
Online Appendix to:
XSKETCH Synopses for XML Data Graphs

NEOKLIS POLYZOTIS

University of California, Santa Cruz

and

MINOS GAROFALAKIS

Intel Research Berkeley

A. REFINEMENT OPERATION DETAILS

A.1 Structural Refinements

A.1.1 The B Stabilize(X S(G), u, v) Operation. The pseudocode for the
B Stabilize operation is depicted in Figure A.1. The procedure basically
backward-stabilizes the set of data elements in extent(u) with respect to the set
extent(v) (Definition 3.2) by taking the intersection with succ(extent(v)), the
set of child elements of nodes in extent(v) in the data graph. This results in a
node u1 that contains all elements in u reached by v, and a second node u2 with
the remaining elements. Note that the B Stabilize operation can affect the B-
or F-stability of other edges that were attached to node u in the original synop-
sis; for example, although u may not have been F-stable with respect to a child
node w, u1 or u2 may very well be F-stable with respect to w. The add node()
subroutine takes care of connecting u1 and u2 to the appropriate parent and
child nodes of u in the final synopsis and correctly setting the stability labels
on the resulting edges.

To complete the operation, the algorithm performs two postprocessing steps,
termed split value summaries() and validate value summaries(), that update
value distribution information in the area of the refined node. In particular, the
split of an existing synopsis node u introduces two issues for the recorded value
summaries: (a) if u has an attached value summary, then it becomes necessary
to initialize the value summaries for the newly created nodes, and (b) the split
can affect the stabilities of other incoming or outgoing edges, and thus may
modify the correlation scopes of value summaries in the neighborhood of u. Our
two postprocessing steps (described in more detail below) address exactly these
two points and are obviously included in all the structural refinements that we
introduce.

—split value summaries(u,{ui}). This step initializes the value summaries of
the newly formed nodes ui. Each new summary is assigned one bucket worth
of memory and if the histogram of u contains more than |{ui}| buckets,
then the additional memory is distributed among the new histograms us-
ing a greedy procedure based on marginal gains (similar to Deshpande et al.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006, Pages 1–13.

2 • N. Polyzotis and M. Garofalakis

procedure B Stabilize(X S(G), u, v)

Input: XSKETCH synopsis X S(G); summary graph node u and parent node v of u
such that B �∈ label(v, u).

Output: Refined XSKETCH X S(G) that results from splitting node u into

u1 and u2 to make it B-stable with respect to v.

begin
1. u1 := new node(X S(G)); u2 := new node(X S(G)) // create new nodes to replace u
2. extent(u1) := succ(extent(v)) ∩ extent(u) // (v, u1) will be B-stable

3. extent(u2) := extent(u) − extent(u1) // u2 contains the remaining elements

4. remove node(X S(G), u)

5. add node(X S(G), u1) // add new nodes and check stabilities with neighbors

6. add node(X S(G), u2)

7. split value summaries(u, {u1, u2}) // allocate value summaries for new nodes

8. validate value summaries(u) // validate value summaries of neighboring nodes

end

Fig. A.1. The B Stabilize operation.

[2001]). We note that the actual meaning of bucket depends on the implemen-
tation of the value summaries: in distinct sampling, for example, one bucket
corresponds to a prespecified number of samples, while in range histograms
it carries the conventional meaning of a value partition.

—validate value summaries(u). This step examines the value summaries in
the neighborhood of the split node u, and modifies their dimensions according
to the (possibly) modified stability conditions. More specifically, u’s split can
“break” edge stabilities to parent and children nodes and thus may shrink the
stable neighborhoods of ancestors and descendants. For each affected node,
the validate value summaries() step examines the corresponding value his-
togram (if it exists) and removes any dimensions that become invalid, that is,
dimensions that refer to nodes outside of the new stable neighborhood. The
new histogram is computed simply by taking the marginal on the remaining
valid dimensions, which form the new correlation scope. This postprocessing
step, therefore, is applied only to nodes in the “reverse” stable neighborhood
of u, that is, nodes that contain u in their original stable neighborhood. For-
mally, this is defined as F ∪ B, where F is the set of nodes that reach u
through forward-stable paths (including u itself) and B is the set of nodes
that can be reached from a node in F through a backward-stable path.

