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1. INTRODUCTION

Approximate query processing over precomputed data synopses has emerged as
a cost-effective approach for dealing with the huge data volumes, the high query
complexities, and the increasingly stringent response-time requirements that
characterize today’s Decision Support Systems (DSS) applications. Typically,
DSS users pose very complex queries to the underlying Database Management
System (DBMS) that require complex operations over gigabytes or terabytes of
disk-resident data and, thus, take a very long time to execute to completion and
produce exact answers. Due to the exploratory nature of many DSS applications,
there are a number of scenarios in which an exact answer may not be required,
and a user may, in fact, prefer a fast, approximate answer. For example, during a
drill-down query sequence in ad-hoc data mining, initial queries in the sequence
frequently have the sole purpose of determining the truly interesting queries
and regions of the database [Hellerstein et al. 1997]. Providing (reasonably
accurate) approximate answers to these initial queries gives users the ability to
focus their explorations quickly and effectively, without consuming inordinate
amounts of valuable system resources. An approximate answer can also provide
useful feedback on how well posed a query is, allowing DSS users to make an
informed decision on whether they would like to invest more time and resources
to execute their query to completion. Moreover, approximate answers obtained
from appropriate synopses of the data may be the only available option when
the base data is remote and unavailable [Amsaleg et al. 1997]. Finally, for
DSS queries requesting a numerical answer (e.g., total revenues or annual
percentage), it is often the case that the full precision of the exact answer is not
needed and the first few digits of precision will suffice (e.g., the leading few digits
of a total in the millions or the nearest percentile of a percentage) [Acharya et al.
1999].

Wavelets provide a mathematical tool for the hierarchical decomposition of
functions, with a long history of successful applications in signal and image
processing [Jawerth and Sweldens 1994; Natsev et al. 1999; Stollnitz et al.
1996]. Recent studies have also demonstrated the applicability of wavelets to
selectivity estimation [Matias et al. 1998] and to approximate query processing
over massive relational tables [Chakrabarti et al. 2000; Vitter and Wang 1999]
and data streams [Matias et al. 2000; Gilbert et al. 2001]. Briefly, the idea is
to apply wavelet decomposition to the input relation (attribute column(s) or
OLAP cube) to obtain a compact data synopsis that comprises a select small
collection of wavelet coefficients. The results of Chakrabarti et al. [2000] and
Vitter and Wang [1999] have demonstrated that fast and accurate approximate
query processing engines can be designed to operate solely over such compact
wavelet synopses.

1.1 The Problem with Wavelets

A major shortcoming of existing wavelet-based techniques for approximate
query processing is that the quality of the answers they provide varies widely,
and users have no way of knowing the accuracy of any particular answer. (Coef-
ficients in the synopsis are typically chosen to optimize an overall error metric,
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Table I. Errors with Conventional Wavelet Synopses

Original data values 127 71 87 31 59 3 43 99
100 42 0 58 30 88 72 130

Wavelet answers 65 65 65 65 65 65 65 65
100 42 0 58 30 88 72 130

e.g., the L2 error in the approximation [Stollnitz et al. 1996].) In fact, even for
the simplest case of approximating a value in the original data set the abso-
lute errors can vary widely (same for the relative errors). Consider the example
depicted in Table I. The first line shows the 16 original data values (the exact
answer), whereas the second line shows the 16 approximate answers returned
when using conventional wavelet synopses and storing 8 coefficients (details
are given in Section 3.1). Although the first half of the values is basically a
mirror image of the second half, all the approximate answers for the first half
are 65, whereas all the approximate answers for the second half are exact! Sim-
ilar data values have widely different approximations, for example, 30 and 31
have approximations 30 and 65, respectively. The approximate answers make
the first half appear as a uniform distribution, with widely different values, for
example, 3 and 127, having the same approximate answer 65. Moreover, the
results do not improve when one considers the presumably easier problem of
approximating the sum over a range of values: for all possible ranges within
the first half involving x = 2 to 7 of the values, the approximate answer will be
65 · x, while the actual answers vary widely. For example, for both the range d0
to d2 and the range d3 to d5, the approximate answer is 195, while the actual
answer is 285 and 93, respectively. On the other hand, exact answers are pro-
vided for all possible ranges within the second half (although the user will not
know this).

Our example illustrates the following serious problems for approximate
query processing with wavelet synopses, resulting from their deterministic ap-
proach to selecting coefficients and their focus on overall error metrics instead
of the quality of individual answers:

(1) The quality of the answers can vary widely, even
—within the same data set,
—when the range is the same width, and is large (e.g., almost half the

range),
—when the synopsis is large (e.g., half the data vector size),
—when the data values in the range are nearly the same, and
—when the actual answer is the same or nearly the same.
These are circumstances where one might expect approximate answers of
similar quality.

(2) There are no informative guarantees on the accuracy of a particular answer.
As a result, the user has no way of knowing whether a particular answer is
highly accurate or off by many orders of magnitude.

(3) Moreover, the approximate answers can systematically favor certain re-
gions of the data or certain values, and there is no bound on this answer
bias.
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1.2 Our Solution: Probabilistic Wavelet Synopses

In this article, we propose a novel approach to building wavelet synopses that
enables unbiased,1 highly accurate approximate query answers with improved
guarantees on the quality of individual answers, thereby mitigating the three
problems outlined above. Whereas conventional wavelet synopses rely on de-
terministic thresholding for selecting the wavelet coefficients to include in the
synopsis, our technique is based on a novel, probabilistic thresholding scheme
that assigns each coefficient a probability of being included based on its im-
portance to the reconstruction of individual data values, and then flips coins to
select the synopsis. Our basic scheme deterministically retains the most impor-
tant coefficients while randomly rounding the other coefficients either up to a
larger value or down to zero. This randomized rounding enables unbiased re-
construction of individual data values as well as unbiased answers for any range
aggregate query. The basic scheme is contrasted with an alternative scheme we
propose in which coefficients are either selected or not (but never rounded up)
according to the assigned probabilities, resulting in low-bias answers but often
with improved accuracy.

The contributions of this article are as follows:

(1) We provide a quantitative and qualitative demonstration of the unpre-
dictable, widely varying errors arising using conventional wavelet synopses
for approximate query answering.

(2) We provide the first wavelet-based compression technique optimized for
guaranteed-accuracy data reconstruction of a data vector. We prove that our
technique provides unbiased data reconstruction and unbiased answers to
range aggregate queries.

(3) We provide novel optimization algorithms for tuning our probabilistic
thresholding scheme to minimize (a) the expected mean-squared error, and
(b) an upper bound on the maximum error in the reconstruction of the data.
For reconstruction error, we focus on relative error with a sanity bound (de-
tails in Section 3), as this is arguably the most important for approximate
query answers. (We can also handle absolute error.)

(4) We present a variation on our scheme that allows for reconstruction bias,
but selects coefficient probabilities to minimize this bias, often resulting in
improved accuracy.

(5) We describe how our approach for data vectors can be extended for use with
multi-dimensional data sets.

(6) We demonstrate the effectiveness of our probabilistic wavelet synopses in
providing fast, highly accurate answers with improved quality guarantees,
using real-world and synthetic data sets.

1The bias of a probabilistic estimator �̂ for a quantity � is |E[�̂]−�|, that is, the absolute difference
between the expected value of the estimator and the quantity being estimated. Clearly, a low bias
is preferable to a high bias. If E[�̂] = �, the estimator is unbiased.
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1.3 Outline

Section 2 presents background material on wavelets. Section 3 gives the details
on the shortcomings of previous wavelet synopses, and then describes our prob-
abilistic wavelet synopses. After discussing the general approach, we present
our optimization algorithms for tuning our scheme. Experimental results on
real-world and synthetic data are presented in Section 4. Section 5 describes ex-
tensions for multidimensional data. Section 6 describes related work, Section 7
presents some further discussion on our techniques and, finally, Section 8 out-
lines our conclusions.

2. WAVELET BASICS

Wavelets are a useful mathematical tool for hierarchically decomposing func-
tions in ways that are both efficient and theoretically sound. Broadly speaking,
the wavelet decomposition of a function consists of a coarse overall approxi-
mation together with detail coefficients that influence the function at various
scales [Stollnitz et al. 1996]. The wavelet decomposition has excellent energy
compaction and de-correlation properties, which can be used to effectively gen-
erate compact representations that exploit the structure of data. Furthermore,
wavelet transforms can generally be computed in linear time.

2.1 One-Dimensional Haar Wavelets

Suppose we are given the one-dimensional data vector A containing the N = 16
data values depicted in Table I. The Haar wavelet transform of A can be com-
puted as follows. We first average the values together pairwise to get a new
“lower-resolution” representation of the data with the following average val-
ues [99, 59, 31, 71, 71, 29, 59, 101]. In other words, the average of the first
two values (i.e., 127 and 71) is 99, that of the next two values (i.e., 87 and 31)
is 59, and so on. Obviously, some information has been lost in this averaging
process. To be able to restore the original values of the data array, we need to
store some detail coefficients, that capture the missing information. In Haar
wavelets, these detail coefficients are simply the differences of the (second of
the) averaged values from the computed pairwise average. Thus, in our simple
example, for the first pair of averaged values, the detail coefficient is 28 since
99 − 71 = 28, for the second we again need to store 28 since 59 − 31 = 28. Note
that no information has been lost in this process—it is fairly simple to recon-
struct the sixteen values of the original data array from the lower-resolution
array containing the eight averages and the eight detail coefficients. Recur-
sively applying the above pairwise averaging and differencing process on the
lower-resolution array containing the averages, we get the full decomposition
shown in Table II.

The wavelet transform (also known as the wavelet decomposition) of A is the
single coefficient representing the overall average of the data values followed
by the detail coefficients in the order of increasing resolution. Thus, the one-
dimensional Haar wavelet transform of A is given by WA = [65, 0, 14, −15,
20, −20, 21, −21, 28, 28, 28, −28, 29, −29, −29, −29]. Each entry in WA is
called a wavelet coefficient. The main advantage of using WA instead of the
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Table II. Computing the One-Dimensional Haar Wavelet Transform

Resolution Averages Detail Coefficients
4 [127, 71, 87, 31, 59, 3, 43, 99, —–

100, 42, 0, 58, 30, 88, 72, 130]
3 [99, 59, 31, 71, 71, 29, 59, 101] [28, 28, 28, −28, 29, −29, −29, −29]
2 [79, 51, 50, 80] [20, −20, 21, −21]
1 [65, 65] [14, −15]
0 [65] [0]

Fig. 1. (a) Error tree structure for our example data array A (N = 16). (b) Support regions and
signs for the sixteen nonstandard two-dimensional Haar basis functions. The coefficient magnitudes
are multiplied by +1 (−1) where a sign of + (resp., −) appears, and 0 in blank areas.

original data vector A is that for vectors containing similar values most of the
detail coefficients tend to have very small values. (However, this is obviously
not the case with our “bad” example data array.) Thus, eliminating such small
coefficients from the wavelet transform (i.e., treating them as zeros) introduces
only small errors when reconstructing the original data, giving a very effective
form of lossy data compression [Chakrabarti et al. 2000; Stollnitz et al. 1996;
Vitter and Wang 1999].

Note that, intuitively, wavelet coefficients carry different weights with re-
spect to their importance in rebuilding the original data values. For example,
the overall average is obviously more important than any detail coefficient since
it affects the reconstruction of all entries in the data array. In order to equalize
the importance of all wavelet coefficients, we need to normalize the final entries
of WA appropriately. A common normalization scheme [Stollnitz et al. 1996] is
to divide each wavelet coefficient by

√
2l , where l denotes the level of resolution

at which the coefficient appears (with l = 0 corresponding to the “coarsest”
resolution level, as depicted in Table II). Thus, the normalized coefficient, c∗

i , is
ci/

√
2level(ci ).

2.1.1 Basic Haar Wavelet Properties and Notational Conventions. A help-
ful tool for exploring and understanding the key properties of the Haar wavelet
decomposition is the error tree structure [Matias et al. 1998]. The error tree
is a hierarchical structure built based on the wavelet transform process (even
though it is primarily used as a conceptual tool, an error tree can be easily
constructed in linear O(N ) time). Figure 1 depicts the error tree for our simple
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Table III. Notation

Symbol (i ∈ {0..N -1}) Semantics

A, WA Input data array and corresponding wavelet-transform array
N , Nz Number of cells (nonzero cells, resp.) of array A (Nz ≤ N )
B Target number of coefficients retained in a synopsis of A (B < Nz )
di Data value at cell i of the data array
d̂ i Reconstructed (approximate) data value at cell i based

on the synopsis

d (l : h) =
∑h

i=l di Range sum of data-array values between cells l and h
ci , c∗

i Unnormalized (normalized, resp.) Haar coefficient at cell i
of the wavelet-transform array

level(ci) Level of resolution of Haar coefficient ci

leftleaves(t) Set of leaf nodes in the error subtree rooted at t ’s left child
rightleaves(t) Set of leaf nodes in the error subtree rooted at t ’s right child
path(t) Set of all proper ancestor nodes of t in the error tree with

nonzero Haar coefficients
Ti Subtree of the error-tree rooted at the node corresponding to ci

PATHSi Set of all root-to-leaf paths in Ti

E[X ], Var(X ) Expectation and variance of random variable X
WSA, |WSA| Probabilistic wavelet synopsis for array A, and the

number of retained coefficients
λi Probabilistic rounding value used for coefficient ci

Ci Weighted Bernoulli random variable corresponding to coefficient ci

yi = ci/λi “Success” probability for random variable Ci

ki , NORM(i), NORM∗(i) Normalization terms for L2 error, relative error, and low bias
formulations, respectively

S, �, q Sanity bound, perturbation value, and quantizing parameter
for the relative error algorithm

NSE(d̂ i) Normalized standard error for the reconstructed data value d̂ i

VAR(i, yi) Variance of Ci for a given yi

example data vector A. Each internal node ci (i = 0, . . . , 15) is associated with
a wavelet coefficient value, and each leaf di (i = 0, . . . , 15) is associated with
a value in the original data array; in both cases, the index i denotes the posi-
tions in the (data or wavelet transform) array. For example, c0 corresponds to
the overall average of A. Note that the values associated with the error tree
nodes c j are the unnormalized coefficient values; the resolution levels l for the
coefficients (corresponding to levels in the tree) are also depicted. We use the
terms “node” and “node value” interchangeably in what follows. For ease of ref-
erence, Table III summarizes most of the notation used in this article with a
brief description of its semantics. Detailed definitions of all these parameters
are provided at the appropriate locations in the text. For simplicity, the notation
assumes one-dimensional wavelets, as that is the basis for most of the develop-
ment in this article. Extensions to multidimensional wavelets are straightfor-
ward, and any additional notation will be introduced when necessary.

