset dep(v5) = {v1, v4} of STN(v5).

is simply too large and, for accurate estimates, we would also need to cap-
ture overlap information between such subsets of extent(v), thus exploding
the complexity and space requirements of the synopsis. Instead, our XSKETCH

nodes capture joint-distribution information only along paths and branches of
the synopsis that are common to all elements in a node’s extent. Consider, for in-
stance, the sample XSKETCH synopsis shown in Figure 3. Assume that all nodes
correspond to elements with values and consider node v5. Given the stability
properties of edges in its neighborhood, it is straightforward to verify that each
element in v5 has ancestors in nodes v1 and v3, which in turn have at least one
descendant in nodes v2 and v4, respectively; on the other hand, only a subset
of elements in extent(v5) have an ancestor in v6. Our proposed approach is to
record value correlations for the elements of v5 only within the neighborhood
{v1, v2, v3, v4, v5} that essentially defines a set of common paths and branches;
correlations to v6 are not recorded, since they correspond to only a subset of
elements in extent(v5). More concretely, we introduce the concept of the stable
twig neighborhood of each node, formally defined as follows:

Definition 3.4. Let v be an XSKETCH node, and let B(v) denote the set of
all nodes in the XSKETCH that reach v through a B-stable path (including v
itself). Also, let F (v) denote the set of all nodes in the XSKETCH that can be
reached starting from any node in B(v) through an F-stable path. The stable
twig neighborhood (STN) of v is defined as STN(v) = B(v) ∪ F (v).

The key observation here is that, by virtue of stability, the stable twig neigh-
borhood of an XSKETCH node v captures path and branching structure that is
common to all data elements in extent(v). The joint-distribution information
recorded for v in the XSKETCH tries to capture the frequencies of elements in
extent(v) and their possible correlation(s) with the values of (a subset of) other
nodes in STN(v) along specific paths (or, in general, twigs) within STN(v). In
other words, our XSKETCH synopses rely on (a) structural B- and F-stability to
model the dependence of element values on path and branching structure (i.e.,
path/value correlations), and (b) multidimensional distribution synopses (e.g.,
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histograms) to model value correlations within stable “neighborhoods” of the
XSKETCH.

Consider an XSKETCH node v and let T be a twig contained within STN(v). Let
dep(v) (⊆ STN(v)) denote the “correlation scope” of v; that is, the set of nodes in
the XSKETCH for which correlations with the element distribution in extent(v)
are captured in the joint-distribution information maintained in v. (If v itself
contains elements with values then dep(v) must contain at least v.) We also
let dep(v, T ) denote the restriction of dep(v) in T (i.e., dep(v, T ) = dep(v) ∩ T ).
Then the joint-distribution information recorded in v can give direct estimates
for the number of v elements that are reached through the branching path
expression T {σ }, where the value predicates σ can be on any subset of dep(v, T ).
As a more concrete example, consider the twig T = v1[v2]/v3[v4]/v5 (shown in
Figure 3) that is contained within STN(v5), and assume dep(v5) = {v1, v4}; then
the joint-distribution kept at v5 can be used to directly estimate the number
of v5 elements discovered by v1{σ1}[v2]/v3[v4{σ4}]/v5, where σ1, σ4 are value
predicates on nodes v1 and v4, respectively. We can now give a formal definition
for our model of (structure and value) XSKETCH synopses for XML data.

Definition 3.5. An XSKETCH synopsis X S(G) for an XML data graph G
with element values is a structural XSKETCH (VXS , EXS) for G, where each node
v ∈ VXS can also contain a (possibly) multidimensional synopsis for the joint
distribution of elements in extent(v) and the values of any subset of XSKETCH

nodes dep(v) ⊆ STN(v) along specific paths/twigs within STN(v).

Note that, by the above definition, dep(v) ⊆ STN(v) since, in general, only
a subset of the value distributions in a node’s STN will actually be correlated,
and it is only these correlations (along a given stable twig) that we need to
capture in the XSKETCH node. For noncorrelated value distributions, an inde-
pendence assumption is valid and will give accurate estimates [Deshpande et al.
2001]. Consider once again our example stable twig T = v1[v2]/v3[v4]/v5 with
dep(v5) = {v1, v4}, and assume that the distribution of v5 elements is inde-
pendent of the values in v3 
∈ dep(v5) (i.e., v3 ⊥ v5). Even though the dis-
tribution information in v5 cannot directly give an estimate for the count of
v1{σ1}[v2]/v3{σ3}[v4{σ4}]/v5 (which contains a value predicate on v3), a product
estimate based on the independence of the distributions in v5 and v3 is going to
give a good approximation (Figure 3).

3.2.1 Value-Distribution Summaries for XSKETCH Nodes. Thus far, we have
been deliberately vague about the exact form of distribution summaries main-
tained in the nodes of our XSKETCH synopsis. A main reason for this is that,
as mentioned earlier, several forms of multidimensional data synopses (e.g.,
histograms or wavelets) can be used to produce a concise description of the
distribution of elements in a node’s extent across the values in its correla-
tion scope. More specifically, let v be an XSKETCH node and let Dv denote the
cross-product of the value domains for elements in v’s correlation scope, that
is, Dv = ×u∈dep(v)domain(u). Then, the distribution of v’s elements within its
correlation scope can be described by the joint-frequency table fv[c1, . . . , ck]
that gives the number of elements in extent(v) that are reached from (or, lead
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to) the tuple of values (c1, . . . , ck) ∈ Dv in the corresponding nodes of dep(v). This
frequency table fv[] can be summarized in our XSKETCH using conventional mul-
tidimensional histograms [Poosala and Ioannidis 1997], Haar wavelets [Vitter
and Wang 1999], or even more complex summarization techniques based on
statistical modeling [Deshpande et al. 2001]. For concreteness, we use the term
histogram to refer to the distribution information maintained in XSKETCH nodes
in the remainder of this article.

Unlike the relational case, however, the joint-frequency table fv[] is not suf-
ficient to provide accurate estimates for arbitrary value-selection predicates
over the nodes of dep(v). The hierarchical nature of XML data once again in-
troduces novel challenges in capturing the element distribution in a node with
respect to other nodes in its STN. As a simple example, consider a v-labeled
node with 10 u-labeled children (u1, . . . , u10) in the data graph, and nine other
v-labeled nodes all with a single u-labeled child (u11). Further, assume that v
nodes carry no values whereas each ui node carries a value of i (i = 1, . . . , 10).
Clearly, in our XSKETCH synopsis this simple data configuration will result in
a single B/F-stable (v, u) edge with count(v) = count(u) = 10. Assume that
dep(v) = {u}. Then the joint-frequency table fv[] will have entries fv[i] = 1 for
i = 1, . . . , 10 and fv[11] = 9. Now consider the branch query v[u{σ }] where
σ = (1 ≤ value(u) ≤ 10). Clearly, the correct count(v[u{σ }]) is 1; however, using
the fv[] table in the conventional manner to estimate the selectivity of σ (as-
suming no summarization whatsoever), we get an erroneous count of 10. The
reason, of course, is “double counting”: even though the frequency table tells
us that each u-value from 1 to 10 is reached by one v-element, it has no way of
telling us that they are in fact reached by the same v-element!

It is easy to see that this double-counting problem can become much more
complicated when the element distribution involves more complex path struc-
tures and overlap patterns between elements. Unfortunately, this problem is
inherent in all approximation techniques that estimate the selectivity of ranges
by summing point frequencies and there is no easy solution based on traditional
frequency tables and histogram structures.3 It is thus necessary to use special-
ized summarization techniques that take directly into account the existence of
duplicates in the estimated cardinalities. In what follows, we describe two ap-
proaches for dealing with double-counting: the first one is based on distinct sam-
pling [Gibbons 2001], while the second one is a novel summarization method
called range histograms, which avoids double-counting in XSKETCH nodes by
explicitly capturing the overlap between different value ranges.

—Distinct sampling. In a recent study, Gibbons has introduced distinct
sampling [Gibbons 2001], a summarization method for estimating the
cardinality of DISTINCT projections over relational queries. Even though
this technique has been proposed for relational data, we observe that
the relational estimation problem is essentially the same as estimating

3A naive approach would be to incorporate element-id information in the dimensions of our fre-

quency table. Such an approach, however, is very inflexible with respect to updates in the database

and (perhaps most importantly) it is not at all clear how element-id axes should be handled during

the summarization (histograming) of the table.
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the selectivity of range predicates over graph-structured data. To il-
lustrate this, consider the previous example and let Rvu(Av, Au) =
{(v1, u1), . . . , (v1, u10), (v2, u11), . . . , (v10, u11)} be a relation of two attributes
that represents the structural join of nodes v and u , that is, all pairs (vi, u j )
such that vi is a parent of u j . It is straightforward to show that the selectiv-
ity of path v[u{σ }] is equal to the result cardinality of the “relational” query
(SELECT DISTINCT Av FROM Ruv WHERE σ (Au)). We can thus employ a fairly
straightforward adaptation of distinct sampling in order to implement the
value summaries for XSKETCH nodes and avoid the double counting problem.

—Range histograms. We propose an alternative solution for avoiding double-
counting in XSKETCH nodes for the special case of simple value-range predi-
cates. Our main idea is to increase the dimensionality of the frequency table
fv[] so that its entries capture the number of v elements within a range of
values of its reference nodes. Thus, in our “bad” example above, the frequency
table for v would be two-dimensional and fv[lb, ub] would be the number of
v elements reaching u values in the interval [lb,ub], where lb ≤ ub; then, of
course, fv[1, 10] = 1 would give the correct answer to our example query. In
general, an n-dimensional value distribution will generate a 2n-dimensional
range distribution which can be used to accurately estimate the number of el-
ements that satisfy any conjunction of range predicates over the correspond-
ing dimensions. The resulting range-frequency tables can be summarized
to give “range histograms” that can provide accurate estimates to queries
with range predicates on values. We note that existing summarization tech-
niques, such as wavelets [Vitter and Wang 1999] or histograms [Poosala and
Ioannidis 1997], can provide a very effective approximation of the range-
frequency table, as adjacent cells correspond to ranges with high overlap and
are thus likely to have similar frequencies (i.e., the distribution of frequency
counts is expected to be “smooth.”)

3.3 Problem Formulation: Construction and Usage of Effective XSKETCHes

Given an amount of space (i.e., size limit) for the XSKETCH synopsis (determined,
for instance, by optimizer time and space constraints), we are obviously inter-
ested in determining the “most effective” XSKETCH within our specified space
budget. Of course, the notion of “effectiveness” for an XSKETCH synopsis needs to
be defined based on an estimation framework that uses the summary informa-
tion in the synopsis to parse an input complex path expression and produce an
(approximate) selectivity estimate. Given the concise and approximate nature
of our XSKETCHes, this estimation process obviously has to rely on a set of statis-
tical assumptions that compensate for the lack of detailed information (similar,
for example, to the intrabucket uniformity assumptions typically made during
histogram-based estimation [Poosala and Ioannidis 1997; Poosala et al. 1996]).
Thus, our XML-graph summarization problem comprises two important and
interrelated challenges that are addressed in the remainder of this article:

(1) Estimation framework for complex path queries over XSKETCH graph syn-
opsest. Given a complex, branching path expression Q and an XSKETCH

synopsis X S(G) representing a statistical summary of a large XML data
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graph G, process Q over X S(G) (using a set of well-founded statistical as-
sumptions) to produce an estimate for the selectivity of P over the original
data graph G.