A.1.1.1 Time and Space Complexity. Let odeg(x) denote the out-degree of a
node x in the XML data graph, and, for an XSKETCH node u, define odeg(u) as the
average out-degree of data nodes in extent(u), that is,

∑
x∈u odeg(x)/count(u).

The average in-degree ideg(u) of an XSKETCH node u is defined similarly. The
key data structures that our B Stabilize algorithm needs to maintain in mem-
ory (not necessarily at the same time) are (1) a hash table for the data ele-
ments in the extent of the split XSKETCH node u (to efficiently compute the
set intersection/difference operations in B Stabilize); and, (2) hash tables for
the elements in succ(extent(u)) and pred(extent(u)) (to efficiently add the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 3

procedure F Stabilize(X S(G), u, w)

Input: XSKETCH synopsis X S(G); summary graph node u and child node w of u
where F �∈ label(u, w).

Output: Refined XSKETCH X S(G) that results from splitting node u into

u1 and u2 to make it F-stable with respect to w.

begin
1. u1 := new node(X S(G)); u2 := new node(X S(G)) // create new nodes to replace u
2. extent(u1) := pred(extent(w)) ∩ extent(u) // (u1, w) will be F-stable

3. extent(u2) := extent(u) − extent(u1) // u2 contains the remaining elements

4. remove node(X S(G), u)

5. add node(X S(G), u1) // add new nodes and check stabilities with neighbors

6. add node(X S(G), u2)

7. split value summaries(u, {u1, u2}) // allocate value summaries for new nodes

8. validate value summaries(u) // validate value summaries of neighboring nodes

end

Fig. A.2. The F Stabilize operation.

required edges in the add node() computations). Thus, the space complexity
of the B Stabilize procedure is O(

∑
x∈u max{odeg(x), ideg(x)}) = O(count(u)

max{odeg(u), ideg(u)}). Given such hash-table structures, all the structural
operations in B Stabilize can be performed in a single pass over the data ele-
ments in the parents and children of node u (including v) in the XSKETCH sum-
mary. Consequently, the overall time complexity for all structural operations
in B Stabilize is O(count(u) max{odeg(u), ideg(u)} + ∑

vi∈parents(u) count(vi) +∑
wj ∈children(u) count(wj)). The complexity of the value-summary operations ob-

viously depends on the specific type of summary employed in the XSKETCH.
Letting bu denote the number of buckets in node u and CN ,b be the cost of
building a summary with b buckets out of N “base” data values,5 the cost
of the split value summaries() operation can be upper-bounded by O(buCN ,bu).
For validate value summaries(), our B Stabilize algorithm, in the worst case,
may need to project/marginalize each value summary in F ∪ B to a smaller
correlation scope (an operation with cost linear in the number of buckets). Let-
ting bF∪B denote the average number of value-summary buckets per XSKETCH

node in F ∪ B, this cost can be upper bounded by O(|F ∪ B|bF∪B). Thus, the
overall time complexity of the value-summary operations in B Stabilize is
O(buCN ,bu + |F ∪ B|bF∪B).

A.1.2 The F Stabilize(X S(G), u, w) Operation. Figure A.2 shows the
pseudocode for the F Stabilize operation. The basic idea is to forward-stabilize
the set of data elements in extent(u) with respect to the set extent(w) (Defini-
tion 3.2) by taking the intersection with pred(extent(w)), the set of all parent
elements of nodes in extent(v) in the data graph. This results in a node u1 that

5As an example, for one-dimensional V-optimal histograms CN ,b = O(N2 B) [Jagadish et al. 1998],

whereas for a distinct sample summary (of any size b) CN ,b = O(N) [Gibbons 2001]. As we discuss

in Section H.2, N here corresponds to the number of bucketsin a detailed “reference synopsis” used

in our construction algorithm.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

4 • N. Polyzotis and M. Garofalakis

contains all elements in u that have at least one child in w, and a second node
u2 representing the remaining elements. Once again, an add node() subroutine
takes care of connecting u1 and u2 to the appropriate neighbors of u and cor-
rectly setting the stability labels on the resulting edges. The time and space
complexities of our F Stabilize procedure are essentially identical to those for
B Stabilize.

