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Mining Sequential Patterns
with Regular Expression Constraints

Minos Garofalakis, Member, IEEE, Rajeev Rastogi, and Kyuseok Shim

Abstract—Discovering sequential patterns is an important problem in data mining with a host of application domains including
medicine, telecommunications, and the World Wide Web. Conventional sequential pattern mining systems provide users with only a
very restricted mechanism (based on minimum support) for specifying patterns of interest. As a consequence, the pattern mining
process is typically characterized by lack of focus and users often end up paying inordinate computational costs just to be inundated
with an overwhelming number of useless results. In this paper, we propose the use of Regular Expressions (REs) as a flexible
constraint specification tool that enables user-controlled focus to be incorporated into the pattern mining process. We develop a family
of novel algorithms (termed SPIRIT—Sequential Pattern mining with Regular expresslon consTraints) for mining frequent sequential
patterns that also satisfy user-specified RE constraints. The main distinguishing factor among the proposed schemes is the degree to
which the RE constraints are enforced to prune the search space of patterns during computation. Our solutions provide valuable
insights into the trade-offs that arise when constraints that do not subscribe to nice properties (like antimonotonicity) are integrated into
the mining process. A quantitative exploration of these trade-offs is conducted through an extensive experimental study on synthetic
and real-life data sets. The experimental results clearly validate the effectiveness of our approach, showing that speedups of more than
an order of magnitude are possible when RE constraints are pushed deep inside the mining process. Our experimentation with real-life
data also illustrates the versatility of REs as a user-level tool for focusing on interesting patterns.

Index Terms—Data mining, constraints, sequential patterns, regular expressions, finite automata.
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INTRODUCTION

DISCOVERING sequential patterns from a large database of
sequences is an important problem in the field of
knowledge discovery and data mining. Briefly, given a set
of data sequences, the problem is to discover subsequences
that are frequent, in the sense that the percentage of data
sequences containing them exceeds a user-specified mini-
mum support [3], [12]. Mining frequent sequential patterns
has found a host of potential application domains, includ-
ing retailing (i.e., market-basket data), telecommunications,
medicine, and, more recently, the World Wide Web
(WWW). In market-basket databases, each data sequence
corresponds to items bought by an individual customer
over time and, frequently, occurring patterns can be very
useful for predicting future customer behavior. In tele-
communications, frequent sequences of alarms output by
network switches capture important relationships between
alarm signals that can then be employed for online
prediction, analysis, and correction of network faults. In
the medical field, frequent temporal patterns of symptoms
and diseases exhibited by patients identify strong symp-
tom/disease correlations that can be an invaluable source of
information for medical diagnosis and preventive medicine.
Finally, in the context of the WWW, server sites typically
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generate huge volumes of daily log data capturing the
sequences of page accesses for thousands or millions of
users." Discovering frequent user access patterns in WWW
server logs can help improve system design (e.g., better
hyperlinked structure between correlated pages) and lead
to better marketing decisions (e.g., strategic advertisement
placement).

As a more concrete example, the Yahoo! Internet
directory (www.yahoo.com) enables users to locate inter-
esting WWW documents by navigating through large topic
hierarchies consisting of thousands of different document
classes [4]. These hierarchies provide an effective way of
dealing with the abundance problem present in today’s
keyword-based WWW search engines. The idea is to
allow wusers to progressively refine their search by
following specific topic paths (i.e., sequences of hyperlinks)
along a (predefined) hierarchy. Given the wide variety of
topics and the inherently fuzzy nature of document
classification, there are numerous cases in which distinct
topic paths lead to different document collections on very
similar topics. For example, starting from Yahoo!’s home
page, users can locate information on hotels in New York
City by following either Travel: Yahoo!Travel:
North America: United States: New York: New
York City: Lodging: Hotels or Travel: Lodging:
Yahoo!Lodging: New York: New York Cities: New
York City: Hotels and Motels, where “:” denotes a
parent-child link in the topic hierarchy. Mining user
access logs to determine the most frequently accessed

1. In general, WWW servers only have knowledge of the IP address of
the user/proxy requesting a specific web page. However, referrers and
cookies can be used to determine the sequence of accesses for a particular
user (without compromising the user’s identity).
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topic paths is a task of immense marketing value, e.g., for
a hotel or restaurant business in New York City trying to
select a strategic set of WWW locations for its advertising
campaign.

The design of effective algorithms for mining frequent
sequential patterns has been the subject of several studies in
recent years [3], [5], [8], [9], [12], [14]. Ignoring small
differences in the problem definition (e.g., form of input
data, definition of a subsequence), a major common thread
that runs through the vast majority of earlier work is the lack
of user-controlled focus in the pattern mining process. Typically,
the interaction of the user with the pattern mining system is
limited to specifying a lower bound on the desired support
for the extracted patterns. The system then executes an
appropriate mining algorithm and returns a very large
number of sequential patterns, only some of which may be
of actual interest to the user. Despite its conceptual
simplicity, this “unfocused” approach to sequential pattern
mining suffers from two major drawbacks:

1. Disproportionate computational cost for selective users.
Given a database of sequences and a fixed value for
the minimum support threshold, the computational
cost of the pattern mining process is fixed for any
potential user. The problem here is that, despite the
development of efficient algorithms, pattern mining
remains a computation-intensive task typically tak-
ing hours to complete. Thus, ignoring user focus can
be extremely unfair to a highly selective user that is
only interested in patterns of a very specific form.

2. Overwhelming volume of potentially useless results. The
lack of tools to express user focus during the pattern
mining process means that selective users will
typically be swamped with a huge number of
frequent patterns, most of which are useless for
their purposes. Sorting through this morass of data
to find specific pattern forms can be a daunting task,
even for the most experienced user.