(2) Effective XSKETCH synopsis construction. Given a large XML data graph G
and a space budget of B bytes, build an XSKETCH graph synopsis X S(G)
of G that effectively minimizes the approximation error in the selectivity
estimates produced based on X S(G) (and the given estimation model) for
complex path expressions over G.

In this work, we tackle these difficult problems for the general case of recur-
sive XPath expressions (with value and branching predicates) over nonrecur-
sive graph-structured data; moreover, our techniques extend to the dual case
of nonrecursive queries over recursive graph-structured data. As we show in
this article, the summarization problem is already hard for these combinations
and requires the development of nontrivial solutions. The existence of combined
query- and data-recursion is of course an interesting case, albeit one with sig-
nificant complications in the computation of accurate selectivity estimates. We
revisit this point in Section 4.3, where we describe in more detail the challenges
involved in general recursion.

4. XSKETCH ESTIMATION FRAMEWORK

We now define our estimation framework for approximating path-expression se-
lectivities over a compact XSKETCH synopsis. At an abstract level, the proposed
framework operates in two steps. The first step maps Q to a set of synopsis em-
beddings, that is, synopsis subgraphs that match the navigation steps of Q and
hence correspond to elements that appear in the result of Q . The second step
estimates the number of results in each unique embedding and approximates
sel (Q) as the sum of these individual selectivities. Our selectivity estimation
problem, therefore, essentially reduces to two subproblems: (a) computing the
set of synopsis embeddings for Q , and (b) estimating the selectivity for each dis-
covered embedding. The following sections describe the details of our approach.
We initially present an algorithm for computing embeddings (Section 4.1), and
then describe a framework for estimating the selectivity of individual embed-
dings (Section 4.2). To simplify the presentation, the aforementioned sections
focus on the case of recursive queries over nonrecursive data; we consider
recursive data in Section 4.3.

4.1 Computing Path-Expression Embeddings

At a high level, a synopsis embedding of Q instantiates each query edge (qi, qj )
with a simple synopsis path that respects the corresponding structural and
value constraints. The result is a subgraph of the synopsis on which Q has a
potentially nonempty result.

More formally, we first introduce the concept of a root binding between the
nodes of Q and the nodes of an XSKETCH X S(G). We say that u ∈ X S(G) is a
root binding for qi ∈ Q if (a) label(u) matches label(qi) and predicate σi has
nonzero selectivity according to the histogram at u, and (b) for every edge (qi, qj )
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Fig. 4. An example of a query embedding: (a) XSKETCH synopsis, (b) query Q , (c) a possible

embedding.

with axis(qi, qj ) = /(respectively, axis(qi, qj ) = //), u has a child v ∈ X S(G)
(respectively, a descendant v ∈ X S(G)) that is a root binding for qj . We call the
path between u and v a witness of the binding between qi and u. Intuitively, a
root binding implies that the subquery Q(qi) will have a positive selectivity if it
is evaluated starting from the elements of u. A synopsis embedding is simply a
pair of mappings (hn, hp), where hn is a mapping from query nodes to synopsis
nodes such that hn(qi) is a root binding for qi, and hp is a mapping between
query edges to synopsis paths such that hp(qi, qj ) is a witness path between
hn(qi) and hn(qj ).

Example 4.1. Figure 4 shows an example embedding for a sample XSKETCH

synopsis and query Q . The depicted embedding corresponds to the following
mappings: hn(q1) = ρ1, hn(q2) = A2, hp(q1, q2) = ρ1.A2, hn(q3) = C1, hp(q2, q3) =
A2.C1, hn(q4) = B2, hp(q3, q4) = C1.D1.B2, hn(q5) = C1, hp(q2, q5) = A2.C1. (Our
assumption is that the histogram of C1 yields a nonzero selectivity for predicate
> 100.) The embedding is presented as a tree of synopsis nodes, with a subset of
the nodes annotated with their mapped query node. It is interesting to note that
the same node C1 appears in two parts in the embedding, namely, the branch-
ing predicate and the main branch. Intuitively, this simply implies that the
elements of C1 can appear in the evaluation of two different steps of the query.

Intuitively, an embedding specifies the nodes whose elements correspond to
different query steps and the paths that are followed in between; moreover, the
“abstract” information of a query, namely, the wildcard labels and the edges with
the descendant axis (//), is substituted with simple synopsis paths that match
the corresponding constraints. We define the selectivity of an embedding as the
count of generated results when the evaluation of the query is constrained to
the specified element sets and data paths. Returning to the example of Fig-
ure 4, the selectivity of the embedding is defined as the number of elements
in extent(C1) that (a) are reached by a root-to-element path passing through
nodes ρ1.A2.C1, and (b) their ancestor in A2 has at least one outgoing path
that passes through nodes C1.D1.B1. Essentially, estimating the selectivity of
an embedding is equivalent to reasoning about the properties of backward and
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Fig. 5. Algorithm for computing query embeddings.

forward element-connectivity along simple paths. As we discuss in the next
section, this general observation forms the basic principle behind our proposed
estimation algorithm.

We now shift our attention to the key problem of identifying the embed-
dings of a query over a concise XSKETCH synopsis. We present an algorithm,
termed COMPUTE-EMBEDDINGS, that identifies the complete set of synopsis em-
beddings with a single depth-first traversal of the synopsis graph. The key idea
is to examine synopsis nodes in a postorder fashion and compute the root bind-
ings for each node based on the bindings of its descendants. The pseudocode
of COMPUTEEMBEDDINGS is shown in Figure 5. We assume that the initial call
to COMPUTEEMBEDDINGS is performed on the root node of the synopsis. When a
node v is visited for the first time, the algorithm computes a set cand[v] of query
nodes that match with v, that is, their labels are compatible and σi has a positive
selectivity on v. Essentially, these are the candidate nodes for the root bindings
of v. Subsequently, the algorithm recurses on the children of v (Steps 4–6), thus
discovering the root bindings of its descendants and the witness paths that
link v to the latter. This information is used to filter the set of candidate nodes
cand[v] and determine the set bind[v] ⊆ cand[v] of its root bindings. Finally,
the filtered nodes in bind[v] are used to compute witness paths for the ancestors
of v, using the stack TS of the depth-first traversal.

A key step of the algorithm is the identification of set bind[v] ⊆ cand[v]. More
concretely, the recursive call to a descendant w has two effects: (a) it determines
the root bindings for w, and (b) it computes the witness paths for edges (qj , qk),
where qj ∈ cand[v] is a candidate and qk ∈ bind[w] is a root binding for w. This
second step is performed at the end of the recursive call to w, by examining the
traversal stack TS and determining whether the simple synopsis path TS[v..w]
(the path between v and w in the stack) matches axis(qj , qk). If the answer is
positive, then TS[v..w] is added to a variable paths[v, qj , qk] that accumulates
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the witnesses of the binding between v and qj . Clearly, v is a root binding for qj

if the witness set path[v, qj , qk] is nonempty for every edge (qj , qk); moreover,
the embeddings that map qj to v can be recovered by chasing through the
contents of paths for v and its descendants. Hence, the algorithm computes
all the embeddings of the query after processing the root synopsis node and
determining whether it is a root binding for q1.

Example 4.2. Consider again the application of COMPUTEEMBEDDINGS on the
example synopsis and query of Figure 4. Assume that the depth-first traversal
has followed the path ρ1.A2.C1.D1.B1 and the algorithm has just finished pro-
cessing node B1. The following describes the information associated with each
node in the traversal stack:

cand[ρ1] = {q1, q3} → paths[ρ1, q3, q4] = {ρ1.A2.C1.D1.B1}
cand[A2] = {q2, q3} → paths[A2, q3, q4] = {A2.C1.D1.B1}
cand[C1] = {q3, q5} → paths[C1, q3, q4] = {C1.D1.B1}
cand[D1] = {q3} → paths[D1, q3, q4] = {D1.B1}
bind[B1] = {q4}

Based on this information, the algorithm can determine that D1 and C1 are
root bindings for q3, since they match its label and have a witness path to a
root binding of q4. (By the same token, C1 is also a root binding for q5.) After
finishing the processing of C1, the algorithm has updated the binding sets for
D1 and C1, and the witness sets of their ancestors in the traversal stack:

cand[ρ1] = {q1, q3} → paths[ρ1, q3, q4] = {ρ1.A2.C1.D1.B1},
cand[A2] = {q2, q3} → paths[A2, q3, q4] = {A2.C1.D1.B1},

→ paths[A2, q2, q3] = {A2.C1} paths[A2, q2, q5] = {A2.C1}
bind[C1] = {q3, q5} → paths[C1, q3, q4] = {C1.D1.B1}
bind[D1] = {q3} → paths[D1, q3, q4] = {D1.B1}
bind[B1] = {q4}

At this point, it can be determined that A2 is a root binding for both q2 and
q3. This also implies that ρ1 has a witness path for its binding to q1 and hence
ρ1.A2 will be inserted in paths[ρ1, q1, q2]. The final state of the algorithm, after
processing all nodes, is as follows:

bind[ρ1] = {q1, q3} → paths[ρ1, q3, q4] = {ρ1.A2.C1.D1.B1, ρ1.A1.C1.D1.B1}
→ paths[ρ1, q1, q2] = {ρ1.A2, ρ1.A1}

bind[A1] = {q2, q3} → paths[A1, q3, q4] = {A1.C1.D1.B1}
→ paths[A1, q2, q3] = {A1.C1} paths[A1, q2, q5] = {A1.C1}

bind[A2] = {q2, q3} → paths[A2, q3, q4] = {A2.C1.D1.B1}
→ paths[A2, q2, q3] = {A2.C1} paths[A2, q2, q5] = {A2.C1}

bind[C1] = {q3, q5} → paths[C1, q3, q4] = {C1.D1.B1}
bind[D1] = {q3} → paths[D1, q3, q4] = {D1.B1}
bind[B1] = {q4}

The individual embeddings can be recovered by starting from the root binding
of q1 and chasing to the other query nodes based on the contents of paths.
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The embedding of Figure 4, for instance, is generated from the following
information:

On a final note, we observe that COMPUTEEMBEDDINGS does not follow any cy-
cles in the synopsis (Step 1) and hence generates witness paths of unique syn-
opsis nodes. This is in agreement with our assumption of nonrecursive data,
as a cyclic witness path would essentially imply a cycle in the evaluation of
the query. Moreover, this restriction bounds the number of embedding nodes by
NQ NS , since every root-to-leaf path in the embedding must contain unique syn-
opsis nodes. (The complexity of our COMPUTEEMBEDDINGS procedure is discussed
in the Electronic Appendix.) We revisit these issues in Section 4.3, where we
discuss the extension of our approach to recursive data.