A.1.3 The B Split(X S(G), u, {vi}) Operation. Figure A.3 shows the de-
tailed pseudocode for the B Split operation. The procedure starts by backward-
stabilizing the data elements in extent(u) into subsets ei, such that each ei is
backward-stable with respect to the same subset of parents from {v1, . . . , vn};
that is, all elements in ei have parent elements in the same subset parents(ei) of
{v1, . . . , vn} (Steps 1–9). The next stage of the operation merges together those
partitions ei and e j that share parent summary nodes, that is, parents(ei) ∩
parents(e j) �= φ; the result of this merge stage is a (possibly) smaller set of
partitions {ei} that have disjoint parent sets (i.e., the node clusters of {vi})
(Steps 10–20). At the final step, the operation groups the new ei subsets into
two buckets that represent the final result nodes u1 and u2 of the B Split
operation (Steps 21–25). This grouping process for ui nodes relies on a simple
clustering algorithm that tries to minimize the overall variance of the met-
ric ratio(vk , ei) = sel (vk/ei)

count(vk)
in both of the resulting partitions; this is done by

sorting the ei ’s based on their average ratio values and selecting the best par-
tition boundary in that sequence (Steps 21–23). (Note that estimation inaccu-
racies due to large ratio variances within individual ei groups can be resolved
through future backward-stabilization operations.) From a relational perspec-
tive, the B Split operation simulates a histogram-bucket split, where similar
frequencies are grouped together, so that the uniformity assumption is more
accurate within each bucket [Poosala and Ioannidis 1997; Poosala et al. 1996]

A.1.3.1 Time and Space Complexity. As with our previous refinement op-
erations, the main data structures required by B Split are hash tables on the
data elements in the extent of the node u being split, as well as the parents
and children of those elements in the data graph; thus, the working space com-
plexity of B Split is O(count(u) max{odeg(u), ideg(u)}). Given such hash-table
structures, the required stabilization and edge-addition operations can be done
in a single pass over the elements in parent and child nodes of u in the XS-
KETCH. Among the remaining structural B Split operations, the dominant time
complexity comes from the partition-merging loop—since there can be at most
count(u) partitions, this merging cost can be upper-bounded by O(count(u)2).
(The sorting of the partitions requires O(count(u) log(count(u))) time, whereas
the best-variance split can be found in linear O(count(u)) time using a lin-
ear preprocessing step to enable the computation of the variance in constant
time for each possible split.) The overall time complexity for the structural
operations in our B Split procedure is O(count(u) max{odeg(u), ideg(u)} +∑

vi∈parents(u) count(vi) + ∑
wj ∈children(u) count(wj) + count(u)2). The cost of the

value-summary operations in B Split is essentially identical to that in our ear-
lier analysis for the B Stabilize refinement.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 5

Fig. A.3. The B Split operation.

A.2 Value Refinements

A.2.1 The Value Refine(u, k) Operation. This operation allocates k addi-
tional “buckets” to the value histogram of node u in order to capture more
effectively the underlying distribution of element values. In this manner, it
attacks the implicit assumption that the recorded value summaries are accu-
rate approximations of the XML value content. Note that the interpretation of

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

6 • N. Polyzotis and M. Garofalakis

buckets and the actual use of extra memory depends on the implementation of
the value summary.

A.2.1.1 Time and Space Complexity. Following the notation that we have
introduced previously, we use B to denote the number of existing “buckets” and
N for the number of base values. Clearly, the complexity of Value Refine de-
pends on the approximation method that implements the value-summaries in
the XSKETCH synopsis. A crucial point, in particular, is the possibility of an in-
cremental update to the refined value summary versus its reconstruction from
the N base values and the updated number of buckets. As an example of the for-
mer, consider the application of Value Refine on a single-dimensional max-diff
histogram [Poosala et al. 1996]. When the histogram for u is first initialized,
it is possible to compute the pair-wise frequency differences of the N values
and store them in a min-heap along with the value-summary. In this fashion,
Value Expand can select very efficiently the boundaries for the additional k
buckets by popping from the heap the k smallest such differences. This implies
a space complexity of O(N) and a time complexity of O(klogN). A V-Optimal
histogram [Jagadish et al. 1998], on the other hand, cannot accommodate an in-
cremental update of the value-summary and requires complete reconstruction;
this translates to a space complexity of O(N (B + k)) and a time-complexity of
O(N 2(B + k)). (The tradeoff in this case is that V-Optimal histograms enable
an optimal approximation of the underlying value distribution.)

