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We propose the first known solution to the problem of correlating, in small space, continuous
streams of XML data through approximate (structure and content) matching, as defined by a
general tree-edit distance metric. The key element of our solution is a novel algorithm for obliviously
embedding tree-edit distance metrics into an L1 vector space while guaranteeing a (worst-case)
upper bound of O(log2 n log∗ n) on the distance distortion between any data trees with at most n
nodes. We demonstrate how our embedding algorithm can be applied in conjunction with known
random sketching techniques to (1) build a compact synopsis of a massive, streaming XML data
tree that can be used as a concise surrogate for the full tree in approximate tree-edit distance
computations; and (2) approximate the result of tree-edit-distance similarity joins over continuous
XML document streams. Experimental results from an empirical study with both synthetic and
real-life XML data trees validate our approach, demonstrating that the average-case behavior of
our embedding techniques is much better than what would be predicted from our theoretical worst-
case distortion bounds. To the best of our knowledge, these are the first algorithmic results on low-
distortion embeddings for tree-edit distance metrics, and on correlating (e.g., through similarity
joins) XML data in the streaming model.
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G.2.1 [Discrete Mathematics]: Combinatorics—Combinatorial algorithms
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1. INTRODUCTION

The Extensible Markup Language (XML) is rapidly emerging as the new
standard for data representation and exchange on the Internet. The simple,
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self-describing nature of the XML standard promises to enable a broad suite of
next-generation Internet applications, ranging from intelligent Web searching
and querying to electronic commerce. In many respects, XML documents are
instances of semistructured data: the underlying data model comprises an or-
dered, labeled tree of element nodes, where each element can be either an atomic
data item or a composite data collection consisting of references (represented
as edges) to child elements in the XML tree. Further, labels (or tags) stored
with XML data elements describe the actual semantics of the data, rather than
simply specifying how elements are to be displayed (as in HTML). Thus, XML
data is tree-structured and self-describing.

The flexibility of the XML data model makes it a very natural and powerful
tool for representing data from a wide variety of Internet data sources. Of
course, given the typical autonomy of such sources, identical or similar data
instances can be represented using different XML-document tree structures.
For example, different online news sources may use distinct document type
descriptor (DTD) schemas to export their news stories, leading to different node
labels and tree structures. Even when the same DTD is used, the resulting XML
trees may not have the same structure, due to the presence of optional elements
and attributes [Guha et al. 2002].

Given the presence of such structural differences and inconsistencies, it is
obvious that correlating XML data across different sources needs to rely on
approximate XML-document matching, where the approximation is quanti-
fied through an appropriate general distance metric between XML data trees.
Such a metric for comparing ordered labeled trees has been developed by the
combinatorial pattern matching community in the form of tree-edit distance
[Apostolico and Galil 1997; Zhang and Shasha 1989]. In a nutshell, the tree-
edit distance metric is the natural generalization of edit distance from the string
domain; thus, the tree-edit distance between two tree structures represents the
minimum number of basic edit operations (node inserts, deletes, and relabels)
needed to transform one tree to the other.

Tree-edit distance is a natural metric for correlating and discovering approx-
imate matches in XML document collections (e.g., through an appropriately de-
fined similarity-join operation).1 The problem becomes particularly challeng-
ing in the context of streaming XML data sources, that is, when such cor-
relation queries must be evaluated over continuous XML data streams that
arrive and need to be processed on a continuous basis, without the benefit
of several passes over a static, persistent data image. Algorithms for corre-
lating such XML data streams would need to work under very stringent con-
straints, typically providing (approximate) results to user queries while (a) look-
ing at the relevant XML data only once and in a fixed order (determined by the
stream-arrival pattern) and (b) using a small amount of memory (typically, log-
arithmic or polylogarithmic in the size of the stream) [Alon et al. 1996, 1999;

1Specific semantics associated with XML node labels and tree-edit operations can be captured
using a generalized, weighted tree-edit distance metric that associates different weights/costs with
different operations. Extending the algorithms and results in this article to weighted tree-edit
distance is an interesting open problem.
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Fig. 1. Example DTD fragments (a) and (b) and XML Document Trees (c) and (d) for autonomous
bibliographic Web sources.

Dobra et al. 2002; Gilbert et al. 2001]. Of course, such streaming-XML tech-
niques are more generally applicable in the context of huge, terabyte XML
databases, where performing multiple passes over the data to compute an ex-
act result can be prohibitively expensive. In such scenarios, having single-pass,
space-efficient XML query-processing algorithms that produce good-quality ap-
proximate answers offers a very viable and attractive alternative [Babcock et al.
2002; Garofalakis et al. 2002].

Example 1.1. Consider the problem of integrating XML data from two au-
tonomous, bibliographic Web sources WS1 and WS2. One of the key issues in
such data-integration scenarios is that of detecting (approximate) duplicates
across the two sources [Dasu and Johnson 2003]. For autonomously managed
XML sources, such duplicate-detection tasks are complicated by the fact that
the sources could be using different DTD structures to describe their entries. As
a simple example, Figures 1(a) and 1(b) depict the two different DTD fragments
employed by WS1 and WS2 (respectively) to describe XML trees for academic
publications; clearly, WS1 uses a slightly different set of tags (i.e., article in-
stead of paper) as well as a “deeper” DTD structure (by adding the type and
authors structuring elements).

Figures 1(c) and 1(d) depict two example XML document trees T1 and T2
from WS1 and WS2, respectively; even though the two trees have structural
differences, it is obvious that T1 and T2 represent the same publication. In
fact, it is easy to see that T1 and T2 are within a tree-edit distance of 3 (i.e.,
one relabel and two delete operations on T1). Approximate duplicate detection
across WS1 and WS2 can be naturally expressed as a tree-edit distance simi-
larity join operation that returns the pairs of trees (T1, T2) ∈ WS1 × WS2 that
are within a tree-edit distance of τ , where the user/application-defined simi-
larity threshold τ is set to a value ≥ 3 to perhaps account for other possible
differences in the joining tree structures (e.g., missing or misspelled coauthor
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names). A single-pass, space-efficient technique for approximating such simi-
larity joins as the document trees from the two XML data sources are streaming
in would provide an invaluable data-integration tool; for instance, estimates of
the similarity-join result size (i.e., the number of approximate duplicate entries)
can provide useful indicators of the degree of overlap (i.e., “content similarity”)
or coverage (i.e., “completeness”) of autonomous XML data sources [Dasu and
Johnson 2003; Florescu et al. 1997].

1.1 Prior Work

Techniques for data reduction and approximate query processing for both re-
lational and XML databases have received considerable attention from the
database research community in recent years [Acharya et al. 1999; Chakrabarti
et al. 2000; Garofalakis and Gibbons 2001; Ioannidis and Poosala 1999;
Polyzotis and Garofalakis 2002; Polyzotis et al. 2004; Vitter and Wang 1999].
The vast majority of such proposals, however, rely on the assumption of a static
data set which enables either several passes over the data to construct effec-
tive data synopses (such as histograms [Ioannidis and Poosala 1999] or Haar
wavelets [Chakrabarti et al. 2000; Vitter and Wang 1999]); clearly, this as-
sumption renders such solutions inapplicable in a data-stream setting. Mas-
sive, continuous data streams arise naturally in a variety of different applica-
tion domains, including network monitoring, retail-chain and ATM transaction
processing, Web-server record logging, and so on. As a result, we are witnessing
a recent surge of interest in data-stream computation, which has led to several
(theoretical and practical) studies proposing novel one-pass algorithms with
limited memory requirements for different problems; examples include quan-
tile and order-statistics computation [Greenwald and Khanna 2001; Gilbert
et al. 2002b]; distinct-element counting [Bar-Yossef et al. 2002; Cormode et al.
2002a]; frequent itemset counting [Charikar et al. 2002; Manku and Motwani
2002]; estimating frequency moments, join sizes, and difference norms [Alon
et al. 1996, 1999; Dobra et al. 2002; Feigenbaum et al. 1999; Indyk 2000]; and,
computing one- or multidimensional histograms or Haar wavelet decomposi-
tions [Gilbert et al. 2002a; Gilbert et al. 2001; Thaper et al. 2002]. All these
articles rely on an approximate query-processing model, typically based on an
appropriate underlying stream-synopsis data structure. (A different approach,
explored by the Stanford STREAM project [Arasu et al. 2002], is to character-
ize subclasses of queries that can be computed exactly with bounded memory.)
The synopses of choice for a number of the above-cited data-streaming articles
are based on the key idea of pseudorandom sketches which, essentially, can
be thought of as simple, randomized linear projections of the underlying data
item(s) (assumed to be points in some numeric vector space).

Recent work on XML-based publish/subscribe systems has dealt with XML
document streams, but only in the context of simple, predicate-based filtering of
individual documents [Altinel and Franklin 2000; Chan et al. 2002; Diao et al.
2003; Gupta and Suciu 2003; Lakshmanan and Parthasarathy 2002]; more re-
cent work has also considered possible transformations of the XML documents
in order to produce customized output [Diao and Franklin 2003]. Clearly, the
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problem of efficiently correlating XML documents across one or more input
streams gives rise to a drastically different set of issues. Guha et al. [2002]
discussed several different algorithms for performing tree-edit distance joins
over XML databases. Their work introduced easier-to-compute bounds on the
tree-edit distance metric and other heuristics that can significantly reduce the
computational cost incurred due to all-pairs tree-edit distance computations.
However, Guha et al. focused solely on exact join computation and their al-
gorithms require multiple passes over the data; this obviously renders them
inapplicable in a data-stream setting.

1.2 Our Contributions

All earlier work on correlating continuous data streams (through, e.g., join or
norm computations) in small space has relied on the assumption of flat, rela-
tional data items over some appropriate numeric vector space; this is certainly
the case with the sketch-based synopsis mechanism (discussed above), which
has been the algorithmic tool of choice for most of these earlier research efforts.
Unfortunately, this limitation renders earlier streaming results useless for di-
rectly dealing with streams of structured objects defined over a complex metric
space, such as XML-document streams with a tree-edit distance metric.

In this article, we propose the first known solution to the problem of approx-
imating (in small space) the result of correlation queries based on tree-edit dis-
tance (such as the tree-edit distance similarity joins described in Example 1.1)
over continuous XML data streams. The centerpiece of our solution is a novel
algorithm for effectively (i.e., “obliviously” [Indyk 2001]) embedding streaming
XML and the tree-edit distance metric into a numeric vector space equipped
with the standard L1 distance norm, while guaranteeing a worst-case upper
bound of O(log2 n log∗ n) on the distance distortion between any data trees with
at most n nodes.2 Our embedding is completely deterministic and relies on
parsing an XML tree into a hierarchy of special subtrees. Our parsing makes
use of a deterministic coin-tossing process recently introduced by Cormode and
Muthukrishnan [2002] for embedding a variant of the string-edit distance (that,
in addition to standard string edits, includes an atomic “substring move” op-
eration) into L1; however, since we are dealing with general trees rather than
flat strings, our embedding algorithm and its analysis are significantly more
complex, and result in different bounds on the distance distortion.3

We also demonstrate how our vector-space embedding construction can be
combined with earlier sketching techniques [Alon et al. 1999; Dobra et al. 2002;
Indyk 2000] to obtain novel algorithms for (1) constructing a small sketch syn-
opsis of a massive, streaming XML data tree that can be used as a concise

2All log’s in this article denote base-2 logarithms; log∗ n denotes the number of log applications
required to reduce n to a quantity that is ≤ 1, and is a very slowly increasing function of n.
3Note that other known techniques for approximating string-edit distance based on the decom-
position of strings into q-grams [Ukkonen 1992; Gravano et al. 2001] only give one-sided error
guarantees, essentially offering no guaranteed upper bound on the distance distortion. For in-
stance, it is not difficult to construct examples of very distinct strings with nearly identical q-gram
sets (i.e., arbitrarily large distortion). Furthermore, to the best of our knowledge, the results in
Ukkonen [1992] have not been extended to the case of trees and tree-edit distance.
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surrogate for the full tree in tree-edit distance computations, and (2) estimat-
ing the result size of a tree-edit-distance similarity join over two streams of
XML documents. Finally, we present results from an empirical study of our
embedding algorithm with both synthetic and real-life XML data trees. Our ex-
perimental results offer some preliminary validation of our approach, demon-
strating that the average-case behavior of our techniques over realistic data sets
is much better than what our theoretical worst-case distortion bounds would
predict, and revealing several interesting characteristics of our algorithms in
practice. To the best of our knowledge, ours are the first algorithmic results on
oblivious tree-edit distance embeddings, and on effectively correlating contin-
uous, massive streams of XML data.

We believe that our embedding algorithm also has other important ap-
plications. For instance, exact tree-edit distance computation is typically a
computationally-expensive problem that can require up to O(n4) time (for the
conventional tree-edit distance metric [Apostolico and Galil 1997; Zhang and
Shasha 1989]), and is, in fact, NP-hard for the variant of tree-edit distance
considered in this article (even for the simpler case of flat strings [Shapira and
Storer 2002]). In contrast, our embedding scheme can be used to provide an
approximate tree-edit distance (to within a guaranteed O(log2 n log∗ n) factor)
in near-linear, that is, O(n log∗ n), time.

1.3 Organization

The remainder of this article is organized as follows. Section 2 presents back-
ground material on XML, tree-edit distance and data-streaming techniques.
In Section 3, we present an overview of our approach for correlating XML data
streams based on tree-edit distance embeddings. Section 4 presents our embed-
ding algorithm in detail and proves its small-time and low distance-distortion
guarantees. We then discuss two important applications of our algorithm for
XML stream processing, namely (1) building a sketch synopsis of a massive,
streaming XML data tree (Section 5), and (2) approximating similarity joins
over streams of XML documents (Section 6). We present the results of our
empirical study with synthetic and real-life XML data in Section 7. Finally,
Section 8 outlines our conclusions. The Appendix provides ancillary lemmas
(and their proofs) for the upper bound result.

2. PRELIMINARIES

2.1 XML Data Model and Tree-Edit Distance

An XML document is essentially an ordered, labeled tree T , where each node
in T represents an XML element and is characterized by a label taken from a
fixed alphabet of string literals σ . Node labels capture the semantics of XML
elements, and edges in T capture element nesting in the XML data. Without
loss of generality, we assume that the alphabet σ captures all node labels,
literals, and atomic values that can appear in an XML tree (e.g., based on the
underlying DTD(s)); we also focus on the ordered, labeled tree structure of the
XML data and ignore the raw-character data content inside nodes with string
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Fig. 2. Example XML tree and tree-edit operation.

labels (PCDATA, CDATA, etc.). We use |T | and |σ | to denote the number of nodes
in T and the number of symbols in σ , respectively.

Given two XML document trees T1 and T2, the tree-edit distance between T1
and T2 (denoted by d (T1, T2)) is defined as the minimum number of tree-edit op-
erations to transform one tree into another. The standard set of tree-edit opera-
tions [Apostolico and Galil 1997; Zhang and Shasha 1989] includes (1) relabeling
(i.e., changing the label) of a tree node v; (2) deleting a tree node v (and moving
all of v’s children under its parent); and (3) inserting a new node v under a node
w and moving a contiguous subsequence of w’s children (and their descendants)
under the new node v. (Note that the node-insertion operation is essentially the
complement of node deletion.) An example XML tree and tree-edit operation are
depicted in Figure 2. In this article, we consider a variant of the tree-edit dis-
tance metric, termed tree-edit distance with subtree moves, that, in addition to
the above three standard edit operations, allows a subtree to be moved under a
new node in the tree in one step. We believe that subtree moves make sense as
a primitive edit operation in the context of XML data—identical substructures
can appear in different locations (for example, due to a slight variation of the
DTD), and rearranging such substructures should probably be considered as
basic an operation as node insertion or deletion. In the remainder of this article,
the term tree-edit distance assumes the four primitive edit operations described
above, namely, node relabelings, deletions, insertions, and subtree moves.4

2.2 Data Streams and Basic Pseudorandom Sketching

In a data-streaming environment, data-processing algorithms are allowed to
see the incoming data records (e.g., relational tuples or XML documents) only
once as they are streaming in from (possibly) different data sources [Alon et al.
1996, 1999; Dobra et al. 2002]. Backtracking over the stream and explicit access
to past data records are impossible. The data-processing algorithm is also al-
lowed a small amount of memory, typically logarithmic or polylogarithmic in the
data-stream size, in order to maintain concise synopsis data structures for the
input stream(s). In addition to their small-space requirement, these synopses
should also be easily computable in a single pass over the data and with small
per-record processing time. At any point in time, the algorithm can combine the
maintained collection of synopses to produce an approximate result.

4The problem of designing efficient (i.e., “oblivious”), guaranteed-distortion embedding schemes
for the standard tree-edit distance metric remains open; of course, this is also true for the much
simpler standard string-edit distance metric (i.e., without “substring moves”) [Cormode and
Muthukrishnan 2002].
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We focus on one particular type of stream synopses, namely, pseudorandom
sketches; sketches have provided effective solutions for several streaming prob-
lems, including join and multijoin processing [Alon et al. 1996, 1999; Dobra
et al. 2002], norm computation [Feigenbaum et al. 1999; Indyk 2000], distinct-
element counting [Cormode et al. 2002a], and histogram or Haar-wavelet con-
struction [Gilbert et al. 2001; Thaper et al. 2002]. We describe the basics of
pseudorandom sketching schemes using a simple binary-join cardinality es-
timation query [Alon et al. 1999]. More specifically, assume that we want to
estimate Q = COUNT(R1 �A R2), that is, the cardinality of the binary equi-
join of two streaming relations R1 and R2 over a (numeric) attribute (or,
set of attributes) A, whose values we assume (without loss of generality) to
range over {1, . . . , N }. (Note that, by the definition of the equijoin operator,
the two join attributes have identical value domains.) Letting fk(i) (k = 1, 2;
i = 1, . . . , N ) denote the frequency of the ith value in Rk , is is easy to see
that Q = ∑N

i=1 f1(i) f2(i). Clearly, estimating this join size exactly requires
at least �(N ) space, making an exact solution impractical for a data-stream
setting.