4.2 Estimating Embedding Selectivity

Having described the COMPUTEEMBEDDINGS algorithm for identifying the embed-
dings of a query, we now introduce an estimation framework for approximating
the selectivity of each embedding. As discussed earlier, our goal is to approxi-
mate the selectivity sel (Q) of the query as the sum of selectivities of its identified
embeddings.

To simplify our presentation, we will assume that Q has a single branch-
ing predicate that contains a linear path. (The extension of our analysis to
multiple branching predicates is straightforward and is discussed later.) We
will use v{σ } = v1/ · · · /vn[u1/ · · · /uk]/vn+k+1/ · · · /vn+k+m to denote an embed-
ding of Q , with v referring to the label structure of the embedding (i.e., with-
out the value predicates). Based on this notation, the example of Figure 4
would be written as ρ1/A2[C1/B1/D1]/C1{> 100}, with v corresponding to
ρ1/A2[C1/B1/D1]/C1. Clearly, the selectivity sel (v{σ }) of the embedding is equal
to the number of data elements for which (a) there exists a root-to-element
data path that passes through nodes v1/ . . . /vn+k+m and satisfies all the selec-
tion predicates, and (b) the ancestor that corresponds to vn is the root of at
least one data path that passes through nodes vn/u1/ . . . /uk . We express this
as sel (v{σ }) = count(vn+k+m) · f (v{σ }), where f (v{σ }) denotes the estimated
fraction (i.e., empirical probability) of result elements in extent(vn+k+m).

As our discussion indicates, the estimation problem is reduced to approxi-
mating the fraction f ({σ }) for every embedding of the query. In what follows,
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we introduce a framework for estimating the required fractions based on the
information stored in the XSKETCH summary X S(G).

4.2.1 Parsing Path-Expression Embeddings over an XSKETCH. Our pro-
posed estimation process is based on the parsing of an embedding in subtwigs,
for which estimation accuracy is guaranteed by virtue of the recorded edge sta-
bilities. The following theorem formalizes this notion, demonstrating that the
element counts estimated at the two endpoints of a label path embedding in
X S(G) are guaranteed to be exact as long as all the edges followed in X S(G)
satisfy the appropriate stability conditions. (The proof can be found in the
Electronic Appendix.)

THEOREM 4.1. Let X S(G) be an XSKETCH synopsis for an XML data graph
G, and let v1, . . . , vn be a directed path in X S(G).

(1) If B ∈ label(vi, vi+1) for each i = 1, . . . , n − 1, then all count(vn) elements
corresponding to vn are discovered by the label path label(v1)/ · · · /label(vn)
starting from some node in extent(v1) in G.

(2) If F ∈ label(vi, vi+1) for each i = 1, . . . , n − 1, then all count(v1) elements
corresponding to v1 reach at least one element in extent(vn) by the label path
label(v1)/ · · · /label(vn) in G.

Theorem 4.1 ensures that the estimates obtained from an XSKETCH for a
(structure-only) label path expression are accurate as long as all the edges tra-
versed in the synopsis while parsing the path expression satisfy the appropriate
stability constraints (recall that an XSKETCH with all edges labeled {B, F} is ex-
actly the perfect synopsis, i.e., the B/F-bisimilar graph.) Of course, given the
hard space constraints that the XSKETCH synopsis must satisfy, it is impossible
to guarantee such an ideal parsing for all possible path expressions over the
data graph; in addition, the theorem covers the case of structural embeddings,
that is, embeddings without value predicates, and does not consider the correla-
tion between value distributions and path structure. We address these issues in
the remainder of this section, where we introduce an estimation framework for
approximating the selectivities of complex path embeddings over XSKETCHes.
As with any form of estimation that uses concise synopses (e.g., histograms
or wavelets), our proposed framework also relies on a set of statistical (uni-
formity and independence) assumptions to compensate for the lack of detailed
distribution information.

Consider a single-branch path embedding v = v1/ · · · /vn[u1/ · · · /uk]/vn+k+1/

· · · /vn+k+m (note that we are using ui for branch nodes to simplify the nota-
tion). The first step in our estimation process is to parse the embedding v into a
sequence of maximal, nonoverlapping stable twigs; that is, we break the embed-
ding v into a collection of subtwigs T1, T2, . . . , such that every XSKETCH node in
the embedding is “covered” by exactly one of the Ti ’s, and each Ti is a maximal
stable twig in v, that is, all path (branch) edges in Ti are B-stable (respectively,
F-stable). Conceptually, this parsing can be done as follows. Starting from the
last node in the embedding (vn+m), build the first tree T in the decomposition by
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Fig. 6. Parsing of single-branch embedding into multiple stable sub-embeddings.

taking the intersection of the embedding v with the stable twig neighborhood
of vn+m; that is, T = STN(vn+m)∩v. Then, take the nodes of T out of v and repeat
the process from those nodes of v − T that were directly connected to T nodes
(i.e., at the outside “border” of T ).

It is easy to see that, for the case of our single-branch embedding v, all
the stable twigs resulting from the above decomposition will be simple paths
except perhaps for the single twig, say Tj , that contains the only branch-
ing node vn. More concretely, let the stable-twig decomposition of v be as
follows: T1 = v1/ . . . /vk1

, . . . , Tj = vk j−1+1/ . . . /vn[u1/ . . . /um1
]/ . . . /vk j , . . . ,

Tq = vkq−1+1/ . . . /vkq , Tq+1 = um1+1/ · · · /um2
, . . . , Tq+l = uml +1/ · · · /uml+1

, where
0 < k1 < k2 < · · · < n+m = kq and 0 < m1 < m2 < · · · < k = ml+1. Note that, in
the above decomposition, the stable twigs T1, . . . , Tq essentially cover the main
path of the expression (with the only “true” twig Tj possibly covering part of
the branch), whereas twigs Tq+1, . . . , Tq+l cover the remainder of the u1/ · · · /uk

branch. (This is shown pictorially in Figure 6.) The decomposition can be com-
puted efficiently by performing a single pass over the embedding and marking
the breaks of B-stability (respectively, f-stability) for the edges pointing to vi

nodes (respectively u j nodes). The time complexity is therefore O(NQ NS), since
any embedding can have at most NQ NS nodes (Section 4.1). We note that our
definition of decomposition assumes a single linear-path branching predicate,
but it extends naturally to multiple tree-structured branching predicates. The
only difference is that the decomposition may result in several twig components,
instead of a single twig Tj .

Given this decomposition of the embedding v, we now employ the well-known
chain rule from probability theory [Feller 1968] to rewrite the required fraction
f (v{σ }) as follows (for simplicity, we use σ i for the set of all predicates in twig
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Ti and π j for the predicate on branch node u j ):

f (v{σ }) = f (Tq{σ q}) ·
q−1∏

i= j

f (Ti{σ i}/vki+1 | Ti+1{σ i+1}/ · · · /Tq{σ q})

·
l∏

i=1

f (umi [Tq+i{σ q+i}] | Tj {σ j }[um1+1{πm1+1}/ · · ·

· · · /umi {πmi }]/Tj+1{σ j+1}/ · · · /Tq{σ q})

·
j−1∏

i=1

f (Ti{σ i}/vki+1 | Ti+1{σ i+1}/ · · · /Tj {σ j }[u1{π1}/ · · · /uk{πk}]/ · · · /Tq{σ q}),

where the notation f (T {σ }/v | v/T ′{σ ′}) denotes the conditional probability that
a data element in a synopsis node v is discovered by the embedding T {σ }/v given
that there exists an embedding v/T ′{σ ′} “rooted” at that element. (The corre-
sponding conditional fractions for branches f (v[T ′{σ ′}] | T {σ }/v) are defined
similarly.) Note that the second product term above captures the selectivity of
the complex expression along the “existential” branch u1/ · · · /uk , whereas the
first and third product terms capture the selectivity along the main path. Of
course, by the chain rule, the f () frequency terms always condition on the re-
mainder of the complex path as it is parsed in a “bottom-up” fashion; intuitively,
the reason for this conditioning is to capture the correlations between the var-
ious twigs that comprise the overall path embedding v{σ }. Also, note that the
value predicates for the vki+1 and umi nodes are not included in the fraction
expressions for the Ti and Tq+i terms above, since they are already accounted
for in the expression for Ti+1 and Tq+i−1 (respectively) and included in the cor-
responding conditionals for Ti and Tq+i. To simplify the above expression, our
estimation process makes the following “Twig-Independence” assumption.

Assumption 1 (Twig Independence). Given a node v in X S(G), the dis-
tribution of incoming twigs T {σ } to v is independent of the distribution of
outgoing twigs T ′{σ ′} from v for any value predicates σ , σ ′; more formally,
f (T {σ }/v | v/T ′{σ ′}) ≈ f (T {σ }/v) and f (v[T ′{σ ′}] | T {σ }/v) ≈ f (v[T ′{σ ′}]).

Obviously, the validity of this assumption depends on the underlying data
distribution and can directly affect the accuracy of the computed estimates (this
is a basic observation that holds for all the statistical assumptions that we in-
troduce). We address this issue in Section 5, where we describe transformations
for refining an XSKETCH against possibly erroneous assumptions, thus “tailor-
ing” our synopses to the statistical characteristics of the base data. Returning
to our estimation framework, Assumption 1 allows us to eliminate most of the
conditionings and simplify our expression for f (v{σ }) to

f (v{σ }) ≈ f (Tq{σ q}) ·
q−1∏

i=1

f (Ti{σ i}/vki+1 | vki+1{σki+1})

·
l∏

i=1

f (umi [Tq+i{σ q+i}] | umi {πmi }) . (1)

That is, the only conditioning that remains over the f () fractions is on the value
predicate imposed on the referenced node in our XSKETCH synopsis. Now, let Bq+i
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denote the branch expression corresponding to the F-stable path Tq+i in our
decomposition of the u1/ · · · /uk branch; that is, Bq+i = umi+1[umi+2/ · · · /umi+1

],
for i = 1, . . . , l . Applying the chain rule once again for the individual terms in
the above products, we have

f (Ti{σ i}/vki+1 | vki+1{σki+1}) = f (vki /vki+1|vki+1{σki+1})· f (Ti{σ i}|vki /vki+1{σki+1})
≈ f (vki /vki+1 | vki+1{σki+1})· f (Ti{σ i}), (2)

where the last derivation follows from Twig Independence (Assumption 1). Sim-
ilarly,

f (umi [Tq+i{σ q+i}] | umi {πmi }) ≈ f (umi [umi+1] | umi {πmi }) · f (Bq+i{σ q+i}). (3)

To simplify the resulting fractions further, we make one more independence
assumption that aims to compensate for the lack of statistical-correlation in-
formation across nonstable edges.

Assumption 2 (Edge-Value Independence Across Nonstable Edges). Con-
sider a node v in X S(G) and let u (w) be a non-B-stable parent (respectively,
non-F-stable child) of v in X S(G). Then the distribution of incoming (outgoing)
edges from u (respectively, to w) across the elements in extent(v) is independent
of the elements’ values; that is, for any predicate σ on the values of v elements,
we have f (u/v | v{σ }) ≈ f (u/v) and f (v[w] | v{σ }) ≈ f (v[w]).