Given an error tree T and an internal node t of T , t �= c0, we let leftleaves(t)
(rightleaves(t)) denote the set of leaf (i.e., data) nodes in the subtree rooted
at t ’s left (resp., right) child. Also, given any (internal or leaf) node u, we let
path(u) be the set of all (internal) nodes in T that are proper ancestors of u
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(i.e., the nodes on the path from u to the root of T , including the root but not
u) with nonzero coefficients. Finally, for any two leaf nodes dl and dh, we use
d (l : h) denote the range sum

∑h
i=l di. Using the error tree representation T ,

we can outline the following important reconstruction properties of the one-
dimensional Haar wavelet decomposition [Matias et al. 1998; Vitter and Wang
1999].

(P1). The reconstruction of any data value di depends only on the values of
the nodes in path(di). More specifically, we have di = ∑

c j ∈path(di ) δij · c j ,
where δij = +1 if di ∈ leftleaves(c j ) or j = 0, and δij = −1, otherwise.
For example, in Figure 1, d5 = c0 −c2 +c5 −c10 = 65−14+ (−20)−28 = 3.
(Note: Because c1 = 0, it is ignored in path(d5).)

(P2). An internal node c j contributes to the range sum d (l : h) only if c j ∈
path(dl ) ∪ path(dh). More specifically, d (l : h) = ∑

c j ∈path(dl )∪path(dh) x j ,
where

x j =
{

(h − l + 1) · c j , if j = 0
(|leftleaves(c j , l : h)| − |rightleaves(c j , l : h)|) · c j , otherwise,

(1)

where leftleaves(c j , l : h) = leftleaves(c j ) ∩ {dl , dl+1, . . . , dh} (i.e.,
the intersection of leftleaves(c j ) with the summation range) and
rightleaves(c j , l : h) is defined similarly. For example, in Figure 1,
d (3 : 5) = 3c0−c2−c4+2c5−c9+(1−1)c10 = 195−14−20−40−28+0 = 93.

Thus, reconstructing a single data value involves summing at most log N +1
coefficients and reconstructing a range sum involves summing at most 2 log N +
1 coefficients, regardless of the width of the range.

2.2 Multidimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multidimensional data ar-
rays using two distinct methods, namely the standard and nonstandard Haar
decomposition [Stollnitz et al. 1996]. Each of these transforms results from a
natural generalization of the one-dimensional decomposition process described
above, and both have been used in a wide variety of applications, including ap-
proximate query answering over high-dimensional DSS data sets [Chakrabarti
et al. 2000; Vitter and Wang 1999].

As in the one-dimensional case, the Haar decomposition of a d -dimensional
data array A results in a d -dimensional wavelet-coefficient array WA with the
same dimension ranges and number of entries. (The full details as well as ef-
ficient decomposition algorithms can be found in Chakrabarti et al. [2000] and
Vitter and Wang [1999].) Consider a d -dimensional wavelet coefficient W in
the (standard or nonstandard) wavelet-coefficient array WA. W contributes to
the reconstruction of a d -dimensional rectangular region of cells in the original
data array A (i.e., W ’s support region). Further, the sign of W ’s contribution
(+W or −W ) can vary along the quadrants of W ’s support region in A. As
an example, Figure 1(b) depicts the support regions and signs of the sixteen
nonstandard, two-dimensional Haar coefficients in the corresponding locations
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of a 4 × 4 wavelet-coefficient array WA. The blank areas for each coefficient
correspond to regions of A whose reconstruction is independent of the coeffi-
cient, that is, the coefficient’s contribution is 0. Thus, WA[0, 0] is the overall
average that contributes positively (i.e.,“+WA[0, 0]”) to the reconstruction of
all values in A, whereas WA[3, 3] is a detail coefficient that contributes (with
the signs shown in Figure 1(b)) only to values in A’s upper right quadrant.
Each data cell in A can be accurately reconstructed by adding up the contribu-
tions (with the appropriate signs) of those coefficients whose support regions
include the cell. Figure 1(b) also depicts the two levels of resolution (l = 0, 1)
for our example two-dimensional Haar coefficients; as in the one-dimensional
case, these levels define the appropriate constants for normalizing coefficient
values [Chakrabarti et al. 2000; Stollnitz et al. 1996].

Error tree structures for multi-dimensional Haar wavelets can be con-
structed (once again in linear O(N ) time) in a manner similar to those for the
one-dimensional case. A major difference is that, in a d -dimensional error tree,
each node (except for the root, i.e., the overall average) actually corresponds to
a set of 2d − 1 wavelet coefficients that have the same support region but dif-
ferent quadrant signs for their contribution. Furthermore, each (nonroot) node
t in a d -dimensional error tree has 2d children corresponding to the quadrants
of the (common) support region of all coefficients in t. (Note that, given a coeffi-
cient W in node t, the sign of W ’s contribution to the leaf (data) values residing
at each of t ’s children is determined by the quadrant sign information for W .)
Returning to our two-dimensional example in Figure 1(b), the (single) child t
of the root node in the error tree contains the coefficients WA[0, 1], WA[1, 0],
and WA[1, 1], and t has four children corresponding to the four 2×2 quadrants
of the array. The child corresponding to the lower-left quadrant contains the
coefficients WA[0, 2], WA[2, 0], and WA[2, 2], and all coefficients in t contribute
with a “+” sign to all values in this quadrant.

Based on the above generalization of the error tree structure to multiple di-
mensions, we can extend properties (P1) and (P2) to multidimensional Haar
wavelets. Our novel technical results and algorithms rely solely on these key
properties of Haar wavelets and, therefore, are applicable for general, multidi-
mensional wavelet synopses. However, to simplify the exposition, the develop-
ment in this article is based primarily on the one-dimensional case; extensions
to multidimensional wavelets are discussed in some detail in Section 5.

2.3 Using Wavelets for Data Reduction: Coefficient Thresholding

Given a limited amount of storage for maintaining a wavelet synopsis of a data
array A, we can only retain a certain number B of the coefficients stored in
WA. (The remaining coefficients are implicitly set to 0.) Letting Nz denote the
number of non-zero entries in the data array A, we typically have B � Nz ;
that is, the chosen B wavelet coefficients form a highly compressed approx-
imate representation of the original data. The goal of coefficient threshold-
ing is to determine the “best” subset of B coefficients to retain, so that some
overall error measure in the approximation is minimized. Conventional coeffi-
cient thresholding is a completely deterministic process that typically retains
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Table IV. Conventional Wavelet Synopsis Using Deterministic Thresholding

Index i 0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

Wavelet coefficient ci 65 0 14 −15 20 −20 21 −21
28 28 28 −28 29 −29 −29 −29

level(ci) 0 0 1 1 2 2 2 2
3 3 3 3 3 3 3 3

Normalized coefficient c∗
i 65 0 14√

2
−15√

2
10 −10 21

2
−21

2

14√
2

14√
2

14√
2

−14√
2

29
2
√

2
−29
2
√

2
−29
2
√

2
−29
2
√

2

Retained coefficient 65 0 0 −15 0 0 21 −21
0 0 0 0 29 −29 −29 −29

the B largest wavelet coefficients in absolute normalized value (an example
is given in the next section). It is a well-known fact that, for Haar wavelets,
this thresholding method is in fact provably optimal with respect to minimiz-
ing the overall root-mean-squared error (i.e., L2-norm average error) in the
data compression [Stollnitz et al. 1996]. More formally, letting d̂ i denote the
(approximate) reconstructed data value for cell i, retaining the B largest nor-
malized coefficients implies that the resulting synopsis minimizes the quantity√

1
N

∑
i(di − d̂ i)2 (for the given amount of space B).

3. PROBABILISTIC WAVELET SYNOPSES

In this section, we first detail the problems with conventional wavelet synopses,
and then present our probabilistic approach based on randomized rounding.
We present four different schemes for selecting rounding values for Haar coef-
ficients. Finally, we summarize our approach with an example.

3.1 The Problem with Conventional Wavelet Synopses

As discussed above, conventional wavelet synopses retain the B wavelet coeffi-
cients with the largest absolute value after normalization (according to level);
this deterministic process minimizes the overall L2 error in reconstructing all
the data values. Unfortunately, these guarantees on overall error do not guar-
antee the approximation quality of the individual data values or the results of
individual range-sum queries.

Our running example discussed earlier in this article (Table I, Table II,
Figure 1) illustrates this failing. Table IV depicts the wavelet coefficients in
the wavelet transform (WA) for our example data array A, followed by the level
of each coefficient (level(ci)) and the normalized coefficients (c∗

i ). With conven-
tional wavelet synopses, we retain the B coefficients ci with largest |c∗

i |. In this
example, |c∗

0|, |c∗
3|, |c∗

6|, |c∗
7|, |c∗

12|, |c∗
13|, |c∗

14|, and |c∗
15| are all greater than 10, while

the rest are at most 10. Thus, for B = 8, the conventional wavelet synopsis is
c0, c3, c6, c7, c12, c13, c14, and c15, as shown in the table.

For a given wavelet synopsis, approximate answers are obtained by assum-
ing all nonretained coefficients are zero, and either applying property (P1)
from Section 2.1 to estimate individual values or applying property (P2) from
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Table V. Errors with Conventional Wavelets

Original data values 124M 68M 84M 28M 56M 0 40M 96M
101M 43M 1M 59M 31M 89M 73M 131M

Wavelet transform 64M −2M 14M −15M 20M −20M 21M −21M
28M 28M 28M −28M 29M −29M −29M −29M

Wavelet synopsis 64M 0 0 −15M 0 0 21M −21M
0 0 0 0 29M −29M −29M −29M

Wavelet answers 64M 64M 64M 64M 64M 64M 64M 64M
99M 41M −1M 57M 29M 87M 71M 129M

Section 2.1 to estimate range sums. For the wavelet synopsis above, Table I
depicts the (error-prone) individual values estimates obtained. For example,
d5 = c0 −c2 +c5 −c10, and so d̂5 = 65−0+0−0 = 65; since d5 = 3, the estimate
has over 2,000% relative error! Likewise, d (3 : 5) = 3c0−c2−c4+2c5−c9, and so
the estimate for this range sum is 195−0−0+0−0 = 195; since d (3 : 5) = 93,
the estimate has over a 100% relative error!

The reader may verify that each of the three problems outlined in Section 1
occur in this example, when using a conventional wavelet synopsis. For exam-
ple, even when the synopsis happens to produce an exact answer to a range
sum query that involves the right half of the data values, there is no way of
knowing this from the synopsis, because c1 is not retained.

Moreover, it is not difficult to construct examples with arbitrarily large rel-
ative and absolute error. For example, a simple linear transformation of our
example data array in Table I yields the example depicted in Table V. Note
that the data value d5 is 0, but its estimate using a conventional wavelet syn-
opsis with B = 8 is 64 million, the same as the estimate for d0 = 124 million.

3.1.1 Root Causes. As can be seen from these examples, conventional
wavelet synopses suffer from (1) strict deterministic thresholding (i.e., 100%
above the threshold are retained, and 0% below the threshold are retained), (2)
independent thresholding (i.e., there is no attempt to adapt the thresholding
based on what is happening to neighboring coefficients, in order to avoid large
regions with no retained coefficients), and (3) the errors resulting from dropping
coefficients without compensating for their absence. For example, the retained
coefficients (from the right half of the tree in Figure 1) are only slightly larger
than the nonretained coefficients (from the left half), and yet all the right-half
coefficients are retained while none of the left-half coefficients are retained, and
there is no attempt to compensate for the significant errors that result.

Our approach, outlined next, is to address these three root causes of wavelet
synopsis errors, by devising a scheme based on randomized rounding,2 using
carefully chosen rounding values.

2Randomized rounding [Motwani and Raghavan 1995] has been used previously as a technique
for obtaining approximate solutions to integer programs [Raghavan and Thompson 1987] and
approximate sums of integers in parallel [Matias 1992]. Our application of randomized rounding
is in a completely different domain, requiring new techniques.
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3.2 Probabilistic Wavelet Synopses: The General Approach

We seek to overcome the problems with conventional wavelet synopses outlined
thus far by introducing a new approach for building wavelet synopses from
wavelet-transform arrays. In a nutshell, our scheme deterministically retains
the most important coefficients while randomly rounding the other coefficients
either up to a larger value (called a rounding value) or down to zero. The prob-
ability of rounding up vs. down is selected so that the expected value of the
rounded coefficient equals the original coefficient. By carefully selecting the
rounding values, we ensure that (1) we expect a total of B coefficients to be
retained, and (2) we minimize a desired error metric in the reconstruction of
the data, for example, the maximum relative error.

The key idea in our thresholding scheme is to associate, with each non-zero
coefficient ci in the wavelet-transform of A, a random variable Ci such that
(1) Ci takes the value zero (i.e., ci is discarded from the synopsis) with some
(possibly zero) probability, and (2) E[Ci] = ci. Then WSA, the probabilistic
wavelet synopsis for A, is comprised of the values for those random variables
Ci with nonzero values. We determine the general form of these random
variables using a randomized rounding scheme, where we select a rounding
value, λi, for each nonzero ci such that Ci ∈ {0, λi}, 0 < ci

λi
≤ 1, and

Ci =
{

λi with probability ci
λi

0 with probability 1 − ci
λi

.

Thus, our proposed thresholding scheme essentially “rounds” each nonzero
wavelet coefficient ci independently to either λi or zero by flipping a biased
coin with success probability ci

λi
. It is easy to see that for this rounding process

the expected value of each rounded coefficient is E[Ci] = λi · ci
λi

+ 0 · (1 − ci
λi

) = ci

(i.e., the actual coefficient value), and its variance is simply

Var(Ci) = E[C2
i ] − (E[Ci])2 = λ2

i · ci

λi
− c2

i = (λi − ci) · ci. (2)

For the special case where we deterministically retain the coefficient, we set
λi = ci, and indeed Var(Ci) = 0.