In their seminal work, Alon et al. [Alon et al. 1996, 1999] proposed a ran-
domized technique that can offer strong probabilistic guarantees on the quality
of the resulting join-size estimate while using space that can be significantly
smaller than N . Briefly, the key idea is to (1) build an atomic sketch X k (essen-
tially, a randomized linear projection) of the distribution vector for each input
stream Rk (k = 1, 2) (such a sketch can be easily computed over the streaming
values of Rk in only O(log N ) space) and (2) use the atomic sketches X 1 and X 2
to define a random variable X Q such that (a) X Q is an unbiased (i.e., correct on
expectation) randomized estimator for the target join size, so that E[X Q ] = Q ,
and (b) X Q ’s variance (Var[X Q ]) can be appropriately upper-bounded to allow
for probabilistic guarantees on the quality of the Q estimate. More formally,
this random variable X Q is constructed on-line from the two data streams as
follows:

—Select a family of four-wise independent binary random variates {ξi : i =
1, . . . , N }, where each ξi ∈ {−1, +1} and P [ξi = +1] = P [ξi = −1] = 1/2 (i.e.,
E[ξi] = 0). Informally, the four-wise independence condition means that, for
any 4-tuple of ξi variates and for any 4-tuple of {−1, +1} values, the probabil-
ity that the values of the variates coincide with those in the {−1, +1} 4-tuple
is exactly 1/16 (the product of the equality probabilities for each individual
ξi). The crucial point here is that, by employing known tools (e.g., orthogonal
arrays) for the explicit construction of small sample spaces supporting four-
wise independence, such families can be efficiently constructed on-line using
only O(log N ) space [Alon et al. 1996].

—Define X Q = X 1 · X 2, where the atomic sketch X k is defined simply as X k =∑N
i=1 fk(i)ξi, for k = 1, 2. Again, note that each X k is a simple randomized

linear projection (inner product) of the frequency vector of Rk .A with the
vector of ξi ’s that can be efficiently generated from the streaming values of
A as follows: start a counter with X k = 0 and simply add ξi to X k whenever
the ith value of A is observed in the Rk stream.
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The quality of the estimation guarantees can be improved using a standard
boosting technique that maintains several independent identically distributed
(iid) instantiations of the above process, and uses averaging and median-
selection operators over the X Q estimates to boost accuracy and probabilis-
tic confidence [Alon et al. 1996]. (Independent instances can be constructed by
simply selecting independent random seeds for generating the families of four-
wise independent ξi ’s for each instance.) We use the term (atomic) AMS sketch
to describe a randomized linear projection computed in the above-described
manner over a data stream. Letting SJk (k = 1, 2) denote the self-join size of
Rk .A (i.e., SJk = ∑N

i=1 fk(i)2), the following theorem [Alon et al. 1999] shows
how sketching can be applied for estimating binary-join sizes in limited space.
(By standard Chernoff bounds [Motwani and Raghavan 1995], using median-
selection over O(log(1/δ)) of the averages computed in Theorem 2.1 allows
the confidence in the estimate to be boosted to 1 − δ, for any pre-specified
δ < 1.)

THROEM 2.1 [ALON ET AL. 1999]. Let the atomic AMS sketches X 1 and X 2 be
as defined above. Then, E[X Q ] = E[X 1 X 2] = Q and Var(X Q ) ≤ 2 · SJ1 · SJ2.
Thus, averaging the X Q estimates over O( SJ1·SJ2

Q2ε2 ) iid instantiations of the basic
scheme, guarantees an estimate that lies within a relative error of at most ε from
Q with constant probability > 1/2.

It should be noted that the space-usage bounds stated in Theorem 2.1 capture
the worst-case behavior of AMS-sketching-based estimation—empirical results
with synthetic and real-life data sets have demonstrated that the average-case
behavior of the AMS scheme is much better [Alon et al. 1999]. More recent
work has led to improved AMS-sketching-based estimators with provably better
space-usage guarantees (that actually match the lower bounds shown by Alon
et al. [1999]) [Ganguly et al. 2004], and has demonstrated that AMS-sketching
techniques can be extended to effectively handle one or more complex multi-
join aggregate SQL queries over a collection of relational streams [Dobra et al.
2002, 2004].

Indyk [2000] discussed a different type of pseudorandom sketches which
are, once again, defined as randomized linear projections X k = ∑N

i=1 fk(i)ξi of
a streaming input frequency vector for the values in Rk , but using random
variates {ξi} drawn from a p-stable distribution (which can again be generated
in small space, i.e., O(log N ) space) in the X k computation. The class of p-
stable distributions has been studied for some time (see, e.g., Nolan [2004];
[Uchaikin and Zolotarev 1999])—they are known to exist for any p ∈ (0, 2],
and include well-known distribution functions, for example, the Cauchy distri-
bution (for p = 1) and the Gaussian distribution (for p = 2). As the following
theorem demonstrates, such p-stable sketches can provide accurate probabilis-
tic estimates for the Lp-difference norm of streaming frequency vectors in small
space, for any p ∈ (0, 2].

THEOREM 2.2 [INDYK 2000]. Let p ∈ (0, 2], and define the p-stable sketch for
the Rk stream as X k = ∑N

i=1 fk(i)ξi , where the {ξi} variates are drawn from a
p-stable distribution (k = 1, 2). Assume that we have built l = O( log(1/δ)

ε2 ) iid
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pairs of p-stable sketches {X j
1 , X j

2 } ( j = 1, . . . , l ), and define

X = median
{∣∣X 1

1 − X 1
2|, . . . , |X l

1 − X l
2

∣∣}.

Then, X lies within a relative error of at most ε of the Lp-difference norm || f1 −
f2||p = [

∑
i | f1(i) − f2(i)|p]1/p with probability ≥ 1 − δ.

More recently, Cormode et al. [2002a] have also shown that, with small values
of p (i.e., p → 0), p-stable sketches can provide very effective estimates for the
Hamming (i.e., L0) norm (or, the number of distinct values) over continuous
streams of updates.

3. OUR APPROACH: AN OVERVIEW

The key element of our methodology for correlating continuous XML data
streams is a novel algorithm that embeds ordered, labeled trees and the tree-
edit distance metric as points in a (numeric) multidimensional vector space
equipped with the standard L1 vector distance, while guaranteeing a small dis-
tortion of the distance metric. In other words, our techniques rely on mapping
each XML tree T to a numeric vector V (T ) such that the tree-edit distances be-
tween the original trees are well-approximated by the L1 vector distances of the
tree images under the mapping; that is, for any two XML trees S and T , the L1
distance ‖V (S)− V (T )‖1 = ∑

j |V (S)[ j ]− V (T )[ j ]| gives a good approximation
of the tree-edit distance d (S, T ).

Besides guaranteeing a small bound on the distance distortion, to be appli-
cable in a data-stream setting, such an embedding algorithm needs to satisfy
two additional requirements: (1) the embedding should require small space and
time per data tree in the stream; and, (2) the embedding should be oblivious,
that is, the vector image V (T ) of a tree T cannot depend on other trees in the
input stream(s) (since we cannot explicitly store or backtrack to past stream
items). Our embedding algorithm satisfies all these requirements.

There is an extensive literature on low-distortion embeddings of metric
spaces into normed vector spaces; for an excellent survey of the results in this
area, please see the recent article by Indyk [2001]. A key result in this area is
Bourgain’s lemma proving that an arbitrary finite metric space is embeddable
in an L2 vector space with logarithmic distortion; unfortunately, Bourgain’s
technique is neither small space nor oblivious (i.e., it requires knowledge of the
complete metric space), so there is no obvious way to apply it in a data-stream
setting [Indyk 2001]. To the best of our knowledge, our algorithm gives the
first oblivious, small space/time vector-space embedding for a complex tree-edit
distance metric.

Given our algorithm for approximately embedding streaming XML trees and
tree-edit distance in an L1 vector space, known streaming techniques (like the
sketching methods discussed in Section 2.2) now become relevant. In this ar-
ticle, we focus on two important applications of our results in the context of
streaming XML, and propose novel algorithms for (1) building a small sketch
synopsis of a massive, streaming XML data tree, and (2) approximating the size
of a similarity join over XML streams. Once again, these are the first results on
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correlating (in small space) massive XML data streams based on the tree-edit
distance metric.

3.1 Technical Roadmap

The development of the technical material in this article is organized as fol-
lows. Section 4 describes our embedding algorithm for the tree-edit distance
metric (termed TREEEMBED) in detail. In a nutshell, TREEEMBED constructs a
hierarchical parsing of an input XML tree by iteratively contracting edges to
produce successively smaller trees; our parsing makes repeated use of a re-
cently proposed label-grouping procedure [Cormode and Muthukrishnan 2002]
for contracting chains and leaf siblings in the tree. The bulk of Section 4 is de-
voted to proving the small-time and low distance-distortion guarantees of our
TREEEMBED algorithm (Theorem 4.2). Then, in Section 5, we demonstrate how
our embedding algorithm can be combined with the 1-stable sketching tech-
nique of Indyk [2000] to build a small sketch synopsis of a massive, streaming
XML tree that can be used as a concise surrogate for the tree in approximate
tree-edit distance computations. Most importantly, we show that the proper-
ties of our embedding allow us to parse the tree and build this sketch in
small space and in one pass, as nodes of the tree are streaming by without
ever backtracking on the data (Theorem 5.1). Finally, Section 6 shows how
to combine our embedding algorithm with both 1-stable and AMS sketching
in order to estimate (in limited space) the result size of an approximate tree-
edit-distance similarity join over two continuous streams of XML documents
(Theorem 6.1).

4. OUR TREE-EDIT DISTANCE EMBEDDING ALGORITHM

4.1 Definitions and Overview

In this section, we describe our embedding algorithm for the tree-edit distance
metric (termed TREEEMBED) in detail, and prove its small-time and low distance-
distortion guarantees. We start by introducing some necessary definitions and
notational conventions.

Consider an ordered, labeled tree T over alphabet σ , and let n = |T |. Also,
let v be a node in T , and let s denote a contiguous subsequence of children of
node v in T . If the nodes in s are all leaves, then we refer to s as a contiguous
leaf-child subsequence of v. (A leaf child of v that is not adjacent to any other
leaf child of v is called a lone leaf child of v.) We use T [v, s] to denote the subtree
of T obtained as the union of all subtrees rooted at nodes in s and node v itself,
retaining all node labels. We also use the notation T ′[v, s] to denote exactly the
same subtree as T [v, s], except that we do not associate any label with the root
node v of the subtree. We define a valid subtree of T as any subtree of the form
T [v, s], T ′[v, s], or a path of degree-2 nodes (i.e., a chain) possibly ending in leaf
node in T .

At a high level, our TREEEMBED algorithm produces a hierarchical parsing of
T into a multiset T (T ) of special valid subtrees by stepping through a number of
edge-contraction phases producing successively smaller trees. A key component
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of our solution (discussed later in this section) is the recently proposed de-
terministic coin tossing procedure of Cormode and Muthukrishnan [2002] for
grouping symbols in a string—TREEEMBED employs that procedure repeatedly
during each contraction phase to merge tree nodes in a chain as well as sibling
leaf nodes. The vector image V (T ) of T is essentially the “characteristic vector”
for the multiset T (T ) (over the space of all possible valid subtrees). Our analysis
shows that the number of edge-contraction phases in T ’s parsing is O(log n),
and that, even though the dimensionality of V (T ) is, in general, exponential in
n, our construction guarantees that V (T ) is also very sparse: the total number
of nonzero components in V (T ) is only O(n). Furthermore, we demonstrate that
our TREEEMBED algorithm runs in near-linear, that is, O(n log∗ n) time. Finally,
we prove the upper and lower bounds on the distance distortion guaranteed by
our embedding scheme.

4.2 The Cormode-Muthukrishnan Grouping Procedure

Clearly, the technical crux lies in the details of our hierarchical parsing pro-
cess for T that produces the valid-subtree multiset T (T ). A basic element of
our solution is the string-processing subroutine presented by Cormode and
Muthukrishnan [2002] that uses deterministic coin tossing to find landmarks
in an input string S, which are then used to split S into groups of two or
three consecutive symbols. A landmark is essentially a symbol y (say, at lo-
cation j ) of the input string S with the following key property: if S is trans-
formed into S′ by an edit operation (say, a symbol insertion) at location l far
away from j (i.e., |l − j | >> 1), then the Cormode-Muthukrishnan string-
processing algorithm ensures that y is still designated as a landmark in S′.
Due to space constraints, we do not give the details of their elegant landmark-
based grouping technique (termed CM-Group in the remainder of this arti-
cle) in our discussion—they can be found in Cormode and Muthukrishnan
[2002]. Here, we only summarize a couple of the key properties of CM-Group
that are required for the analysis of our embedding scheme in the following
theorem.

THEOREM 4.1 [CORMODE AND MUTHUKRISHNAN 2002]. Given a string of length
k, the CM-Group procedure runs in time O(k log∗ k). Furthermore, the closest
landmark to any symbol x in the string is determined by at most log∗ k + 5
consecutive symbols to the left of x, and at most five consecutive symbols to the
right of x.

Intuitively, Theorem 4.1 states that, for any given symbol x in a string of
length k, the group of (two or three) consecutive symbols chosen (by CM-Group)
to include x depends only on the symbols lying in a radius of at most log∗ k + 5
to the left and right of x. Thus, a string-edit operation occurring outside this
local neighborhood of symbol x is guaranteed not to affect the group formed
containing x. As we will see, this property of the CM-Group procedure is crucial in
proving the distance-distortion bounds for our TREEEMBED algorithm. Similarly,
the O(k log∗ k) complexity of CM-Group plays an important role in determining
the running time of TREEEMBED.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



XML Stream Processing Using Tree-Edit Distance Embeddings • 291

4.3 The TREEEMBED Algorithm

As mentioned earlier, our TREEEMBED algorithm constructs a hierarchical pars-
ing of T in several phases. In phase i, the algorithm builds an ordered, labeled
tree Ti that is obtained from the tree of the previous phase Ti−1 by contract-
ing certain edges. (The initial tree T 0 is exactly the original input tree T .)
Thus, each node v ∈ Ti corresponds to a connected subtree of T—in fact, by
construction, our TREEEMBED algorithm guarantees that this subtree will be a
valid subtree of T . Let v(T ) denote the valid subtree of T corresponding to node
v ∈ Ti. Determining the node label for v uses a hash function h() that maps the
set of all valid subtrees of T to new labels in a one-to-one fashion with high prob-
ability; thus, the label of v ∈ Ti is defined as the hash-function value h(v(T )).
As we demonstrate in Section 7.1, such a valid-subtree-naming function can be
computed in small space/time using an adaptation of the Karp-Rabin string fin-
gerprinting algorithm [Karp and Rabin 1987]. Note that the existence of such
an efficient naming function is crucial in guaranteeing the small space/time
properties for our embedding algorithm since maintaining the exact valid sub-
trees v(T ) is infeasible; for example, near the end of our parsing, such subtrees
are of size O(|T |).5

The pseudocode description of our TREEEMBED embedding algorithm is de-
picted in Figure 3. As described above, our algorithm builds a hierarchical
parsing structure (i.e., a hierarchy of contracted trees Ti) over the input tree
T , until the tree is contracted to a single node (|Ti| = 1). The multiset T (T ) of
valid subtrees produced by our parsing for T contains all valid subtrees corre-
sponding to all nodes of the final hierarchical parsing structure tagged with a
phase label to distinguish between subtrees in different phases; that is, T (T )
comprises all < v(Ti), i > for all nodes v ∈ Ti over all phases i (Step 18). Finally,
we define the L1 vector image V (T ) of T to be the “characteristic vector” of the
multi-set T (T ); in other words,

V (T )[< t, i >] := number of times the < t, i > subtree-phase combination
appears in T (T ).

(We use the notation Vi(T ) to denote the restriction of V (T ) to only subtrees
occurring at phase i.) A small example execution of the hierarchical tree parsing
in our embedding algorithm is depicted pictorially in Figure 4.

The L1 distance between the vector images of two trees S and T is defined
in the standard manner, that is, ‖V (T ) − V (S)‖1 = ∑

x∈T (T )∪T (S) |V (T )[x] −
V (S)[x]|. In the remainder of this section, we prove our main theorem on the
near-linear time complexity of our L1 embedding algorithm and the logarithmic
distortion bounds that our embedding guarantees for the tree-edit distance
metric.

5An implicit assumption made in our running-time analysis of TREEEMBED (which is also present in
the complexity analysis of CM-Group in Cormode and Muthukrishnan [2002]—see Theorem 4.1) is
that the fingerprints produced by the naming function h() fit in a single memory word and, thus, can
be manipulated in constant (i.e., O(1)) time. If that is not the case, then an additional multiplicative
factor of O(log |T |) must be included in the running-time complexity to account for the length of
such fingerprints (see Section 7.1).
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Fig. 3. Our tree-embedding algorithm.

Fig. 4. Example of hierarchical tree parsing.

THEOREM 4.1. The TREEEMBED algorithm constructs the vector image V (T )
of an input tree T in time O(|T | log∗ |T |); further, the vector V (T ) contains at
most O(|T |) nonzero components. Finally, given two trees S and T with n =
max{|S|, |T |}, we have

d (S, T ) ≤ 5 · ‖V (T ) − V (S)‖1 = O(log2 n log∗ n) · d (S, T ).

It is important to note here that, for certain special cases (i.e., when T is a
simple chain or a “star”), our TREEEMBED algorithm essentially degrades to
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Fig. 5. Example of parsing steps for the special case of a full binary tree.

the string-edit distance embedding algorithm of Cormode and Muthukrishnan
[2002]. This, of course, implies that, for such special cases, their even tighter
O(log n log∗ n) bounds on the worst-case distance distortion are applicable. As
another special-case example, Figure 5 depicts the initial steps in the parsing
of a full binary tree T ; note that, after two contraction phases, our parsing
essentially reduces a full binary tree of depth h to one of depth h − 1 (thus
decreasing the size of the tree by a factor of about 1/2).

As a first step in the proof of Theorem 4.1, we demonstrate the following
lemma which bounds the number of parsing phases. The key here is to show
that the number of tree nodes goes down by a constant factor during each
contraction phase of our embedding algorithm (Steps 3–16).

LEMMA 4.3. The number of phases for our TREEEMBED algorithm on an input
tree T is O(log |T |).

PROOF. We partition the node set of T into several subsets as follows. First,
define

A(T ) = {v ∈ T : v is a nonroot node with degree 2 (i.e., with only one child) or
v is a leaf child of a non-root node of degree 2}, and

B(T ) = {v ∈ T : v is a node of degree ≥ 3 (i.e., with at least two children) or
v is the root node of T }.

Clearly, A(T ) ∪ B(T ) contains all internal (i.e., nonleaf) nodes of T ; in particular,
A(T ) contains all nodes appearing in (degree-2) chains in T (including potential
leaf nodes at the end of such chains). Thus, the set of remaining nodes of T ,
say L(T ), comprises only leaf nodes of T which have at least one sibling or
are children of the root. Let v be a leaf child of some node u, and let sv denote
the maximal contiguous set of leaf children of u which contains v. We further
partition the leftover set of leaf nodes L(T ) as follows:

L1(T ) = {v ∈ L(T ) : |sv| ≥ 2},
L2(T ) = {v ∈ L(T ) : |sv|=1 and v is the leftmost such child of its parent}, and
L3(T ) = L(T ) − L1(T ) − L2(T )

= {v ∈ L(T ) : |sv| = 1 and v is not the leftmost such child of its parent}.
For notational convenience, we also use A(T ) to denote the set cardinality
|A(T )|, and similarly for other sets. We first prove the following ancillary claim.
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CLAIM 4.4. For any rooted tree T with at least two nodes, L3(T ) ≤ L2(T ) +
A(T )/2 − 1.