Assumption 2 essentially simplifies path-value correlations along nonstable
edges. Combining Equations (1)–(3) and Assumption 2, we obtain the following
expression for the selectivity estimate of our branching-path embedding:

f (v{σ }) ≈
q∏

i=1

f (Ti{σ i}) ·
l∏

i=1

f (Bq+i{σ q+i}) ·
q∏

i=1

f (vki /vki+1) ·
l∏

i=1

f (umi [umi+1]) .

As a final step, we separate the structural and value constraints in the first
two terms, and use Theorem 4.1 in order to eliminate the predicates on path
structure. More specifically, the chain rule allows us to rewrite term f (Ti{σ i})
as f (Ti)· f (σ i | Ti), where the first probability captures the structural predicate
(elements that are reached by synopsis twig Ti), while the second covers the
value predicates (elements that in addition satisfy the constraints in σ i). Given
that Ti represents a stable twig, that is, all edges are backward- and forward-
stable, Theorem 4.1 guarantees that f (Ti) = 1; that is, the structural predicate
holds for every element in the last node of Ti. The branching terms f (Bq+i{σ q+i})
can be simplified using the same methodology, which leads to the following final
expression:

f (v{σ }) ≈
q∏

i=1

f (σ i | Ti)·
l∏

i=1

f (σ q+i | Bq+i)·
q∏

i=1

f (vki /vki+1)·
l∏

i=1

f (umi [umi+1]) . (4)

Example 4.3. We present an example of our estimation methodology on the
XSKETCH summary of Figure 2(c). We assume that each actor element records
the name of the corresponding actor and, similarly, each movie element contains
a value for the respective title. As a result, the XSKETCH records two value
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histograms, namely, HA for the distribution of names in node A, and HM for the
distribution of movie titles in node M.

Consider the embedding A{n = ”x”}[W/L]/MR/IR/M{t = ”y”}, where n,t de-
note the name of an actor and the title of a movie respectively.
Based on our discussion, we approximate its selectivity as count(M) ×
f (A{n = ”x”}[W/L]/MR/IR/M{t = ”y”}) (to simplify the description, we use f Q to
denote the fraction term). According to the recorded stabilities, the embedding
can be parsed in three stable components: A/MR, W/L, and IR/MR. Applying the
Chain rule on this parsing yields the following expression for the fraction term:

f Q = f (IR/M{t = ”y”}) · f (MR/IR | IR/M{t = ”y”}) · f (A{n = ”x”}/MR | MR/IR/M{t = ”y”})
· f (A[W] | A{n = ”x”}/MR/IR/M{t = ”y”}) · f (W[L] | A{n = ”x”}[W]/MR/IR/M{t = ”y”}) .

Based on Assumptions 1 and 2 (Twig Independence and Edge-Value Indepen-
dence), our framework makes the following approximations:

f (MR/IR | IR/M{t = ”y”}) ≈ f (MR/IR) ,

f (A{n = ”x”}/MR | MR/IR/M{t = ”y”}) ≈ f (A{n = ”x”}/MR) ,

f (A[W] | A{n = ”x”}/MR/IR/M{t = ”y”}) ≈ f (A[W]) ,

f (W[L] | A{n = ”x”}[W]/MR/IR/M{t = ”y”}) ≈ f (W[L]) .

It is interesting to note that, since edge (W, L) is F-stable, all W elements reach
at least one L element independent of outgoing or incoming paths; hence, the
last approximation is exact as both fractions are actually equal to 1. Returning
to the expression for f Q , it can be rewritten as follows:

f Q = f (IR/MR{t = ”y”}) · f (MR/IR) · f (A{n = ”x”}/MR) · f (A[W]) · f (W[L]).

At this point, our estimation framework relies on one final application of the
chain rule, in order to separate the structurally stable components from value
predicates:

f (IR/MR{t = ”y”}) = f (IR/MR) · f ({t = ”y”} | IR/MR),

f (A{n = ”x”}/MR) = f (A/MR) · f ({n = ”x”} | A/MR) .

By virtue of B-stability, f (IR/MR) = f (A/MR) = 1, while, as mentioned earlier,
F-stability guarantees that f (W[L]) = 1. Thus, our final estimation expression
simplifies to the following form:

f Q = f ({t = ”y”} | IR/MR) · f (MR/IR) · f ({n = ”x”} | A/MR) · f (A[W]).

Overall, Equation (4) computes the selectivity estimate for the embedding
v{σ } as a product of two key components: (a) the fractions of elements in the
stable parts of the embedding that satisfy the value predicates in σ (first two
product terms), and (b) the selectivities of path or branch edges along the “sta-
bility breaks” in the v embedding (last two product terms). (Once again, it is
easy to extend our estimation formula to the most general case of complex path
expressions with multiple branches.) In the next two sections, we describe our
methodology for approximating these two components in Equation (4) over a
concise XSKETCH synopsis.
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Fig. 7. The TWIGEST algorithm for selectivity estimation over stable XSKETCH twigs.

4.2.2 Selectivity Estimation for Stable Twigs with Value Predicates. Con-
sider a stable twig embedding T in an XSKETCH synopsis X S(G), and let σ

denote a collection of value predicates over the nodes of T . Our goal is to utilize
the statistical information in X S(G) to obtain an estimate for f (σ | T ), the
fraction of data elements that are discovered by the “value-restricted” twig
embedding T {σ }.

Once again, to simplify the exposition, we consider a single-branch stable
twig T ; our discussion can easily be extended to the general, multi-branch
case. (We also use T as the set of XSKETCH nodes in the twig when no confusion
arises.) Let v be a node in T . Given a set S of ancestor and/or descendant nodes
of v in T , let twig(v, S) denote the subtwig of T that connects v to all the nodes
in S, and let σ (S) denote the set of value predicates on nodes of S in our twig
query (i.e., the restriction of σ to S).

Our algorithm for estimating the selectivity of a stable twig embedding T {σ }
(termed TWIGEST) is depicted in Figure 7. Briefly, our TWIGEST algorithm ex-
amines each node v in the main path of the twig embedding (in reverse order)
and considers the set of value predicates that can be directly “covered” by the
node’s joint-distribution histogram based on its correlation scope dep(v). When
a branching node (e.g., vn) is encountered, TWIGEST traverses the branch top-
down once again using nodes’ correlation scopes to cover value predicates in the
branch. This covering of value predicates is based on successive applications
of the chain rule as we parse the twig embedding; of course, since each node
carries only limited value-correlation information, our estimate relies on one
final independence assumption for element-value distributions.
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Assumption 3 (Value Independence Outside Correlation Scope). The distri-
bution of elements in the extent of an XSKETCH node v is independent of the
values in other XSKETCH nodes u that are not in v’s direct correlation scope, that
is, u 
∈ dep(v).

Assumption 3 allows us to simplify the chain-rule conditionals to obtain the
conditional probability f ∗ in Step 10 of TWIGEST, which can be directly esti-
mated using the histogram information in v. Once all value predicates in the
embedding T {σ } have been covered, TWIGEST returns the accumulated selectiv-
ity estimate for f (σ | T ).

As shown, TWIGEST examines each node of the embedding at most once and
hence performs at most NT iterations for the loop of lines 3-15. (NT denotes
the number of nodes in the embedding.) For each node, the algorithm per-
forms standard set operations on dep(v), which has size O(NS), and computes
two selectivity estimates using the histogram of v. The complexity of the for-
mer is O(NS) provided that sets are maintained in sorted order, while the
complexity of the latter step obviously depends on the specific summarization
method used in the value-summary of v (e.g., conventional histogram, wavelet,
sample-based summary, etc.). Here, we use O(h) to denote the time complex-
ity of computing a single selectivity estimate from the histogram of v, and
thus express the time complexity of TWIGEST as O(NT NS · h). Hence, the total
complexity of all the invocations of TWIGEST for a single query embedding is
O(NQ N 2

S · h).

4.2.3 Selectivity Estimation across Nonstable Edges. We now shift our at-
tention to the problem of estimating path selectivities across nonstable edges
of a XSKETCH synopsis X S(G), that is, the fraction terms f (vki /vki+1) and
f (umi [umi+1]) in Equation (4). Given the absence of detailed distribution infor-
mation in X S(G), our estimation framework approximates the required selec-
tivities by applying the following uniformity assumptions on the path structure
of the data graph:

A.4 (Backward-edge Uniformity). Given a node v in X S(G), the incoming
edges to v from all parent nodes u of v such that v is not B-stable with respect
to u are uniformly distributed across all such parents in proportion to their
counts; that is, if we let N B(v) denote the set of all “non-B-stable” parents of
v then the fraction of elements in extent(v) that are reached by u ∈ N B(v) is
approximately count(u)/

∑
w∈N B(v) count(w).

A.5 (Forward-edge Uniformity). Given a node v in X S(G), the outgoing
edges from v to all children u of v such that v is not F-stable with respect to u
are uniformly distributed across all such children in proportion to their counts,
and the total number of such edges is at most equal to the total of these counts;
that is, if we let N F (v) denote the set of all “non-F-stable” children of v and
s = ∑

w∈N F (v) count(w), then the fraction of elements in extent(v) that reach
u ∈ N F (v) is approximately count(u)/ max{s, count(v)}.

Note that our “forward” Assumption 5 above is slightly different from its
“backward” analog (Assumption 5), due to the max{} in the normalizing con-
stant for the fractions. The key intuition for this differentiation is as follows.
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Fig. 8. Identifying embeddings in recursive data: (a) XSKETCH synopsis, (b) query, (c) embedding.

Backward-Edge Uniformity is basically estimating “up” from a given synopsis
node and, since the node has parents, every node in its extent also must have
parents in the data (root XML elements are grouped separately). Forward-Edge
Uniformity tries to estimate “down” from a node, and the situation is not sym-
metric as not every element in the node’s extent has to have children. Omitting
the max{} from the denominator in Assumption 5 and using only the summa-
tion over children would essentially force every element in the node’s extent to
have a child which seems an excessively strong assumption to make (especially
for nodes with very large counts compared to their child counts).

4.3 Selectivity Estimation on Recursive Data

Up to this point, our presentation of the XSKETCH estimation framework has
focused on the case of nonrecursive data, that is, where every document path
consists of uniquely labeled elements. In this section, we consider recursive
data sets and discuss the application of our techniques to nonrecursive and
recursive queries.

4.3.1 Nonrecursive Queries. We first present an extension of the XSKETCH

estimation framework to the case of nonrecursive queries over recursive data.
At a high level, the basic approach remains essentially the same: a query if
first mapped to its set of embeddings, and the total selectivity is subsequently
approximated as the sum of embedding selectivities. The existence of data re-
cursion affects the first step only (algorithm COMPUTEEMBEDDINGS), as it now
becomes necessary to handle synopsis cycles in the identification of embed-
dings; the second stage of estimating embedding selectivity remains exactly
the same, as its specifics do not depend on the existence of recursion.