3.2.1 Unbiased Estimation. Let d̂ i denote the estimate for the data value
di, as calculated based on the coefficient values retained in our probabilistic
wavelet synopsis WSA, using property (P1) above. Moreover, let d̂ (l : h) (d̂ avg(l :
h)) denote the estimate for the range sum d (l : h) (the range average d (l : h)/
(h − l + 1), respectively), as calculated based on the coefficient values re-
tained in WSA, using property (P2) above. Clearly, d̂ i, d̂ (l : h), and d̂ avg(l : h)
are random variables. The next theorem shows that these estimators are
unbiased.

THEOREM 3.1. Each of d̂ i, d̂ (l : h), and d̂avg(l : h) are unbiased estimators for
the data value di, the range sum d (l : h), and the range average d (l : h)/(h−l+1),
respectively.
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PROOF. By property (P1) and the linearity of expectation, we have:

E[d̂ i] = E


 ∑

c j ∈path(di )

δij · Cj


 =

∑
c j ∈path(di )

δij · E[Cj ] =
∑

c j ∈path(di )

δij · c j = di. (3)

For each nonzero coefficient c j , let X j = (h − l + 1) · Cj , if j = 0, and
(|leftleaves(c j , l : h)| − |rightleaves(c j , l : h)|) · Cj , otherwise. Note that
E[X j ] = x j , where x j is defined in Eq. (1). By property (P2) and the linear-
ity of expectation, we have:

E[d̂ (l : h)] = E


 ∑

c j ∈path(dl )∪path(dh)

X j


 =

∑
c j ∈path(dl )∪path(dh)

E[X j ]

=
∑

c j ∈path(dl )∪path(dh)

x j = d (l : h). (4)

The result for d̂ avg(l : h) follows immediately from Eq. (4).

For example, suppose we select λ0 = c0, λ10 = 2 · c10, and λi = 3ci
2 for all other

nonzero coefficients ci in Figure 1. Let yi = ci
λi

be the probability of rounding up.
Then E[d̂5] = E[C0] − E[C2] + E[C5] − E[C10] = y0λ0 − y2λ2 + y5λ5 − y10λ10 =
65 − 2

3 · 21 + 2
3 · (−30) − 1

2 · 56 = 65 − 14 − 20 − 28 = 3, which is exactly
d3. Likewise, E[d̂ (3 : 5)] = 3 · E[C0] − E[C2] − E[C4] + 2 · E[C5] − E[C9] =
3 · 65 − 2

3 · 21 − 2
3 · 30 + 2 · 2

3 · (−30) − 2
3 · 42 = 195 − 14 − 20 − 40 − 28 = 93,

which is exactly d (3 : 5).

3.2.2 The Impact of the λi ’s. Everything thus far holds for any choice of
λi ’s, as long as 0 < ci

λi
≤ 1. The choice of the λi ’s is crucial, however, because it

determines the variances of our estimators as well as the expected number of
coefficients retained. Indeed, the key to providing “good” error guarantees for
individual data values (for range sums) lies in selecting the λi ’s to ensure small
variances Var(d̂ j ) of the reconstructed data values (data paths, respectively)
while not exceeding the prescribed space limit for the synopsis. Because each
coefficient is rounded independently, we have by Eq. (2):

Var(d̂ j ) = Var


 ∑

ci∈path(d j )

δji · Ci


 =

∑
ci∈path(d j )

(δji)2 ·Var(Ci) =
∑

ci∈path(d j )

(λi − ci) · ci.

(5)
Thus, having a λi closer to ci reduces the variance. On the other hand, we
retain all nonzero coefficients after the rounding step, and |WSA|, the number of
nonzero coefficients after rounding, is a random variable such that:

E[|WSA|] =
∑

i|ci �=0

ci

λi
. (6)

Thus, having λi ’s further from their respective ci ’s reduces the expected num-
ber of retained coefficients. For a given target B on the number of retained
coefficients, our choice of λi ’s needs to ensure that E[|WSA|] ≤ B.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



56 • M. Garofalakis and P. B. Gibbons

3.3 Rounding to Minimize the Expected Mean-Squared Error

A reasonable approach is to select the λi values in a way that minimizes some
overall error metric (e.g., L2) in the approximation. Because such error metrics
are obviously random variables under our probabilistic methodology, we seek to
minimize their expectation. The theorem below follows from the orthogonality
properties of the Haar basis.

THEOREM 3.2. For any choice of λi ’s for the non-zero ci’s such that 0 < ci
λi

≤ 1,
the expected value of the overall L2 error in reconstructing the data values from
a probabilistic wavelet synopsis, E[L2] = E[

∑
j (d̂ j − d j )2], is

∑
i|ci �=0

Var(Ci )
2level(ci ) =∑

i|ci �=0
(λi−ci )·ci

2level(ci ) .

PROOF. Let A denote the original data vector (i.e., the d j ’s) and let Â be
the reconstructed, approximate data vector (i.e., the d̂ j ’s) from a probabilistic
wavelet synopsis, as described above. Also, let c∗

i denote the normalized values
of the original coefficients and let C∗

i denote the corresponding (normalized)
random variables for the probabilistic synopsis (i = 1, . . . , N ). Finally, let ui
denote the orthonormal Haar basis functions for the decomposition, so that the
inner product 〈ui|u j 〉 = δij = 1, iff i = j , and 0 otherwise [Stollnitz et al. 1996].
Then, by the wavelet transform, we have A = ∑N

i=1 c∗
i ui and Â = ∑N

i=1 C∗
i ui

(where, Â is obviously a random vector). Furthermore, by our probabilistic
coefficient construction, we have E[C∗

i ] = c∗
i = ci/

√
2level(ci ). Thus,

E[L2] = E


∑

j

(d̂j − dj )2


 = E[‖A − Â‖2] = E [〈 A − Â|A − Â〉]

= E


〈 N∑

i=1

(c∗
i − C∗

i )ui|
N∑

j=1

(c∗
j − C∗

j )u j

〉 ,

which, by the orthonormality of the ui ’s and linearity of expectation, gives:

E[L2] = E

[
N∑

i=1

(c∗
i − C∗

i )2〈ui|ui〉
]

= E

[
N∑

i=1

(c∗
i − C∗

i )2

]
=
∑

i|ci �=0

E[(c∗
i − C∗

i )2].

And, since E[C∗
i ] = c∗

i and

E[(C∗
i )2] = ci

λi

(
λi√

2level(ci )

)2

= λici

2level(ci )
,

we have:

E[L2] =
∑

i|ci �=0

(E[(C∗
i )2] − (c∗

i )2) =
∑

i|ci �=0

(
λici

2level(ci )
− c2

i

2level(ci )

)

=
∑

i|ci �=0

(λi − ci)ci

2level(ci )
.

Theorem 3.2 shows that the variance of the nonzero coefficients at lower
(i.e., coarser) levels of resolution (that is, closer to the root of the error tree) has
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a higher impact on the overall L2 error. This is a very intuitive result since,
by virtue of the Haar decomposition, such coefficients contribute to the recon-
struction of a larger number of data values. Based on Theorem 3.2, selecting
the rounding values λi to minimize the expected L2 error subject to a given ex-
pected space constraint3 B can be formally stated as the following optimization
problem:

[Expected L2 Error Minimization]. Find the rounding values λi that min-
imize the expected L2 error

∑
i|ci �=0

(λi−ci )·ci

2level(ci ) , subject to the constraints 0 < ci
λi

≤ 1
for all nonzero ci and E[|WSA|] = ∑

i|ci �=0
ci
λi

≤ B.

3.3.1 An Optimal Algorithm for Computing the λi Values. The above-
stated problem is a continuous, nonlinear optimization problem with an ob-
jective function that is convex in the problem variables. In general, such convex
programming problems are solved using computationally intensive numeri-
cal methods (e.g., Sequential Quadratic Programming (SQP) or interior-point
methods), that are typically not intended to scale beyond a few thousand vari-
ables. The basic assumption is that N is small enough for all of the input data
to be resident in main memory [D. M. Gay, Personal communication 2001]. Such
assumptions are clearly unrealistic when dealing with data-reduction problems
for large, possibly multidimensional, databases; the number of data cells N can
often be in the order of several millions or even billions.

Fortunately, the specific form of our L2 error minimization problem allows
us to derive an efficient optimal algorithm for computing the rounding values
λi. More specifically, letting yi = ci

λi
(i.e., the “success” probability for random

variable Ci) and ki = c2
i /2level(ci ), it is easy to see that our expected L2 error

minimization problem is equivalent to:

Minimize
∑

i|ci �=0

ki

yi
subject to

∑
i|ci �=0

yi ≤ B and yi ∈ (0, 1].

(Note that terms involving only ci ’s are constant in our minimization prob-
lem, and hence safely ignored.) It is not hard to see that using B space is
always better than using less than B; thus, at optimality,

∑
i|ci �=0 yi = B. Then,

based on the Cauchy-Schwarz inequality, the minimum value of the objective
is reached when

√
ki

yi
is the same for all i with ci �= 0. Let w =

√
ki

yi
, so that we

require
∑

i|ci �=0 yi = ∑
i|ci �=0

√
ki

w = B. This gives w = 1
B

∑
i
√

ki or, equivalently,
yi = B · √

ki/
∑

i
√

ki, for all i with nonzero ci. Thus, setting

λi = ci

yi
= ci ·∑i

√
ki

B · √
ki

, (7)

for all i with nonzero ci, is the optimal solution, ignoring the second constraint
that yi ∈ (0, 1].

3For simplicity, we discuss expected space constraints in this paper, although one can ensure we are
within an absolute space bound B∗, by targeting an expectation slightly less than B∗ and possibly
repeating the coin tossing a few times until |WSA| ≤ B∗. In our experiments comparing wavelet
approaches, we ensure that all synopses have the same number of coefficients.
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procedure MinL2( WA, B )
Input: Array WA = [c0, . . . , cN−1] of N Haar wavelet coefficients and space budget B (expected

number of retained coefficients).
Output: Array 	 = [λ0, . . . , λN−1] of rounding values for the nonzero coefficients (for zero

coefficients, set to ⊥) that minimizes the expected L2 error under the constraints
∑

i
ci
λi

≤ B
and 0 <

ci
λi

≤ 1.
begin
1. total := 0, avail := B
2. for i := 0 to N − 1 do

3. sqrtk[i] = |WA[i]|
2level (i)/2 /* =

√
WA[i]2

2level (i) */

4. total := total + sqrtk[i]
5. endfor
6. sort the indices i in nonincreasing order of sqrtk[i] and place in an array I
7. for r := 0 to N − 1 do
8. if (sqrtk[I [r]] ∗ avail < total) then break /* ci

λi
< 1 */

9. else
10. 	[I [r]] := WA[I [r]] /* ci

λi
≥ 1, so set λi := ci */

11. total := total − sqrtk[I [r]], avail := avail − 1 /* reduce available space by 1 */
12. endif
13. endfor
14. for j := r to N − 1 do /* the subproblem remaining is solved using Equation 7 */
15. if (WA[I [ j ]] �= 0) then

16. 	[I [ j ]] := WA[I [ j ]] ∗ total
sqrtk[I [ j ]] ∗ avail /* guaranteed that ci

λi
< 1 */

17. else 	[I [ j ]] := ⊥
18. endfor
end

Fig. 2. The MinL2 Algorithm: Rounding to Minimize the Expected Mean-Squared Error.

This leads to our MinL2 algorithm, which we sketch here. We first compute the√
ki ’s and their sum. We would like to apply Eq. (7) to set the rounding values,

but this may result in one or more yi > 1. Thus, we consider the indices i in
nonincreasing order of

√
ki. While yi ≥ 1, we set λi to ci, so that yi = 1, and then

loop to recurse on the subproblem without i. Once we encounter a yi < 1, we
are guaranteed that all remaining yi are less than 1 as well, and we can safely
apply Eq. (7) to set the rounding values. Using convexity arguments, it can be
shown that MinL2 produces the optimal solution to our optimization problem.
The detailed pseudo-code for our MinL2 algorithm is depicted in Figure 2; the
algorithm takes as input the coefficient array and the target space budget B,
and outputs the rounding values that solve the optimization problem described
above. Our MinL2 algorithm runs in linear time, plus the time for sorting (a
total of O(N log N ) time). It uses O(N ) total storage space. Using the rounding
values produced by the algorithm results in unbiased approximate answers for
individual values and for ranges, with the minimum expected mean-squared
error over all individual values.

3.4 Rounding to Minimize the Maximum Relative Error

In the previous section, we described how to obtain unbiased approximate an-
swers while minimizing an overall error metric. However, there was no attempt
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to minimize individual answer errors, and indeed there can be wide discrep-
ancies in the accuracy of reconstructed values. (Recall from Section 3.1 that
conventional wavelet synopses suffer from this same problem, among others.)

In this section, we present techniques for minimizing the maximum recon-
struction error for individual data values and ranges. We focus on minimiz-
ing the relative error, and then describe our approach for absolute error in
Section 3.5 that follows. Although minimizing absolute error is somewhat eas-
ier to achieve, we believe that minimizing relative error is more important to
approximate query answering.4 On the other hand, relative error is unduly
dominated by small data values (e.g., for a data value = 3, returning 2 as the
reconstructed value is a 50% relative error!), so various techniques have been
studied for combining absolute and relative error (see, e.g., Haas and Swami
[1992] and Vitter and Wang [1999]). In this article, we study an error metric
that combines relative error with a sanity bound S. Our goal is to produce esti-
mates d̂ i for each data value di such that, for a given sanity bound S > 0, the
ratio

|d̂ i − di|
max{|di|, S}

is small with high probability (subject to the prescribed space limit for the
synopsis).

Note that our probabilistic wavelet synopses guarantee that the expected
value of d̂ i is di; thus, a simple application of Chebyshev’s Inequality gives
that, for any (small) constant ε > 1,

Pr

(
|d̂ i − di|

max{|di|, S} ≤ ε · NSE(d̂ i)

)
≥ 1 − 1

ε2 , (8)

where NSE denotes the normalized standard error for a reconstructed data value:

NSE(d̂ i) =
√

Var(d̂ i)
max{|di|, S} . (9)

Therefore, minimizing NSE will minimize our relative error metric for a given
level of confidence (see Eq. (8)).