A.2.1 The Value Expand(u, v, k) Operation. Here, v is an XSKETCH node
(whose elements have values) that lies within the stable twig neighborhood but
outside the correlation scope of u; that is, v ∈ (STN(u) − dep(u)). By our estima-
tion process (Section 4), since v �∈ dep(u), the number of elements in extent(u)
that descend from (or lead to) elements in extent(v) with specific values is
approximated based on the Value Independence Outside Correlation Scope as-
sumption (Assumption 3), which postulates independence between the distri-
butions in u and v. The Value Expand(u, v, k) operation lifts this assumption
by explicitly adding v to the correlation scope of u, which effectively amounts
to adding a new dimension to u’s histogram for the values under v. To support
this expansion, the operation allocates k additional buckets to the histogram
in order to refine the approximation of the resulting distribution. (Once again,
these histogram refinements depend on the actual implementation of the value
summary.)

A.2.1.2 Time and Space Complexity. Similar to Value Refine, the com-
plexity of Value Expand depends on the specific approximation method that
implements the value-summaries of the XSKETCH synopsis. The difference, how-
ever, is that Value Expand introduces an additional dimension to the summa-
rized values and this change typically excludes the possibility of an incremental
update—in other words, the histogram at u must be reconstructed. Therefore,
the space and time complexity of Value Expand follow directly from the corre-
sponding bounds of the underlying value-summarization technique.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 7

B. COMPLEXITY OF XSKETCH EMBEDDING AND
CONSTRUCTION ALGORITHMS

B.1 Time and Space Complexity of COMPUTEEMBEDDINGS

We use PS for the number of root-to-node paths in the synopsis, f Q for the
fanout of query nodes, and NS and NQ for the number of nodes in the synop-
sis and the query respectively. The algorithm is called PS times in total as it
performs a depth-first traversal of the synopsis starting from the root; out of
these, only NS invocations actually compute bindings. The latter requires two
steps: (a) identifying the candidate query nodes, and (b) iterating over each can-
didate and checking the existence of witness paths. The complexity is O(NQ)
and O(NQ f Q), respectively, as the worst case is for v to match all query nodes
(this is the pathological case where the query only contains wild cards). Hence,
the computation of bindings has complexity O(NS NQ f Q). The update of path
information to ancestors happens on every invocation of the algorithm, and it
requires accessing the traversal stack and checking the candidate sets of an-
cestors; this implies O(NQ NS) iterations for the final loop (Steps 12–14). Each
iteration performs two checks: whether qj ∈ bind [v] is a child of the current can-
didate qi of the ancestor, and whether T S[u..v] is compatible with axis(qi, qj).
The first check can be performed in constant time by maintaining bind [v] as a
hash table based on the parent node of each qj ; the second is a simple check, as
T S[u..v] is compatible if axis(qi, qj) = // or if axis(qi, qj) = / and v is a child of
u. The total complexity of the algorithm is therefore O(PS NQ NS + NS NQ f Q),
which simplifies to O(PS NQ NS), since, typically, f Q � PS .

Regarding space complexity, the algorithm stores two pieces of information:
the candidates and bindings of a node (sets cand and bind , respectively), and
the witness paths. The former requires O(NS NQ) of total space. For paths, our
observation is that the last loop can add at most one path in each iteration; this
amounts to a total of O(PS NQ NS) paths of length O(NS) each. The total space
complexity is therefore O(PS NQ N 2

S).

B.2 Time and Space Complexity of BUILDXSKETCH

The total number of iterations for the BUILDXSKETCH algorithm depends on the
target space budget and of course on the structural and value characteristics of
the input data. Hence, we analyze the space and time complexity of performing
a single iteration, focusing on the two main components that we discussed
previously, namely, the generation of candidate refinements and the scoring of
each candidate. In what follows, we use NS to denote the number of nodes in the
synopsis, ideg(u) and odeg(u) for the in- and out-degree, respectively, of node u,
and Cr (x, u) for the cost of performing refinement x on node u. (We have derived
time and space bounds for these cost factors in Section 5.1.)