Before describing the extensions to algorithm COMPUTEEMBEDDINGS, we il-
lustrate the issue of synopsis cycles with a simple example. Figure 8 depicts
a sample XSKETCH synopsis of a recursive data set and a simple linear path
query. Consider the execution of COMPUTEEMBEDDINGS on this sample input, and
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assume that the depth first traversal follows the path ρ1.A1.B1.C1. After iden-
tifying the candidates of C1, the algorithm has computed the following infor-
mation for nodes on the traversal stack:

cand[ρ1] = {q1}, cand[A1] = {q2, q5}, cand[B1] = {q3}, cand[C1] = {q4} .

Assume that the traversal follows edge C1.A1 next and hence discovers the
cycle in the synopsis. This cycle essentially reveals a cyclic dependency in the
discovery of embeddings: the binding of A1 to q2 depends on the binding of C1

to q4, which in turn depends on the binding of A1 to q5. The latter, however, will
be determined only after all the descendants of A1 have been processed and
popped off the stack, including C1. The current algorithm will therefore fail to
identify the embedding of Figure 8, as it will miss the witness path C1.A1 for
the query edge (q4, q5).

To address this issue, we augment the information recorded by
COMPUTEEMBEDDINGS with pending witness paths. These paths are identified
when a cycle is detected in the traversal, and they essentially represent ten-
tative witnesses that will be verified after the processing of the node that they
reach. (Contrast this with normal witness paths, which are created and recorded
when their last node is processed.) We illustrate this idea with the same exam-
ple of Figure 8. When the cycle is detected, the algorithm examines the cand
sets of the nodes on the traversal stack and inserts pending witness paths as
follows:

cand[ρ1] = {q1}, cand[A1] = {q2, q5}, cand[B1] = {q3}, cand[C1] = {q4} ,

pend[A1, q2, q3] = {A1.B1}, pend[B1, q3.q4] = {B1.C1}, pend[C1, q4, q5] = {C1.A1} .

Intuitively, pending witnesses encode the cyclic dependencies between the bind-
ings of synopsis nodes, and enable the algorithm to determine tentative root
bindings for nodes in the cycle. The confirmation of these tentative bindings
occurs when the first node of the cycle is eventually processed. Returning to
the running example, C1 is identified as a tentative root binding for q4, pending
the confirmation of C1.A1 as a witness path. (The same happens for B1 and
pend[B1, q3, q4].) After processing D1, the algorithm resumes the processing of
A1 (the first node in the cycle), having recorded the following information:

cand[A1] = {q2, q5}, paths[A1, q5, q6] = {A1.D1} ,

pend[A1, q2, q3] = {A1.B1}, pend[B1, q3.q4] = {B1.C1}, pend[C1, q4, q5] = {C1.A1} .

The confirmation of pending paths proceeds in two stages. First,
COMPUTEEMBEDDINGS processes the nodes in cand[A1] in descendant to an-
cestor order and determines the root bindings of A1 based on paths only.
In this example, it can be verified that A1 is a root binding for q1 since
paths[A1, q5, q6] 
= ∅. Subsequently, the algorithm examines the list of pending
paths based on the nesting of query steps, and verifies the validity of witnesses.
Hence, pend[C1, q4, q5] = {C1.A1} is verified first, followed by pend[B1, q3, q4]
and pend[A1, q2, q3]. The latter provides the witness for the binding between
A1 and q2, thus modifying the bind set to bind[A1] = {q2, q5}.

Overall, this extension introduces two additional steps to our algorithm: the
identification of witness paths, and their verification. The fist step increases
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Fig. 9. Estimating the selectivity of a recursive query over recursive data: (a) XSKETCH of recursive

data, (b) recursive query Q , (c) two embeddings of Q with overlapping results.

the complexity by a factor of O(NQ N 2
S) for the first node of a cycle in the depth-

first traversal, as there are O(NS) nodes in the cycle, each node has O(NQ )
candidates in cand , and each node has to be compared against its ancestors in
the cycle. The second step involves the verification of O(NS NQ ) paths per cycle,
as the number of pending paths per node can be at most equal to the number of
query edges. (The latter corresponds to the uncommon case where every query
step has a wild-card label.)

4.3.2 Recursive Queries. As hinted earlier, it is not straightforward to ex-
tend the XSKETCH framework to the case of combined data and query recursion.
The key issue is that recursion complicates the identification of duplicates in
the result-set of the query, thus increasing the difficulty of handling the set-
based semantics of XPath expressions. Figure 9 illustrates this problem with
a simple recursive query over an example synopsis. As shown in part (c), the
query has two distinct synopsis embeddings that both reach the same summary
node C1; in turn, this implies that the individual selectivities may overlap, that
is, certain elements in extent(C1) may be reachable by both embeddings. The
naive aggregation of the individual selectivities will therefore overestimate the
true selectivity of the query, due exactly to the double counting of result ele-
ments. A more methodical approach is to combine the two selectivities using
the principle of inclusion-exclusion, thus accounting explicitly for their overlap
and generating an estimate of improved accuracy.

As the previous example indicates, generalized recursion introduces double
counting in the naive aggregation of embedding selectivities and therefore re-
quires testing for overlap (and in a more general context, for inclusion) among a
potentially large set of embeddings. This clearly increases the complexity of the
estimation function, thus conflicting with the requirement of obtaining fast se-
lectivity estimates during query optimization. Overall, these observations only
hint at possible new approaches for this general case, and potentially open up
an interesting direction for future work in the area of XML summarization.

5. XSKETCH SYNOPSIS CONSTRUCTION

In this section, we turn our attention to the important problem of effective
XSKETCH construction for a given synopsis space budget. Briefly, our approach
is based on using successive, localized refinement operations to gradually evolve
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an initial, coarse XSKETCH into a more detailed synopsis that captures the im-
portant path and value correlations in the data. We first discuss the specific set
of XSKETCH refinement operations that we use, and then present our construc-
tion algorithm in more detail.

5.1 Refinement Operations

In order to approximate path-expression selectivities, our XSKETCH estimation
framework (Section 4) relies on a number of statistical (uniformity and inde-
pendence) assumptions that compensate for the lack of detailed path and value
information in the synopsis. Clearly, the accuracy of an XSKETCH (and the result-
ing selectivity estimates) depends crucially on the validity of these assumptions
and the degree to which they reflect the statistical characteristics of the under-
lying path/value distribution in the actual data. To build an effective XSKETCH,
we need to be able to appropriately refine the synopsis structure for regions of
the data graph where our estimation assumptions fail, since these regions are
likely to result in high estimation errors (the relational-world analog would be
allocating more buckets to “difficult” data regions during histogram construc-
tion [Poosala and Ioannidis 1997]). In this section, we introduce such localized
refinement operations for XSKETCH synopses. We categorize our refinement op-
erations into two types: (1) structural refinements that refine the path structure
in the XSKETCH, and (2) value refinements that refine the value-distribution
information maintained in XSKETCH nodes. In what follows, we describe the
operations in more detail and discuss their connection to the assumptions of
our estimation framework. Due to space constraints, the details of our refine-
ment operations (including pseudocode descriptions and complexity analyses)
are provided in the Electronic Appendix.

5.1.1 Structural Refinements. At an abstract level, each structural re-
finement operation uses a partitioning criterion to split an XSKETCH node
u into a set of new nodes {ui}, such that ∪iextent(ui) = extent(u) and
extent(ui) ∩ extent(u j ) = φ for all i 
= j . Our node-partitioning criteria aim to
either completely eliminate some uniformity/independence assumption(s) for
the new synopsis nodes {ui}, or to at least make such assumptions much more
realistic for the new nodes {ui} than the old node u (similar to histogram-bucket
splits). Thus, successive refinements evolve the synopsis to a larger and more
precise summary. We define three different structural refinement operations
for XSKETCH nodes, namely, B Stabilize, F Stabilize, and B Split, which we
describe in more detail below. To simplify the presentation, our description as-
sumes that the base XML data graph is accessed and used to refine the XSKETCH

synopsis; in reality, all the refinement operations only need to use the (poten-
tially smaller) B/F-bisimilar graph that provides the exact path and branching
distribution information for the data.4

—B Stabilize(X S(G), u, v). Here, v is a parent of node u in the X S(G) syn-
opsis, and B 
∈ label(v, u). Clearly, when estimating the selectivity of any

4The key difference for our refinement operations is that the extents of XSKETCH nodes are defined

as sets of nodes of the B/F-bisimilar graph rather than the data graph.
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Fig. 10. The B Split operation: (a) original “bad” summary; (b) after applying B Split at node u.

twig embedding in X S(G) that contains the edge (v, u) in the main path, this
edge constitutes a breakpoint in the parsing of the embedding into maximal
stable subtwigs. This essentially forces the application of Twig Independence
(Assumption 1) and Backward-Edge Uniformity (Assumption 4) in order to
estimate f (v/u), that is, the fraction of data elements in u that descend from
v (Section 4). A B Stabilize operation eliminates the need for such assump-
tions by refining the u node into two element partitions u1, u2 with the same
label, of which only u1 is connected to v with a B-stable edge. Hence, edge
(v, u) is substituted with a new edge (v, u1) where label(v, u1) = label(v, u)∪
{B} and f (v/u1) = 1.

—F Stabilize(X S(G), u, w). The F Stabilize operation represents the “for-
ward” equivalent of B Stabilize. Here u is a parent of node w in the X S(G)
synopsis, and F 
∈ label(u, w). When estimating the selectivity of a path em-
bedding whose branch contains the edge (u, w), the break in the F-stability
chain mandates the use of Twig Independence (Assumption 1) and Forward-
Edge Uniformity (Assumption 5) in order to estimate f (u[w]), that is, the
fraction of data elements in u that have a child in w (Section 4). The
F Stabilize operation separates out exactly those elements of u in a new
synopsis node u1, so that label(u1, w) = label(u, w)∪{F} and P[ (]u1[w]) = 1.

—B Split(X S(G), u, {vi}). Here, u is a node in the X S(G) synopsis and {vi}
is the set of parent nodes of u such that B 
∈ label(vi, u) (that is, u is not
B-stable with respect to parent vi). When estimating the selectivity of any
twig embedding in X S(G) that contains any of the (vi, u) edges in the main
path, the break in the B-stability chain forces the use of Backward-Edge
Uniformity (Assumption 4) in order to estimate the fraction f (vi/u) of
elements in u that descend from elements in vi. Such a scenario is depicted
in Figure 10(a) where the node u in the XSKETCH is shown along with an
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example histogram that summarizes the exact count-distribution informa-
tion for the number of children in u per element in each parent vi. According
to Backward-Edge Uniformity, the number of elements in u that descend
from elements in vk ∈ {vi} is expressed as follows:

sel (vk/u) = count(u) × count(vk)∑
vi

count(vi)
, for all k,

which, of course, implies that

sel (vk/u)

count(vk)
= count(u)∑

vi

count(vi)
= constant , for all k.