Based on the earlier development, and letting PATHS = {path(di) : i =
1, . . . , N } (i.e., the set of all root-to-leaf paths in the error tree, where paths
again ignore both data value nodes and nodes whose coefficient is zero), and ap-
plying Eq. 5, we can define our maximum NSE minimization problem as follows.

[Maximum Normalized Standard Error Minimization]. Find the
rounding values λi that minimize the maximum NSE for each reconstructed

4For example, when (exact) answers can vary by orders of magnitude, it is often preferable to have
each answer be within say 1% relative error than have each answer be within the same absolute
error, because the same absolute error may correspond to orders of magnitude differences in relative
error (say, .1% to 100%).
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data value; that is,

Minimize max
path(dk ) ∈ PATHS

√∑
i ∈ path(dk )(λi − ci) · ci

max{|dk|, S} (10)

subject to the constraints 0 < ci
λi

≤ 1 for all nonzero ci and E[|WSA|] = ∑
i|ci �=0

ci
λi≤ B.

Our solution to the maximum NSE minimization problem relies on apply-
ing four key technical ideas, which we will describe throughout this section.
The first is Exploiting the Error-Tree Structure for Coefficients: As explained
above, the variance for the reconstruction of individual data values is com-
puted by summing the contributions of independent random variables Ci along
all root-to-leaf paths in the error-tree structure for Haar wavelet coefficients;
our algorithm takes advantage of this hierarchical problem structure to effi-
ciently explore the solution space using dynamic programming, as discussed
next.

3.4.1 Formulating a Dynamic-Programming Recurrence. We would like
to formulate a dynamic-programming recurrence for this problem. Accord-
ingly, we first simplify Eq. (10) by squaring the main (NSE(d̂ k)) term; this does
not alter the optimality of any solution. As before, we let yi = ci

λi
, where

yi ∈ (0, 1] for a non-zero coefficient ci. Then let VAR(i, yi) = (λi − ci)ci = 1− yi
yi

· c2
i

denote the variance of Ci (the random variable associated with ci) for the given
yi. Let Tj be the subtree of the error tree rooted at the node corresponding to
coefficient c j . Let PATHS j denote the set of all root-to-leaf paths in Tj . Finally,
let M [ j , B] denote the optimal (i.e., minimum) value of the maximum NSE(d̂ k)2

among all data values dk in Tj assuming a space budget of B; that is,

M [ j , B] = min
all possible yi ∈ (0, 1], i ∈ Tj |ci �= 0

such that
∑

i∈Tj |ci �=0
yi ≤ B


 max

path(dk )∈PATHS j

∑
i∈path(dk )

VAR(i, yi)
max

{
d2

k , S2
}


(11)

Consider the following recurrence for M [ j , B] (omitting the j = 0 case):

M [ j , B] =




min
y j ∈(0,min{1,B}];

bL∈[0,B− y j ]

{
max

{
VAR( j , y j )
NORM(2 j ) + M [2 j , bL],

VAR( j , y j )
NORM(2 j+1) + M [2 j + 1, B − y j − bL]

}}
,

if j < N , c j �= 0, and B > 0

minbL∈[0,B]
{

max{M [2 j , bL], M [2 j + 1, B − bL]}} ,
if j < N and c j = 0

0 if j ≥ N

∞ otherwise
(12)

where NORM(i) = max{mink∈Ti {d2
k }, S2} is the normalization term for subtree Ti.
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Note that the indices 2 j and 2 j + 1 in the above recurrence correspond
to the left and right child (respectively) of node j in the error-tree structure
(Figure 1). Intuitively, Eq. (12) states that, given a space budget of B for the
subtree rooted at node j , the optimal solution for the yi ’s and the corresponding
cost (maximum NSE2) needs to minimize the larger of the cost for paths via j ’s
two child subtrees (including the root in all paths), where the cost for a path
via a subtree is the sum of: (1) the variance penalty incurred at node j itself,
assuming a setting of y j , divided by the normalization term for that subtree,
and (2) the optimal cost for the subtree, assuming the given space budget. This
minimization, of course, is over all possible values of y j and, given a setting of
y j , over all possible allotments of the remaining B− y j budget “units” amongst
the two child subtrees of node j . Of course, if c j is zero then none of our space
budget needs to be allocated to node j , which results in the simpler recurrence
in the second clause of Eq. (12). Finally, data nodes ( j ≥ N ) cost no space and
incur no cost, and the “otherwise” clause handles the case where we have a
nonzero coefficient but zero budget (c j �= 0 and B = 0).

Eq. (12) is a significant simplification of Eq. (11), so why might it be correct?
Consider a node j �= 0 with coefficient c j �= 0. Starting with Eq. (11) and
separating the root j from the rest of the path, we can observe that

M [ j , B] = min
y j ∈(0,min{1,B}];

bL∈[0,B− y j ]




max




max
path(dL)∈PATHS2 j

{
VAR( j , y j )

max{d2
L ,S2}

+ ∑
i∈path(dL)

VAR(i, yi (bL))

max{d2
L ,S2}

}
,

max
path(dR )∈PATHS2 j+1

{
VAR( j , y j )

max{d2
R ,S2}

+

∑
i∈path(dR )

VAR(i, yi (B− y j −bL))

max{d2
R ,S2}

}






(13)

where the yi(b)’s are the optimal choice for yi ’s given space b. When c j = 0,
this simplifies to

M [ j , B] = min
bL∈[0,B]


max




max
path(dL)∈PATHS2 j

{∑
i∈path(dL)

VAR(i, yi (bL))
max{d2

L ,S2}

}
,

max
path(dR )∈PATHS2 j+1

{∑
i∈path(dR )

VAR(i, yi (B−bL))
max{d2

R ,S2}

}




 (14)

To proceed from here, we need to apply a second key technical idea: Exploiting
Properties of Optimal Solutions. Consider the following claim:

CLAIM 3.3. Consider a subtree Tj and a space budget B > 0. Then, in an
optimal setting of the yi’s, a minimum data value dmin in Tj has the maximum
cost, that is, NSE(d̂min)2 = M [ j , B].

Assuming for now that Claim 3.3 is correct, we have, for all dL ∈ T2 j :

VAR( j , y j )
max{d2

min, S2} = VAR( j , y j )
NORM(2 j )

≥ VAR( j , y j )
max{d2

L, S2} ,
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Fig. 3. (a) A problem error tree for Claim 3.3. (b) An illustration of our Perturbation Rule.

and ∑
i∈path(dmin)

VAR(i, yi(bL))
max{d2

min, S2} = M [2 j , bL] ≥
∑

i∈path(dL)

VAR(i, yi(bL))
max{d2

L, S2} .

Thus, the maximum cost path via the left subtree is path(dmin), and its cost is
VAR( j , y j )
NORM(2 j ) + M [2 j , bL]. By a similar argument for the right subtree, it follows
that Eq. (12) is correct, assuming Claim 3.3 is correct.

Unfortunately, there are corner cases which make Claim 3.3 false! Consider,
for example, the error tree depicted in Figure 3(a). For subtree T1, given a space
budget B = 1 and a sanity bound S = 1, the optimal setting of the yi ’s is y1 = 1

2 ,
y2 = 0, and y3 = 1

2 . (We leave it to the reader to verify that this setting indeed
minimizes the cost for T1 for this B and S.) Note that VAR(1, 1

2 ) = 1− 1
2

1
2

(−1)2 = 1
and VAR(3, 1

2 ) = 1− 1
2

1
2

(1)2 = 1. For the minimum data values d0 and d1, we
have NSE( ˆd0)2 = NSE( ˆd1)2 = VAR(1, 1

2 )
max{32,12} = 1

9 for T1. On the other hand, NSE( ˆd3)2 =
VAR(1, 1

2 )+VAR(3, 1
2 )

max{42,12} = 1
8 for T1. So, M [1, 1] = 1

8 > NSE(d̂min), contradicting Claim 3.3.
Figure 3(a) provides a simple example of a family of error trees that vio-

late Claim 3.3. The problem arises because the subtree containing dmin (in this
case T2) has all 0 coefficients, but its sibling subtree (in this case T3) has some
nonzero coefficients. In the worst case, this problem compounds itself up the
tree, destroying any hope of an effective dynamic-programming formulation.
Thus, we need to apply a third key technical idea: Perturbing Coefficients to
Avoid Harmful Corner Cases. We can ensure these corner case do not occur by
“perturbing” certain zero coefficients by a very small perturbation amount �,
making them either +� or −� with equal probability (to ensure no reconstruc-
tion bias is introduced):

[Perturbation Rule]. For each subtree Tj such that (1) one of its child
subtrees, say T2 j , has all zero coefficients, (2) its other child subtree, T2 j+1, has
at least one nonzero coefficient, and (3) the minimum data value in T2 j is less
than the minimum data value in T2 j+1, we perturb c2 j .

Our perturbation rule is pictorially depicted in Figure 3(b). Note that we
can determine which coefficients need to be perturbed in linear time (actu-
ally, O(Nz ) time, where Nz is the number of nonzero cells): Simply compute
bottom-up the minimum data value and the number of nonzero coefficients in
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each subtree, and then perform the test for each subtree. Moreover, each data
value has at most one perturbed coefficient on its path, so the effect of this per-
turbation is minimal. We determined experimentally that a good choice for � is
min{0.01, S

100 }. This leads to the following lemma, which is a corrected version
of Claim 3.3:

LEMMA 3.4. Consider an error tree T after applying the Perturbation Rule.
For each subtree Tj of T, 0 ≤ j < N, and all B > 0, and considering M [ j , B]
as defined in Eqs. (13) and (14), we have:

M [ j , B] =
∑

i∈path(dmin)∈PATHS j

VAR(i, yi(B))
max{d2

min, S2} , (15)

where dmin is a minimum data value in Tj and the yi(B)’s are the optimal choice
for yi’s given space B.

PROOF. Note first the following two observations:

O1. For 0 ≤ j < N , when B > 0, M [ j , B] is finite. That is, the optimal alloca-
tion allots positive space to each nonzero coefficient, so that its variance is
finite.

O2. For any subtree Tj with k ≥ 0 nonzero coefficients, M [ j , b] is a posi-
tive, continuous, decreasing function of b over the range 0 < b < k, and
M [ j , b] = 0 for b ≥ k. That is, allotting more space to Tj decreases its cost
until we have sufficient space to store all its nonzero coefficients, at which
case the cost is zero.

In the argument that follows, we restrict our attention to j and B such that
1 ≤ j < N and B > 0. Extensions to handle j = 0 are straightforward.

The proof is by induction on the height h of the subtree. The base case h = 1
is a subtree Tj whose two children are data nodes, dmin and d , with dmin ≤ d .
Both PATHS2 j and PATHS2 j+1 are empty, so by Eqs. (13) and (14),

M [ j , B] = min
y j ∈(0,min{1,B}]

max
{

VAR( j , y j )
max{d2

min, S2} ,
VAR( j , y j )

max{d2, S2}
}

= VAR( j , min{1, B}]
max{d2

min, S2} .

If c j = 0, then M [ j , B] = 0 and path(dmin) is empty, so Eq. (15) holds. Otherwise,
c j �= 0 and path(dmin) = { j }, so Eq. (15) holds. This proves the base case.

Assume the lemma holds for all subtrees of height h ≥ 1. We will show it
holds for any subtree Tj of height h + 1. Let d ∗

L (d ∗
R) be a minimum data value

in T2 j (T2 j+1, respectively). Assume, without loss of generality, that d ∗
L ≤ d ∗

R .
Let kL (kR) be the number of nonzero coefficients in T2 j (T2 j+1, respectively).
Based on observation O1, we say an allotment is a candidate allotment if it
assigns positive space to each nonzero coefficient.

Consider first the case when kL > 0. By induction, for all allotments bL > 0,

M [2 j , bL] =
∑

i∈path(d ∗
L)∈PATHS2 j

VAR(i, yi(bL))
max{(d ∗

L)2, S2} ≥
∑

i∈path(dL)∈PATHS2 j

VAR(i, yi(bL))
max{d2

L, S2}
for all dL ∈ T2 j (since M [2 j , bL] is the maximum). Moreover, for all candidate
allotments y j and all dL ∈ T2 j ,

VAR( j , y j )

max{(d ∗
L)2,S2} ≥ VAR( j , y j )

max{d2
L ,S2} , because d ∗

L ≤ dL. Thus,
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for all candidate allotments y j ,

max
path(dL)∈PATHS2 j


 VAR( j , y j )

max{d2
L, S2} +

∑
i∈path(dL)

VAR(i, yi(bL))
max{d2

L, S2}




= VAR( j , y j )
max{(d ∗

L)2, S2} + M [2 j , bL].

Applying a similar argument to T2 j+1, we see that M [ j , B] minimizes the max-
imum of

VAR( j , y j )
max{(d ∗

L)2, S2} + M [2 j , bL] (16)

and
VAR( j , y j )

max{(d ∗
R)2, S2} + M [2 j + 1, (B − y j ) − bL]. (17)

We claim that for any candidate allotment with a given y j , there is an optimal
choice b∗

L for bL that minimizes the above maximum such that (16) is greater
than or equal to (17). To see this, suppose instead that (17) is greater than (16)
under the optimal allocation b∗

L. Then, because d ∗
L ≤ d ∗

R , we would have that
M [2 j + 1, (B − y j ) − b∗

L] > M [2 j , b∗
L] ≥ 0. Because we consider only candidate

allotments, and applying observation O2, we would have that VAR( j , y j ) is finite,
0 < (B − y j ) − b∗

L < kR , and b∗
L > 0 (recall that kL > 0). It follows, based again

on observation O2, that we could shift some of the allotment from T2 j to T2 j+1
and improve M [ j , B]. Specifically, there would exist an allotment ε > 0 such
that M [2 j + 1, (B − y j ) − b∗

L + ε] < M [2 j + 1, (B − y j ) − b∗
L] and

VAR( j , y j )
max{(d ∗

L)2, S2} + M [2 j , b∗
L − ε] ≤ VAR( j , y j )

max{(d ∗
R)2, S2} + M [2 j + 1, (B − y j ) − b∗

L + ε]

This contradicts b∗
L being the optimal allocation. Therefore, we conclude that

(16) is greater than or equal to (17), and hence Eq. (15) holds for Tj , where
dmin = d ∗

L.
Now consider the case when kL = 0. If kR also equals zero, the proof that

Eq. (15) holds follows along the lines argued in the base case. So, consider the
case when kR > 0. Suppose d ∗

L < d ∗
R .5 Then, the perturbation rule would apply

to Tj , resulting in c2 j �= 0, contradicting kL = 0. Thus, d ∗
L = d ∗

R . In this case,
the proof that Eq. (15) holds mimics the case when kL > 0, with the roles of T2 j
and T2 j+1 reversed.