PROOF. We prove this claim by induction on the number of nodes in T . Sup-
pose T has only two nodes. Then, clearly, L3(T ) = 0, L2(T ) = 1, and A(T ) = 0.
Thus, the claim is true for the base case.

Suppose the claim is true for all rooted trees with less than n nodes. Let T
have n nodes and let r be the root of T . First, consider the case when r has
only one child node (say, s), and let T ′ be the subtree rooted at s. By induction,
L3(T ′) ≤ L2(T ′)+ A(T ′)/2−1. Clearly, L3(T ) = L3(T ′). Is L2(T ) equal to L2(T ′)?
It is not hard to see that the only case when a node u can occur in L2(T ′) but not
in L2(T ) is when s has only one child, u, which also happens to be a leaf. In this
case, obviously, u ∈ L2(T ′) (since it is the sole leaf child of the root), whereas in
T u is the end-leaf of a chain node, so it is counted in A(T ) and, thus, u /∈ L2(T ).
On the other hand, it is easy to see that both s and r are in A(T ) − A(T ′) in this
case, so that L2(T ) + A(T )/2 = L2(T ′) + A(T ′)/2. Thus, the claim is true in this
case as well.

Now, consider the case when the root node r of T has at least two children.
We construct several smaller subtrees, each of which is rooted at r (but contains
only a subset of r ’s descendants). Let u1, . . . , uk be the leaf children of r such that
sui = {ui} (i.e., have no leaf siblings); thus, by definition, u1 ∈ L2(T ), whereas
ui ∈ L3(T ) for all i = 2, . . . , k. We define the subtrees T1, . . . , Tk+1 as follows.
For each i = 1, . . . , k + 1, Ti is the set of all descendants of r (including r itself)
that lie to the right of leaf ui−1 and to the left of leaf ui (as special cases, T1 is
the subtree to the left of u1 and Tk+1 is the subtree to the right of uk). Note that
T1 and Tk+1 my not contain any nodes (other than the root node r), but, by the
definition of ui ’s, all other Ti subtrees are guaranteed to contain at least one
node other than r. Now, by induction, we have that

L3(Ti) ≤ L2(Ti) + A(Ti)/2 − 1

for all subtrees Ti, except perhaps for T1 and Tk+1 (if they only comprise a sole
root node, in which case, of course, the L2, L3, and A subsets above are all
empty). Adding all these inequalities, we have

∑

i

L3(Ti) ≤
∑

i

L2(Ti) +
∑

i

A(Ti)/2 − (k − 1), (1)

where we only have k − 1 on the right-hand side since T1 and Tk+1 may not
contribute a −1 to this summation.

Now, it is easy to see that, if u ∈ A(Ti), then u ∈ A(T ) as well; thus, A(T ) =∑
i A(Ti). Suppose u ∈ L2(Ti), and let w denote the parent of u. Note that w

cannot be the root node r of T , Ti. Indeed, suppose that w = r; then, since
u ∈ {u1, . . . , uk}, su contains a leaf node other than u which is also not in Ti
(since u ∈ L2(Ti))). But then, it must be the case that u is adjacent to one of
the leaves u1, . . . , uk , which is impossible; thus, w 
= r which, of course, implies
that u ∈ L2(T ) as well. Conversely, suppose that u ∈ L2(T ); then, either u = u1
or the parent of u is in one of the subtrees Ti. In the latter case, u ∈ D2(Hi).
Thus, L2(H) = ∑

i L2(Ti) + 1.
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Finally, we can argue in a similar manner that, for each i = 1, . . . , k + 1,
L3(Ti) ⊂ L3(T ). Furthermore, if u ∈ L3(T ), then either u ∈ {u2, . . . , uk} or
u ∈ L3(Ti). Thus, L3(T ) = ∑

i L3(Ti) + k − 1. Putting everything together, we
have

L3(T ) =
∑

i

L3(Ti) + k − 1

≤
∑

i

L2(Ti) +
∑

i

A(Ti)/2 (by Inequality (1))

= L2(T ) + A(T )/2 − 1.

This completes the inductive proof argument.

With Claim 4.4 in place, we now proceed to show that the number of nodes
in the tree goes down by a constant factor after each contraction phase of our
parsing. Recall that Ti is the tree at the beginning of the (i+1)th phase, and let
L′(Ti+1) ⊆ L(Ti+1) denote the subset of leaf nodes in L(Ti+1) that are created
by contracting a chain in Ti. We claim that

B(Ti+1) ≤ B(Ti) and B(Ti+1) + A(Ti+1) + L′(Ti+1) ≤ B(Ti) + A(Ti)
2

. (2)

Indeed, it is easy to see that all nodes with degree at least three (i.e., ≥ two chil-
dren) in Ti+1 must have had degree at least three in Ti as well; this obviously
proves the first inequality. Furthermore, note that any node in B(Ti+1) corre-
sponds to a unique node in B(Ti). Now, consider a node u in A(Ti+1) ∪ L′(Ti+1).
There are two possible cases depending on how node u is formed. In the first
case, u is formed by collapsing some degree-2 (i.e., chain) nodes (and, possibly,
a chain-terminating leaf) in A(Ti)—then, by virtue of the CM-Group procedure,
u corresponds to at least two distinct nodes of A(Ti). In the second case, there
is a node w ∈ B(Ti) and a leaf child of w that is collapsed into w to get u—then,
u corresponds to a unique node of B(Ti). The second inequality follows easily
from the above discussion.

During the (i + 1)th contraction phase, the number of leaves in L1(Ti) is
clearly reduced by at least one-half (again, due to the properties of CM-Group).
Furthermore, note that all leaves in L2(Ti) are merged into their parent nodes
and, thus, disappear. Now, the leaves in L3(Ti) do not change; so, we need
to bound the size of this leaf-node set. By Claim 4.4, we have that L3(Ti) ≤
L2(Ti) + A(Ti)/2—adding 2 · L3(Ti) on both sides and multiplying across with
1/3, this inequality gives

L3(Ti) ≤ L2(Ti)
3

+ 2
3

L3(Ti) + A(Ti)
6

.

Thus, the number of leaf nodes in L(Ti+1) − L′(Ti+1) can be upper-bounded as
follows:

L(Ti+1) − L′(Ti+1) ≤ L1(Ti)
2

+ L2(Ti)
3

+ 2
3

L3(Ti) + A(Ti)
6

≤ 2
3

L(Ti) + A(Ti)
6

.
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Combined with Inequality (2), this implies that the total number of nodes in
Ti+1 is

A(Ti+1) + B(Ti+1) + L(Ti+1) ≤ A(Ti)
2

+ B(Ti) + 2
3

L(Ti) + A(Ti)
6

≤ B(Ti) + 2
3

(A(Ti) + L(Ti)).

Now, observe that B(Ti) ≤ A(Ti)+ L(Ti) (the number of nodes of degree more
than two is at most the number of leaves in any tree)—the above inequality
then gives

A(Ti+1) + B(Ti+1) + L(Ti+1) ≤ 5
6

B(Ti) + 2
3

(A(Ti) + L(Ti)) + 1
6

B(Ti)

≤ 5
6

(A(Ti) + B(Ti) + L(Ti)).

Thus, when going from tree Ti to Ti+1, the number of nodes goes down by a
constant factor ≤ 5

6 . This obviously implies that the number of parsing phases
for our TREEEMBED algorithm is O(log |T |), and completes the proof.

The proof of Lemma 4.3 immediately implies that the total number of nodes
in the entire hierarchical parsing structure for T is only O(|T |). Thus, the vector
image V (T ) built by our algorithm is a very sparse vector. To see this, note that
the number of all possible ordered, labeled trees of size at most n that can be
built using the label alphabet σ is O((4|σ |)n) (see, e.g., Knuth [1973]); thus,
by Lemma 4.3, the dimensionality needed for our vector image V () to capture
input trees of size n is O((4|σ |)n log n). However, for a given tree T , only O(|T |)
of these dimensions can contain nonzero counts. Lemma 4.3, in conjunction
with the fact that the CM-Group procedure runs in time O(k log∗ k) for a string
of size k (Theorem 4.1), also implies that our TREEEMBED algorithm runs in
O(|T | log∗ |T |) time on input T . The following two subsections establish the
distance-distortion bounds stated in Theorem 4.1.

An immediate implication of the above results is that we can use our
embedding algorithm to compute the approximate (to within a guaranteed
O(log2 n log∗ n) factor) tree-edit distance between T and S in O(n log∗ n) (i.e.,
near-linear) time. The time complexity of exact tree-edit distance computation
is significantly higher: conventional tree-edit distance (without subtree moves)
is solvable in O(|T‖S|dT dS) time (where, dT (dS) is the depth of T (respec-
tively, S)) [Apostolico and Galil 1997; Zhang and Shasha 1989], whereas in the
presence of subtree moves the problem becomes NP-hard even for the simple
case of flat strings [Shapira and Storer 2002].

4.4 Upper-Bound Proof

Suppose we are given a tree T with n nodes and let � denote the quantity
log∗ n + 5. As a first step in our proof, we demonstrate that showing the upper-
bound result in Theorem 4.2 can actually be reduced to a simpler problem,
namely, that of bounding the L1 distance between the vector image of T and
the vector image of a 2-tree forest created when removing a valid subtree from
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T . More formally, consider a (valid) subtree of T of the form T ′[v, s] for some
contiguous subset of children s of v (recall that the root of T ′[v, s] has no label).
Let us delete T ′[v, s] from T , and let T2 denote the resulting subtree; further-
more, let T1 denote the deleted subtree T ′[v, s]. Thus, we have broken T into a
2-tree forest comprising T1 = T ′[v, s] and T2 = T − T1 (see the leftmost portion
of Figure 8 for an example).

We now compare the following two vectors. The first vector V (T ) is obtained
by applying our TREEEMBED parsing procedure to T . For the second vector, we
apply TREEEMBED to each of the trees T1 and T2 individually, and then add the
corresponding vectors V (T1) and V (T2) component-wise—call this vector V (T1+
T2) = V (T1) + V (T2). (Throughout this section, we use (T1 + T2) to denote the
2-tree forest composed of T1 and T2.) Our goal is to prove the following theorem.

THEOREM 4.5. The L1 distance between vectors V (T ) and V (T1 + T2) is at
most O(log2 n log∗ n).

Let us first see how this result directly implies the upper bound stated in
Theorem 4.2.

PROOF OF THE UPPER BOUND IN THEOREM 4.2. It is sufficient to consider the
case when the tree-edit distance between S and T is 1 and show that, in this
case, the L1 distance between V (S) and V (T ) is ≤ O(log2 n log∗ n). First, assume
that T is obtained from S by deleting a leaf node v. Let the parent of v be w.
Define s = {v}, and delete S′[w, s] from S. This splits S into T and S′[w, s]—
call this S1. Theorem 4.5 then implies that ‖V (S) − V (T + S1)‖1 = ‖V (S) −
(V (T ) + V (S1))‖1 ≤ O(log2 n log∗ n). But, it is easy to see that the vector V (S1)
only has three nonzero components, all equal to 1; this is since S1 is basically
a 2-node tree that is reduced to a single node after one contraction phase of
TREEEMBED. Thus, ‖V (S1)‖1 = ‖(V (T ) + V (S1)) − V (T )‖1 ≤ 3. Then, a simple
application of the triangle inequality for the L1 norm gives ‖V (S) − V (T )‖1 ≤
O(log2 n log∗ n). Note that, since insertion of a leaf node is the inverse of a leaf-
node deletion, the same holds for this case as well.

Now, let v be a node in S and s be a contiguous set of children of v. Suppose T
is obtained from S by moving the subtree S′[v, s], that is, deleting this subtree
and making it a child of another node x in S.6 Let S1 denote S′[v, s], and let
S2 denote the tree obtained by deleting S1 from S. Theorem 4.5 implies that
‖V (S)−V (S1 + S2)‖1 ≤ O(log2 n log∗ n). Note, however, that we can also picture
(S1 + S2) as the forest obtained by deleting S1 from T . Thus, ‖V (T ) − V (S1 +
S2)‖1 is also ≤ O(log2 n log∗ n). Once again, the triangle inequality for L1 easily
implies the result.

Finally, suppose we delete a nonleaf node v from S. Let the parent of v be
w. All children of v now become children of w. We can think of this process as
follows. Let s be the children of v. First, we move S′[v, s] and make it a child of
w. At this point, v is a leaf node, so we are just deleting a leaf node now. Thus,

6This is a slightly “generalized” subtree move, since it allows for a contiguous (sub)sequence of
sibling subtrees to be moved in one step. However, it is easy to see that it can be simulated with
only three simpler edit operations, namely, a node insertion, a single-subtree move, and a node
deletion. Thus, our results trivially carry over to the case of “single-subtree move” edit operations.

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



298 • M. Garofalakis and A. Kumar

the result for this case follows easily from the arguments above for deleting a
leaf node and moving a subtree.

As a consequence, it is sufficient to prove Theorem 4.5. Our proof proceeds
along the following lines. We define an influence region for each tree Ti in
our hierarchical parsing (i = 0, . . . , O(log n))—the intuition here is that the
influence region for Ti captures the complete set of nodes in Ti whose parsing
could have been affected by the change (i.e., the splitting of T into (T1 + T2)).
Initially (i.e., tree T 0), this region is just the node v at which we deleted the T1
subtree. But, obviously, this region grows as we proceed to subsequent phases
in our parsing. We then argue that, if we ignore this influence region in Ti and
the corresponding region in the parsing of the (T1+T2) forest, then the resulting
sets of valid subtrees look very similar (in any phase i). Thus, if we can bound
the rate at which this influence region grows during our hierarchical parsing, we
can also bound the L1 distance between the two resulting characteristic vectors.
The key intuition behind bounding the size of the influence region is as follows:
when we effect a change at some node v of T , nodes far away from v in the
tree remain unaffected, in the sense that the subtree in which such nodes are
grouped during the next phase of our hierarchical parsing remains unchanged.
As we will see, this fact hinges on the properties of the CM-Group procedure
used for grouping nodes during each phase of TREEEMBED (Theorem 4.1). The
discussion of our proof in the remainder of this section is structured as follows.
First, we formally define influence regions, giving the set of rules for “growing”
such regions of nodes across consecutive phases of our parsing. Second, we
demonstrate that, for any parsing phase i, if we ignore the influence regions
in the current (i.e., phase-(i + 1)) trees produced by TREEEMBED on input T and
(T1 + T2), then we can find a one-to-one, onto mapping between the nodes in the
remaining portions of the current T and (T1 + T2) that pairs up identical valid
subtrees. Third, we bound the size of the influence region during each phase of
our parsing. Finally, we show that the upper bound on the L1 distance of V (T )
and V (T1 + T2) follows as a direct consequence of the above facts.

We now proceed with the proof of Theorem 4.5. Define (T1 +T2)i as the 2-tree
forest corresponding to (T1 + T2) at the beginning of the (i +1)th parsing phase.
We say that a node x ∈ Ti+1 contains a node x ′ ∈ Ti if the set of nodes in Ti

which are merged to form x contains x ′. As earlier, any node w in Ti corresponds
to a valid subtree w(T ) of T ; furthermore, it is easy to see that if w and w′ are
two distinct nodes of Ti, then the w(T ) and w′(T ) subtrees are disjoint. (The
same obviously holds for the parsing of each of T1, T2.)

For each tree Ti, we mark certain nodes; intuitively, this node-marking de-
fines the influence region of Ti mentioned above. Let M i be the set of marked
nodes (i.e., influence region) in Ti (see Figure 6(a) for an example). The generic
structure of the influence region M i satisfies the following: (1) M i is a connected
subtree of Ti that always contains the node v (at which the T1 subtree was re-
moved), that is, the node in Ti which contains v (denoted by vi) is always in
M i; (2) there is a center node ci ∈ M i, and M i may contain some ancestor nodes
of ci—but all such ancestors (except perhaps for ci itself) must be of degree
2 only, and should form a connected path; and (3) M i may also contain some
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Fig. 6. (a) The subtree induced by the bold edges corresponds to the nodes in Mi . (b) Node z
becomes the center of Ni .

descendants of the center node ci. Finally, certain (unmarked) nodes in Ti − M i

are identified as corner nodes—intuitively, these are nodes whose parsing will
be affected when they are shrunk down to a leaf node.

Once again, the key idea is that the influence region M i captures the set
of those nodes in Ti whose parsing in TREEEMBED may have been affected by
the change we made at node v. Now, in the next phase, the changes in M i can
potentially affect some more nodes. Thus, we now try to determine which nodes
M i can affect; that is, assuming the change at v has influenced all nodes in
M i, which are the nodes in Ti whose parsing (during phase (i + 1)) can change
as a result of this. To capture this newly affected set of nodes, we define an
extended influence region Ni in Ti—this intuitively corresponds to the (worst-
case) subset of nodes in Ti whose parsing can potentially be affected by the
changes in M i.

First, add all nodes in M i to Ni. We define the center node z of the extended
influence region Ni as follows. We say that a descendant node u of vi (which
contains v) in Ti is a removed descendant of vi if and only if its corresponding
subtree u(T ) in the base tree T is entirely contained within the removed subtree
T [v, s]. (Note that, initially, v0 = v is trivially a removed descendant of v0.) Now,
let w be the highest node in M i—clearly, w is an ancestor of the current center
node ci as well as the vi node in Ti. If all the descendants of w are either in
M i or are removed descendants of vi, then define the center z to be the parent
of node w, and add z to Ni (see Figure 6(b)); otherwise, define the center z of
Ni to be same as ci. The idea here is that the grouping of w’s parent in the
next phase can change only if the entire subtree under w has been affected by
the removal of the T ′[v, s] subtree. Otherwise, if there exist nodes under w in
Ti whose parsing remains unchanged and that have not been deleted by the
subtree removal, then the mere existence of these nodes in Ti means that it is
impossible for TREEEMBED to group w’s parent in a different manner during the
next phase of the (T1 + T2) parsing in any case. Once the center node z of Ni

has been fixed, we also add nodes to Ni according to the following set of rules
(see Figures 7(a) and (b) for examples).
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Fig. 7. (a) The nodes in dotted circles get added to Ni due to Rules (i), (ii), and (iii). (b) The nodes in
the dotted circle get added to Ni due to Rule (iv)—note that all descendants of the center z which are
not descendants of u are in Mi . (c) Node u moves up to z, turning nodes a and b into corner nodes.

(i) Suppose u is a leaf child of the (new) center z or the vi node in Ti; fur-
thermore, assume there is some sibling u′ of u such that the following
conditions are satisfied: u′ ∈ M i or u′ is a corner leaf node, the set of nodes
s(u, u′) between u and u′ are leaves, and |s(u, u′)| ≤ �. Then, add u to Ni.
(In particular, note that any leaf child of z which is a corner node gets
added to Ni.)