Essentially, the Backward-Edge Uniformity assumption approximates this
count distribution (that is, the ratio of the number of child elements in u
per parent element vk) using a single average, indicated by the dashed line
in our example histogram. As our example figure shows, this may result
in a poor approximation when the count-distribution of the {vi} parents is
somewhat skewed. Our B Split operation tries to intelligently partition the
elements in u across two new XSKETCH nodes so that (1) the set of parents {vi}
of u is also partitioned across the two new nodes, and (2) the Backward-Edge
Uniformity assumption within each partition gives a much more accurate
approximation. A possible B Split for our example summary is shown in
Figure 10(b) where, without loss of generality, the parent set {vi} has been
partitioned into {v1, . . . , vk} and {vk+1, . . . , vn}. The key idea is that, by intelli-
gently partitioning based on count information, B Split manages to produce
much more uniform count histograms and, thus, substantially improve the
accuracy of the average approximation within each of the resulting nodes u1

and u2. The benefit of the B Split operation, therefore, is that it does not lift
Backward-Edge Uniformity but, instead, tries to make the summary fit it
better. Of course, the situation is slightly more complicated than the depic-
tion in Figure 10, as the children of elements in {vi} may actually overlap in
u and such overlaps should be accounted for when partitioning {vi}. The ap-
proach followed in our B Split operation is to initially group the nodes in the
parent set {vi} into disjoint node clusters whose children are nonoverlapping
in u, and then partition {vi} at this “coarser” level of node clusters.

5.1.2 Value Refinements. Our value-refinement operations try to improve
estimation accuracy for value predicates by increasing the granularity of the
value-distribution information maintained at individual XSKETCH nodes. Ab-
stractly, there are two ways to improve the accuracy of the distribution infor-
mation at an XSKETCH node u: (1) give more space (that is, additional buckets) to
the histogram(s) already in u, and (2) expand the correlation scope of u, so that
additional value correlations within u’s stable twig neighborhood are captured.
Thus we introduce two new value-refinement operations for XSKETCH nodes u
with histogram information: (1) Value Refine, which allocates more space to
histograms, and (2) Value Expand, which expands the correlation scope of a
node. (The details can be found in the Electronic Appendix.)
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Fig. 11. Handling Twig Independence: (a) XML document, (b) XSKETCH synopsis, (c) After

F Stabilize, (d) After B Stabilize.

5.1.3 Discussion. Having defined our XSKETCH-refinement operations, we
now describe how they attack each of the assumptions in our estimation frame-
work to improve accuracy. As we have already discussed, certain correspon-
dences are obvious from the definition of the operations: B Stabilize attacks
Backward-Edge Uniformity (Assumption 4), since it inserts B-stable edges in
the synopsis and thus lifts the need for the assumption along a nonstable edge;
B Split handles the same assumption by making the distribution of incoming
edges more uniform across the new nodes; F Stabilize attacks Forward-Edge
Uniformity (Assumption 5) by adding F-stable edges; Value Expand handles an
invalid assumption of Value Independence Outside Correlation Scope (Assump-
tion 3), since it expands the scope of a value summary to a larger subset of the
stable neighborhood; and, Value Refine attacks the implicit assumption that
value histograms are good approximations of the underlying value distribu-
tions, by allocating more memory to the value-summarization model. In what
follows, we discuss how the refinement operations cover the remaining assump-
tions of our estimation framework, namely, Twig Independence and Edge-Value
Independence.

Twig Independence (Assumption 1) is applied across edges that are not stable
during path parsing and is lifted with the help of B Stabilize and F Stabilize
operations that introduce more B-stable and F-stable edges in the summary.
As an example, consider the XML document of Figure 11(a) and the corre-
sponding XSKETCH synopsis in Figure 11(b) (we use A(×n) in the document to
denote n elements of label A). Suppose that we wish to estimate the selectivity
of expression B/A/[/E]/D over the given synopsis. As described in Section 4,
the expression will be parsed in two stable twigs, namely, B/A/D and [E], and
its selectivity will be calculated as f (B/A/[/E]/D) = f (B/A/D) · f (A[/E] | B/A/D).
The first term captures the fraction of D elements that are reached by B/A/D,
while the second term represents the fraction of those elements whose A par-
ent satisfies the branch [/E]. At this point, the estimation framework applies
the Twig-Independence assumption that decorrelates the branching predicate
from the main path and allows the second term to be approximated as follows:
f (A[/E] | B/A/D) ≈ f (A[/E]). Essentially, this corresponds to the following as-
sumption: the fraction of B/A/D elements whose parent satisfies the branching
predicate is equal to the fraction of B/A elements that satisfy [/E]. This as-
sumption, however, is clearly wrong in our example XML data, as 90% of the
B/A/D elements have an A parent with an E child, while the selectivity of f (A[E])
is 50%. To handle this erroneous Twig-Independence assumption, the XSKETCH
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framework can refine the synopsis with two stabilization refinements: an initial
F Stabilize operation, which separates the A elements with a E child, and a fol-
lowup B Stabilize, which separates the D elements according to their A parent.
This process is shown pictorially in Figures 11(c) and 11(d) and, as the final
synopsis shows, it essentially isolates the skewed regions of the distribution in
a completely stable part of the summary. As a result, the initial path expres-
sion is mapped to a single stable twig and the need for Twig Independence is
lifted. The same technique can be applied when path correlations extend over a
larger region of the summary, at the expense, of course, of more F Stabilize and
B Stabilize operations. It is interesting to note that our approach is similar in
spirit to histogram-based techniques for relational data, especially compressed
histograms [Poosala et al. 1996], which use singleton buckets in order to iso-
late values of high frequency and thus capture skew in the underlying data
distribution.

Edge-Value Independence (Assumption 2) can be handled in a similar fash-
ion, by essentially isolating skewed regions of the path distribution in stable
parts of the summary. As described in Section 4, the assumption is applied
along nonstable edges to decorrelate the path distribution from the distribution
of values in other parts of the document. The key idea, therefore, is to employ
F Stabilize and B Stabilize operations that completely stabilize the skewed
region and thus obviate the need for an independence assumption across graph
edges and values.

5.2 XSKETCH Construction Algorithm

Given the selectivity-estimation framework of Section 4, we now address the
difficult problem of building an XSKETCH synopsis that effectively summarizes a
large XML data graph within a given space budget. In many respects, XSKETCH

construction is similar to other statistical-model inference problems, where the
goal is to infer an “optimal” statistical model (e.g., Bayesian or Markov network)
from an underlying data set. Most such problems have been shown to be com-
putationally hard and can be solved exactly only by exhaustive search [Pearl
1988]. As the following theorem demonstrates, our effective XSKETCH construc-
tion problem is also computationally intractable; thus, it is unlikely that we
can build accuracy-optimal XSKETCHes in an efficient manner. Our reduction is
based on demonstrating that a specific, rather simple, instance of the optimal
(structural) XSKETCH construction problem is actually equivalent to an optimal
clustering problem for a set of points on the Euclidean plane [Fowler et al. 1981;
Gonzalez 1985; Megiddo and Supowit 1984]; the detailed proof argument can
be found in the Electronic Appendix.

THEOREM 5.1. Let Q be a fixed set of path expressions to be evaluated over an
XML data graph G. The problem of building an XSKETCH synopsis X S(G) of G
with at most K nodes that minimizes the mean-squared error in the selectivity
estimates of path expressions in Q is N P-hard.

Based on this intractability result, we propose a computationally-efficient
heuristic algorithm, termed BUILDXSKETCH, for building XSKETCH synopses. At
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Fig. 12. The BUILDXSKETCH algorithm.

an abstract level, our algorithm views XSKETCH construction as a search prob-
lem over the space of all possible XSKETCH synopses, and uses our localized
XSKETCH refinement operations to effectively explore this space. More specifi-
cally, BUILDXSKETCH is based on a greedy, forward-selection paradigm that starts
out with a very coarse synopsis model and incrementally adds more complexity
using our localized XSKETCH refinements. The initial (coarse) synopsis is basi-
cally the label-split graph, which partitions data element nodes into synopsis
node based solely on their label, augmented with minimal distribution infor-
mation that consists of a trivial (i.e., single-bucket) one-dimensional histogram
for each node v with values.

Figure 12 depicts the pseudocode for our BUILDXSKETCH algorithm. The re-
finement strategy is based on the idea of marginal gains [Fox 1966]: at each
iteration of the main loop, the algorithm selects and applies the refinement op-
eration that results in the largest increase in accuracy per unit of extra space
required (and, of course, does not violate our overall space budget for the syn-
opsis) (Steps 2–17). To avoid getting trapped in local minima, BUILDXSKETCH

takes a number of random steps (that is, random node refinements) when no
accuracy-improving neighbor can be found (Steps 12–14). We now discuss two
of the key components of our construction algorithm in more detail, namely: (1)
the generation of candidate refinements for a given XSKETCH (Step 3), and (2)
the scoring metric (score()) for evaluating the accuracy of an XSKETCH synopsis
and its computation during the search (Step 8).
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5.2.1 Candidate Refinement Generation. Rather than exhaustively exam-
ining all single-step refinements over the entire set of nodes in the XSKETCH,
our BUILDXSKETCH algorithm considers only a restricted set of candidate refine-
ments that are more likely to have significant impact on the estimation error.
More specifically, we only consider refinements over a small sample V of the syn-
opsis nodes which attempts to capture frequent portions of the data graph that
are not yet refined (as a heuristic, we bias the sample toward nodes with high el-
ement counts and high numbers of incoming and outgoing unstable edges). Once
this biased node sample V is formed, the set of candidate refinements includes,
for each node u ∈ V : (1) all possible B Stabilize, F Stabilize, and B Split
operations with unstable parents or children of u; (2) one Value Refine(u, 1)
operation to give one extra bucket to u’s histogram; and, (3) one Value Expand(u,
v, 1) operation, where v is the XSKETCH node in (STN(u)−dep(u)) that exhibits the
highest degree of correlation with u, as determined by a statistical correlation
criterion.

5.2.2 XSKETCH Scoring Metric and Its Computation. Our scoring metric for
XSKETCH synopses is based on the average absolute relative error between the
estimated and real counts over the set P of all complex path expressions in G
and X S(G):

score(X S(G)) = 1

|P|
∑

p∈P

|countX S(G)(p) − countG(p)|
max{countG(p), s} ,

where countX S(G)(p) and countG(p) denote the XSKETCH estimate and the true
count of expression p ∈ P, respectively. The sanity bound parameter s used in
the above definition essentially equates all zero or low counts with a default
count s, thus avoiding inordinately high contributions from low-count path ex-
pressions to our relative-error metric. We typically set s equal to a small per-
centile of the actual count distribution in order to ensure good relative accuracy
for most values in the distribution; for example, using a 5-percentile means that
95% of the counts in the distribution are larger than s.

As defined above, evaluating our scoring metric would require a huge number
of path expression evaluations over the data graph G in order to get their
actual result counts. Obviously, this becomes prohibitively expensive for large
XML databases. To keep the computational overhead of XSKETCH construction
manageable, our BUILDXSKETCH algorithm employs two key techniques:

(1) Using a “reference synopsis.” Instead of using the data graph G, we ap-
proximate the actual path counts countG(p) using a reasonably accurate
“reference synopsis” of G. (Since, in the presence of values, a perfect sum-
mary can easily be as large as the data, the reference summary needs to
be approximate to keep the construction process tractable.) Our reference
synopsis is based on augmenting the nodes of the perfect structural sum-
mary (that is, the B/F-bisimilar graph) with distribution information on
their extents. The histograms on the distribution of node v try to capture
all correlations within a neighborhood of v, and are built to guarantee an
average error less than a specified threshold in the approximation. As our
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results demonstrate, such a reference synopsis can grow quite large but is
still significantly smaller than the full data graph.