Therefore, in all cases, Eq. (15) holds for Tj . The lemma follows by
induction.

Given Lemma 3.4, it is now straightforward to prove the main theorem of
this section, which shows that the dynamic-programming recurrence in Eq. (12)

5Note that, because kL = 0, the above approach of shifting space from T2 j to T2 j+1 will not help:
T2 j may have no space allotted and hence no space to give, and even if it did have allotted space,
reducing its space will not increase (16). In general, without the perturbation rule, the lemma
would fail for this case (recall Figure 3(a)).
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can be used to solve the Maximum Normalized Standard Error Minimization
problem.

THEOREM 3.5. Consider an error tree T after applying the Perturbation Rule.
For all j , 0 ≤ j < N, and all B ≥ 0, the dynamic-programming formulation in
Eq. (12) correctly computes the optimal M [ j , B], as defined in Eq. (11). Hence,
computing M [0, B] using Eq. (12), while saving the optimal choices for y j and
bL at each step, yields the optimal yi’s (and hence λi ’s) that solve the Maximum
Normalized Standard Error Minimization problem.

PROOF. We argued earlier that Eqs. (13) and (14) are equivalent to Eq. (11).
It follows from Lemma 3.4 and the definition of NORM that Eq. (12) is equivalent
to Eqs. (13) and (14). (The various corner cases, such as when B = 0, can be
readily handled.)

The problem with the recurrence in Eq. (12) is that the y j and bL each range
over a continuous interval, making it infeasible to use. Thus, rather than insist-
ing on an exact solution, we instead propose an efficient approximation algo-
rithm that produces near-optimal solutions to our maximum NSE minimization
problem.

3.4.2 An Efficient Approximation Algorithm for Minimizing the Relative
Error. The fourth and final key technical idea applied in our dynamic-
programming algorithm is to Quantize the Solution Space: Instead of allowing
the yi variables to vary continuously over (0, 1], we assume that these variables
take values from a discrete set of q choices corresponding to integer multiples of
1/q, where q is an input integer parameter to our algorithm; that is, we modify
the constraint yi ∈ (0, 1] to yi ∈ { 1

q , 2
q , . . . , 1}, and the constraint bL ∈ [0, B]

to bL ∈ {0, 1
q , . . . , B}. Obviously, our approximate solution converges to the op-

timal solution for the maximum NSE minimization problem as q becomes larger.
On the other hand, as we show below, larger values for q also imply higher
running-time and memory requirements for our algorithm. Thus, the input
“quantizing” parameter q provides a convenient “knob” for tuning the trade-
off between resource requirements and solution quality for our approximate
dynamic-programming algorithm.

The pseudo-code for our algorithm (termed MinRelVar) is based on the above
quantization of the recurrence in Eq. (12), and is depicted in Figure 4. The initial
invocation of this recursive algorithm is done with root = 0 and B equal to the
total (expected) number of coefficients to be retained in the wavelet synopsis.6

3.4.3 Time/Space Complexity and the Quantizing Parameter q. Given a
node (coefficient) j in the error tree and a budget Bj , MinRelVar computes the
optimal value by examining q possible space allotments for j (Step 8) and, for
each of these, a maximum of O(qBj ) ways of distributing the remaining budget
among the two children of node j (Step 16). (Once an optimal value is computed

6Note that node 0, corresponding to the overall average, should be handled as a special case, since
it only has one child in the error tree (Figure 1); the modifications required are straightforward
and omitted from the description for clarity.
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procedure MinRelVar( WA , B , q, root )
Input: Array WA = [c0, . . . , cN−1] of N Haar wavelet coefficients, space budget B (expected

number of retained coefficients), quantizing parameter q ≥ 1, error-subtree root-node index
root.

Output: Value of M [root, B] according to the quantized version of Equation 12 (denoted
M [root, B].value), together with the corresponding optimal space allotments for the root
(denoted M [root, B].yValue) and for the left child subtree (denoted M [root, B].leftAllot).

Note: We assume that prior to the first invocation of this procedure, the perturbation rule has
been applied to the coefficients, using a given perturbation value parameter �. Also, both
NORM(i), using a given sanity bound parameter S, and NZ[i], the number of nonzero coeffi-
cients in the subtree rooted at node i, have been computed for all i. Finally, M [i, B].computed
is initialized to false, for all i and all B = 0, 1

q , . . . , B∗, where B∗ is the root’s space budget.
Note that the pseudo-code does not explicitly handle the special case where root is the overall
root of the error-tree.

begin
1. if (root > N − 1 or NZ[root] ≤ B) then
2. return 0 /* nothing more to round or enough space to retain all coefficients */
3. if (NZ[root] > B ∗ q) then
4. return ∞ /* not enough space even for minimal allocation to each coefficient */
5. if (M [root, B].computed = true) then
6. return M [root, B].value /* optimal value already in the dynamic-programming array */
7. M [root, B].value := ∞
8. for l := 1 to q do
9. if (croot = 0) then
10. rootLeft := rootRight := rootSpace := 0
11. else
12. rootLeft := (q − l ) ∗ c2

root/(l ∗ NORM(2 ∗ j ))
13. rootRight := (q − l ) ∗ c2

root/(l ∗ NORM(2 ∗ j + 1))
14. rootSpace := l/q
15. endif
16. for b := 0 to B−rootSpace step 1/q do
17. left := MinRelVar( WA, b, q, 2 ∗ root )
18. right := MinRelVar( WA, B−rootSpace−b, q, 2 ∗ root + 1 )
19. if ( max{ rootLeft+left , rootRight+right } < M [root, B].value ) then
20. M [root, B].value := max{ rootLeft+left , rootRight+right }
21. M [root, B].yValue := rootSpace
22. M [root, B].leftAllot := b
23. endif
24. endfor
25. if (croot = 0) then break /* no need to iterate over multiple l */
26. endfor
27. M [root, B].computed := true
28. return M [root, B].value
end

Fig. 4. The MinRelVar Algorithm: Rounding to Minimize Maximum Normalized Standard Error.

it is recorded in the dynamic-programming array for future reference.) To sim-
plify the exposition, our pseudo-code in Figure 4 gives a simple O(qBj )-time
linear-search procedure for finding the optimal distribution of space budget
among the two children of node j , that is, the distribution that minimizes
the maximum error for the two child subtrees (Steps 16–24). Note, however,
that this search can actually be performed using a more efficient O(log(qBj ))-
time binary-search procedure. The key observation here is that, for any subtree
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(rooted at root), M [root, B] is a decreasing function of the budget B (until B ≥
NZ[root], at which point it stays constant at 0). Thus, the optimal distribution
point (i.e., the best leftAllot value in Step 22) for a given rootSpace can be found
by binary search, looking for the allotment where the error values for the two
child subtrees are equal or for the adjacent pair of cross-over allotments. This
implies that the search at node j for a given budget Bj can be performed using
only O(q log(qBj )) accesses to the dynamic-programming array M . There are
N nodes and qB choices for Bj , so the overall running-time complexity of algo-
rithm MinRelVar is O(Nq2 B log(qB)). Moreover, typically the running time will
be faster due to the considerable pruning during the search. With respect to
the space requirements of our algorithm, note that, even though the size of the
full dynamic-programming array M is O(NqB), MinRelVar does not require the
entire array to be memory resident. In fact, it is easy to verify that, at any
given point during the execution of MinRelVar, there will be at most one active
“line” (of size O(qB)) of array M per level of the error tree. This is because
the results for all descendants of a node j can be swapped out once the results
for j have been computed. Thus, the memory resident working set size is only
O(qB log N ).7

3.4.4 An Optimization. Recall that for nonzero coefficients, we select a yi ∈
{ 1
q , 2

q , . . . , 1}. Because it is often useful to permit very small yi ’s for unimpor-
tant coefficients, this forces a larger choice for q, in order to make the smallest
value, 1

q , be sufficiently small. Instead, we propose the following simple opti-
mization: allow yi = 0 even for nonzero coefficients. The problem, of course,
is that then the variance, VAR(i, yi) = 1− yi

yi
· c2

i , for this coefficient is infinite,
and hence this choice for yi will never be selected as the optimal choice by
the MinRelVar algorithm. To get around this problem, we observe that because
the coefficient is always rounded down when yi = 0, its contribution to the
squared error of any data value in its subtree is c2

i , not infinite. Thus, we can
set VAR(i, 0) = c2

i in our dynamic-programming algorithm. The downside of this
optimization is that it introduces a small bias in the reconstruction. On bal-
ance, however, it leads to a faster algorithm (because a larger q can be used)
and highly accurate answers (see Section 4).

3.5 Rounding to Minimize the Maximum Absolute Error

In this section, we present an efficient approximation algorithm for mini-
mizing the absolute error, based on dynamic programming. Consider a data
value di and its estimate d̂ i based on our probabilistic wavelet synopses. As
in Section 3.4, applying Chebyshev’s Inequality we have that, for any (small)

7If we desire to limit the total space (not just the working set size) to O(N + qB log2 N ), then
a bottom-up dynamic-programming algorithm achieves this bound, because we can discard the
results for a node’s two children once its results are computed. The only information we would
later need from the children is the yValue’s and leftAllot’s on the optimal path to a leaf. Retaining
these paths is the source of the extra log N in the space bound. The drawback of this approach is
that we do no pruning, so that the running time is �(Nq2 B log(qB)).
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constant ε > 1,

Pr
(

|d̂ i − di| ≤ ε ·
√

Var(d̂ i)
)

≥ 1 − 1
ε2 .

Thus, by Eq. (5), it is easy to see that choosing rounding values to minimize the
maximum absolute error is essentially equivalent to minimizing the maximum
total variance across all root-to-leaf paths in the error tree of the Haar wavelet
decomposition.

[Maximum Reconstruction Variance Minimization]. Find the round-
ing values λi that minimize the maximum value of the variance for each recon-
structed data value; that is,

Minimize max
p∈PATHS

∑
i∈p

Var(Ci) = max
p∈PATHS

∑
i∈p

(λi − ci) · ci

subject to the constraints 0 < ci
λi

≤ 1 for all non-zero ci and E[|WSA|] =∑
i|ci �=0

ci
λi

≤ B.

As with the maximum NSE minimization problem formulated in Section 3.4,
the above non-linear optimization problem is significantly more difficult to
solve than our earlier expected L2 error minimization. Fortunately, we can once
again apply the key dynamic-programming and quantization ideas introduced
in Section 3.4 to design an efficient approximation algorithm for our maximum
variance minimization problem. Specifically, let, once again, yi = ci

λi
denote the

“success” probability of random variable Ci, and let M [ j , B] denote the opti-
mal (i.e., minimum) value of the maximum variance among all paths in PATHS j
assuming a space budget of B and a quantization parameter q; that is,

M [ j , B] = min
all possible yi ∈ { 1

q , . . . , 1}, i ∈ Tj |ci �= 0

such that
∑

i∈Tj |ci �=0
yi ≤ B


 max

p∈PATHS j

∑
i∈p

1 − yi

yi
· c2

i


 .

Then, M [ j , B] can be computed using the following dynamic-programming
recurrence:

M [ j , B] =




min
l=1,...,q;

bL=0, 1
q ,...,B− l

q

{
q−l

l · c2
j + max{M [2 j , bL], M [2 j + 1, B − l

q − bL]}
}

,

if c j �= 0

min
bL=0, 1

q ,...,B

{
max{M [2 j , bL], M [2 j + 1, B − bL]}} if c j = 0

(18)
Intuitively, Eq. (18) states that, given a space budget of B for the subtree
rooted at node j , the optimal solution for the yi ’s and the corresponding max-
imum path variance subtree needs to minimize the sum of two quantities: (1)
the variance penalty incurred at node j itself, assuming a setting of y j = l

q
(the first term in the sum of Eq. (18), where 1− y j

y j
= q−l

l ), and (2) the maxi-
mum of the optimal path variances for the two subtrees rooted at the two chil-
dren of node j (the second summand in Eq. (18)); this minimization is over all
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the q possible values of y j and, given a setting of y j = l
q , over all possible

allotments of the remaining B − l
q budget “units” amongst the two child sub-

trees of node j . Of course, if c j is zero then none of our space budget needs to
be allocated to node j , which results in the simpler recurrence in the second
clause of Eq. (18).

Based on the above recurrence, we can formulate a dynamic-programming
algorithm (similar to our MinRelVar algorithm) to efficiently produce an approx-
imate solution to the maximum variance minimization problem. Of course,
note that, since we are no longer normalizing the path summations by the
corresponding data values, our algorithm can directly apply the dynamic-
programming recurrence in Eq. (18) without requiring any zero-coefficient per-
turbations. As in Section 3.4, we can show that our maximum variance mini-
mization algorithm runs in O(Nq2 B log(qB)) time and uses O(N + qB log2 N )
space.

3.6 Low-Bias Probabilistic Wavelet Synopses

A key feature of our probabilistic wavelet synopses is their use of randomized
rounding, in order to achieve unbiased reconstruction of individual values and
range query results. In this section, we propose an alternative scheme that does
not perform randomized rounding. Instead, each coefficient is either retained or
discarded, according to the probabilities yi, where as before the yi ’s are selected
to minimize a desired error metric.

The high-level approach is the same as before, except that now there is a
random variable, Ci, associated with each coefficient that is ci with probability
yi, and 0 with probability 1 − yi. Clearly, Ci is no longer an unbiased estimator
for ci, so this scheme introduces bias into the reconstruction of data values.
To combat this, we select yi ’s to minimize the maximum normalized bias for a
reconstructed data value, where the normalized bias for a data value dk is∑

i ∈ path(dk ) |ci| · (1 − yi)

max{|dk|, S} .

To see why the |ci| · (1− yi) term above makes sense, observe that E[Ci] = ci · yi.
It follows that each Ci contributes either plus or minus ci(1− yi) to the expected
reconstruction bias of all data values in its subtree. Thus, |ci| · (1 − yi) upper
bounds the expected contribution of this coefficient to the reconstruction bias.

We define our maximum normalized bias minimization problem as follows.