(ii) Let u be the leftmost lone leaf child of the center z which is not already in
M i (if such a child exists); then, add u to Ni. Similarly, for the vi node
in Ti, let u be a leaf child of vi such that one of the following condi-
tions is satisfied: (a) u is the leftmost lone leaf child of vi when consid-
ering only the removed descendants of vi; or (b) u is the leftmost lone leaf
child of vi when ignoring all removed descendants of vi. Then, add u to
Ni.

(iii) Let w be the highest node in M i ∪ {z} (so it is an ancestor of the center
node z). Let u be an ancestor of w. Suppose it is the case that all nodes
between u and w, except perhaps w, have degree 2, and the length of the
path joining u and w is at most �; then, add u to Ni.

(iv) Suppose there is a child u of the center z or the vi node in Ti such that one
of the following conditions is satisfied: (a) u is not a removed descendant
of vi and all descendants of all siblings of u (other than u itself) are either
already in M i or are removed descendants of vi; or (b) u is a removed
descendant of vi (and, hence, a child of vi) and all removed descendants
of vi which are not descendants of u are in M i. Then, let u′ be the lowest
descendant of u which is in M i. If u′′ is any descendant of u′ such that the
path joining them contains degree-2 nodes only (including the end-points),
and has length at most �, then add u′′ to Ni.

Let us briefly describe why we need these four rules. We basically want to
make sure that we include all those nodes in Ni whose parsing can potentially
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be affected if we delete or modify the nodes in M i (given, of course, the removal
of the T ′[v, s] subtree). The first three rules, in conjunction with the properties
of our TREEEMBED parsing, are easily seen to capture this fact. The last rule is
a little more subtle. Suppose u is a child of z (so that we are in clause (a) of
Rule (iv)); furthermore, assume that all descendants of z except perhaps those
of u are either already in M i or have been deleted with the removal of T ′[v, s].
Remember that all nodes in M i have been modified due to the change effected
at v, so they may not be present at all in the corresponding picture for (T1 + T2)
(i.e., the (T1+T2)i forest). But, if we just ignore M i and the removed descendants
of vi, then z becomes a node of degree 2 only, which would obviously affect how u
and its degree-2 descendants are parsed in (T1 +T2)i (compared to their parsing
in Ti). Rule (iv) is designed to capture exactly such scenarios; in particular, note
that clauses (a) and (b) in the rule are meant to capture the potential creation
of such degree-2 chains in the remainder subtree Ti

2 and the deleted subtree
Ti

1 , respectively.
We now consider the rule for marking corner nodes in Ti. Once again, the

intuition is that certain (unaffected) nodes in Ti − M i (actually, in Ti − Ni) are
marked as corner nodes so that we can “remember” that their parsing will be
affected when they are shrunk down to a leaf. Suppose the center node z has
at least two children, and a leftmost lone leaf child u—note that, by Rule (ii),
u ∈ Ni. If any of the two immediate siblings of u are not in Ni, then we mark
them as corner nodes (see Figure 7(c)). The key observation here is that, when
parsing Ti, u is going to be merged into z and disappear; however, we need
to somehow “remember” that a (potentially) affected node u was there, since
its existence could affect the parsing of its sibling nodes when they are shrunk
down to leaves. Marking u’s immediate siblings in Ti as corner nodes essentially
achieves this effect.

Having described the (worst-case) extended influence region Ni in Ti, let us
now define M i+1, that is, the influence region at the next level of our parsing
of T . M i+1 is precisely the set of those nodes in Ti+1 which contain a node of
Ni. The center of M i+1 is the node which contains the center node z of Ni;
furthermore, any node in Ti+1 which contains a corner node is again marked
as a corner node.

Initially, define M 0 = {v} (and, obviously, v0 = c0 = v). Furthermore, if v has
a child node immediately on the left (right) of the removed child subsequence s,
then that node as well as the leftmost (respectively, rightmost) node in s are
marked as corner nodes. The reason, of course, is that these ≤ 4 nodes may be
parsed in a different manner when they are shrunk down to leaves during the
parsing of T1 and T2. Based on the above set of rules, it is easy to see that M i

and Ni are always connected subtrees of Ti. It is also important to note that
the extended influence region Ni is defined in such a manner that the parsing
of all nodes in Ti − Ni cannot be affected by the changes in M i. This fact should
become clear as we proceed with the details of the proofs in the remainder of
this section.

Example 4.6. Figure 8 depicts the first three phases of a simple example
parsing for T and (T1 + T2), in the case of a 4-level full binary tree T that
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Fig. 8. Example of TREEEMBED parsing phases for T and (T1 + T2) in the case of a full binary tree,
highlighting the influence regions Mi in Ti and the corresponding Pi regions in (T1 + T2)i (“o”
denotes an unlabeled node).

is split by removing the right subtree of the root (i.e., T1 = T ′[x3, {x6, x7}],
T2 = T − T1). We use subscripted x ’s and y ’s to label the nodes in Ti and
(T1 + T2)i to emphasize the fact that these tree nodes are parsed independently
by TREEEMBED; furthermore, we employ the subscripts to capture the original
subtrees of T and (T1 + T2) represented by nodes in later phases of our parsing.
Of course, it should be clear that x and y nodes with identical subscripts refer
to identical (valid) subtrees of the original tree T ; for instance, both x4,8,9 ∈ T 2

and y4,8,9 ∈ T 2
2 represent the same subtree T [x4, {x8, x9}] = {x4, x8, x9} of T .

As depicted in Figure 8, the initial influence region of T is simply M 0 = {x3}
(with v0 = c0 = x3). Since, clearly, all descendants of x3 are removed descendants
of v0, the center z for the extended influence region N 0 moves up to the parent
node x1 of x3 (and none of our other rules are applicable); thus, N 0 = {x1, x3}
and, obviously, M 1 = {x1, x3}. This is crucial since (as shown in Figure 8), due to
the removal of T1, nodes y1 and y3 are processed in a very different manner in
the remainder subtree T 0

2 (i.e., y3 is merged up into y1 as its leftmost lone leaf
child). Now, for T 1, none of our rules for extending the influence region apply
and, consequently, N 1 = M 2 = {x1, x3}. The key thing to note here is that, for
each parsing phase i, ignoring the nodes in the influence region M i (and the
“corresponding” nodes in (T1 + T2)i), the remaining nodes of Ti and (T1 + T2)i

have been parsed in an identical manner by TREEEMBED (and correspond to an
identical subset of valid subtrees in T ); in other words, their corresponding
characteristic vectors in our embedding are exactly the same. We now proceed
to formalize these observations.

Given the influence region M i of Ti, we define a corresponding node set,
Pi, in the (T1 + T2)i forest. In what follows, we prove that the nodes in Ti −
M i and (T1 + T2)i − Pi can be matched in some manner, so that each pair
of matched nodes correspond to identical valid subtrees in T and (T1 + T2),
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Fig. 9. f maps from Ti − Mi to (T1 + T2)i − Pi .

respectively. The node set Pi in (T1 + T2)i is defined as follows (see Figure 8
for examples). Pi always contains the root node of Ti

1 . Furthermore, a node
u ∈ (T1 + T2)i is in Pi, if and only if there exists a node u′ ∈ M i such that the
intersection u(T1 + T2) ∩ u′(T ) is nonempty (as expected, u(T1 + T2) denotes the
valid subtree corresponding to u in (T1 +T2)). We demonstrate that our solution
always maintains the following invariant.

INVARIANT 4.7. Given any node x ∈ Ti − M i, there exists a node y = f (x)
in (T1 + T2)i − Pi such that x(T ) and y(T1 + T2) are identical valid subtrees on
the exact same subset of nodes in the original tree T. Conversely, given a node
y ∈ (T1 + T2)i − Pi, there exists a node x ∈ Ti − M i such that x(T ) = y(T1 + T2).

Thus, there always exists a one-to-one, onto mapping f from Ti − M i to
(T1 + T2)i − Pi (Figure 9). In other words, if we ignore M i and Pi from Ti and
(T1 +T2)i (respectively), then the two remaining forests of valid subtrees in this
phase are identical.

Example 4.8. Continuing with our binary-tree parsing example in
Figure 8, it is easy to see that, in this case, the mapping f : Ti − M i −→
(T1+T2)i−Pi simply maps every x node in Ti−M i to the y node in (T1+T2)i−Pi

with the same subscript that, obviously, corresponds to exactly the same valid
subtree of T ; for instance, y10,11 = f (x10,11) and both nodes correspond to the
same valid subtree T ′[x5, {x10, x11}]. Thus, the collections of valid subtrees for
Ti − M i and (T1 + T2)i − Pi are identical (i.e., the L1 distance of their cor-
responding characteristic vectors is zero); this implies that, for example, the
contribution of T 1 and (T1 + T2)1 to the difference of the embedding vectors
V (T ) and V (T1 + T2) is upper-bounded by |M 1| = 2.

Clearly, Invariant 4.7 is true in the beginning (i.e., M 0 = {v}, P0 = {v,
root(T1)}). Suppose our invariant remains true for Ti and (T1 + T2)i. We now
need to prove it for Ti+1 and (T1 + T2)i+1. As previously, let Ni ⊇ M i be the
extended influence region in Ti. Fix a node w in Ti − Ni, and let w′ be the
corresponding node in (T1 + T2)i − Pi (i.e., w′ = f (w)). Suppose w is contained
in node q ∈ Ti+1 and w′ is contained in node q′ ∈ (T1 + T2)i+1.

LEMMA 4.9. Given a node w in Ti − Ni, let q, q′ be as defined above. If q(T )
and q′(T1+T2) are identical subtrees for any node w ∈ Ti−Ni, then Invariant 4.7
holds for Ti+1 and (T1 + T2)i+1 as well.
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PROOF. We have to demonstrate the following facts. If x is a node in Ti+1 −
M i+1, then there exists a node y ∈ (T1+T2)i+1−Pi+1 such that y(T1+T2) = x(T ).
Conversely, given a node y ∈ (T1 +T2)i+1 − Pi+1, there is a node x ∈ Ti+1 − M i+1

such that x(T ) = y(T1 + T2).
Suppose the condition in the lemma holds. Let x be a node in Ti+1 − M i+1.

Let x ′ be a node in Ti such that x contains x ′. Clearly, x ′ /∈ Ni, otherwise x
would be in M i+1. Let y ′ = f (x ′), and let y be the node in (T1 + T2)i+1 which
contains y ′. By the hypothesis of the lemma, x(T ) and y(T1 + T2) are identical
subtrees. It remains to check that y /∈ Pi+1. Since y(T1 +T2) = x(T ), y(T1 +T2)
is disjoint from z(T ) for any z ∈ Ti+1, z 
= x. By the definition of the Pi node
sets, since x /∈ M i+1, we have that y ∈ (T1 + T2)i+1 − Pi+1.

Let us prove the converse now. Suppose y ∈ (T1 + T2)i+1 − Pi+1. Let y ′ be
a node in (T1 + T2)i such that y contains y ′. If y ′ ∈ Pi, then (by definition)
there exists a node x ′ ∈ M i such that x ′(T ) ∩ y ′(T1 + T2) 
= ∅. Let x be the node
in Ti+1 which contains x ′. Since x ′ ∈ Ni, x ∈ M i+1. Now, x(T ) ∩ y(T1 + T2) ⊇
x ′(T )∩ y ′(T1 +T2) 
= ∅. But then y should be in Pi+1, a contradiction. Therefore,
y ′ /∈ Pi. By the invariant for Ti, there is a node x ′ ∈ Ti−M i such that y ′ = f (x ′).

Let x be the node in Ti+1 containing x ′. Again, if x ′ ∈ Ni, then x ∈ M i+1.
But then x(T ) ∩ y(T1 + T2) ⊇ x ′(T ) ∩ y ′(T1 + T2), which is nonempty because
x ′(T ) = y ′(T1 + T2). This would imply that y ∈ Pi+1. So, x ′ /∈ Ni. But then, by
the hypothesis of the lemma, x(T ) = y(T1 + T2). Further, x cannot be in M i+1,
otherwise y will be in Pi+1. Thus, the lemma is true.

It is, therefore, sufficient to prove that, for any pair of nodes w ∈ Ti − Ni,
w′ = f (w) ∈ (T1 + T2)i − Pi, the corresponding encompassing nodes q ∈ Ti+1

and q′ ∈ (T1 + T2)i+1 map to identical valid subtrees, that is, q(T ) = q′(T1 + T2).
This is what we seek to do next. Our proof uses a detailed, case-by-case analysis
of how node w gets parsed in Ti. For each case, we demonstrate that w′ will also
get parsed in exactly the same manner in the forest (T1 + T2)i. In the interest
of space and continuity, we defer the details of this proof to the Appendix.

Thus, we have established the fact that, if we look at the vectors V (T ) and
V (T1 + T2), the nodes corresponding to phase i of V (T ) which are not present
in V (T1 + T2) are guaranteed to be a subset of M i. Our next step is to bound
the size of M i.

LEMMA 4.10. The influence region M i for tree Ti consists of at most
O(i log∗ n) nodes.

PROOF. Note that, during each parsing phase, Rule (iii) adds at most � nodes
of degree at most 2 to the extended influence region Ni. It is not difficult to see
that Rule (iv) also adds at most 4� nodes of degree at most 2 to Ni during
each phase; indeed, note that, for instance, there is at most one child node u
of z which is not in M i and satisfies one of the clauses of Rule (iv). So, adding
over the first i stages of our algorithm the number of such nodes in M i can be
at most O(i log∗ n). Thus, we only need to bound the number of nodes that get
added to the influence region due to Rules (i) and (ii).

We now want to count the number of leaf children of the center node ci which
are in M i. Let ki be the number of children of ci which become leaves for the
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first time in Ti and are marked as corner nodes. Let Ci be the nodes in M i

which were added as the leaf children of the center node of Ti′
, for some i′ < i.

Then, we claim that Ci can be partitioned into at most 1 + ∑i−1
j=1 k j contiguous

sets such that each set has at most 4� elements. We prove this by induction on
i. So, suppose it is true for Ti.

Consider such a contiguous set of leaves in Ci, call it Ci
1, where |Ci

1| ≤ 4�.
We may add up to � consecutive leaf children of ci on either side of Ci

1 to the
extended influence region Ni. Thus, this set may grow to a size of 6� contiguous
leaves. But when we parse this set (using CM-Group), we reduce its size by at
least half. Thus, this set will now contain at most 3� leaves (which is at most
4�). Therefore, each of the 1 + ∑i−1

j=1 k j contiguous sets in Ci correspond to a
contiguous set in Ti+1 of size at most 4�.

Now, we may add other leaf children of ci to Ni. This can happen only if a
corner node becomes a leaf. In this case, at most � consecutive leaves on either
side of this node are added to Ni (by Rule (i)); thus, we may add ki more such
sets of consecutive leaves to Ni. This completes our inductive argument.

But note that, in any phase, at most two new corner nodes (i.e., the immediate
siblings of the center node’s leftmost lone leaf child) can be added. (And, of
course, we also start out with at most four nodes marked as corners inside and
next to the removed child subsequence s.) So,

∑i
j=1 k j ≤ 2i +2. This shows that

the number of nodes in Ci is O(i log∗ n). The contribution toward M i of the leaf
children of the vi node can also be upper bounded by O(i log∗ n) using a very
similar argument. This completes the proof.

We now need to bound the nodes in (T1 + T2)i which are not in Ti. But
this can be done in exactly analogous manner if we switch the roles of T and
T1 + T2 in the proofs above. Thus, we can define a subset Qi of (T1 + T2)i and
a one-to-one, onto mapping g from (T1 + T2)i − Qi to a subset of Ti such that
g (w)(T ) = w(T1 + T2) for every w ∈ (T1 + T2)i − Qi. Furthermore, we can show
in a similar manner that |Qi| ≤ O(i log∗ n).

We are now ready to complete the proof of Theorem 4.5.

PROOF OF THEOREM 4.5. Fix a phase i. Consider those subtrees t such that
Vi(T )[< t, i >] ≥ Vi(T1+T2)[< t, i >]. In other words, t appears more frequently
in the parsed tree Ti than in (T1 + T2)i. Let the set of such subtrees be denoted
by S. We first observe that

|M i| ≥
∑

t∈S
Vi(T )[< t, i >] − Vi(T1 + T2)[< t, i >].

Indeed, consider a tree t ∈ S. Let V1 be the set of vertices u in Ti such that
u(T ) = t. Similarly, define the set V2 in (T1 + T2)i. So, |V1| − |V2| = Vi(T )[<
t, i >]− Vi(T1 + T2)[< t, i >]. Now, the function f must map a vertex in V1 − M i

to a vertex in V2. Since f is one-to-one, V1 − M i can have at most |V2| nodes.
In other words, M i must contain |V1|− |V2| nodes from V1. Adding this up for
all such subtrees in S gives us the inequality above.
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We can write a similar inequality for Qi. Adding these up, we get

|M i| + |Qi| ≥
∑

t
|Vi(T )[< t, i >] − Vi(T1 + T2)[< t, i >]|,

where the summation is over all subtrees t. Adding over all parsing phases i,
we have

‖V (T ) − V (T1 + T2)‖1 ≤
O(log n)∑

i=1

O(i log∗ n) = O(log2 n log∗ n).

This completes our proof argument.

4.5 Lower-Bound Proof

Our proof follows along the lower-bound proof of Cormode and Muthukrishnan
[2002], in that it does not make use of any special properties of our hier-
archical tree parsing; instead, we only assume that the parsing structure
built on top of the data tree is of bounded degree k (in our case, of course,
k = 3). The idea is then to show how, given two data trees S and T ,
we can use the “credit” from the L1 difference of their vector embeddings
‖V (T ) − V (S)‖1 to transform S into T . As in Cormode and Muthukrishnan
[2002], our proof is constructive and shows how the overall parsing structure
for S (including S itself at the leaves) can be transformed into that for T ;
the transformation is performed level-by-level in a bottom-up fashion (start-
ing from the leaves of the parsing structure). (The distance-distortion lower
bound for our embedding is an immediate consequence of Lemma 4.11 with
k = 3.7)

LEMMA 4.11. Assuming a hierarchical parsing structure with degree at most
k (k ≥ 2), the overall parsing structure for tree S can be transformed into exactly
that of tree T with at most (2k − 1)‖V (T ) − V (S)‖1 tree-edit operations (node
inserts, deletes, relabels, and subtree moves).

PROOF. As in Cormode and Muthukrishnan [2002], we first perform a top-
down pass over the parsing structure of S, marking all nodes x whose subgraph
appears in the both parse-tree structures, making sure that the number of
marked x nodes at level (i.e., phase) i of the parse tree does not exceed Vi(T )[x]
(we use x instead of v(x) to also denote the valid subtree corresponding to x in
order to simplify the notation). Descendants of marked nodes are also marked.
Marked nodes are “protected” during the parse-tree transformation process
described below, in the sense that we do not allow an edit operation to split a
marked node.