(2) Reducing the expression set P. preds All our refinement operations have a
very localized effect on the XSKETCH synopsis. Further, our BUILDXSKETCH

algorithm is only interested in the difference of scores resulting before and
after a refinement (Step 8). Clearly, since countX S(G) estimates are not go-
ing to change for paths that are not affected by a refinement operation, it
is sufficient to estimate the effects of that refinement on only the affected
paths. More specifically, when applying a refinement operation at an XS-
KETCH node u, we restrict the “gain” computation in Step 8 to only a small
sample P (u) of the label paths that contain node u; once again, this sample is
biased toward high-count paths, since these are more likely to significantly
impact estimation accuracy.

It is interesting to note that our algorithm can also use a representative
workload as the set P of evaluated path expressions. Of course, this approach
would bias the refinement process in favor of the supplied workload, thus tuning
the characteristics of the synopsis to the path expressions that are expected
to occur. (We discuss the time and space complexity of BUILDXSKETCH in the
Electronic Appendix.)

6. EXPERIMENTAL STUDY

In this section we present the results of an extensive empirical study that we
have conducted using our novel XSKETCH synopses described in this article. The
objective of this study is twofold: (1) to establish the effectiveness of XSKETCHes
as summaries for graph-structured XML documents, and (2) to demonstrate the
benefits of our methodology compared to earlier approaches for the estimation
of simple path expressions over tree XML documents. Our experiments consider
a wide range of queries over synthetic and real-life data and demonstrate the
ability of XSKETCHes to capture important path and value correlations in the
underlying data using only limited space.

6.1 Testbed and Methodology

6.1.1 Techniques. We considered the following estimation techniques in
our study:

—XSKETCHes. We have implemented the XSKETCH framework that we have
presented in this article. Our prototype uses one-dimensional histograms to
summarize value distributions under synopsis nodes with values and hence
our estimation algorithm relies on value independence to approximate path
expressions with value predicates. We found that, even though such indepen-
dence assumptions are not valid in general, they are sufficiently accurate for
the data sets used in our evaluation.

Our construction algorithm considers refinements on a biased 10% sample
of all summary nodes and determines the score of each operation based on
a biased sample of 50 label paths. We have chosen these values based on
sensitivity analysis experiments that we discuss in the next section. Note
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Table I. Characteristics of the Data Sets

IMDB XMark DBLP

No. of elements 102,755 87,480 1,594,444

Document size (MB) 2.94 5.48 48.18

Label split graph No. nodes 164 80 605

Total size 9.1 KB 4.1 KB 31 KB

Size of hists. 1.7 KB 688B 888B

Reference synopsis No. nodes 49,181 83,466 6,573

Total size 1.9 MB 3.3 MB 310 KB

Size of hists. 388 KB 667 KB 105 KB

that, in our current implementation, XSKETCH construction does not con-
sider Value Expand refinement operations, since all node histograms are one-
dimensional.

—Markov Tables (MTs). Aboulnaga et al. [2001] introduced several summary
structures for estimating the selectivity of simple path expressions over tree-
structured XML documents. We compare XSKETCHes against second-order
Suffix-* Markov Tables, which were shown to be the most accurate synopses
on the real-life data sets tested in Aboulnaga et al. [2001]. We note that recent
studies [Aboulnaga and Naughton 2003; Chen et al. 2001; Freire et al. 2002;
Lim et al. 2002; Wang et al. 2003, 2004; Wu et al. 2002] have proposed several
other techniques for path selectivity estimation; we have chosen the Markov
Tables technique for our comparison as it has been shown to be very effective
in a “baseline” summarization problem, namely, estimating the selectivity of
simple path expressions over tree-structured data. (A qualitative comparison
of XSKETCHes to other summarization techniques is presented in Section 7.)

6.1.2 Data Sets. We use two real-life and one synthetic data set in our
evaluation.

—IMDB. This is a real-life, graph-structured data set from the Internet Movie
Database (www.imdb.com). It contains a large number of IDREF edges resulting
in a highly irregular and cyclic path structure.

—XMark. This is a synthetic, graph-structured data set, modeling the activi-
ties of an on-line auction site (www.xml-benchmark.org). The path structure
is highly irregular but the data set does not contain any cycles.

—DBLP. This is a real-life, tree-structured data set that contains bibliographic
data from the DB&LP database (www.informatik.uni-trier.de/ley/db). It
does not contain any cycles and is relatively regular in structure. We note
that we use DBLP mainly for the comparison of XSKETCHes to Markov Tables
and hence we show performance results only for simple path expressions on
this data set.

Table I summarizes the main characteristics of our data sets. As expected,
the DBLP data set has the smallest perfect summary since it is the most regular
data set of the three. IMDB and XMark, on the other hand, have large perfect
summaries, thus, motivating the need for concise synopses. Note that the sizes
reported do not include the space needed to store the actual text of the element
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Table II. Average Query Workload Result Sizes

IMDB XMark DBLP

Branching paths W/o predicates 1901 1057 —

With predicates 478 254 —

Simple paths W/o predicates 933 771 4667

With predicates 483 302 12

labels; each label is hashed to a unique integer and the mapping is stored in a
separate structure that is not part of the summary.

6.1.3 Workload. We evaluate the accuracy of each synopsis against a work-
load of positive path expressions, that is, expressions that have a nonzero result
size in the original data. We form the workload by sampling document twigs
from the reference graph and converting them to the corresponding label paths.
The length of path expressions is uniformly distributed between 2 and 5, and
the workload contains 500 path expressions with no predicates and 500 expres-
sions with a single value range predicate. Each value predicate covers a random
10% range of the value domain of the tag it is attached to. We form two types of
workloads: (1) branching paths, where half of the path expressions (with and
without a value predicate) contain a branching predicate, and (2) simple paths,
where no path expression contains branching predicates. Table II summarizes
the average result size of each type of path expression across our three data sets.

We have also experimented with negative workloads, containing queries that
have a zero count in the original data. Our XSKETCH summaries consistently
produced close to zero estimates with negligible error, and, therefore, we omit
these results from our presentation.

6.1.4 Evaluation Metric. We quantify the accuracy of an XSKETCH sum-
mary based on the average absolute relative error of result estimates over
path expressions in our workload. Given a path expression p with true re-
sult size c, the absolute relative error of the estimated count e is computed
as |e − c|/ max(c, s). Parameter s represents a sanity bound that essentially
equates all zero or low counts with a default count s and thus avoids inordi-
nately high contributions from low-count path expressions. We set this bound to
the 10-percentile of the true counts in the workload (that is, 90% of the path ex-
pressions in the workload have a true result size ≥ s). In our results, we report
the estimation error for path expressions with value predicates, termed Pred,
the estimation error for path expressions without value predicates, termed No
Pred, and the overall error for both types of path expressions in the workload,
termed Overall.

6.2 Experimental Results

6.2.1 Performance of XSKETCHes on Graph-Structured Data. In this sec-
tion, we present a set of experiments that evaluated the performance of our
proposed XSKETCH synopses over the graph-structured data sets of IMDB and
XMark. We performed an initial set of experiments to examine the sensitiv-
ity of the build process to the parameters of the construction algorithm; due
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Fig. 13. Performance of XSKETCHes for branching path expressions on graph-structured data:

(a) IMDB, (b) XMark.

to space constraints, a detailed discussion of our sensitivity findings can be
found in the Electronic Appendix. Our second set of experiments focused on
the effectiveness of XSKETCH synopses in summarizing the path structure and
value content of the XML data graph, by measuring the accuracy of XSKETCH

selectivity estimates for branching path expressions with value predicates.
Figure 13 depicts the estimation error of our XSKETCH synopses for branch-

ing path expressions over graph-structured data. For each data set, we show
the overall estimation error, as well as the error for path expressions with and
without value predicates. Overall, our results indicate that XSKETCHes are ef-
fective in providing accurate estimates for branching path expressions with
value predicates. In the XMark data set, for instance, a moderate space bud-
get of 25 kB was adequate to provide an overall estimation error of less than
10%. For the IMDB data set, on the other hand, we observed slightly higher
estimation errors due to the more complex structure of the underlying XML
graph; still, the overall error dropped at 15% for a fraction of the size of the
perfect synopsis. Similar to previous experiments, we observed that the error
was reduced rapidly during the first iterations of the construction process, and
dropped gradually for larger space budgets.

6.2.2 Performance of XSKETCHes on Tree-Structured Data. Up to this point,
our study has focused on the general case of graph-structured XML data, where
nesting edges and id/idref edges are treated as first-class citizens in the XML
data model. In this section, we restrict our attention to the tree-structured XML
data model, that is, we consider only element containment in the XML data
graph.

6.2.2.1 Estimation Accuracy on Tree-Structured Data. In this set of exper-
iments, we evaluated the performance of XSKETCHes on estimating the selectiv-
ity of branching path expressions over tree-structured data sets. Similar to our
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Fig. 14. Performance of XSKETCHes for branching path expressions on tree-structured data:

(a) workload without value predicates, (b) workload with value predicates.

previous experiments on graph-structures, we set V = 10% and P = 50 during
the construction of XSKETCH synopses.

Figure 14 shows the estimation error of XSKETCHes for branching path ex-
pressions with value predicates, over the tree-structured IMDB, and XMark
data sets. (Note that IMDB and XMark are the same data sets that were used in
our graph-structured experiments, except that we ignore any ID/IDREF edges.)
Overall, our results exhibit similar trends to the case of graph-structured data:
XSKETCHes enabled accurate selectivity estimates for low space budgets, with
the estimation error dropping faster during the first steps of the build process
and decreasing gradually thereafter. The results of Figure 14(a) indicate that
XSKETCHes are especially effective as structural summaries for tree-structured
data. In particular, we observe that a very small space budget of 5 kB sufficed
to enable an average estimation error of less than 4% for both data sets. This is
clearly a very effective tradeoff with respect to the corresponding perfect sum-
maries, which provide estimates of zero error but require significantly more
storage space (Table I.)

In the next set of experiments, we evaluated the accuracy of XSKETCHes on a
workload of complex path expressions that comprise branching and value pred-
icates, the descendant and child axes, and the wild-card label (“*”). Essentially,
our goal was to evaluate the efficacy of the XSKETCH framework under the full
complexity of our supported query model. We generated such workloads by post-
processing the simpler workloads used in the previous experiments, as follows:
for each query, we chose at random sequences of child steps replaced them with
a single descendant step, and replaced certain labels (chosen again at random)
with the wild-card label. This process resulted in a workload of approximately
500 unique complex path expressions for each data set, biased again in favor
of high result counts. We note that we focused on tree-structured data sets for
this type of complex queries, since our estimation framework supports recursive
queries over nonrecursive data only (Section 4.1).
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Fig. 15. Performance of XSKETCHes for complex path expressions (with // and *) on tree-structured

data: (a) workload without value predicates, (b) workload with value predicates.