[Maximum Normalized Bias Minimization]. Find the yi ’s that minimize
the maximum normalized bias for each reconstructed data value; that is,

Minimize max
path(dk ) ∈ PATHS

∑
i ∈ path(dk ) |ci| · (1 − yi)

max{|dk|, S} (19)

subject to the constraints 0 ≤ yi ≤ 1 for all i, and E[|WSA|] = ∑
i yi ≤ B.

We can readily adapt the combinatorial solution of Section 3.4 to solve this
minimization problem, and then quantize the solution space to obtain a tunable
approximation algorithm. The dynamic programming formulation for M [ j , B]
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Fig. 5. Summary of the approach, with an example (error bounds not shown).

(omitting the j = 0 case) is:

M [ j , B] =




min
y j ∈{ 1

q , 2
q ,...,min{1,B}};

bL∈{0, 1
q ,...,B− y j }

{
max

{
(1− y j )·|c j |
NORM∗(2 j ) + M [2 j , bL],

(1− y j )·|c j |
NORM∗(2 j+1) + M [2 j + 1, B − y j − bL]

}}
,

if c j �= 0

minbL∈{0, 1
q ,...,B}

{
max{M [2 j , bL], M [2 j + 1, B − bL]}} if c j = 0

where NORM∗(i) = max{mink∈Ti {dk}, S} is the normalization term for subtree
Ti. We will refer to the algorithm based on this formulation as the MinRelBias
algorithm.

Intuitively, this approach has more in common with traditional wavelet syn-
opses, in that we either retain or discard a coefficient as is. However, due to the
randomization and our choice of optimization metric, we still avoid the three
pitfalls of traditional wavelet synopses outlined in Section 1. In fact, as shown
in Section 4, the MinRelBias algorithm produces probabilistic wavelet synopses
that yield significantly more accurate answers than traditional wavelet syn-
opses, and often outperform our other approaches.

3.7 Summary of the Approach

Figure 5 summarizes the steps for constructing and using our probabilistic
wavelet synopses. For brevity, we show example values for ci, λi, etc. only for a
single path in an example error tree. In Step 1, we select the yi using any of
the optimization algorithms (e.g., MinL2, MinRelVar or MinRelBias). This defines
the λi = ci

yi
when using rounding, or λi = ci when not using rounding. In Step 2,

we randomly either retain or discard each λi, according to the probability yi.
An example outcome is shown (labeled “coins”). This results in the probabilistic
wavelet synopsis {(0, 204), (1, −9), (5, 20), (11, 8), . . .}. In Steps 3+, the synopsis
is used to answer queries. For point queries, property (P1) is used. For range
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sums or averages, property (P2) is used. More generally, we can apply any of the
previous techniques of Chakrabarti et al. [2000] and Vitter and Wang [1999]
for answering queries from wavelet synopses (treating our probabilistic wavelet
synopsis as a conventional wavelet synopsis).

In order to provide error guarantees for the approximation of individual data
values, we can compute the maximum relative error in our approximate-value
reconstruction and return it to the user as a guaranteed relative-error bound for
any data value in the underlying domain. Similarly, instead of the worst-case
relative error, we can report the 10th-percentile (or, some other quantile) of the
relative error over all values as a (tighter) upper bound on the approximation
for 90% of the values. Of course, conventional wavelet-thresholding techniques
can also return similar error bounds but, since our probabilistic wavelet syn-
opses (e.g., built using the MinRelVar and MinRelBias techniques) are specifically
designed to optimize relative-error metrics, we expect our error guarantees to
be much tighter and more informative for users. (Our experimental results in
Section 4 clearly substantiate our claims.) Providing error guarantees for range
queries (e.g., range-SUM aggregates) based on our synopses, is slightly more
complicated. It is easy to see that for any range containing values that are all
greater than our specified sanity bound S, our maximum value-reconstruction
relative error guarantee carries over directly to the corresponding range ag-
gregate. For arbitrary ranges, one possibility is to maintain the maximum (or,
e.g., 10th-percentile) relative error over all possible O(N 2) range aggregates in
the underlying domain and return that as an error guarantee to the user. Once
again, our experimental results (Section 4) show that such range-aggregate
guarantees based on our synopses are much tighter and more informative than
those for conventional wavelets. Obtaining more effective error guarantees for
range aggregates may be possible by allocating some additional space in our
synopses for this purpose; this could be an interesting direction for future work
in this area.

4. EXPERIMENTAL STUDY

In this section, we present the results of an empirical study we conducted us-
ing the techniques developed in this paper for building probabilistic wavelet
synopses. The objective of this study is to verify the effectiveness of our prob-
abilistic synopsis techniques in reducing the errors in (a) data-value recon-
struction, and (b) approximate range-aggregate query answers, compared to
conventional, deterministic thresholding based on normalized coefficient val-
ues. To this end, we have experimented with different synthetic and real-
world data sets. The major findings of our study can be summarized as
follows:

—More Consistent, Low-Error Data Reconstruction and Range-Aggregate Ap-
proximation. By exploiting our randomized thresholding strategies, proba-
bilistic wavelet synopses can enable a more consistent, lower-error approxi-
mation of both individual data values and range-aggregate answers; the end
result is a significantly smaller mean relative error in data reconstruction
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Table VI. Errors with Conventional and Probabilistic Wavelet Synopses

Original data values 127 71 87 31 59 3 43 99
100 42 0 58 30 88 72 130

Deterministic answers 65 65 65 65 65 65 65 65
100 42 0 58 30 88 72 130

MinRelVar answers 79 79 79 79 59 3 71 71
71 71 0 58 31.7 128.3 80 80

MinRelBias answers 79 79 79 79 59 3 71 71
71 71 0 58 51 109 80 80

and range-aggregate approximation across the entire underlying data do-
main.

—Improved Quality Guarantees for Individual Data Values and Range-
Aggregate Query Answers. Besides reducing the overall relative error, our
probabilistic wavelet synopses can also significantly reduce the maximum
(and other percentiles) of relative-error values at individual data points and
query ranges; thus, for a given amount of synopsis space, they can offer
tighter quality guarantees for reconstructed data values and approximate
range aggregates than conventional deterministic wavelets.

For instance, consider our “bad” example array A = [127, 71, 87, 31, 59, 3,
43, 99, 100, 42, 0, 58, 30, 88, 72, 130] used in the earlier sections of the article.
Table VI depicts the original data values along with the values reconstructed
from an 8-coefficient synopsis built using (a) deterministic, and (b) probabilistic
thresholding using our MinRelVar and MinRelBias algorithms (with a sanity
bound value of S = 5).

The mean and maximum relative errors in data-value reconstruction (us-
ing the sanity bound of 5) for deterministic are 0.95 and 12.4, respectively;
the corresponding numbers for MinRelVar and MinRelBias are only (0.31, 1.5)
and (0.34, 1.5), respectively. Although no technique performs well on this
pathological example, the numbers clearly show that our methods signifi-
cantly improve both the mean and worst case relative error for individual data
values.

As our results show, the most significant improvements occur with smaller
synopses, larger skew, or noisy data. All experiments reported in this section
were performed on a Sun Ultra-250 machine with 1 GB of main memory running
Solaris 2.7.

4.1 Testbed and Methodology

4.1.1 Techniques and Parameter Settings. Our experimental study com-
pares the conventional, deterministic thresholding scheme for Haar wavelet
coefficients (i.e., maintaining the largest coefficients in absolute normalized
value) with our three probabilistic thresholding schemes MinL2, MinRelVar,
and MinRelBias (Section 3), designed to minimize the expected L2 error, the
maximum normalized standard error, and the maximum normalized bias,
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respectively.8 For MinRelVar, we used the optimization described in Section 3.4,
as it improved the accuracy of our answers.

For the normalizing methods (i.e., MinRelVar and MinRelBias), we determined
a setting for the quantization parameter q used in our dynamic-programming
solution by running our algorithm against a continuous mathematical-
optimization solver for some small example data sets. Our results showed that
our algorithm quickly converged to the optimal continuous solution even for rel-
atively small values of the quantization parameter q. We decided to use a value
of q = 10 for our experimental runs, as we found that value to give good accuracy
as well as reasonable running times for our dynamic-programming algorithm.
For each input data set, we determined the value of the sanity bound S as the
10-percentile value in the data (i.e., 90% of the data points had values greater
than S). Finally, we experimented with different values for the perturbation
parameter �, and determined that � = min{0.01, S

100 } was a good choice.

4.1.2 Synthetic-Data and Range-Query Workload Generation. We ran our
techniques against several different one-dimensional synthetic data distribu-
tions, generated as follows. First, a Zipfian data generator was used to produce
Zipfian frequencies for various levels of skew (controlled by the z parameter of
the Zipfian), numbers of distinct values, and total frequency values (i.e., data-
tuple counts). We varied the z parameter between 0.3 (low skew) to 2.0 (high
skew), the distinct values between 128 and 512, and the tuple count between
100,000 and 500,000. Next, a permutation step was applied on the generated
Zipfian frequencies to order them over the data domain; we experimented with
four different permutation techniques: (1) “NoPerm” basically leaves the or-
dering as specified by the Zipfian data generator, that is, smaller values have
higher frequencies; (2) “Normal” permutes the frequencies to resemble a bell-
shaped normal distribution, with the higher (lower) frequencies at the center
(respectively, ends) of the domain; (3) “PipeOrgan” permutes the frequencies
in a “pipe-organ”-like arrangement, with higher (lower) frequencies at the two
ends (respectively, center) of the data domain; and, (4) “Random” permutes the
frequencies in a completely random manner over the data domain.

The range-aggregate queries in our test workloads were generated using dif-
ferent query range sizes varying between 10 and 100. For each given range size,
we randomly generated 50 range-aggregate queries of that size by spreading
the starting points of the query intervals in a uniform random fashion across
the entire data domain. Our study included both SUM and AVERAGE aggregates
computed over the query ranges in each workload.

4.1.3 Approximation-Error Metrics. We consider three metrics to gauge
the accuracy of the different wavelet-synopsis techniques. Let di (d̂ i) denote the
ith accurate (respectively, reconstructed) value in the domain, and let S be the
specified sanity bound for the approximation. The maximum relative error

8To the best of our knowledge, there are no known deterministic thresholding schemes that opti-
mize for relative-error metrics. Furthermore, our dynamic-programming techniques do not directly
extend to a deterministic setting; for example, our schemes rely on assigning fractional storage,
yi ∈ (0, 1], to non-zero coefficients and then flipping coins to obtain yi ∈ {0, 1} (see Section 7).
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in the data reconstruction is maxi{ |d̂ i−di |
max{di ,S} } The mean relative error is

1
N

∑N
i=1

|d̂ i−di |
max{di ,S} . The 25-percentile relative error is an upper bound on the rela-

tive error of 75% of the data values in the domain. As discussed in Section 3.7,
the maximum relative error can be returned to the user as a guaranteed-error
bound for the reconstruction of any individual data value, and our MinRelVar
and MinRelBias techniques are designed to help minimize this error. However,
it is based on only the largest error, and hence it provides a less informative
comparison than the other two metrics. Thus, we will primarily use the mean
relative error for the comparisons in this section (the 25-percentile relative
error results are similar).

We also use the maximum, mean, and 25-percentile relative errors to com-
pare the performance of the different wavelet-synopsis techniques over our
range-aggregate query workloads. The definitions of these error metrics are
essentially identical to those given above for data-value reconstruction, except
that di (d̂ i) now denote the accurate (respectively, approximate) answer to the
ith range-aggregate query in our workload and N is the total number of such
queries.

4.2 Experimental Results—Synthetic Data Sets

We present some of our experimental results with synthetic data sets for differ-
ent frequency permutations and settings of Zipfian skew. The numbers shown
in this section were obtained using a data domain of 256 distinct values and
a tuple count of 200,000; we observed similar results for other parameter set-
tings. We also focus on our empirical results for range-SUM aggregate query
approximation as our results for range-AVERAGEs were qualitatively similar. Af-
ter computing the yi ’s for the MinL2, MinRelVar, and MinRelBias schemes, five
trials of the coin flippings using different random seeds were performed, and the
synopsis was selected that gave the least value for the observed mean relative
error. Note that, due to the probabilistic nature of our thresholding schemes,
there is always a (small) probability of a worst-case sequence of coin flips that
could result in a poorly performing wavelet synopsis; thus, we recommend run-
ning our randomized procedures a small, constant number of times to ensure
avoiding such worst-case scenarios.

4.2.1 Data-Value Reconstruction Relative Errors: Mean, Maximum, and 25-
Percentile. Figure 6 depicts the data-reconstruction error numbers obtained
by all four techniques for mean, maximum, and 25-percentile relative error on
a “Normal” Zipfian data set with skew z = 0.7. Clearly, even for this moder-
ate value of data skew, our MinRelVar and MinRelBias algorithms are able to
guarantee better relative-error reconstruction for data values than determin-
istic, with the difference being especially evident for space-constrained syn-
opses. More specifically, for 10 retained coefficients, both our methods give an
over 200% improvement in mean relative error over deterministic, reducing it
from over 0.5 to about 0.15. Remember that with 256 distinct values, 10 coef-
ficients represent an approximately 4%-space synopsis of the full distribution.
As the space for the synopsis is increased, the three methods converge to the
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Fig. 6. Data-reconstruction approximation error for “Normal” Zipfian permutation with data skew
z = 0.7: (a) Mean relative error. (b) Maximum relative error. (c) 25-percentile relative error.

same relative error numbers. Similar trends can be seen for the maximum and
25-percentile relative errors. With respect to our MinL2 technique, our results
show that it can result in large relative errors (even worse than those of deter-
ministic); this is to be expected, because MinL2 does not explicitly optimize for
the maximum normalized bias or variance in the reconstruction of data values.

Figure 7 shows the same set of plots obtained for a more skewed “Normal”
Zipfian with z = 1.5. Again, we observe similar trends between the different
strategies but, of course, the relative difference between deterministic and our
MinRelBias and MinRelVar strategies is much more pronounced, with our meth-
ods offering improvements as high as 3,500% and 1,700% in mean relative error
for 10 and 15 coefficients, respectively. The relative-error behavior of MinL2 is,
once again, somewhat erratic; thus, we omit MinL2 from our discussion in the
remainder of this section.