We proceed bottom-up over the parsing structure for S in O(log n) rounds
(where n = max{|S|, |T |}), ensuring that after the end of round i we have created
an Si such that ‖Vi(T ) − Vi(Si)‖1 = 0. The base case (i.e., level 0) deals with

7It is probably worth noting at this point that the subtree-move operation is needed only to establish
the distortion lower-bound result in this section; that is, the upper bound shown in Section 4.1 holds
for the standard tree-edit distance metric as well.
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Fig. 10. Forming a level-i node x.

simple node labels and creates S0 in a fairly straightforward way: for each
label a, if V0(S)[a] > V0(T )[a] then we delete (V0(S)[a]− V0(T )[a]) unmarked
copies of a; otherwise, if V0(S)[a] < V0(T )[a], then we add (V0(T )[a]− V0(S)[a])
leaf nodes labeled a at some location of S. In each case, we perform |V0(S)[a] −
V0(T )[a]| edit operations which is exactly the contribution of label a to ‖V0(T )−
V0(S)‖1. It is easy to see that, at the end of the above process, we have ‖V0(T )−
V0(S0)‖1 = 0.

Inductively, assume that, when we start the transformation at level i, we
have enough nodes at level i − 1; that is, ‖Vi−1(T ) − Vi−1(Si−1)‖1 = 0. We show
how to create Si using at most (2k−1)‖Vi(T )−Vi(Si)‖1 subtree-move operations.
Consider a node x at level i (again, to simplify the notation, we also use x to
denote the corresponding valid subtree). If Vi(S)[x] > Vi(T )[x], then we have
exactly Vi(T )[x] marked x nodes at level i of S’s parse tree that we will not
alter; the remaining copies will be split to form other level-i nodes as described
next. If Vi(S)[x] < Vi(T )[x], then we need to build an extra (Vi(T )[x]−Vi(S)[x])
copies of the x node at level i. We demonstrate how each such copy can be
built by using ≤ (2k − 1) subtree move operations in order to bring together
≤ k level-(i − 1) nodes to form x (note that the existence of these level-(i −
1) nodes is guaranteed by the fact that ‖Vi−1(T ) − Vi−1(Si−1)‖1 = 0). Since
(Vi(T )[x] − Vi(S)[x]) is exactly the contribution of x to ‖Vi(T ) − Vi(Si)‖1, the
overall transformation for level i requires at most (2k −1)‖Vi(T )− Vi(Si)‖1 edit
operations.

To see how we form the x node at level i note that, based on our embedding
algorithm, there are three distinct cases for the formation of x from level-(i −1)
nodes, as depicted in Figures 10(a)–10(c). In case (a), x is formed by “folding”
the (no-siblings) leftmost leaf child v2 of a node v1 into its parent; we can create
the scenario depicted in Figure 10(a) easily with two subtree moves: one to
remove any potential subtree rooted at the level-(i − 1) node v2 (we can place
it under v2’s original parent at the level-(i − 1) tree), and one to move the (leaf)
v2 under the v1 node. Similarly, for the scenarios depicted in cases (b) and (c),
we basically need at most k subtree moves to turn the nodes involved into
leaves, and at most k − 1 additional moves to move these leaves into the right
formation around one of these ≤ k nodes. Thus, we can create each copy of x
with ≤ (2k − 1) subtree move operations. At the end of this process, we have
‖Vi(T ) − Vi(Si)‖1 = 0. Note that we do not care where in the level-i tree we
create the x node; the exact placement will be taken care of at higher levels of
the parsing structure. This completes the proof.
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5. SKETCHING A MASSIVE, STREAMING XML DATA TREE

In this section, we describe how our tree-edit distance embedding algorithm
can be used to obtain a small, pseudorandom sketch synopsis of a massive XML
data tree in the streaming model. This sketch synopsis requires only small
(logarithmic) space, and it can be used as a much smaller surrogate for the entire
data tree in approximate tree-edit distance computations with guaranteed error
bounds on the quality of the approximation based on the distortion bounds
guaranteed from our embedding. Most importantly, as we show in this section,
the properties of our embedding algorithm are the key that allows us to build
this sketch synopsis in small space as nodes of the tree are streaming by without
ever backtracking on the data.

More specifically, consider the problem of embedding a data tree T of size
n into a vector space, but this time assume that T is truly massive (i.e., n far
exceeds the amount of available storage). Instead, we assume that we see the
nodes of T as a continuous data stream in some apriori determined order. In the
theorem below, we assume that the nodes of T arrive in the order of a preorder
(i.e., depth-first and left-to-right) traversal of T . (Note, for example, that this is
exactly the ordering of XML elements produced by the event-based SAX parsing
interface (sax.sourceforge.net/).) The theorem demonstrates that the vector
V (T ) constructed for T by our L1 embedding algorithm can then be constructed
in space O(d log2 n log∗ n), where d denotes the depth of T . The sketch of T is
essentially a sketch of the V (T ) vector (denoted by sketch(V (T ))) that can be
used for L1 distance calculations in the embedding vector space. Such an L1
sketch of V (T ) can be obtained (in small space) using the 1-stable sketching
algorithms of Indyk [2000] (see Theorem 2.2).

THEOREM 5.1. A sketch sketch(V (T )) to allow approximate tree-edit dis-
tance computations can be computed over the stream of nodes in the preorder
traversal of an n-node XML data tree T using O(d log2 n log∗ n) space and
O(log d log2 n(log∗ n)2) time per node , where d denotes the depth of T. Then, as-
suming sketch vectors of size O(log 1

δ
) and for an appropriate combining function

f (), f (sketch(V (S)), sketch(V (T ))) gives an estimate of the tree-edit distance
d (S, T ) to within a relative error of O(log2 n log∗ n) with probability of at least
1 − δ.

The proof of Theorem 5.1 hinges on the fact that, based on our proof in Sec-
tion 4.4, given a node v on a root-to-leaf path of T and for each of the O(log n) lev-
els of the parsing structure above v, we only need to retain a local neighborhood
(i.e., influence region) of nodes of size at most O(log n log∗ n) to determine the
effect of adding an incoming subtree under T . The O(d ) multiplicative factor is
needed since, as the tree is streaming in preorder, we do not really know where
a new node will attach itself to T ; thus, we have to maintain O(d ) such influence
regions. Given that most real-life XML data trees are reasonably “bushy,” we
expect that, typically, d << n, or d = O(polylog(n)). The f () combining function
is basically a median-selection over the absolute component-wise differences of
the two sketch vectors (Theorem 2.2). The details of the proof for Theorem 5.1
follow easily from the above discussion and the results of Indyk [2000].
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6. APPROXIMATE SIMILARITY JOINS OVER XML DOCUMENT STREAMS

We now consider the problem of computing (in limited space) the cardinality
of an approximate tree-edit-distance similarity join over two continuous data
streams of XML documents S1 and S2. Note that this is a distinctly different
streaming problem from the one examined in Section 5: we now assume mas-
sive, continuous streams of short XML documents that we want to join based
on tree-edit distance; thus, the limiting factor is no longer the size of an indi-
vidual data tree (which is assumed small and constant), but rather the number
of trees in the stream(s). The documents in each Si stream can arrive in any
order, and our goal is to produce an accurate estimate for the similarity-join
cardinality |SimJoin(S1, S2, τ )| = |{(S, T ) ∈ S1 × S2 : d (S, T ) ≤ τ }|, that is, the
number of pairs in S1 × S2 that are within a tree-edit distance of τ from each
other (where the similarity threshold τ is a user/application-defined param-
eter). Such a space-efficient, one-pass approximate similarity join algorithm
would obviously be very useful in processing huge XML databases, integrating
streaming XML data sources, and so on.

Once again, the first key step is to utilize our tree-edit distance embedding
algorithm on each streaming document tree T ∈ Si (i = 1, 2) to construct a
(low-distortion) image V (T ) of T as a point in an appropriate multidimensional
vector space. We then obtain a lower-dimensional vector of 1-stable sketches of
V (T ) that approximately preserves L1 distances in the original vector space, as
described by Indyk [2000]. Our tree-edit distance similarity join has now essen-
tially been transformed into an L1-distance similarity join in the embedding,
low-dimensional vector space. The final step then performs an additional level
of AMS sketching over the stream of points in the embedding L1 vector space
in order to build a randomized, sketch-based estimate for |SimJoin(S1, S2, τ )|.8
The following theorem shows how an atomic sketch-based estimate can be
constructed in small space over the streaming XML data trees; to boost ac-
curacy and probabilistic confidence, several independent atomic-estimate in-
stances can be used (as in Alon et al. [1996, 1999]; Dobra et al. [2002]; see also
Theorem 2.1).

THEOREM 6.1. Let |SimJoin(S1, S2, τ )| denote the cardinality of the tree-edit
distance similarity join between two XML document streams S1 and S2, where
document distances are approximated to within a factor of O(log2 b log∗ b) with
constant probability, and b is a (constant) upper bound on the size of each
document tree. Define k = k(δ, ε) = O( log(1/δ)

ε
)O(1/ε). An atomic, sketch-based

estimate for |SimJoin(S1, S2, τ )| can be constructed in O(b + k(δ, ε) log N ) space
and O(b log∗ b + k(δ, ε) log N ) time per document, where δ, ε are constants < 1
that control the accuracy of the distance estimates and N denotes the length of
the input stream(s).

8Assuming constant-sized trees, a straightforward approach to our similarity-join problem would be
to exhaustively build all trees within a τ -radius of an incoming tree, and then just sketch (the finger-
prints of) these trees directly using AMS for the similarity-join estimate. The key problem with such
a “direct” approach is the computational cost per incoming tree: given a tree T with b nodes and an
edit-distance radius of τ , the cost of the brute-force enumeration of all trees in the τ -neighborhood
of T would be at least O(bτ ), which is probably prohibitive (except for very small values of b and τ ).
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PROOF. Our algorithm for producing an atomic sketch estimate for the simi-
larity join cardinality uses two distinct levels of sketching. Assume an input tree
T (in one of the input streams). The first level of sketching uses our L1 embed-
ding algorithm in conjunction with the L1-sketching technique of Indyk [2000]
(i.e., with 1-stable (Cauchy) random variates) to map T to a lower-dimensional
vector of O(k(δ, ε)) iid sketching values sketch(V (T )). This mapping of an input
tree T to a point in an O(k(δ, ε))-dimensional vector space can be done in space
O(b+ k(δ, ε) log N ): this covers the O(b) space to store and parse the tree,9 and
the O(log N ) space required to generate the 1-stable random variates for each
of the O(k(δ, ε)) sketch-value computations (and store the sketch values them-
selves). (Note that O(log N ) space is sufficient since we know that there are
at most O(Nb) nonzero components in all the V (T ) vectors in the entire data
stream.) A key property of this mapping is that the L1 distances of the V (T )
vectors are approximately preserved in this new O(k(δ, ε))-dimensional vector
space with constant probability, as stated in the following theorem from Indyk
[2000].

THEOREM 6.2 (INDYK 2000). Let f1 and f2 denote N dimensional numeric
vectors rendered as a stream of updates, and let {X j

1 , X j
2 : j = 1, . . . , k} denote

k = k(δ, ε) = O( log(1/δ)
ε

)O(1/ε) iid pairs of 1-stable sketches X j
l = ∑N

i=1 fl (i)ξ
j

i ;
also, define X l as the k-dimensional vector (X 1

l , . . . , X k
l ) (l = 1, 2; {ξ j

i } are
1-stable (Cauchy) random variates). Then, the L1-difference norm of the k-
dimensional sketch vectors ‖X 1 − X 2‖1 satisfies

(1) ‖X 1 − X 2‖1 ≥ ‖ f1 − f2‖1 with probability ≥ 1 − δ; and
(2) ‖X 1 − X 2‖1 ≤ (1 + ε) · ‖ f1 − f2‖1 with probability ≥ ε.

Intuitively, Theorem 6.2 states that, if we use 1-stable sketches as a
dimensionality-reduction tool for L1 (that is, for mapping a point in a high,
O(N)-dimensional L1-normed space to a lower, k-dimensional L1-normed space,
instead of using median selection as in Theorem 2.2), then we can only provide
weaker, asymmetric guarantees on the L1 distance distortion. In short, we can
guarantee small distance contraction with high probability (i.e., 1 − δ), but we
can guarantee small distance expansion only with constant probability (i.e., ε).
(Note that the exact manner in which the δ, ε parameters control the error and
confidence in the approximate L1-distance estimates is formally stated in The-
orem 6.2.) The reason for using this version of Indyk’s results in our similarity-
join scenario is that, as mentioned earlier, we need to perform an (approxi-
mate) streaming similarity-join computation over the mapped space of sketch
vectors, which appears to be infeasible when the median-selection operator is
used.

The second level of sketching in our construction will produce a
pseudorandom AMS sketch (Section 2.2) of the point-distribution (in the embed-
ding vector space) for each input data stream. To deal with an L1 τ -similarity
join, the basic equi-join AMS-sketching technique discussed in Section 2.2 needs

9Of course, for large trees, the small-space optimizations of Section 5 can be used (assuming pre-
order node arrivals).
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to be appropriately adapted. The key idea here is to view each incoming “point”
sketch(V (T )) in one of the two data streams, sayS1, as an L1 region of points (i.e.,
a multidimensional hypercube) of radius τ centered around sketch(V (T )) in the
embedding O(k(δ, ε))-dimensional vector space when building an AMS-sketch
synopsis for stream S1. Essentially, this means that when T (i.e., sketch(V (T )))
is seen in the S1 input, instead of simply adding the random variate ξi (where,
the index i = sketch(V (T ))) to the atomic AMS-sketch estimate X S1 for S1,
we update X S1 by adding

∑
j∈n(i,τ ) ξ j , where n(i, τ ) denotes the L1 neighbor-

hood of radius τ of i = sketch(V (T )) in the embedding vector space (i.e.,
n(i, τ ) = { j : ‖i − j‖1 ≤ τ }). Note that this special processing is only carried
out on the S1 stream; the AMS-sketch X S2 for the second XML stream S2 is up-
dated in the standard manner. It is then fairly simple to show (see Section 2.2)
that the product X S1 · X S2 gives an unbiased, atomic sketching estimate for the
cardinality of the L1 τ -similarity join of S1 and S2 in the embedding O(k(δ, ε))-
dimensional vector space.

In terms of processing time per document, note that, in addition to time cost
of our embedding process, the first level of (1-stable) sketching can be done in
small time using the techniques discussed by Indyk [2000]. The second level of
(AMS) sketching can also be implemented using standard AMS-sketching tech-
niques, with the difference that (for one of the two streams) updating would
require summation of ξ variates over an L1 neighborhood of radius τ in an
O(k(δ, ε))-dimensional vector space. Thus, a naive, brute force technique that
simply iterates over all these variates would increase the per-document sketch-
ing cost by a multiplicative factor of O(|n(i, τ )|) = O(τ k(δ,ε)) ≈ O((1/δ)k(δ,ε)) in
the worst case; however, efficiently range-summable sketching variates, as in
Feigenbaum et al. [1999], can be used to reduce this multiplicative factor to
only O(log |n(i, τ )|) = O(k(δ, ε)).

Again, note that, by Indyk’s L1dimensionality-reduction result (Theo-
rem 6.2), Theorem 6.1 only guarantees that our estimation algorithm ap-
proximates tree-edit distances with constant probability. In other words, this
means that a constant fraction of the points in the τ -neighborhood of a given
point could be missed. Furthermore, the very recent results of Charikar and
Sahai [2002] prove that no sketching method (based on randomized linear
projections) can provide a high-probability dimensionality-reduction tool for
L1; in other words, there is no analogue of the Johnson-Lindenstrauss (JL)
lemma [Johnson and Lindenstrauss 1984] for the L1 norm. Thus, there seems
to be no obvious way to strengthen Theorem 6.1 with high-probability distance
estimates.

The following corollary shows that high-probability estimates are possible
if we allow for an extra O(

√
b) multiplicative factor in the distance distortion.

The idea here is to use L2 vector norms to approximate L1 norms, exploiting the
fact that each V (T ) vector has at most O(b) nonzero components, and then use
standard, high-probability L2 dimensionality reduction (e.g., through the JL
construction). Of course, a different approach that could give stronger results
would be to try to embed tree-edit distance directly into L2, but this remains
an open problem.
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COROLLARY 6.3. The tree-edit distances for the estimation of the similarity-
join cardinality |SimJoin(S1, S2, τ )| in Theorem 6.1 can be estimated with high
probability to within a factor of O(

√
b log2 b log∗ b).

7. EXPERIMENTAL STUDY

In this section, we present the results of an empirical study that we have
conducted using the oblivious tree-edit distance embedding algorithm devel-
oped in this article. Several earlier studies have verified (both analytically and
experimentally) the effectiveness of the pseudorandom sketching techniques
employed in Sections 5 and 6 in approximating join cardinalities and differ-
ent vector norms; see, for example, Alon et al. [1996, 1999]; Cormode et al.
[2002a, 2002b]; Dobra et al. [2002]; Gilbert et al. [2002a]; Indyk et al. [2000],
Indyk [2000]; Thaper et al. [2002]. Thus, the primary focus of our experimental
study here is to quantify the average-case behavior of our embedding algorithm
(TREEEMBED) in terms of the observed tree-edit distance distortion on realistic
(both synthetic and real-life) XML data trees. As our findings demonstrate, the
average-case behavior of our TREEEMBED algorithm is indeed significantly better
than that predicted by the theoretical (worst-case) distortion bounds shown ear-
lier in this article. Furthermore, our experimental results reveal several other
properties and characteristics of our embedding scheme with interesting impli-
cations for its potential use in practice. Our implementation was carried out in
C++; all experiments reported in this section were performed on a 1-GHz Intel
Pentium-IV machine with 256 MB of main memory running RedHat Linux 9.0.

7.1 Implementation, Testbed, and Methodology

7.1.1 Implementation Details: Subtree Fingerprinting. A key point in
our implementation was the use of Karp-Rabin (KR) probabilistic finger-
prints [Karp and Rabin 1987] for assigning hash labels h(t) to valid subtrees
t of the input tree T in a one-to-one manner (with high probability). The KR
algorithm was originally designed for strings so, in order to use it for trees,
our implementation makes use of the flattened, parenthesized string repre-
sentation of valid subtrees of T to obtain the corresponding tree fingerprint
(treating parentheses as special delimiter labels in the underlying alphabet).
An important property of the KR string-fingerprinting scheme is its ability to
easily produce the fingerprint h(s1s2) of the concatenation of two strings s1 and
s2 given only their individual fingerprints h(s1) and h(s2) [Karp and Rabin 1987].
This is especially important in the context of our data-stream processing algo-
rithms since, clearly, we cannot afford to retain entire subtrees of the original
(streaming) XML data tree T in order to compute the corresponding fingerprint
in the current phase of our hierarchical tree parsing—the result would be space
requirements linear in |T | for each parsing phase. Thus, we need to be able to
compute the fingerprints of valid subtrees corresponding to nodes v ∈ Ti using
only the fingerprints from the nodes in Ti−1 that were contracted by TREEEMBED

to obtain node v. This turns out to be nontrivial since, unlike the string case
where the only possible options are left or right concatenation, TREEEMBED can
merge the underlying subtrees of T in several different ways (Figures 3 and 4).
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Fig. 11. Example of subtree fingerprint propagation. (“⊥” denotes an empty fingerprint and “∗”
separates the left and right part of an incomplete fingerprint.)