Figure 15 shows the performance of XSKETCHes on a workload with com-
plex path expressions over the tree-structured IMDB and XMark data sets.
(Similarly to the previous set of experiments, we show the estimation error
separately for queries with and without value predicates.) Our results verify
again the efficacy of XSKETCHes as accurate synopses for tree-structured XML
data sets. As shown, XSKETCHes enabled low-error selectivity estimates even for
the most complex queries in our model—queries that combined branching and
value predicates coupled with the descendant axis (“//”) and wild-card tags (“*”).
In the IMDB data set, for instance, a moderate space budget of 30 kB sufficed to
drop the estimation error below 15%. We note that the overall estimation error
was increased compared to the previous set of experiments, but this is expected
given the higher complexity of the test workloads.

6.2.2.2 Estimation Accuracy for Simple Path Expressions. Several recent
studies [Aboulnaga et al. 2001; Wang et al. 2003; Wu et al. 2002] have looked
at a constrained version of the general XML summarization problem, namely,
estimating the selectivity of simple path expressions (that is, expressions with-
out branching or value predicates) over tree-structured XML data. Such queries
arise frequently in practice (e.g., in publish/subscribe systems for XML [Altinel
and Franklin 2000]), and are also used by XML query optimizers in order to
estimate the cost factors of physical evaluation plans [Wu et al. 2003]. In this
section, we present a set of experiments that evaluated the effectiveness of XS-
KETCHes on simple path expressions over tree-structured data, and compare the
performance of our synopses against the Markov Tables technique proposed by
Aboulnaga et al. We used the second order Suffix-* Markov Table summary
that was shown to have the best performance on the real-life data sets tested
in [Aboulnaga et al. 2001].

Figure 16 shows the estimation error of XSKETCHes and Markov Tables as a
function of the synopsis size on the (tree-structured) data sets of IMDB, XMark,
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Fig. 16. Accuracy of XSKETCHes versus MTs: (a) IMDB, (b) XMark, (c) DBLP.

and DBLP. (We have included DBLP in this part of our study as Markov Tables
have been shown to perform very well on this data set [Aboulnaga et al. 2001].)
In all cases, XSKETCHes were more effective in capturing the key structural de-
pendencies using the limited storage space, and consistently provided estimates
with very low error after a few iterations of the construction algorithm. In the
DBLP data set, for instance, an XSKETCH of 30 kB—a relatively small space
budget compared to the size of the original data—yielded an estimation error
of 4%, compared to 25% for MT summaries. The construction of MT summaries
is based on the summarization of low-frequency paths with special *-paths,
which approximate the pruned frequencies with an average and thus enforce
a uniformity assumption. In addition, the MT-estimation model is based on a
“Markovian memory” assumption in order to compute the count of a path from
the counts of shorter paths (of length up to 2). The MT-construction algorithm,
however, prunes paths in a greedy fashion based solely on their frequency and
does not consider the validity of the two assumptions with respect to the under-
lying path distribution. Our approach, on the other hand, is more methodical as
XSKETCH construction directly takes into account the structural dependencies
that exist in the paths of the XML data graph. As a side note, it is interesting
to point out that the highest values for the space budget in IMDB and XMark
(3.5 and 8 kB respectively) correspond to the size of the perfect XSKETCH synop-
sis, that is, the summary that is derived from the B/F-Bisimilar graph. (More
precisely, the perfect summary corresponds to the path-tree [Aboulnaga et al.
2001] of the data, since we focus on tree-structures.) In data sets where the
tree structure is quite regular, therefore, the perfect XSKETCH is a viable op-
tion for the statistics component of a query optimizer, enabling fast, zero-error
estimates for any simple path expression.

7. RELATED WORK

The problem of constructing accurate statistical synopses for flat, relational
data sets has received a significant amount of attention in the context of both
relational query optimization and, more recently, approximate query process-
ing [Garofalakis and Gibbons 2001], and several effective solutions have been
proposed, including histograms [Poosala and Ioannidis 1997; Poosala et al.
1996], wavelets [Vitter and Wang 1999], and random sampling [Chaudhuri

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.



XSKETCH Synopses for XML Data Graphs • 1059

et al. 1999]. However, summarizing a large XML data graph for the purpose of
estimating the selectivity of arbitrary path expressions with value predicates
is a substantially different and more difficult problem than that of construct-
ing synopses for flat, relational data. At an abstract level, the desired synopsis
should be able to accurately capture (in a limited amount of space) the impor-
tant statistical characteristics of both (a) the label path and branching struc-
ture, and (b) the element value distributions and correlations in a large, labeled
data graph. This is clearly a nontrivial problem, and none of the existing synop-
sis techniques for flat data tables is immediately applicable. As a result, several
recent studies have considered the problem of XML summarization and have
proposed specialized techniques for semistructured data.

Previously proposed techniques for path selectivity estimation have con-
sidered a specialized variant of the general problem, either focusing on tree-
structured data or on simple path expressions without branching or value pred-
icates. Aboulnaga et al. [2001] introduced Markov Tables and path trees for
estimating the selectivity of simple path expressions (that is, without branch-
ing or value predicates) over tree-structured data. Recent studies have proposed
two extensions of Markov Tables, namely, XPathLearner [Lim et al. 2002] and
On-line Annotated Path Tables [Aboulnaga and Naughton 2003], that use query
feedback, instead of the base data, in order to construct a synopsis of the XML
tree. In a nutshell, a Markov Table estimates the selectivity of a simple path by
combining frequency information on its subpaths of a specific length (typically,
two or three steps). This technique, however, can only be applied to fully spec-
ified paths, and it is not clear if it can be extended to handle the descendant
axis (//). Wu et al. [2002] proposed the use of Position Histograms in order to
estimate the selectivity of path expressions over XML trees. In brief, a Posi-
tion Histogram is a two-dimensional histogram synopsis that summarizes the
(pre, post) ids for elements of a specific tag. Estimating the selectivity of a path
expressions thus amounts to performing a spatial join among the histograms
that correspond to the steps of the path. The use of (pre,post) identifiers, how-
ever, limits this technique to tree-structured data; moreover, it is not clear if
histograms are an effective compression method for the (pre,post) plane, since
the latter essentially corresponds to a binary frequency matrix. Wang et al.
[2004] proposed the Bloom Histogram, a randomized summarization technique
that provides probabilistic guarantees on the estimation error for simple path
expressions. It is unclear, however, if this model can be extended to handle the
general case of graph-structured XML databases and of XPath expressions with
branching and value predicates.

Recent studies have considered the problem of selectivity estimation for twig
queries, which represent the joint evaluation of multiple path expressions and
are essentially equivalent to the for clause of a query in the XML Query lan-
guage. Chen et al. [2001] proposed the use of Pruned Suffix Trees (PSTs), where
a trie is used to encode the paths in the document and special hash signa-
tures within each trie node capture correlations among paths. The specifics
of this technique, however, are tied to tree structures and thus cannot handle
the general case of graph-structured XML data that we tackle in this article.
StatiX [Freire et al. 2002] (and the followup IMAX [Ramanath et al. 2005]

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.



1060 • N. Polyzotis and M. Garofalakis

study) relies on histograms in order to summarize the path structure and value
content of an XML tree. The key idea is to generate one histogram for each type
in the schema of the database, approximating the frequency counts of parent
element ids for the elements of the specific type. To estimate the selectivity
of a query, StatiX retrieves the histograms of matching types and performs a
histogram-based join to approximate the size of the result. Clearly, StatiX re-
quires a schema for the input data and it is not clear how it can be applied
to schema-less XML documents; moreover, the semantics of histogram-based
joins are compatible with tree structures only and it is not clear if StatiX can
be applied to graph structured data. More specifically, graph structures allow
multiple parents per element which essentially means that a single element
can contribute to the frequency of several parent element ids in the same his-
togram. This in turn introduces duplicates in the result of the histogram-based
join and requires some nontrivial mechanism of duplicate elimination. The
XSKETCH estimation framework, on the other hand, relies on set semantics and
can thus readily handle graph-structured data. Furthermore, XSKETCH requires
a minimal amount of metadata pertaining to nontree edges, and is thus applica-
ble to a wide class of XML documents that are not equipped with a full schema.
Wang et al. [2003] introduced two techniques for estimating the result size of a
containment join, that is, the number of (a, d ) tuples produced when process-
ing the simplified twig query for $a in //A, $d in $a//D. Their techniques,
however, target a small fragment of the XPath query language, namely, expres-
sions of two steps that do not contain branching or value predicates, whereas
the proposed XSKETCH framework covers the significantly more complex class of
branching path queries with value predicates. Finally, recent studies [Polyzotis
et al. 2004a, 2004b; Polyzotis and Garofalakis 2006; Zhang et al. 2006], in-
troduced summarization models that employ the graph-synopsis framework
presented in this article in order to estimate the selectivity of complex twig
queries. Still, these works focus exclusively on the case of tree-structured data
and cannot be applied to the more general case of XML data graphs that we
consider in this article.

Path-index structures for XML data, like strong DataGuides [Goldman and
Widom 1997] and 1- and T-indexes [Milo and Suciu 1999], also try to capture
the path structure in the underlying XML data graph. The basic idea is to
group element nodes in the data graph into “coarser” index-graph nodes based
on the set of incoming label paths at each data element. A key problem with
such path indexes is their size, which can grow to a fairly large proportion of
the data-graph size [Milo and Suciu 1999; Kaushik et al. 2002a]. Obviously,
this fact severely limits their usefulness as an optimization-time data synop-
sis. The recently proposed A(k)-path index [Kaushik et al. 2002b] tries to limit
the index size by using a more relaxed grouping rule that essentially groups
data elements based on their incoming label paths of length at most k. Still,
the usefulness of an A(k)-index graph structure as a synopsis is unclear: even
though the k parameter can be adjusted so that the index fits in the allotted
amount of space, using the same, fixed value of k for the entire data graph can
result in a synopsis that does not capture the essential statistical characteris-
tics of the data-graph distribution. Kaushik et al. [2002a] also introduced the
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F + B structural index for evaluating different classes of branching path ex-
pressions. Similarly to the A(k)-index, the proposed technique controls index
size by relaxing the grouping rule and essentially trading index generality for
size. As discussed earlier, however, it is not clear if this approach is suitable for
statistical summaries of the underlying data, where the goal is to capture the
statistical characteristics of the XML data graph and not to reduce the number
of I/O operations during the evaluation of path queries.

8. CONCLUSIONS

The optimization of complex declarative queries over XML data depends cru-
cially on the existence of effective synopses that enable accurate estimates
for the selectivities of query constructs. In this article, we have described the
XSKETCH graph-synopsis model for XML data graphs with raw data values. Our
proposed summarization model is based on the generic graph-synopsis model,
augmented with localized stability and value-distribution summaries to ac-
curately capture the complex correlation patterns that can exist between and
across path structure and element values in the data graph. We have developed
a systematic XSKETCH estimation framework for complex path expressions as
well as efficient XSKETCH construction algorithms. Results from our implemen-
tation have verified the effectiveness of our XSKETCH synopses, demonstrating
their ability to yield consistent, low-error estimates for complex XPath expres-
sions with branching and value predicates.
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