4.2.2 Range-Aggregate Relative Errors: Mean, Maximum, and 25-Percentile.
Figure 8 depicts the range-SUM aggregate error numbers obtained by determin-
istic and our MinRelBias and MinRelVar techniques on a “Normal” Zipfian data
set with skew z = 1.0 and a query range size of 30. Once again, it is evident that
our probabilistic techniques are able to guarantee much lower relative-error
numbers for approximate range aggregates, especially with space-constrained
synopses. Our MinRelBias algorithm appears to be the consistent winner
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Fig. 7. Data-reconstruction approximation error for “Normal” Zipfian distribution with data skew
z = 1.5: (a) Mean relative error. (b) Maximum relative error. (c) 25-percentile relative error.

throughout the range of synopsis sizes, offering mean-relative error improve-
ments in the range of 500–1,500% over deterministic thresholding for 10–15
coefficient synopses.

4.2.3 Effect of Data Skew. The plots in Figure 9 depict ratios between the
mean relative error values obtained by deterministic and our MinRelBias and
MinRelVar techniques for “Normal” Zipfian distributions with varying values of
the skew parameter z. Obviously, the relative-error benefits obtained by our
probabilistic techniques increase explosively as a function of the skew in the
underlying data, with error ratios being way off the chart for z = 1.5, 2.0 and
10–15 coefficient synopses. For lower values of z, our probabilistic synopses
offer more moderate benefits or match the relative-error performance of the
deterministic scheme. It is also interesting to note that, even for higher synopsis
sizes (e.g., 35–40 coefficients), our techniques can offer error improvements as
high as 100% over deterministic thresholding.

The plots in Figure 10 show the same mean relative error ratios for range-
SUM aggregates with a range size of 20 over “Normal” Zipfian data for varying
values of the data skew z. Once again, our MinRelBias and MinRelVar synopses
consistently outperform or match (for lower values of z) conventional deter-
ministic synopses in terms of relative error, with the difference being especially
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Fig. 8. Range-SUM aggregate approximation error for “Normal” Zipfian distribution with data skew
z = 1.0 and query range size of 30: (a) Mean relative error. (b) Maximum relative Error. (c) 25-
percentile relative error.

Fig. 9. Effect of Skew on Data Reconstruction: Ratio of mean relative reconstruction error between
deterministic synopses and (a) MinRelBias synopses; (b) MinRelVar synopses. (“Normal” Zipfian
distribution.)
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Fig. 10. Effect of Skew on Range-SUM Approximation: Ratio of mean relative aggregate error be-
tween deterministic synopses and (a) MinRelBias synopses; (b) MinRelVar synopses. (“Normal” Zip-
fian distribution, query range size = 20.)

Fig. 11. Effect of Permutation Strategy on Data Reconstruction: Ratio of mean relative reconstruc-
tion error between deterministic synopses and (a) MinRelBias synopses; (b) MinRelVar synopses. (15
retained coefficients.)

evident for smaller synopsis sizes and highly skewed data distributions. This,
of course, is not surprising since, as the level of skew in the data increases, the
number of large data frequencies (that the deterministic thresholding scheme
tries to approximate well) becomes smaller and, thus, the number of range-SUM
queries that they affect drops dramatically.

4.2.4 Effect of Permutation Strategy. Figure 11 shows the mean relative
error ratios between deterministic and our MinRelBias and MinRelVar synopses
as a function of the data skew parameter z for 15-coefficient synopses and for
each of the four permutation strategies tested in our experiments. Clearly, the
“Normal” and “PipeOrgan” frequency arrangements are the ones reaping the
largest error benefits from our strategies, with the improvement increasing ex-
plosively for higher data skew; for example, for z = 2.0, both MinRelBias and
MinRelVar reduce the mean relative error by over 8, 000% with respect to deter-
ministic. The error improvements for the non-permuted Zipfian (“NoPerm”)
are not as spectacular, but still are as high as 100–150% for more skewed
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Fig. 12. Effect of Permutation Strategy on Range-SUM Approximation: Ratio of mean relative ag-
gregate error between deterministic synopses and (a) MinRelBias synopses; (b) MinRelVar synopses.
(15 retained coefficients, query range size = 20.)

distributions. Finally, for the “Random” data set, our methods seem to closely
match (in most cases) the performance of deterministic thresholding and, as
a consequence, offer little (if any) benefit in terms of relative error. We should
note, however, that by randomly permuting Zipfian frequencies, “Random” re-
sults in a highly irregular data set over which any small synopsis based on
Haar wavelets is doomed to give poor approximations; thus, our results are not
entirely surprising.

The plots in Figure 12 depict similar trends for the mean relative errors of our
synopsis-construction techniques when approximating a workload of range-SUM
aggregate queries with a range size of 20. As in the case of data reconstruction,
our MinRelBias probabilistic-thresholding algorithm emerges as the consistent
winner, offering significant relative-error improvements in the approximate
range-SUM answers for three out of our four data-distribution shapes and (at
least) matching the performance of deterministic thresholding on the highly
irregular “Random” data set.

4.2.5 Effect of Query Range Size. Figure 13 depicts the mean relative er-
ror ratios between deterministic and our MinRelBias and MinRelVar techniques
for 15-coefficient synopses and range-SUM aggregate query workloads over “Nor-
mal” Zipfian data as a function of the query range size for three different values
of the data skew parameter z. Clearly, for skewed data, both our probabilistic
techniques are able to guarantee significantly better mean relative errors for
approximate range aggregates over the entire range of range sizes (10–100),
with MinRelBias doing better than deterministic (by factors of up to 5) even for
moderate data skew values (z = 0.7). (On the other hand, deterministic does
as well as MinRelVar when z = 0.7.) Note that eventually, as the range size
increases, the difference in relative error between our algorithms and deter-
ministic thresholding starts decreasing as, with larger ranges, the large data
frequencies (that deterministic tries to approximate accurately) start being in-
cluded in a larger percentage of the queries in our workload. At the extreme
case when the query range covers the entire data domain, all techniques are, of
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Fig. 13. Effect of Query Range Size on Range-SUM Approximation: Ratio of mean relative aggre-
gate error between deterministic synopses and (a) MinRelBias synopses; (b) MinRelVar synopses.
(“Normal” Zipfian distribution, 15 retained coefficients.)

course, bound to have zero error (assuming that they have all kept the overall
average in the synopsis).

4.3 Experimental Results—Real-World Data Sets

To explore how our techniques performed on real-world data, we used the
Cover Type data set from the National Forest Service, down-loaded from U.C.
Irvine [Information and Computer Science, University of California at Irvine
2000]. There are 581,012 tuples in the data set; each tuple has 54 attributes
(elevation, slope, distance to highway, forest cover type, etc). Most of these at-
tributes have low cardinality, but there are 10 quantitative attributes, each
with cardinality 256 or higher. We ran our techniques on a number of these
attributes, and we report representative results on two of the attributes: “hill-
shade3pm” (CovType-HS3) and “aspect” (CovType-A). These two attributes test
our algorithms under widely different distributions. CovType-HS3 measures a
hillshade index (from 0 to 255) at 3pm on the summer solstice. Its histogram
(the input to the synopsis techniques) is shown in Figure 14(a); as can be seen
from the figure, the distribution is bell-shaped and relatively smooth. CovType-A
measures the aspect in degrees azimuth, ranging from 0 to 359. Its histogram
is shown in Figure 14(b); the distribution is more uniformly spread, with a
pipe-organ-style fluctuation and considerable peaks of noise.

Figures 14(c,d) depict the ratio of mean relative errors between determinis-
tic thresholding and our MinRelBias and MinRelVar schemes as the number of
retained coefficients is varied. Clearly, our probabilistic wavelet synopses offer
very substantial accuracy benefits over conventional deterministic synopses for
both of the real-life data sets used in our tests. Further, our results show that
for both CovType-HS3 and CovType-A the mean relative error numbers for the
deterministic scheme improve very slowly as more space is given to the syn-
opsis; thus, the relative performance of our schemes actually improves as the
number of coefficients increases.
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Fig. 14. (a,b) CovType-HS3 and CovType-A data sets. (c,d) Ratio of mean relative error between
deterministic and probabilistic wavelet synopses for CovType-HS3 and CovType-A data.

5. EXTENSION TO MULTIDIMENSIONAL WAVELETS

In this section, we discuss the key ideas for extending our randomized round-
ing approach to multidimensional data. Dealing with multidimensional data
sets raises two important issues that our techniques need to address. First,
since recursive pairwise averaging and differencing steps are likely to signif-
icantly increase the density of the data in the wavelet-coefficient array, we
adaptively threshold wavelet coefficients during the decomposition process; of
course, the trick here is to ensure that this thresholding will not introduce
any additional bias during data reconstruction. Second, we extend our basic
dynamic-programming paradigm for randomized coefficient rounding so that
it effectively works over the hierarchical error-tree structure for multidimen-
sional data. This is the first wavelet-based compression technique for multidi-
mensional data that provably enables unbiased reconstruction of data values
and unbiased answers to range queries.

5.1 Adaptive Coefficient Thresholding during Decomposition

As observed in Chakrabarti et al. [2000], a nice feature of the nonstandard Haar
decomposition is that the multidimensional wavelet-transform array WA can be
computed in one pass over the (suitably ordered) data array, with coefficients
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computed bottom up from the leaves of the error tree. Unfortunately, this pass
may use far more than Nz space, where Nz is the number of nonzeros in the
data array, because WA can have far more than Nz nonzeros. Thus, as in Vitter
and Wang [1999], we perform coefficient thresholding during the computation
of WA, to ensure that we retain at most Nz (nonzero) coefficients. We developed
a new thresholding technique that performs this initial thresholding without
introducing any reconstruction bias (previous schemes were deterministic and
did not bound the errors they introduced during initial thresholding). Namely,
in the one pass over the data array, we retain all coefficients computed until we
reach our limit of Nz coefficients. At that point, we need to create room for more
coefficients, so we select a threshold λ such that for say 20% of the coefficients
ci computed thus far, |ci| ≤ λ/2. Then we flip coins, rounding each such ci up to
λ (or -λ, if ci < 0) with probability |ci |

λ
and down to zero with probability 1 − |ci |

λ
.

We expect to discard at least half of these coefficients, reducing the space by
between 10% and 20%. Moreover, this does not introduce any reconstruction
bias, because the expected value for each coefficient is still ci. We then continue
with the pass over the data array, repeating this process whenever we accumu-
late Nz coefficients. This results in a probabilistic wavelet synopsis WSA with no
more than Nz coefficients (and at least 4

5 Nz coefficients).
The above captures the main idea, but the actual thresholding process we

use is more complicated. First, we use |c∗
i |, the magnitude of the normalized

coefficients, to select the pool of coefficients subject to coin flips. Second, each
newly computed coefficient that would have been subjected to coin flips under
the most recent thresholding, is subjected to this thresholding. Thus, at any
point, all coefficients have been treated equally, independent of when they were
computed. Third, each thresholding step with a new λ accounts for the previous
thresholding steps in order to maintain unbiased answers and equal treatment.
Fourth, since all coefficients are treated equally, we need not store the rounded
value for retained coefficients, only the original value. (This property is used in
the randomized-rounding phase described next.)

5.2 Rounding Multidimensional Coefficients using Dynamic Programming

As before, our goal is to have only B � Nz coefficients. This we accomplish
by extending our dynamic-programming schemes (e.g., MinRelVar) to select the
appropriate rounding values yi for multidimensional data distributions, and
then flipping coins to reduce WSA to B coefficients. We adapt the algorithm to
account for the variance already incurred by rounded up values; this variance
can be computed exactly because we have the original coefficient values ci as
well as the most recent value of λ used for adaptive thresholding. (We cannot
account for the variance due to rounded down values, due to our space limit
of Nz .)

Extending our dynamic-programming paradigm for wavelet-coefficient
rounding to effectively handle multidimensional data is actually a nontrivial
problem. This is because, even though the key “linearity” properties for re-
constructing data values and range sums (Properties (P1) and (P2)) continue to
hold for the multidimensional case, the underlying error-tree structure becomes

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



Probabilistic Wavelet Synopses • 83

Fig. 15. (a) Error-tree structure for the sixteen nonstandard two-dimensional Haar coefficients
for a 4 × 4 data array (actual data points are omitted for clarity). (b) Space allocation at node j :
“ordered” view of our multidimensional dynamic-programming formulation.

significantly more complex. Remember that, in a d -dimensional error tree, each
node (except for the root, i.e., the overall average) actually corresponds to a set
of (at most) 2d −1 wavelet coefficients that have exactly the same support region
but different quadrant signs and magnitudes for their contribution. Further-
more, each (non-root) node t in a d -dimensional error tree can have up to 2d

children corresponding to the quadrants of the (common) support region of all
coefficients in t.9 As an example, Figure 15(a) depicts the error tree structure for
the two-dimensional 4×4 Haar coefficient array in Figure 1(b). We now describe
the details of our generalized, dynamic-programming scheme for randomized
coefficient rounding that effectively deals with the above complications for mul-
tidimensional Haar wavelets. Our discussion focuses on the minimization of the
maximum normalized standard error NSE (i.e., the multidimensional MinRelVar
algorithm); the extensions to our other rounding algorithms following the same
basic dynamic-programming paradigm are straightforward. We also center our
description on formulating the key dynamic-programming recurrence using the
hierarchical error-tree structure for Haar coefficients; our other technical ideas
developed in Section 3.4 (e.g., the perturbation rule for zero coefficients and the
solution-space quantization) are then applied as in the one-dimensional case.