The generation of candidate operations requires obtaining a biased sample
of synopsis nodes and computing refinement operations on the sample. The
first part involves an initial pass over the synopsis nodes to compute their
sample weights, and a second pass to actually obtain the sample; hence, the
time and space complexity is O(NS). For the second part, we assume that each
node u in the sample V has ideg(u) incoming edges, odeg(u) outgoing edges,

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

8 • N. Polyzotis and M. Garofalakis

and carries a value-summary for which |STN(u)| − |dep(u)| = n(u). We can
therefore express the cost of this part as

∑
u∈V ideg(u) · Cr (B Stabilize, u) +

odeg(u) · Cr (F Stabilize, u) + Cr (B Split, u) + n(u) · Cr (Value Expand, u) +
Cr (Value Refine, u). (The space complexity can be expressed in a similar
fashion.)

The scoring of a candidate refinement comprises again two steps, namely,
gathering a sample P (u) of path expressions around the targeted node u, and
estimating the selectivity of each sampled path before and after the refinement.
For the first step, the algorithm essentially samples a set of embeddings that
include u and subsequently converts them to the corresponding path expres-
sions. To sample a single embedding, BUILDXSKETCH starts with u in the main
branch and gradually expands it by sampling either a parent from the first
node of the main branch, or a child from any of the already included nodes.
(These two options correspond to augmenting the main branch and the branch-
ing predicates, respectively.) Augmenting the embedding by one node is there-
fore equivalent to sampling one out of NQodeg + ideg items, where NQ is the
number of nodes in the embedding, and odeg and ideg is the average out- and
in-degree, respectively, of each synopsis node. The time complexity for generat-
ing an embedding of NQ nodes is thus O(N 2

Q (odeg+ ideg)), whereas the space
complexity is O(NQ (odeg+ ideg)). For the second part, namely, approximating
the selectivity of each path expression, the time complexity can be expressed
as O(|P (u)| · Ce(NQ)), where NQ denotes the average number of steps in each
sampled path expression, and Ce(NQ) the complexity of estimating the selec-
tivity of a path expression with NQ steps (Section G). (The space complexity
can be bounded in a similar fashion.)

C. XSKETCH SENSITIVITY TO CONSTRUCTION PARAMETERS

We discuss a set of experiments that examines the effectiveness of the construc-
tion algorithm when we vary two key parameters of the build process: V , the
size of the node sample over which refinements are considered at each step of
the greedy construction process, and P , the size of the localized path sample
that is used to evaluate the score of a candidate synopsis. To isolate the effect
of these parameters on the quality of the constructed XSKETCHes, we consider
the simpler problem of structural summarization, that is, we ignore element
values and thus remove any errors introduced by value-based summaries. We
base our experiments on the graph-structured versions of the IMDB and XMark
data sets.

We first consider the effect of the size of the node sample V on XSKETCH qual-
ity. Parameter V essentially controls the number of XSKETCH-node refinements
that the construction algorithm considers at each step and essentially defines
the portion of the construction search space that our forward-selection algo-
rithm examines. We keep the size of the path sample P fixed to 50, and vary
V as a percentage of the total number of nodes in the (current) synopsis. We
experiment with two values for the node-sample size: 1% and 10%.

Figure C.1 shows the performance of XSKETCHes for branching path expres-
sions as a function of the synopsis size for the different values of the node-
sample size V . Note that, in all the graphs that we present, the estimation

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 9

Fig. C.1. Performance of XSKETCHes for branching path expressions for varying V : (a) IMDB,

(b) XMark.

error at the smallest summary size corresponds to the label-split graph syn-
opsis. Our results clearly indicate that XSKETCHes constitute an efficient and
accurate summarization method for graph-structured XML databases. Even
with a small node-sample size of V = 10% for synopsis refinements and an
allotted space of 25–35 kB, the estimation error drops to 10% and is substan-
tially lower than the error of the coarsest summary, the label-split graph. This
is most noticeable in the IMDB data set that is the most irregular of the two:
the starting summary yields an average error of 70%, which rapidly drops be-
low 20% after the first iterations of the construction algorithm. Furthermore,
XSKETCHes achieve a low estimation error while using only a very small frac-
tion of the space required by the corresponding “perfect” B/F-bisimilar graph
for both data sets (Table 1). Overall, our XSKETCH synopses yield accurate se-
lectivity estimates with low space overhead and can be efficiently constructed
using only a small sample of the nodes for refinement.