The solution we adopted in our TREEEMBED implementation is based on the
idea of maintaining, for each node in the current phase v ∈ Ti, a collection
of subtree fingerprints corresponding to the child subtrees of v in the original
data tree T . Briefly, all of v’s fingerprints start out in an empty state, and a fin-
gerprint becomes complete (meaning that it contains the complete fingerprint
for the corresponding child subtree) once the last node along that branch is
merged into node v. Child fingerprints of v can also be in an incomplete state,
meaning that the subtree along the corresponding branch has only been par-
tially merged into v; in order to correctly merge in the remaining subtree, an
incomplete fingerprint consists of both a left and a right part that will eventu-
ally enclose the fingerprint propagated up by the rest of the subtree. The key to
our solution is, of course, that we can always compute the fingerprint of a valid
subtree at phase i by simple concatenations of the fingerprints from nodes in
phase i − 1. (Note that a sequence of complete child fingerprints can always be
concatenated to save space, if necessary.) Figure 11 illustrates the key ideas in
our subtree fingerprinting scheme following a simple example scenario of edge
contractions. To simplify the exposition, the figure uses parenthesized nodela-
bel strings instead of actual numeric KR fingerprints of these strings; again,
the key here is that fingerprints for new nodes (obtained through contractions
in the current phase) are computed by simply concatenating existing KR fin-
gerprints. Fingerprinting and merging for subtrees rooted at unlabeled nodes
(Figure 4) can also be easily handled in our scheme.

The KR-fingerprinting scheme maps each string in an input collection of
strings to a number in the range [0, p], where p is a prime number large enough
to ensure that distinct input strings are mapped to distinct numbers with suf-
ficiently high probability. Given that the total number of valid subtrees created
during our hierarchical parsing of an input XML tree T is guaranteed to be only
O(|T |), we chose the prime p for our subtree fingerprinting to be p = �(|T |2)—
this clearly suffices to ensure high-probability one-to-one fingerprints in our
scheme.

7.1.2 Experimental Methodology. One of the main metrics used in our
study to gauge the effectiveness of our tree-edit distance embedding scheme is
the distance-distortion ratio which is defined, for a given pair of XML data trees
S and T , as the quantity DDR(S, T ) = ‖V (S)−V (T )‖1

d (S,T ) (where d (S, T ) is the tree-
edit distance of S and T and V (S), V (T ) are the vector embeddings computed
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by our TREEEMBED algorithm). Based on our initial experimental results, we
also decided to employ a heuristic, normalized distance-distortion ratio metric
NormDDR(S, T ) in which the L1 vector distance ‖V (S)− V (T )‖1 is normalized by
the maximum of the depths of the parse trees (produced by TREEEMBED) for S
and T ; in other words, letting ρ(S), ρ(T ) denote the number of TREEEMBED pars-
ing phases for S and T (respectively), we define NormDDR(S, T ) = DDR(S,T )

max{ρ(S),ρ(T )} .
(We discuss the rationale behind our NormDDR metric later in this section.)

Unfortunately, the problem of computing the exact tree-edit distance with
subtree-move operations (i.e., d (S, T ) above) turns out to be NP-hard—this is
a direct implication of the recent NP-hardness result of Shapira and Storer
[2002] for the simpler string-edit distance problem in the presence of substring
moves. Furthermore, to the best of our knowledge, no other efficient approxi-
mation algorithms have been proposed for our tree-edit distance computation
problem. Given the intractability of exact d (S, T ) computation and the lack of
other viable alternatives (the sizes of our data sets preclude any brute-force,
exhaustive technique), we decided to base our experimental methodology on the
idea of performing random tree-edit perturbations on input XML trees. Briefly,
given an XML tree T , we apply a script rndEdits() of random tree-edit opera-
tions (inserts, deletes, relabels, and subtree moves) on randomly selected nodes
of T to obtain a perturbed tree rndEdits(T ). Special care is taken in the creation
of the rndEdits() edit-script in order to avoid redundant operations. Specifically,
the key idea is to grow the rndEdits() script incrementally, storing a signature
for each randomly chosen (node, operation) combination inside a set data struc-
ture; then, once a new random (node, operation) pair is selected, we employ our
stored set of signatures together with a simple set of rules to check that the new
edit operation is not redundant before entering it into rndEdits(). Examples of
such redundant-operation checks include the following: (1) do not relabel the
same node more than once, (2) do not move the same subtree more than once, (3)
do not delete a previously inserted node, (4) do not insert a node in exactly the
same location as a previously-deleted node, and so on. Even though our set of
rules is not guaranteed to eliminate all possible redundancies in rndEdits(), we
have found it to be quite effective in practice. Finally, we compute an (approx-
imate) distance-distortion ratio DDR(T, rndEdits(T )), where d (T, rndEdits(T ))
is approximated as d (T, rndEdits(T )) ≈ |rndEdits()|, that is, the number of
tree-edit operations in our random script—since we explicitly try to avoid re-
dundant edits, this is bound to be a reasonably good approximation of the true
tree-edit distance (with moves) between the original and modified tree.

7.1.3 Data Sets. We used both synthetic and real-life XML data trees
of varying sizes in our empirical study. These trees were obtained from (1)
XMark [Schmidt et al. 2002], a synthetic XML data benchmark intended to
model the activities of an on-line auction site (www.xml-benchmark.org/), and
(2) SwissProt, a real-life XML data set comprising curated protein sequences
and accompanying annotations (us.expasy.org/sprot/). We controlled the size
of the XMark data trees using the “scaling factor” input to the XMark data gener-
ator. SwissProt is a fairly large real-life XML data collection (of total size over
165 MB)—in order to control the size of our input SwissProt trees, we used a
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Fig. 12. TREEEMBED distance distortion ratios for small (a) XMark, and (b) SwissProt data trees.

Fig. 13. TREEEMBED distance distortion ratios for medium (a) XMark, and (b) SwissProt data trees.

simple sampling procedure that randomly selects a subset of top-level <Entry>
nodes from SwissProt’s full tree with a certain sampling probability (where, of
course, larger sampling probabilities imply larger generated subtrees). For both
data sets, we partitioned the set of input data trees into three broad classes: (1)
a small class comprising trees with sizes approximately between 400 and 1200
nodes; (2) a medium class with trees of sizes approximately between 2000 and
20,000 nodes; and (3) a large class with trees of sizes approximately between
100,000 and 600,000 nodes. The number of random tree-edit operations in our
edit scripts (|rndEdits()|) was typically varied between 20–200 for small trees,
20–600 for medium trees, and 200–20, 000 for large trees; in order to smooth
out randomization effects, our results were averaged over five distinct runs of
our algorithms using different random seeds for generating the random tree-
edit script. The numbers presented in the following section are indicative of our
results on all data sets tested.

7.2 Experimental Results

7.2.1 TREEEMBED Distance Distortions for Varying Data-Set Sizes. The
plots in Figures 12, 13, and 14 depict several observed tree-edit distance-
distortion ratios obtained through our TREEEMBED algorithm for (a) XMark and
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Fig. 14. TREEEMBED distance distortion ratios for large (a) XMark, and (b) SwissProt data trees.

(b) SwissProt, in the case of small, medium, and large data trees (respectively).
We plot the distance-distortion ratio as a function of the number of random
tree edits in our edit script; thus, based on our discussion in Section 7.1, the
x axis in our plots essentially corresponds to the true tree-edit distance value
between the original and modified input trees. Our numbers clearly show that
the distortions imposed by our L1 vector embedding scheme on the true tree-
edit distance typically vary between a factor of 4–20 on small inputs, a factor of
5–30 on medium inputs, and a factor of 10–35 on the large XMark and SwissProt
trees. It is important to note that these experimental distortion ratios are obvi-
ously much better (by an order of magnitude or more) than what the pessimistic
worst-case bounds in our analysis would predict for TREEEMBED. More specifi-
cally, based on the size of the trees (n) in our experiments, it is easy to verify
that our worst-case distortion bound of log2 n log∗ n (even ignoring all the con-
stant factors in our analysis and those in Cormode and Muthukrishnan [2002])
gives values in the (approximate) ranges 230–300 (for small trees), 360–600
(for medium trees), and 850–1,100 (for large trees); our experimental distor-
tion numbers are clearly much better.

An additional interesting finding in all of our experiments (with both XMark
and SwissProt data) is that our tree-edit distance estimates based on the L1 dif-
ference of the embedding vector images consistently overestimate (i.e., expand)
the actual distance; in other words, for all of our experimental runs, DDR(T, S) ≥
1. Furthermore, note that the range of our experimental (over)estimation errors
appears to grow quite slowly over a wide range of values for the tree-size pa-
rameter n (for instance, when moving from trees with n ≈ 4, 000 nodes to trees
with n ≈ 600, 000 nodes). These observations along with a closer examination
of some of our experimental results and the specifics of our TREEEMBED embed-
ding procedure motivate the introduction of our normalized distance-distortion
ratio metric (discussed below).

7.2.2 A Heuristic for Normalizing the L1 Difference: The NormDDR Metric.
Our experimental distance-distortion ratio numbers clearly demonstrate that
our TREEEMBED algorithm satisfies the theoretical worst-case distortion guar-
antees shown in this article, typically improving on these worst-case bounds by
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well over an order of magnitude on synthetic and real-life data. Still, it is not en-
tirely clear how to interpret the importance of these numbers for real-life, prac-
tical XML-processing scenarios. Distance overestimation ratios in the range
of 5–30 are obviously quite high and could potentially lead to poor sketching-
based query estimates (e.g., for a streaming XML similarity join). Based on our
experimental observations and the details of our TREEEMBED algorithm, we now
propose a simple heuristic rule for normalizing the L1 difference of the image
vectors that could potentially be used to provide more useful tree-edit distance
estimates.

Consider an input tree T to our TREEEMBED procedure, and let ρ(T ) denote
the number of phases in the parsing of T . Now, assume that we effect a sin-
gle edit operation (e.g., a node relabel) at the bottom level (i.e., tree T 0 = T )
of our parsing to convert T to a new tree S. It is not difficult to see that this
one edit operation is going to “hit” (i.e., affect the corresponding valid subtree
of) at least one node at each of the ρ(T ) parsing phases of T , thus resulting
in an L1 difference ‖V (T ) − V (S)‖1 in the order of ρ(T ). In other words, even
though d (T, S) = 1, just by going through the different parsing phases, the
effect of that single edit operation on T is amplified by a factor of O(ρ(T ))
in the resulting L1 distance. Generalizing from this simple scenario, consider
a situation where T is modified by a relatively small number of edit opera-
tions (with respect to the size of T ) applied to nodes randomly spread through-
out T . The key observation here is that, since we have a small number of
changes at locations spread throughout T , the effects of these changes on the
different parsing phases of T will remain pretty much independent until near
the end of the parsing; in other words, the nodes “hit”/affected by different
edit operations will not be merged until the very late stages of our hierarchi-
cal parsing. Thus, under this scenario, we would once again expect the orig-
inal edit distance to be amplified by a factor of O(ρ(T )) in the resulting L1
distance.

A closer examination of some of our experimental results validated the above
intuition. Remember that our rndEdits() script does in fact choose the target
nodes for tree-edit operations randomly throughout the input tree T ; further-
more, as expected, the impact of the parse-tree depth ρ(T ) on the approximate
tree-edit distance estimates is more evident when the number of edit opera-
tions in rndEdits() is relatively small compared to the size of T . This obvi-
ously explains the clear downward trend for the distance-distortion ratios in
Figures 12–14.

Based on the above discussion, we propose normalizing the L1 distance of
the image vectors in our embedding by the maximum parse-tree depth; that
is, we estimate d (S, T ) using the ratio ‖V (S)−V (T )‖1

max{ρ(S),ρ(T )} . Figure 15 depicts our ex-
perimental numbers for the corresponding normalized distance-distortion ra-
tio NormDDR(S, T ) = DDR(S,T )

max{ρ(S),ρ(T )} for several XMark and SwissProt data trees of
varying sizes. Clearly, the normalized L1 distance gives us much better tree-
edit distance estimates in our experimental setting, typically ranging between
a factor of 0.5 and 2.0 of the true tree-edit distance. Such distortions could be
acceptable for several real-life application scenarios, especially when dealing
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Fig. 15. TREEEMBED normalized distance distortion ratios for (a) XMark, and (b) SwissProt data
trees.

with data collections with well-defined, well-separated structural clusters of
XML documents (as we typically expect to be the case in practice).

Of course, we should stress that normalizing the L1 distance estimate by the
parse-tree depth is only a heuristic solution that is not directly supported by the
theoretical analysis of TREEEMBED (Section 4). This heuristic may work well for
the case of a small number of randomly-spread edit operations; however, when
such operations are “clustered” in T or their number is fairly large with respect
to |T |, dividing by ρ(T ) may result in significantly underestimating the actual
tree-edit distance (see the clear trend in Figure 15). Still, our normalization
heuristic may prove useful in certain scenarios, for example, when dealing with
streams of large XML documents that, based on some prior knowledge, cannot
be radically different from each other (i.e., they are all within an edit-distance
radius which is much smaller than the document sizes).

7.2.3 Effect of Tree Depth. SwissProt is a fairly shallow XML data set (of
maximum depth ≤ 5); thus, to study the potential effect of tree depth on the
estimation accuracy of our embedding we concentrate solely on trees produced
from the XMark data generator. More specifically, our methodology is as follows.
We generate large (400,000-node) XMark data trees and, for a given value of
the tree-depth parameter, we prune all nodes below that depth. Then, we make
sure that the resulting pruned trees T at different depths all have the same
approximate target size t using the following iterative rule: while |T | is larger
(smaller) than t pick a random node x in T and delete (respectively, replicate)
its subtree at x ’s parent (making, of course, sure that the tree resulting from
this operation is not too far from our target size and that the depth of the tree
does not change). Finally, we run our rndEdits() scripts on these pruned trees
with varying numbers of specified edit operations, and measure the observed
normalized and unnormalized distance-distortion ratios for each depth value.

The plots in Figure 16 depict the observed unnormalized and normalized
distance-distortion ratios as a function of tree depth for a pruned-tree target size
of 100,000 nodes and for different numbers of tree-edit operations. Our experi-
mental numbers clearly indicate that the estimation accuracy of our embedding
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Fig. 16. TREEEMBED unnormalized (a) and normalized (b) distance distortion ratios as a function
of tree depth for 100,000-node (pruned) XMark data trees.

scheme does not have any direct dependence on the depth of the input tree(s)—
the key experimental parameters affecting the quality of our estimates appear
to be the size of the tree and the number of tree-edit operations.

7.2.4 Using TREEEMBED for Approximate Document Ranking. We now ex-
perimentally explore a different potential use for our XML-tree signatures in
the context of approximate XML-document ranking based on the tree-edit dis-
tance similarity metric. In this setup, we are given a target XML document
T and a number of incoming XML documents that are within different tree-
edit distance ranges from T . The goal is to quickly rank incoming documents
based on their tree-edit distance from T , such that if d (S1, T ) < d (S2, T ) then
S1 is ranked “higher” than S2. Since computing the exact tree-edit distances
can be very expensive computationally, we would like to have efficient, easy-to-
compute tree-edit distance estimates that can be used to approximately rank
incoming documents. Our idea is to use TREEEMBED to produce L1 vector signa-
tures for both the target document T and each incoming document Si, and use
the L1 distances ‖V (T ) − V (Si)‖1 for the approximate ranking of Si ’s. The key
observation here, of course, is that, for effective document ranking, it is cru-
cial for our estimation techniques to preserve the relative ranking of individual
tree-edit distances (rather than to accurately estimate each distance). Our ex-
perimental results demonstrate that our embedding schemes could provide a
useful tool in this context.

For our document-ranking experiments, we vary the size of the target docu-
ment T between 10,000 and 200,000 nodes. For a given target T and tree-edit
distance d , we generate 40 different trees Si at distance d from T (using dif-
ferent runs of our rndEdits() script). We vary the tree-edit distance d in three
distinct ranges (10–50, 100–500, and 1000–3000) and, for a given value of d ,
we measure the observed range of (a) L1 distances ‖V (T ) − V (Si)‖1, and (b)
normalized L1 distances ‖V (T )−V (Si )‖1

max{ρ(T ),ρ(Si )} , over the corresponding set of 40Si trees.
Our experimental results for 50,000-node XMark and SwissProt data trees are
shown in Table I. Note that in almost all cases, the approximate tree-edit dis-
tance ranges provided by our two L1-distance metrics for the Si sets (1) are
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Table I. Approximate Document-Ranking Results: 50K-Node XMark and
SwissProt Data Trees

XMark Data SwissProt Data
Normalized Normalized

d (T, Si) L1 Distance L1 Distance L1 Distance L1 Distance

10 386–822 22.7–48.3 325–562 20.3–35.1
20 766–1083 45–63.7 688–883 43–55.2
30 994–1417 58.4–83.3 901–1212 56.3–75.7
40 1318–1580 77.5–92.9 1258–1542 78.6–96.4
50 1499–1915 88.1–112.6 1400–1667 87.5–104.2

100 2581–3194 151.8–187.8 2461–2792 153.8–174.5
200 4519–4992 265.8–293.6 4278–4831 267.4–301.9
300 6181–6571 363.5–386.5 6040–6294 377.5–393.4
400 7700–8411 452.9–494.7 7437–8126 464.8–507.9
500 8940–9653 525.8–567.8 8696–9246 543.5–577.9

1000 15278–16083 898.7–946 14615–15443 913.4–965.2
1500 20933–21393 1231.3–1258.4 19357–20171 1209.8–1260.7
2000 25114–25974 1477.29–1527.9 27599–27916 1724.9–1744.7
2500 29537–30251 1737.4–1779.4 28562–29331 1785.1–1822.2
3000 33228–34199 1954.6–2011.7 30545–31452 1909–1965.7

completely disjoint and (2) preserve the ranking of the corresponding true edit
distances d (T, Si)—this, of course, implies that our L1 estimates correctly rank
all the Si input trees in most of our test cases. The only situation where our
observed L1-estimate ranges show some (typically small) overlap is for very
small differences in tree-edit distance, that is, when |d (T, Si) − d (T, Sj )| = 10
in Table I. Thus, for such small edit-distance separations (remember that we
are dealing with 50,000-node trees), it is possible for our L1 estimates to mis-
classify certain input documents; still, a closer examination of our results shows
that, even in these cases, the percentage of misclassifications is always below
17.5% (i.e., at most 7 out of 40 documents).