Having (potentially) 2d children at each internal node implies that a brute-
force exploration of all the possible ways of distributing the space budget B
among the children of the node (like the one used in our one-dimensional
dynamic-programming recurrence (Eq. (12))) is no longer a feasible option.
Given a quantization parameter q for the solution space, the time complexity
of such a brute-force search at a single node with 2d children would essentially
be proportional to the number of ways of distributing qB balls among 2d urns,
which is O((qB)2d −1). Instead, we propose a generalized dynamic-programming
formulation for the multidimensional case that avoids this enormous search
complexity at the cost of a slight increase in the amount of memory required to

9The number of children (coefficients) for an internal error-tree node can actually be less than
2d (respectively, 2d − 1) when the sizes of the data dimensions are not all equal. In these sit-
uations, the exponent for 2 is determined by the number of dimensions that are “active” at the
current level of the decomposition (i.e., those dimensions that are still being recursively split by
averaging/differencing).
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tabulate intermediate results. Specifically, let M [J , B], where J = 〈 j1, . . . , jn〉
is a list of error-tree nodes, denote the optimal (i.e., minimum) value of the max-
imum NSE(d̂ k)2 among all data values dk belonging to any of the error subtrees
in the list of subtrees 〈Tj1 , . . . , Tjn〉, assuming a total space budget of B. Thus,
the cost of the optimal coefficient-rounding scheme with synopsis space of B is
given by M [〈0〉, B]. Also, let child( j ) denote the list of all child nodes of node
j in some fixed, predetermined order and let coeff( j ) be the set of all wavelet
coefficients corresponding to node j (we use coeff( j ) = {0} to denote that all
these coefficients have zero values). Our multidimensional MinRelVar rounding
scheme relies on the following dynamic-programming recurrence for M [J , B]
(omitting the simpler case of the error-tree root, i.e., J = 〈0〉):

M [J , B] =




min
y j ∈(0,min{1,B}];
bL∈[0,B− y j ]

{
max

{
VAR( j , y j )

NORM(〈i1〉) + M [〈i1〉, bL],
VAR( j , y j )

NORM(〈i2,...,ik 〉) + M [〈i2, . . . , ik〉, B − y j − bL]

}}
,

if J = 〈 j 〉, coeff( j ) �= {0}, child( j ) = 〈i1, . . . , ik〉, and B > 0

M [〈 i1, . . . , ik 〉, B] if J =〈 j 〉, coeff( j ) = {0}, and child( j ) =〈i1, . . . , ik〉

minbL∈[0,B]

{
max{M [〈 j1〉, bL], M [〈 j2, . . . , jn〉, B − bL]}} ,

if J = 〈 j1, . . . , jn〉, where n > 1

0 if J = φ

∞ otherwise
(20)

where NORM(J ) = max{min j∈J ;k∈Tj {d2
k }, S2} is the normalization term for the

list of error subtrees 〈Tj : j ∈ J 〉. From the above dynamic-programming
recurrence, it is easy to see that the values of the node-list argument J of M
are not arbitrary lists of error-tree nodes: the only possible values for J are
suffixes of the child( j ) lists for (nonleaf) nodes j in the error tree.

Intuitively, the recurrence in Eq. (20) generalizes that in Eq. (12) to nonbi-
nary error-tree structures in which internal nodes can have any number of chil-
dren. Furthermore, our generalized dynamic-programming formulation (based
on lists of error-tree nodes) avoids the complexity of the brute-force search of
possible space allocations to a node’s children by ordering the search, based
on some (fixed) ordering of the children nodes. Thus, for example, the first
clause in Eq. (20) simply searches over all possible allotments of space y j to
a (nonzero) node j and, given a setting of y j , over all possible allotments of
the remaining B − y j budget amongst the first child subtree and the list of all
remaining subtrees of node j . This ordering (also evident in the third clause
of Eq. (20)) is depicted pictorially in Figure 15(b) and, as we demonstrate later
in this section, results in an increase in time and space complexity of only
O(2d ) over the much simpler one-dimensional case. (Note that O(2d ) is prac-
tically a constant factor for most reasonable values of the data dimensionality
d : it is well known that data-reduction techniques based on space partition-
ing (like wavelets or histograms) become ineffective as d increases beyond 5–6
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dimensions [Chakrabarti et al. 2000; Deshpande et al. 2001; Gunopulos et al.
2000].)

Our discussion thus far has not directly addressed the second complication
introduced by multidimensional Haar wavelets, namely the fact that each node
in a d -dimensional error tree actually represents a set of (up to) 2d − 1 distinct
coefficients. This implies that, for a given allotment of space y j to an error-
tree node j , the contribution of that node to the overall path variance (i.e.,
the quantity VAR( j , y j ) in Eq. (20)) must be computed based on the optimal
distribution of y j among all nonzero coefficients in coeff( j ). In other words,
the node variance VAR( j , y j ) is now the solution to the following minimization
problem:

Minimize
∑

ci∈coeff( j )|ci �=0

Var(Ci) =
∑

ci∈coeff( j )|ci �=0

(λi − ci) · ci

subject to
∑

ci∈coeff( j )|ci �=0

ci

λi
≤ y j and

ci

λi
∈ (0, 1].

(Note that the space allotment y j above can range anywhere between zero and
the number of non-zero coefficients in coeff( j ).) Fortunately, this intranode
optimization problem is very similar to our expected L2 error minimization
problem formulated in Section 3.3 and, as we have already shown, can be solved
optimally in a very efficient manner by allocating each coefficient space ci

λi
that

is proportional to its magnitude |ci|, while ensuring that all ci
λi

≤ 1. Based on
the analysis of Section 3.3 and since each error-tree node can contain at most
2d − 1 coefficients, the time complexity of this extra intra-node optimization
step is only O(2d log 2d ) = O(d2d ).

5.2.1 Time and Space Complexity of Multidimensional Coefficient Round-
ing. Assume a given quantization parameter q for the solution space of our
multidimensional dynamic-programming recurrence. To estimate the time com-
plexity of our d -dimensional coefficient rounding scheme, note that, assuming
a fixed order on the child subtrees of each error-tree node, there are at most
O(N2d ) possible choices for the node-list parameter J and a maximum of qB
choices for the space allotment to each tree node. The time complexity of dis-
tributing a space budget of B among a list of (one or more) error subtrees
is dominated by the first clause in Eq. (20), which runs in time O(q log(qB)),
for a given allotment B to the root of these subtrees (using a binary-search
procedure similar to the one described in Section 3.4). Furthermore, solving
the intranode space allocation problem at given node implies an additional
cost of O(d2d ) bringing the overall complexity of processing an error-tree
node for a given space allotment B to O(q log(qB) + d2d ). (As always, com-
puted optimal values are tabulated in the dynamic-programming array M
for future reference.) Thus, the overall time complexity of d -dimensional co-
efficient rounding algorithm is O(N2dqB(q log(qB) + d2d )). The total space
requirements of our d -dimensional algorithm are determined by the size
of the dynamic-programming array M which is O(N2dqB); as in the one-
dimensional case, however, we do not need to keep the full array M memory
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resident since the working-set size of our dynamic-programming scheme is only
O(2dqB log N ).

Even though the worst-case time and space complexity analysis outlined
above uses N (i.e., the total number of cells in the data array), our multidimen-
sional dynamic-programming algorithms can actually be implemented to run
in overall time and space of O(Nz2dqB(q log(qB) + d2d )) and O(Nz2dqB), re-
spectively, where Nz is the number of nonzero coefficients retained. (Remember
that, as discussed in Section 5.1, Nz is typically equal to the number of nonzero
data cells, which can be much smaller than N for sparse multidimensional
data.) The key observation here is that as our dynamic-programming schemes
work in a bottom-up manner over the multidimensional error tree structure,
the only situation in which we will have to incur computational cost at a tree
node n with all zero coefficients (i.e., coeff(n) = {0}) is when n is the least com-
mon ancestor of at least two nonzero tree nodes beneath it in the tree. In this
case, we have to apply our dynamic-programming recurrence at n to figure out
how to best distribute the space allotment given to n across its nonzero descen-
dants. (Note that if node n with coeff(n) = {0} has just one nonzero descendant,
then the M values computed at that descendant are just directly transferred
to n.) Furthermore, once our algorithm has computed the M values for node
n, its nonzero descendants can be discarded since they are no longer required
for any computation that will take place further up in the error tree. Based on
the above observations, it is easy to see that we can implement our algorithm
so that the computation depicted in the dynamic-programming recurrence of
Eq. (20) is performed for a total of at most 2Nz − 1 error-tree nodes; that is,
with O(Nz ) rather than O(N ) node computations. We should, of course, note
that implementing our coefficient-rounding algorithm as described here may
involve some additional computational overhead, for example, for sorting the
Nz coefficients based on their inorder numbering in the error-tree and perhaps
maintaining them in a heap to ensure that they are accessed in the appropriate
“bottom-up” order. This overhead, however, is bounded by an additive factor of
O(Nz log Nz ) which would typically be dwarfed by the benefit of having O(Nz )
rather than O(N ) tree-node computations for sparse multidimensional data
distributions.

6. RELATED WORK

Wavelets have a long history of successes in the signal and image processing
arena [Jawerth and Sweldens 1994; Natsev et al. 1999; Stollnitz et al. 1996]
and, recently, they have also found their way into data-management applica-
tions. Matias et al. [1998] first proposed the use of Haar-wavelet coefficients as
synopses for accurately estimating the selectivities of range queries. Vitter and
Wang [1999] describe I/O-efficient algorithms for building multidimensional
Haar wavelets from large relational data sets and show that a small set of
wavelet coefficients can efficiently provide accurate approximate answers to
range aggregates over OLAP cubes. Chakrabarti et al. [2000] demonstrate the
effectiveness of Haar wavelets as a general-purpose approximate query process-
ing tool by designing efficient algorithms that can process complex relational
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queries (with joins, selections, etc.) entirely in the wavelet-coefficient domain.
Matias et al. [2000] consider the problem of on-line maintenance for coeffi-
cient synopses and propose a probabilistic-counting technique that approxi-
mately maintains the largest normalized-value coefficients in the presence of
updates. Gilbert et al. [2001] propose algorithms for building approximate one-
dimensional Haar-wavelet synopses over numeric data streams. All the above
papers rely on conventional, deterministic thresholding schemes that typically
decide the significance of a coefficient based on its absolute normalized value;
hence, they suffer from the shortcomings described in this article.

There is a rich literature on m-term approximations using wavelets (m is
the number of coefficients in the synopsis). Previous related work has studied
dynamic-programming style approaches, deterministic thresholding to mini-
mize a desired Lp metric, and bounds on worst-case error [DeVore 1998]. We
are not aware of work addressing relative errors with sanity bounds, arguably
the most important scenario for approximate query processing in databases.
Anastassiou and Yu [1992a, 1992b] have written a series of papers on the topic
of probabilistic wavelet approximation. However, these papers are unrelated to
the approach we present, as they actually study the mathematical properties
of certain wavelet operators for approximating continuous monotone functions
and continuous probability distribution functions.

To the best of our knowledge, and after consulting several wavelet experts
(e.g., D. Donoho [Personal communication 2001]), it seems that our approach
of probabilistically rounding and selecting coefficients has not been previously
studied.

7. DISCUSSION

In this section, we briefly discuss some issues related to the probabilistic wavelet
synopses introduced in this article, and outline some challenging open problems
and research directions.

The focus of our development thus far has been on the problem of building
an error-optimal synopsis (e.g., minimizing the maximum relative reconstruc-
tion error) for a given amount of space. Our proposed techniques, however,
are equally applicable to the dual version of this problem, namely minimiz-
ing the (expected) amount of space required by a probabilistic wavelet syn-
opsis that achieves a given error guarantee. Determining such space-optimal,
bounded-error synopses can be accomplished using our dynamic-programming
techniques in conjunction with a binary-search procedure to find the optimal
(smallest) required space budget B for the given error bound. Note that at
most O(log N ) search steps are necessary; furthermore, by the nature of our
dynamic-programming solutions, the results obtained for smaller values of the
space budget B can be re-used for larger space budgets B′ > B, so that our
time/space complexity bounds remain exactly the same with B = B∗, the opti-
mal space budget.

A key property of our probabilistic wavelet synopses that enables them to
outperform conventional wavelet synopses in our approximate query process-
ing scenarios (see Section 4), is that they are specifically designed to optimize
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relative-error metrics (like normalized standard error or normalized bias) in
the data reconstruction. This naturally raises the question of whether it would
be possible to develop efficient, deterministic wavelet-thresholding schemes
that are optimized for such relative-error metrics. As we already alluded to
in Section 4, to the best of our knowledge, no such deterministic thresholding
algorithms (for either relative or absolute value-reconstruction error) exist in
the literature. Furthermore, our proposed techniques are intimately tied to the
probabilistic problem formulations developed in this paper (in terms of both the
resulting objective functions and the use of fractional storage for coefficients),
and it is unclear whether they can be extended to a deterministic setting.

While it may be possible to design deterministic thresholding schemes for
absolute or relative error metrics based on the resulting integer-programming
formulations (e.g., using LP-relaxation and LP-rounding techniques [Vazirani
2001]), the resulting integer programs appear to be quite difficult to solve
(or even approximate) in an efficient, scalable manner for large values of the
domain size N . Developing effective (hopefully, combinatorial) deterministic
wavelet-thresholding algorithms for relative-error metrics and comparing them
against the probabilistic solutions proposed in this article is certainly a chal-
lenging direction for future research in this area. Another important question
in this realm concerns the suitability of the Haar wavelet transform as a data-
summarization and approximate query processing tool when it comes to error
metrics other than L2. Could there be other (existing or new) wavelet-basis
functions that are better suited for optimizing relative error metrics in the
data approximation?

Finally, an important practical issue not addressed in this article is that of
incremental maintenance of our probabilistic wavelet synopses in a dynamic
(e.g., data-warehousing) environment. A key assumption underlying all our
proposed techniques is that the underlying data set is given and static. Incre-
mentally maintaining a probabilistic synopsis of B wavelet coefficients (or, their
rounded values) so that it retains its optimality (e.g., with respect to normalized
standard error) over a dynamically-updated data set is a difficult open prob-
lem. Note that, unlike conventional coefficient thresholding (where the goal is to
simply keep track of the top-B (normalized) coefficient values), an incremental-
maintenance technique for our synopses would need to continuously track the
solution of a rather complex optimization problem over the changing data dis-
tribution. It is unclear whether the probabilistic-counting ideas of Matias et al.
[2000] would be applicable or even useful in this setting.

8. CONCLUSIONS

This article has introduced probabilistic wavelet synopses, the first wavelet-
based data reduction technique optimized for guaranteed accuracy of individual
approximate answers. Our technique enables unbiased or low-bias data re-
construction. We have described a number of novel techniques for tuning our
scheme to minimize desired error metrics, as well as extensions to multidimen-
sional data. Experimental results on real-world and synthetic data sets demon-
strate that probabilistic wavelet synopses significantly reduce approximation
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relative error compared with the previous deterministic approach, in most
cases by over a factor of 2, and up to a factor of 80 for highly skewed data.
Therefore, we recommend their use in approximate query processing systems.
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