The next set of experiments studies the effect of the size of the path sample
P on the estimation accuracy of the constructed XSKETCH summary. Parameter
P determines the number of sampled paths against which each refinement is
evaluated; in essence, it represents the size of the training set of our forward-
selection construction algorithm and can affect the quality of the generated
synopsis. We keep the node-sample size V fixed to 10% of the total nodes in the
summary and we experiment with two sizes for the path-sample size P : 10 and
50.

Figure C.2 depicts the XSKETCH estimation error for the IMDB and XMark
data sets as a function of the synopsis size for the two different values of the
localized path-sample size P . The results clearly show that, in all cases, our
XSKETCH construction algorithm captures effectively the important statistical
characteristics of the underlying path and branch distribution in the data. Once
again, the XSKETCH estimation error is reduced significantly during the first few

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

10 • N. Polyzotis and M. Garofalakis

Fig. C.2. Performance of XSKETCHes for branching path expressions for varying P : (a) IMDB,

(b) XMark.

iterations and improves gradually thereafter. We observe that the convergence
of our algorithm is faster for a larger path sample size, especially in the case
of the more irregular IMDB data set, where the small sample size of 10 ex-
hibits a more “unstable” behavior with increased errors. In effect, the limited
size of the training set prevents the algorithm from identifying the important
correlations in the structure of the graph and leads to the application of less
effective refinements at each step. Still, the overall conclusion is that reason-
able path-sample sizes are adequate to construct accurate XSKETCH synopses,
and an XSKETCH that occupies only 25–30 kB (0.5%–2% of the space required
by the corresponding “perfect” B/F-bisimilar graph) is sufficient to enable low
selectivity-estimation errors.

It is interesting, at this point, to examine the distribution of XSKETCH estima-
tion error for our test workloads. Figure C.3 depicts the percentage of queries
in each workload for different ranges of XSKETCH estimation error. (In both
data sets, the XSKETCH error is computed for the 50 kB synopsis, using P = 50
and V = 10%.) As shown, XSKETCHes enable a low estimation error for the
vast majority of path queries; more concretely, 60% of IMDB paths and 87% of
XMark paths have an XSKETCH error of less than 10%. The increased skew of
the error distribution in Figure 3(b) corroborates the findings of the previous
experiments, namely, that XMark has a more regular path structure and hence
estimates are more accurate on the average; the complexity of the IMDB data
set, on the other hand, causes higher estimation errors for a relatively larger
fraction of the test path expressions.

D. PROOFS OF THEORETICAL RESULTS

D.1 Proof of Theorem G.1

Case (1). The proof follows by induction on the length of the label path n.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 11

Fig. C.3. Distribution of XSKETCH estimation error for branching path expressions on graph-

structured data: (a) IMDB, (b) XMark.

Base case (1 ≤ i ≤ 2). We know that v2 is B-stable with respect to v1 and
therefore, by Definition 3.2, it holds that all elements in v2 have an ancestor in
v1. Since all elements in v1 have the same label, and the same holds for v2, we
conclude that all elements in v2 are discovered by label path label(v1)/label(v2).

Induction hypothesis. The theorem holds for 1 ≤ i ≤ n − 1.

Induction step. The induction hypothesis states that all elements in vn−1 are
discovered by the label path label(v1)/ · · · / label(vn−1). We also know that vn

is B-stable with respect to vn−1, which means that all elements in vn have a
parent in vn−1 and, therefore, all elements in vn are discovered by the label
path label(v1)/ · · · / label(vn−1)/ label(vn).

Case (2). The proof follows by induction on the length of the label path n.

Base case (1 ≤ i ≤ 2). We know that v1 is F-stable wrt v2 and therefore, by
Definition 3.2, it holds that all elements in v1 have at least one child in v2. Since
all elements in v1 have the same label, and the same holds for v2, we conclude
that all elements in v1 reach an element in v2 by path label(v2).

Induction hypothesis. The theorem holds for 1 ≤ i ≤ n − 1.

Induction step. The induction hypothesis states that all elements in v1 reach
an element in vn−1 by the label path label(v1)/ · · · / label(vn−1). We also know
that vn−1 is F-stable with respect to vn, which means that all elements in vn−1

reach at least one element in vn and, therefore, all elements in v1 reach at least
one element in vn by the label path label(v1)/ · · · / label(vn−1)/ label(vn).

This completes the proof.