It is worth noting that our approximate document-ranking setup is, in fact,
closely related to a simple version of the approximate similarity-join scenar-
ios discussed in Section 6. In a sense, our goal here is to correctly identify the
“closest” approximate duplicates of a target document T in a collection of input
documents Si that are within different tree-edit distances of T—these closest
duplicates essentially represent the subset of Si documents that would join
with T (for an appropriate setting of the similarity threshold to account for the
distance distortion; see Theorem 6.1). Thus, assuming that the L1/AMS sketch-
ing techniques developed in Section 6 correctly preserve the L1-distance ranges
of the underlying image vectors, our ranking results provide an indication of
the percentages of false positives/negatives in the approximate similarity-join
operation (based on the overlap between different distance ranges), and the
required “distance separation” between document clusters in the joined XML
streams to suppress such estimation errors.

7.2.5 Running Time and Space Requirements. Table II depicts the ob-
served running-times and memory footprints for our TREEEMBED embedding
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Table II. TREEEMBED Running Times and Memory Footprints: XMark Data Trees

TREEEMBED TREEEMBED

Tree Size Document Size Running Time Memory Footprint

20K nodes 1.1 MB 2.5 s 3.0 MB
50K nodes 2.9 MB 6.3 s 7.9 MB

100K nodes 5.7 MB 12.7 s 16.7 MB
150K nodes 8.9 MB 19.7 s 25.0 MB
200K nodes 11.7 MB 26.5 s 33.3 MB
250K nodes 14.5 MB 34.4 s 41.9 MB
300K nodes 17.4 MB 41.2 s 49.1 MB
350K nodes 20.5 MB 49.9 s 57.9 MB
400K nodes 23.5 MB 58.2 s 66.4 MB

algorithm over XMark data trees of various sizes (the results for SwissProt are
very similar and are omitted). We should, of course, note here that our current
TREEEMBED implementation does not employ the small-space optimizations dis-
cussed in Section 5 (that is, we always build the full XML tree in memory);
still, as our numbers show, the memory requirements of our scheme grow only
linearly (with a small constant factor ≤3) in the size of the input document.
Furthermore, our embedding algorithm gives very fast running times; for in-
stance, our TREEEMBED code takes less than 1 min to build the L1 vector image
of a 400,000-node XML tree. Thus, once again, compared to computationally
expensive, exact tree-edit distance calculations, our techniques can provide a
very efficient, approximate alternative.

8. CONCLUSIONS

In this article, we have presented the first algorithmic results on the problem of
effectively correlating (in small space) massive XML data streams based on ap-
proximate tree-edit distance computations. Our solution relies on a novel algo-
rithm for obliviously embedding XML trees as points in an L1 vector space while
guaranteeing a logarithmic worst-case upper bound on the distance distortion.
We have combined our embedding algorithm with pseudorandom sketching
techniques to obtain novel, small-space algorithms for building concise sketch
synopses and approximating similarity joins over streaming XML data. An em-
pirical study with synthetic and real-life data sets has validated our approach,
demonstrating that the behavior of our embedding scheme over realistic XML
trees is much better than what would be predicted based on our worst-case dis-
tortion bounds, and revealing several interesting properties of our algorithms
in practice. Our embedding result also has other important algorithmic ap-
plications, for example, as a tool for very fast, approximate tree-edit distance
computations.

APPENDIX: ANCILLARY LEMMAS FOR THE UPPER-BOUND PROOF

In this section, we complete the upper bound proof for the distortion of our
embedding algorithm. Recall the terminology of Section 4.4. We have defined
sets M i and Pi as subsets of Ti and (T1 + T2)i, respectively. We have assumed
by induction that for every x ∈ Ti − M i there exists a unique f (x) ∈ (T1 + T 2)i
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such that the trees x(T ) and f (x)(T1 + T2) look identical. In other words, if
we forget about the regions M i and Pi, the remaining forests are basically
the same. Now, we want to prove this fact for the next stage of parsing. In
order to do this, we defined another region Ni which encloses M i and in some
way represents the region which can get influenced by M i in the next stage of
parsing.

So we pick a node w ∈ Ti − Ni and w′ is the corresponding node in (T1 + T2)i.
So we know that w(T ) and w′(T1 +T2) are the same trees. Now, w gets absorbed
in a node q in Ti+1 and w′ in q′ in (T1 +T2)i+1. Our goal now is to show that q(T )
and q′(T1 + T2) are identical trees. We will do this by following the a natural
procedure—we will show that w and w′ get parsed in exactly the same manner,
that is, if w gets merged with a leaf, then the same thing happens to w′. But
note that it is not enough to just show this fact. For example, if w and w′ get
merged with leaves l and l ′, we have to show that l (T ) and l ′(T1 + T2) are also
identical subtrees.

Thus, we first need to go through a set of technical lemmas, which show that
the mapping f preserves the neighborhood of w as well. For example, we need
to show facts like parent of w and parent of w′ get associated by f as well. So,
we need to explore the properties of f and first show that it preserves sibling
relations and parent-child relations. Once we are armed with these lemmas,
we just need to prove the following facts:

—If w is a leaf and if merged with its parent, then the same happens to w′.
—If w is a leaf and is merged with some of its leaf siblings, then w′ is also a

leaf and gets merged with the corresponding siblings.
—If w has a leaf child which gets merged into it, then w′ also has a correspond-

ing leaf child which gets merged into it.
—If w is a degree-2 node in a chain, and gets merged with some other such

nodes, then the same fact applies to w′.

Clearly, the above facts will be enough to prove the result we want. As we
mentioned before, we need to analyze some properties of the parsing algorithm
and the function f , so that we can set up a correspondence between neighbor-
hoods of w and w′. We proceed to do this first.

We first show the connection between a node w and the associated tree w(T ).
The following fact is easy to see.

CLAIM A.1. Let x and y be two distinct nodes in Ti. x is a parent of y iff
x(T ) contains a node which is the parent of a node in y(T ).

PROOF. Proof is by induction on i. Let us say the fact is true for i−1. Suppose
x is a parent of y in Ti. Let X ′ be the set of nodes in Ti−1 which got merged
to form x. Define Y ′ similarly. Then there must be a node in X ′ which is the
parent of a node in Y ′. The rest follows by induction on these two nodes. The
reverse direction is similar.

LEMMA A.2. Suppose x ∈ Ti is a leaf. Then x(T ) has the following property—
if y ∈ x(T ), then all descendants of y are in x(T ).
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PROOF. Suppose not. Then there exist nodes a, b ∈ T such that a is the
parent of b, and yet a ∈ x(T ), b /∈ x(T ). Suppose b is in a node y ′ in Ti. But then
the claim above implies that x is not a leaf, a contradiction.

Now, we go on to consider the case when x has at least two children. Consider
the nodes in Ti−1 which formed x. Only two cases can happen—either x was
present in Ti−1 or Ti−1 contains a node u with at least two children and x is
obtained by collapsing a leaf child into u. In either case, x corresponds to a
unique node with at least two children in Ti−1. Carrying this argument back
all the way to T 0, we get the following fact.

CLAIM A.3. Let x be a node with at least two children in Ti. Then x(T ) is
a subtree of T which looks as follows: there is a unique node with at least two
children, call it x0, such that all nodes in x(T ) are descendants of x0. Further, if
y ∈ x(T ), y 
= x0, then all descendants of y (in T) are also in x(T ).

The proof of the fact above is again by induction and using the previous two
claims.

CLAIM A.4. Let x and y be two nodes in Ti. Suppose x is a sibling of y.
Then, x(T ) contains a node which is a sibling of a node in y(T ). Conversely, if
x(T ) contains a node which is a sibling of a node in y(T ), then x and y are
either siblings or one of them is the parent of the other.

PROOF. Suppose x is a sibling of y . Let w be their common parent. w has
at least two children. By Claim A.3, w(T ) contains a node w0 such that if z ∈
w(T ), z 
= w0, then w(T ) contains all descendants of z.

Claim A.1 implies that there is a node a ∈ x(T ) and a node b ∈ w(T ) such
that a is a child of b. We claim that b = w0. Indeed, otherwise all descendants
of b, in particular, a, should have been in w(T ). Similarly, there is a node c in
y(T ) whose parent is w0. But then a and c are siblings in T .

Conversely, suppose there is a node in x(T ) which is a sibling of a node in
y(T ). Let the common parent of these two nodes in T be w. Let w′ be the node
in Ti containing w. If w′ is x, then x is the parent of y . So, assume w′ is not x
or y . It follows from Claim A.1 that w′ is the parent of x and y . So, x and y are
siblings.

Recall that we associate a set Pi with M i. We already know that M i is a
connected subtree. Of course, we can not say the same for Pi because T1 + T2
itself is not connected. But we can prove the following fact.

LEMMA A.5. Pi restricted to Ti
1 or Ti

2 is a connected set.

PROOF. Suppose Pi is not connected. Then there exist two nodes x, y in the
same component of (T1 + T2)i, such that x, y ∈ Pi but at least one internal
node in the path between x and y is not in Pi. We can in fact assume that all
internal nodes in this path are not in Pi (otherwise, we can replace x and y
by two nodes on this path which are in Pi but none of the nodes between them
are not in Pi). Let this path be x, a1, . . . , an, y . Let bi ∈ Ti − M i be such that
f (bi) = ai.
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First observe that bi is adjacent with bi−1. Indeed, suppose ai is the parent of
ai−1 (the other case will be ai is a child of ai−1, which is similar). By Claim A.1,
there is a node in ai(T1 +T2) which is the parent of a node in ai−1(T1 +T2). Since
ai(T1 + T2) = bi(T ) and ai−1(T1 + T2) = bi−1(T ), we see that there is a node in
bi(T ) which is the parent of a node in bi−1(T ). Applying Claim A.1, we see that
bi is adjacent with bi−1. Thus, b1, . . . , bn is a path.

Since x is adjacent with a1, there is a node x0 in x(T1 + T2) which is adjacent
with a node c1 in a1(T1 + T2) (again, using Claim A.1). If x0 is not the root of
T1, then x0 is also a node in T . So, there is a node x ′ ∈ Ti, such that x0 ∈ x ′(T ).
Clearly x ′ ∈ M i; otherwise, f (x ′) must be x (since f (x ′)(T1 + T2) and x(T1 + T2)
will share the node x0 and so must be the same). Now, x ′ must be adjacent with
b1 (because x0 is adjacent with c1 in T—note that c1 is a node in T as well).
The other case arises when x0 is the root of T1. So, x0 is the parent of c1. But
then v is the parent of c1 in T . Let x ′ be the node containing v in the tree Ti.
So x ′ ∈ M i and is adjacent with b1.

Thus, we get a node x ′ ∈ M i, such that x ′ is adjacent with b1. In fact, if x
is the parent (child) of a1, then the same applies to x and b1 (and vice versa).
Similarly, there is a node y ′ ∈ M i adjacent with bn. So if x ′ and y ′ are different
nodes in M i, then this contradicts the fact that M i is connected. So x ′ = y ′.
To avoid any cycles in Ti, it must be the case that b1 = · · · = bn. First observe
that, in this case, x and y are children of a1. The only other possibility is that
x is the parent of a1 and y a child of a1—but then x ′ is the parent of b1 and y ′

a child of b1 and so x ′, y ′ cannot be the same nodes.
Thus, we have that x, y are children of a1 and x ′ is a child of b1. By Claim A.3,

a1(T1 +T2) has a node a′ which is the parent of a node x0 ∈ x(T1 +T2) and a node
y0 ∈ y(T1 + T2). By definition of x ′ (and y ′), x0, y0 ∈ x ′(T ). Further, a′ ∈ b1(T ).
Consider the largest integer i′ such that the nodes containing x0 and y0 in the
tree Ti′

were different—call these nodes x ′′ and y ′′. Let b′′ be the node containing
a′. So x ′′ and y ′′ are children of b′′. Also i′ < i.

When we parse Ti′
, we merge x ′′ and y ′′ into a single node, x ′′′ ∈ Ti′+1.

However, in (T1 + T2)i′+1, the nodes containing x0 and y0 are different. So,
x ′′′ ∈ M i′+1. So one of the nodes of Ti′

which merged into x ′′ must have been in
Ni′

. Since x ′′ and y ′′ are siblings and we merge them, it must be the case that
they are leaves. Thus, the only nodes in Ti′

which get merged to form x ′′′ are leaf
children of b′′. So one of these leaf children is in Ni′

. Since Ni′
is a connected

set and has size at least 2, b′′ ∈ Ni′
. But then b1 ∈ M i, a contradiction.

We now show the fact that f preserves parent-child and sibling relations.

LEMMA A.6. Suppose x and y are two nodes in Ti − M i. If x is the parent of
y, then f (x) is the parent of f ( y). If x is a sibling of y, and f (x), f ( y) are in
the same component of (T1 + T2)i , then f (x) is a sibling of f ( y). The converse of
these facts is also true.

PROOF. Suppose x is the parent of y . By Claim A.1, there is a node x ′ ∈ x(T )
and a node y ′ ∈ y(T ) such that x ′ is the parent of y ′ in T . x ′ and y ′ are nodes in
T1 ∪ T2 as well. Unless x ′ = v, x ′ is the parent of y ′ in T1 ∪ T2 as well. If x ′ = v,
x will be in M i, which is not the case.
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Thus, x ′ is the parent of y ′ in (T1 ∪ T2). Since f (x)(T1 + T2) = x(T ), f ( y)(T1 +
T2) = y(T ), another application of Claim A.1 to T1 ∪ T2 implies that f (x) is a
parent of f ( y).

The other fact can be proved similarly using Claim A.4. The converse can be
shown similarly.

LEMMA A.7. Suppose x is a leaf node in Ti − M i. Then f (x) is a leaf in
(T1 + T2)i − Pi. The converse is also true.

PROOF. Suppose f (x) has a child z ′ in (T1 + T2)i. So there are nodes a ∈
w′(T1 + T2) and b ∈ z ′(T1 + T2) such that a is the parent of b in T1 ∪ T2. Let z
be the node in Ti which contains b. Since f (x)(T1 + T2) = x(T ), x should be the
parent of z, which is a contradiction. So f (x) is a leaf as well. The converse can
be shown similarly.

LEMMA A.8. Suppose a node u in M i has at least two children. Let x be a
child of u. If there is a node in x(T ) which is an immediate sibling of a node in
u(T ), then x is a corner node.

PROOF. By Claim A.3, u(T ) has a node u0 such that any other node in u(T )
has all its descendants in u(T ). Now, x(T ) has a node x0 and u(T ) has a node
u1 such that x0 and u1 have common parent. So this common parent must be
u0. Consider the highest i for which the node in Ti′

containing u0 was distinct
from the node in Ti′

containing u1—call these y and z, respectively. Clearly,
i′ < i. While parsing Ti′

, we moved z up to its parent y . But then we must
have marked all immediate siblings of z as corner nodes. In particular, the
node containing x0 must have been a corner node. This implies that x must be
a corner node.

We now state a useful property of the set M i.

LEMMA A.9. Suppose x is a node in M i which has at least two children and
at least one child of x is not in M i. Then x is either ci or vi. Similarly, if x is a
node in Ni which has at least two children such that at least one of them is not
in Ni, then x is either vi or the center node in Ni.

PROOF. The proof follows easily by induction on i. When i = 1, M i is simply
vi, so there is nothing to prove. So assume the induction hypothesis is true for
some value of i. The only case when Ni − M i will have a with more than two
children is when the center z of Ni is different from ci. If ci = vi, we have
nothing to prove because the new center of M i+1 will be the node containing z.
So assume that ci is not same as vi. But then, all children of ci must be in M i

(only then we shall move the center for Ni to a new node). So the node containing
ci in M i+1 will have all its children in M i+1. This proves the lemma.

Recall that w is defined to be a node in Ti − Ni and w′ = f (w) ∈ (T1 + T2)i.
We want to show that w and w′ are parsed in the same manner, that is, q(T ) =
q′(T1 + T2) (using the notation in Section 4.4). We now show that the two nodes
will be parsed identically.
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Fig. 17. Proof of lemma A.11 when w′′ ∈ Pi .

LEMMA A.10. Suppose w is a leaf (so w′ is a leaf as well). If w is a lone leaf
child of its parent, then so is w′. The converse is also true.

PROOF. Suppose w is a lone leaf child of its parent, call it u. Let u′ be the
parent of w′ in (T1 + T2)i. Suppose, for the sake of contradiction, that w′ is not a
lone child of u′. So it has an immediate, say left, sibling w′′, which is also a leaf.

We first argue that w′′ ∈ Pi. Suppose not. Now, w′′ corresponds to a node x
in Ti − M i, that is, w′′ = f (x). So x is also a leaf and a left sibling of w. But w
is a lone child of u. So it must happen that there is a nonleaf child of u, call it
y , between x and w (because x is a lone child). Observe that y ∈ M i; otherwise
f ( y) will lie between w′ and w′′. Since this holds for all nodes y between w
and x, we should have added w to Ni (according to Rule (i)), a contradiction.

So it follows that w′′ ∈ Pi. Let x be the immediate left sibling of w (if any), x /∈
M i; otherwise we would have added w to Ni. So f (x) is a left sibling of w′ (if they
are in the same component). So w′′ lies between f (x) and w′. Since there is no
node between x and w in Ti, all nodes in w′′(T1+T2) (we can think of this as nodes
of T ) must be part of u(T ). But then, by Lemma A.8, w should have been a corner
node and should have been added to Ni. The converse can be shown similarly.

LEMMA A.11. Suppose w is the leftmost lone leaf child of its parent u. Then
u /∈ M i. Further, w′ is the leftmost lone leaf child of its parent u′.

PROOF. Suppose u ∈ M i. Then we would have added w to Ni. Define u′ =
f (u). Then u′ is the parent of w′ (using Claim A.1). We already know that w′ is
a lone leaf child of u′ (using the lemma above). Suppose it is not the leftmost
such child. Let w′′ be a lone leaf child of u′ which is to the left of w′. First we
argue that w′′ /∈ Pi.

Suppose w′′ ∈ Pi (see Figure 17). Consider the nodes in w′′(T1 + T2). One
of these nodes must be a child of a node in u′(T1 + T2). Let this node be z0.
z0 is also a node in T . Further, z0 is a child of a node in u(T ) because u(T ) =
u′(T1 + T2). Let z be the node in Ti containing z0. We claim that z ∈ M i.
Otherwise, f (z)(T1 + T2) = z(T ). So z0 ∈ f (z)(T1 + T2). But z0 ∈ w′′(T1 + T2).
Then, it must be the case that w′′ = f (z). But then w′′ /∈ Pi, a contradiction. So
z ∈ M i. Note that z is a child of u.
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Let y be a descendant of z in Ti. Suppose y /∈ M i. Then f ( y) is a node in
(T1 + T2)i such that y(T ) = f ( y)(T1 + T2). Since y is a descendant of u, f ( y) is
also a descendant of u′. If all nodes between f ( y) and u′ were not in Pi, then
we will get a path between y and u in Ti such that no internal node is in M i.
But this is not true (since z ∈ M i). Thus, there is an internal node in this path
which is in Pi—call this node z ′.

So we have the situation that u′ has a leaf child w′′ and another descendant
z ′ which are in Pi. But u′ /∈ Pi. This violates the fact that Pi is connected
(Lemma A.5). So all descendants of z are in M i. But then we would have added
u to Ni and, consequently, w to Ni.

Thus, w′′ /∈ Pi. So there is a node a ∈ Ti − M i such that f (a) = w′′. So a
is a leaf as well. Suppose a ∈ Ni. Since Ni has at least two nodes and Ni is a
connected set, it must be the case that u ∈ Ni. Note that we never add a node
with at least two children to Ni using Rules (i)—(iv). So it must be the case that
u is the center of Ni. But then we would have added w to Ni, a contradiction.

Thus, it follows that a /∈ Ni. But then, by Lemma A.10, a is a lone leaf child
as well. This contradicts the fact that w has this property.

The lemma above shows that if w is merged with its parent, then so is w′

and q(T ) = q′(T ).

LEMMA A.12. Suppose w is a leaf node. Let its immediate siblings on the
right (left) be w0 = w, w1, . . . , wk, where all nodes except perhaps wk are leaves.
Further, suppose k < �. Then w0, . . . , wk are not in M i. Moreover, the immediate
right (left) siblings of f (w) in (T1 + T2)i are f (w0), f (w1), . . . , f (wk).

PROOF. Let u be the parent of w. If wj ∈ M i, then w will be added to Ni.
So none of the nodes in w0, . . . , wk are in M i. All we have to show now is
that f (wj ) is an immediate left sibling of f (wj+1). Suppose not. Let x ′ be a
sibling between f (wj ) and f (wj+1). All nodes in x ′(T1 + T2) must be in u(T ).
Lemma A.8 now implies that wj must be a corner node. But then w should be
in Ni, a contradiction again.

The lemma above shows that, if w was merged with a set of siblings, then w′

will be merged with the same set of siblings.

LEMMA A.13. Suppose w is a node with at least two children. Then f (w) also
has at least 2 children. Let y be the leftmost lone leaf child of w. Then y /∈ M i

and f ( y) is the leftmost lone child of f (w).

PROOF. Suppose w has a child u such that all descendants of u are in M i.
Then w will be added to Ni.

So not all descendants of of u1 or u2 are in M i. Since M i is a connected set,
it can contain at most one of u1 and u2. So suppose u1 /∈ M i. Then f (u1) is a
child of f (w). Further, let x be the descendant of u2 which is not in M i. Then
f (x) is a descendant of f (w), but not a descendant of f (u1).

So, f (w) has at least two children. We claim that y /∈ Ni. Indeed, if y ∈ Ni,
and the fact that Ni is a connected set, implies that Ni = { y}. So M i = { y}.
But then w ∈ Ni, a contradiction. So y /∈ Ni. But then Lemma A.11 implies
that f ( y) is a leftmost lone leaf child of w′ as well.
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The lemma above implies that if w is merged with a leaf child, then w′ is also
merged with the same leaf child.

LEMMA A.14. Suppose w is a degree-2 node. Let (w0 = w, w1, . . . , wk) be
an ancestor to descendant path of length at most � − 1, such that all nodes
except perhaps wk are of degree-2. Then w0, . . . , wk−1 are in Ti − M i. Further,
f (w0), . . . , f (wk−1) forms a path of degree-2 nodes in (T1 + T2)i .

If wk is a degree-2 node, then wk /∈ M i and f (wk) is adjacent with f (wk−1).
If wk has degree at least 3, then the neighbor of f (wk−1) other than f (wk−2) is
of degree at least 3 as well.

PROOF. First consider the case when w0, . . . , wk are nodes of degree 2. None
of them can be in M i; otherwise w ∈ Ni. Thus, f (w0), . . . , f (wk) is also a chain
in (T1 + T2)i. Now we need to argue that these nodes have degree 2 as well. But
this is true from the fact that wi and f (wi) represent the same tree in T .

So suppose wk has at least two children. If wk /∈ M i, then f (wk) also has at
least two children. Hence assume that wk ∈ M i. If w is an ancestor of wk , then
w will be added to Ni. So assume w is a descendant of wk . So w is a descendant
of wk . Further, if all descendants of wk which are not descendants of wk−1 are
in M i, then w ∈ Ni. So wk has a descendant x such that x /∈ M i and x is not a
descendant of wk−1.

Now consider the tree wk(T )—since wk has at least two children, wk(T ) has
a unique highest node, z, such that all nodes in wk(T ) are descendants of z.
There is a node in wk−1(T ) which is a child of z. Let w′

k be the node in (T1 + T2)i

containing z. Then w′
k is the parent of f (wk−1). Further, f (x) is a descendant

of w′
k , but not a descendant of f (wk−1). So w′

k has degree at least 3.

The lemma above shows that if w is a degree-2 node which is merged with
some other degree-2 nodes, then w′ will be merged with the same nodes. One
final case remains.

LEMMA A.15. Suppose w is not merged with any node in Ti. Then w′ is also
not merged with any node in (T1 + T2)i .

PROOF. First consider the case when w is a leaf. Let the parent of w be u.
We know that w′ is also a leaf. Let u′ be its parent. If w′ has siblings which are
leaves, then Lemma A.10 implies that w is also not a lone leaf. But then w will be
merged with a sibling, which is a contradiction. So w′ must be a lone child of u′.

Suppose w′ is the leftmost lone leaf child of u′. Let x be the leftmost lone
leaf child of u. We know that x 
= w; otherwise w will merge with its parent. If
x /∈ Ni, then Lemma A.11 implies that f (x) is the leftmost lone leaf child of
u′, which is not true because f (w) = w′ and f is 1-1. So x ∈ Ni.

Now we claim that u ∈ Ni. Indeed, if not, the fact that Ni is a connected set
implies that Ni = {x}. But M i is a subset of Ni, and so M i must also be {x}.
But then u will be added to Ni.

So we can assume u ∈ Ni. Now, Lemma A.9 implies that u is either vi or the
center of Ni. Suppose u is the center z of Ni. Let y be the leftmost lone leaf
child of u which is not in M i— y cannot be same as w, because y gets added to
Ni. But then, f ( y) is a lone leaf child to the left of w′—a contradiction.
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So now assume u is same as vi. Two cases can happen—either w is a
removed descendant of vi or not—and in either cases we can argue by using
Rule (ii) that it should be in Ni. Thus, we have shown that if w is a leaf node,
then w′ also does not get merged with any other node.

Now suppose w′ has a lone leaf child x ′. If x ′ /∈ Pi, then there is a leaf node
x /∈ Ni such that f (x) = x ′. But then, x is also a lone leaf child of w (Lemma
A.10). So w will also merge with one its leaf children, a contradiction.

Finally, suppose w′ is a degree-2 node, and either the parent or the child
of w′ is of degree 2. First observe that w must also be of degree 2—otherwise
it has at least two children. Since f (w) = w′, and w′ has only one child, both
these children must be in M i—but then due to connectedness of M i, w is also
in M i, a contradiction.

So w also has only one child, call it x. Let the child of w′ be x ′. Suppose x ′

has only one child. x must have at least two children, otherwise w will also be
merged with a node. Now all but at most one child of x will be in M i. If x has
more than two children, then the fact that M i is connected implies that x is in
M i as well. But then w will be added to Ni. So x has exactly two children—one
of these is in M i, the other not in M i. Now x ∈ Ni; otherwise x ′ will also have
at least two children. So x is the new center node of Ni. But then w will be
added to the set Ni, a contradiction.

Now let the parent of w be y and that of w′ be y ′. Suppose y ′ has only one
child. Then, Lemma A.10 implies that y also has only one child. But then, w
will be merged with one of the nodes—a contradiction. Thus, w′ is not merged
with any node as well.

Thus, we have demonstrated the invariant for Ti+1 and (T1 + T2)i+1.

ACKNOWLEDGMENTS

Most of this work was done while the second author was with Bell Labs. The
authors thank the anonymous referees for insightful comments on the article,
and Graham Cormode for helpful discussions related to this work.

REFERENCES

ACHARYA, S., GIBBONS, P. B., POOSALA, V., AND RAMASWAMY, S. 1999. Join synopses for approximate
query answering. In Proceedings of the 1999 ACM SIGMOD International Conference on Man-
agement of Data (Philadelphia, PA). 275–286.

ALON, N., GIBBONS, P. B., MATIAS, Y., AND SZEGEDY, M. 1999. Tracking join and self-join sizes in
limited storage. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (Philadeplphia, PA).

ALON, N., MATIAS, Y., AND SZEGEDY, M. 1996. The space complexity of approximating the frequency
moments. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA). 20–29.

ALTINEL, M. AND FRANKLIN, M. J. 2000. Efficient filtering of XML documents for selective dissem-
ination of information. In Proceedings of the 26th International Conference on Very Large Data
Bases (Cairo, Egypt). 53–64.

APOSTOLICO, A. AND GALIL, Z., Eds. 1997. Pattern Matching Algorithms. Oxford University Press,
Oxford, U.K.

ARASU, A., BABCOCK, B., BABU, S., MCALISTER, J., AND WIDOM, J. 2002. Characterizing memory
requirements for queries over continuous data streams. In Proceedings of the Twenty-first ACM

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



330 • M. Garofalakis and A. Kumar

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Madison, WI). 221–
232.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data
stream systems. In Proceedings of the Twenty-First ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (Madison, WI). 1–16.

BAR-YOSSEF, Z., JAYRAM, T., KUMAR, R., SIVAKUMAR, D., AND TREVISAN, L. 2002. Counting dis-
tinct elements in a data stream. In Proceedings of the 6th International Workshop on Ran-
domization and Approximation Techniques in Computer Science (RANDOM’02), (Cambridge,
MA).

CHAKRABARTI, K., GAROFALAKIS, M., RASTOGI, R., AND SHIM, K. 2000. Approximate query processing
using wavelets. In Proceedings of the 26th International Conference on Very Large Data Bases
(Cairo, Egypt). 111–122.

CHAN, C.-Y., FELBER, P., GAROFALAKIS, M., AND RASTOGI, R. 2002. Efficient filtering of XML doc-
uments with XPath expressions. In Proceedings of the Eighteenth International Conference on
Data Engineering (San Jose, CA).

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams.
In Proceedings of the International Colloquium on Automata, Languages, and Programming
(Malaga, Spain).

CHARIKAR, M. AND SAHAI, A. 2002. Dimension reduction in the l1 norm. In Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science (Vancouver, B.C., Canada).

CORMODE, G., DATAR, M., INDYK, P., AND MUTHUKRISHNAN, S. 2002a. Comparing data streams using
hamming norms (how to zero in). In Proceedings of the 28th International Conference on Very
Large Data Bases (Hong Kong, China). 335–345.

CORMODE, G., INDYK, P., KOUDAS, N., AND MUTHUKRISHNAN, S. 2002b. Fast mining of massive tabular
data via approximate distance computations. In Proceedings of the Eighteenth International
Conference on Data Engineering (San Jose, CA).

CORMODE, G. AND MUTHUKRISHNAN, S. 2002. The string edit distance matching problem with moves.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (San
Francisco, CA).

DASU, T. AND JOHNSON, T. 2003. Exploratory Data Mining and Data Cleaning. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., New York, NY.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H., AND FISCHER, P. 2003. Path sharing and predicate
evaluation for high-performance XML filtering. ACM Trans. Database Syst. 28, 4 (Dec.), 467–516.

DIAO, Y. AND FRANKLIN, M. 2003. Query processing for high-volume XML message broker-
ing. In Proceedings of the 29th International Conference on Very Large Data Bases (Berlin,
Germany).

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2002. Processing complex aggregate
queries over data streams. In Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data (Madison, WI). 61–72.

DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2004. Sketch-based multi-query process-
ing over data streams. In Proceedings of the 9th International Conference on Extending Database
Technology (EDBT’2004, Heraklion-Crete, Greece).

FEIGENBAUM, J., KANNAN, S., STRAUSS, M., AND VISWANATHAN, M. 1999. An approximate L1-difference
algorithm for massive data streams. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science (New York City, NY).

FLORESCU, D., KOLLER, D., AND LEVY, A. 1997. Using probabilistic information in data integration.
In Proceedings of the 23rd International Conference on Very Large Data Bases (Athens, Greece).

GANGULY, S., GAROFALAKIS, M., AND RASTOGI, R. 2004. Processing data-stream join aggregates using
skimmed sketches. In Proceedings of the 9th International Conference on Extending Database
Technology (EDBT’2004, Heraklion-Crete, Greece).

GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2002. Querying and mining data streams: you only
get one look (Tutorial). In Proceedings of the 28th International Conference on Very Large Data
Bases (Hong Kong, China).

GAROFALAKIS, M. AND GIBBONS, P. B. 2001. Approximate query processing: Taming the terabytes
(Tutorial). In Proceedings of the 27th International Conference on Very Large Data Bases (Roma,
Italy).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



XML Stream Processing Using Tree-Edit Distance Embeddings • 331

GAROFALAKIS, M. AND KUMAR, A. 2003. Correlating XML data streams using tree-edit distance
embeddings. In Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (San Diego, CA). 143–154.

GILBERT, A. C., GUHA, S., INDYK, P., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2002a. Fast,
small-space algorithms for approximate histogram maintenance. In Proceedings of the 34th An-
nual ACM Symposium on the Theory of Computing (Montreal, P.Q., Canada).

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2001. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In Proceedings of the 27th
International Conference on Very Large Data Bases (Rome, Italy).

GILBERT, A. C., KOTIDIS, Y., MUTHUKRISHNAN, S., AND STRAUSS, M. J. 2002b. How to summarize the
universe: Dynamic maintenance of quantiles. In Proceedings of the 28th International Conference
on Very Large Data Bases (Hong Kong, China). 454–465.

GRAVANO, L., IPEIROTIS, P. G., JAGADISH, H., KOUDAS, N., MUTHUKSRISHNAN, S., AND SRIVASTAVA, D. 2001.
Approximate string joins in a database (almost) for free. In Proceedings of the 27th International
Conference on Very Large Data Bases (Rome, Italy).

GREENWALD, M. AND KHANNA, S. 2001. Space-efficient online computation of quantile summaries.
In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data
(Santa Barbara, CA).

GUHA, S., JAGADISH, H., KOUDAS, N., SRIVASTAVA, D., AND YU, T. 2002. Approximate XML joins.
In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data
(Madison, WI).

GUPTA, A. AND SUCIU, D. 2003. Stream processing of XPath queries with predicates. In Proceedings
of the 2003 ACM SIGMOD International Conference on Management of Data (San Diego, CA).

INDYK, P. 2000. Stable distributions, pseudorandom generators, embeddings and data stream
computation. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science (Redondo Beach, CA). 189–197.

INDYK, P. 2001. Algorithmic aspects of geometric embeddings. In Proceedings of the 42nd Annual
IEEE Symposium on Foundations of Computer Science (Las Vegas, NV).

INDYK, P., KOUDAS, N., AND MUTHUKRISHNAN, S. 2000. Identifying representative trends in massive
time series data sets using sketches. In Proceedings of the 26th International Conference on Very
Large Data Bases (Cairo, Egypt). 363–372.

IOANNIDIS, Y. E. AND POOSALA, V. 1999. Histogram-based approximation of set-valued query an-
swers. In Proceedings of the 25th International Conference on Very Large Data Bases (Edinburgh,
Scotland).

JOHNSON, W. B. AND LINDENSTRAUSS, J. 1984. Extensions of lipschitz mappings into Hilbert space.
Contemp. Math. 26, 189–206.

KARP, R. M. AND RABIN, M. O. 1987. Efficient randomized pattern-matching algorithms. IBM J.
Res. Devel. 31, 2 (Mar.), 249–260.

KNUTH, D. E. 1973. The Art of Computer Programming (Vol. 1/Fundamental Algorithms).
Addison-Wesley, Reading, MA.

LAKSHMANAN, L. V. S. AND PARTHASARATHY, S. 2002. On efficient matching of streaming XML doc-
uments and queries. In Proceedings of the 8th International Conference on Extending Database
Technology (EDBT’2002, Prague, Czech Republic).

MANKU, G. S. AND MOTWANI, R. 2002. Approximate frequency counts over data streams. In Pro-
ceedings of the 28th International Conference on Very Large Data Bases (Hong Kong, China).
346–357.

MOTWANI, R. AND RAGHAVAN, P. 1995. Randomized Algorithms. Cambridge University Press,
Cambridge, U.K.

NOLAN, J. P. 2004. Stable distributions: Models for heavy-tailed data. Available online at
http://academic2.american.edu/̃ jpnolan/stable/stable.html.

POLYZOTIS, N. AND GAROFALAKIS, M. 2002. Statistical synopses for graph-structured XML
databases. In Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data (Madison, WI).

POLYZOTIS, N., GAROFALAKIS, M., AND IOANNIDIS, Y. 2004. Approximate XML query answers. In
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (Paris,
France).

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.



332 • M. Garofalakis and A. Kumar

SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M. J., MANOLESCU, I., AND BUSSE, R. 2002. XMark: A
benchmark for XML data management. In Proceedings of the 28th International Conference on
Very Large Data Bases (Hong Kong, China).

SHAPIRA, D. AND STORER, J. A. 2002. Edit distance with move operations. In Proceedings of the 13th
Annual Symposium on Combinatorial Pattern Matching (CPM’2002), Fukuoka, Japan). 85–98.

THAPER, N., GUHA, S., INDYK, P., AND KOUDAS, N. 2002. Dynamic multidimensional histograms.
In Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data
(Madison, WI). 428–439.

UCHAIKIN, V. V. AND ZOLOTAREV, V. M. 1999. Chance and Stability : Stable Distributions and their
Applications. VSP, Utrecht, The Netherland.

UKKONEN, E. 1992. Approximate string matching with q-grams and maximal matches. Theoret.
Comput. Sci. 92, 191–211.

VITTER, J. S. AND WANG, M. 1999. Approximate computation of multidimensional aggregates of
sparse data using wavelets. In Proceedings of the 1999 ACM SIGMOD International Conference
on Management of Data (Philadelphia, PA).

ZHANG, K. AND SHASHA, D. 1989. Simple fast algorithms for the editing distance between trees
and related problems. SIAM J. Comput. 18, 6 (Dec.), 1245–1262.

Received November 2003; revised July 2004; accepted November 2004

ACM Transactions on Database Systems, Vol. 30, No. 1, March 2005.