D.2 Proof of Theorem H.1

We demonstrate the N P -hardness of the XSKETCH construction problem with
a reduction from the following two-dimensional clustering problem that aims
to minimize the total normalized mean-squared error (MSE) for each of the

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

12 • N. Polyzotis and M. Garofalakis

Fig. D.1. (a) Perfect synopsis (B/F-bisimilar graph). (b) XSKETCH synopsis after grouping A nodes.

resulting clusters (we term this problem 2d-NMSE). The details of the con-
struction that proves the N P -hardness of 2d-NMSE clustering are very similar
to those given in earlier work on geometric clustering and covering (see, e.g.,
Fowler et al. [1981], Gonzalez [1985], Megiddo and Supowit [1984]).

Normalized MSE clustering on the plane (2d-NMSE). Given a set of points
S = {(xi, yi) : i = 1, . . . , n} on the Euclidean plane, determine a partition of S
into k clusters C1, . . . , CK such that the total normalized MSE from the cluster
centroids

K∑
j=1

∑
(xi , yi)∈Cj

[(
xi − xavg(j)

xavg(j)

)2

+
(

yi − yavg(j)

yavg(j)

)2
]

is minimized, where xavg(j) = ∑
(x, y)∈Cj

x/|Cj | and yavg(j) = ∑
(x, y)∈Cj

y/|Cj |.
We now demonstrate how, given a 2d-NMSE instance, we can build a (poly-

nomially sized) instance of the optimal XSKETCH construction problem whose
solution gives exactly the desired two-dimensional clustering that minimizes
the normalized MSE objective. This obviously establishes the N P -hardness of
optimal XSKETCH construction.

Given a set of points on the plane S = {(xi, yi) : i = 1, . . . , n}, consider the
(exact) distribution of XML data paths given in the B/F-bisimilar graph de-
picted in Figure D.1(a). Here, we assume that all the X i and Y j labels in the
(perfect) B/F-bisimilar synopsis are distinct with corresponding counts given
by the corresponding point coordinates xi and y j . Note that the exact path-
distribution information given by the B/F-bisimilar graph in Figure D.1(a) re-
quires a total of 3n + 1 nodes. Our XSKETCH construction instance seeks to find
the XSKETCH synopsis with at most 2n + 1 + K nodes that minimizes the total
squared error in the estimates for the queries in the workload Q defined as
Q = {//X i/A : i = 1, . . . , n} ∪ {//A[Yi] : i = 1, . . . , n}. Note that, clearly, the
exact answer to each of the 2n queries in Q is 1.

By our construction, it is obvious that the only possible way of reducing the
number of nodes in the synopsis by n − K (= 3n + 1 − (2n + 1 + K)) is to have
an XSKETCH that groups the A-labeled nodes into K distinct XSKETCH nodes, as
shown in Figure D.1(b). Of course, grouping two or more A-labeled nodes under

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

XSKETCH Synopses for XML Data Graphs • 13

an XSKETCH node would ruin some of the stability properties of the original
nodes, thus mandating the use of our estimation framework and assumptions
to produce estimates for the queries in Q. More specifically, consider the first
A-node group in Figure D.1(b). Applying Backward- and Forward-Edge Unifor-
mity, we estimate the number of elements reached by the queries //X ij /A and
//A[Yij] in Q as follows:

est(//X i j /A) = m · xi j∑m
l=1 xil

= xi j

xavg(i)
, est(//A[Yi j]) = m · yi j∑m

l=1 yil
= yi j

yavg(i)
,

where xavg(i) = ∑m
l=1 xil /m and yavg(i) = ∑m

l=1 yil /m. Thus, since the exact
answer is 1, summing the squared errors over all the queries in Q we get the
total squared error:

K∑
j=1

∑
(xi , yi)∈GROUP− j

[(
1 − xi

xavg(j)

)2

+
(

1 − yi

yavg(j)

)2
]

=

K∑
j=1

∑
(xi , yi)∈GROUP− j

[(
xi − xavg(j)

xavg(j)

)2

+
(

yi − yavg(j)

yavg(j)

)2
]

.

The correspondence should now be obvious. Clearly, the XSKETCH synopsis
that minimizes the total squared error in the above-described instance of the
problem also uniquely determines the optimal solution to the corresponding in-
put instance of the 2d-NMSE clustering problem (with the grouping of A-labeled
nodes giving the desired clusters C1, . . . , Ck). This completes the proof.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.