The above discussion clearly demonstrates the need for
novel pattern mining solutions that enable the incorpora-
tion of user-controlled focus in the mining process. There
are two main components that any such solution must
provide. First, given the inadequacy of simple support
constraints, we need a flexible constraint specification language
that allows users to express the specific family of sequential
patterns that they are interested in. For instance, returning
to our earlier “New York City hotels” example, a hotel
planning its ad placement may only be interested in paths
that 1) begin with Travel, 2) end in either Hotels or
Hotels and Motels, and 3) contain at least one of
Lodging, Yahoo!Lodging, Yahoo!Travel, New York,
or New York City since these are the only topics directly
related to its line of business. Second, we need novel pattern
mining algorithms that can exploit user focus by pushing
user-specified constraints deep inside the mining process. The
abstract goal here is to exploit pattern constraints to prune
the computational cost and ensure system performance that
is commensurate with the level of user focus (i.e., constraint
selectivity). (Simply put, selective users should not be
penalized for results that they did not ask for.)

We should note that, even though recent work has
addressed similar problems in the context of association rule
mining [10], [11], [13], the problem of incorporating a rich
set of user-specified constraints in sequential pattern mining
remains, to the best of our knowledge, unexplored.
Furthermore, as we will discover later in the paper, pattern
constraints raise a host of new issues specific to sequence
mining (e.g., due to the explicit ordering of items) that were
not considered in the subset and aggregation constraints for
itemsets considered in [10], [11], [13]. For example, our
pattern constraints do not satisfy the property of antimono-
tonicity [10]; that is, the fact that a sequence which satisfies a
pattern constraint does not imply that all its subsequences
satisfy the same constraint. These differences mandate novel
solutions that are completely independent of earlier results
on constrained association rule mining [10], [11], [13].

In this paper, we formulate the problem of mining
sequential patterns with reqular expression constraints and we
develop novel, efficient algorithmic solutions for pushing
regular expressions inside the pattern mining process. Our
choice of regular expressions (REs) as a constraint specifica-
tion tool is motivated by two important factors. First, REs
provide a simple, natural syntax for the succinct specifica-
tion of families of sequential patterns. Second, REs possess
sufficient expressive power for specifying a wide range of
interesting, nontrivial pattern constraints. These observa-
tions are validated by the extensive use of REs in everyday
string processing tasks (e.g., UNIX shell utilities like grep
or 1s), as well as in recent proposals on query languages for
sequence data (e.g., the Shape Definition Language of
Agrawal et al. [1]). Returning once again to our “New York
City hotels” example, note that the constraint on topic paths
described earlier in this section can be simply expressed as
the following RE:

Travel(Lodging | Yahoo!Lodging | Yahoo! Travel |
New York | New York City)
(Hotels | Hotels and Motels),

ul//

where stands for disjunction. We propose a family
of novel algorithms (termed SPIRIT—Sequential Pattern
mlIning with Regular expresslon consTraints) for mining
frequent sequential patterns that also belong to the
language defined by the user-specified RE. Our algo-
rithms exploit the equivalence of REs to deterministic
finite automata [7] to push RE constraints deep inside
the pattern mining computation. The main distinguishing
factor among the proposed schemes is the degree to
which the RE constraint is enforced within the genera-
tion and pruning of candidate patterns during the
mining process. We observe that, varying the level of
user focus (i.e., RE enforcement) during pattern mining
gives rise to certain interesting tradeoffs with respect to
computational effectiveness. Enforcing the RE constraint
at each phase of the mining process certainly minimizes
the amount of “state” maintained after each phase,
focusing only on patterns that could potentially be in the
final answer set. On the other hand, minimizing this
maintained state may not always be the best solution
since it can, for example, limit our ability to do effective
support-based pruning in later phases. Such trade-offs
are obviously related to our previous observation that
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RE constraints are not antimonotone [10]. We believe that
our results provide useful insights into the more general
problem of constraint-driven, ad-hoc data mining, show-
ing that there can be a whole spectrum of choices for
dealing with constraints, even when they do not
subscribe to nice properties like antimonotonicity or
succinctness [10]. An extensive experimental study with
synthetic as well as real-life data sets is conducted to
explore the trade-offs involved and their impact on the
overall effectiveness of our algorithms. Our results
indicate that incorporating RE constraints into the
pattern mining computation can some times yield more
than an order of magnitude improvement in perfor-
mance, thus validating the effectiveness of our approach.
Our experimentation with real-life WWW server log data
also demonstrates the versatility of REs as a user-level
tool for focusing on interesting patterns.

The remainder of this paper is organized as follows:
Section 2 reviews related research in the area of data
mining and knowledge discovery. In Section 3, we
present the formulation of our constrained pattern
mining problem along with the necessary definitions
and notation. The SPIRIT family of algorithms is
presented in Section 4 and extensions to deal with
sequences of itemsets and distance constraints are
proposed in Section 5. Section 6 discusses the findings
of an extensive experimental study of the SPIRIT
algorithms using both synthetic and real-life data sets.
Finally, Section 7 concludes the paper and identifies
directions for future research. The work reported in this
paper has been done in the context of the SERENDIP
data mining project at Bell Laboratories (www.bell-
labs.com/projects/serendip).

2 RELATED WORK

Agrawal and Srikant [3] introduce the problem of mining
sequential patterns from a set of market-basket data
sequences, where each sequence element is a set of items
purchased in the same transaction. They propose and
experimentally evaluate three algorithms based on the
general a priori framework [2]. In more recent work, Srikant
and Agrawal [12] generalize their earlier problem definition
to allow for 1) time-gap constraints, placing bounds on the
time separation between adjacent elements in a pattern,
2) sliding time windows, permitting elements of a pattern to
span a set of transactions within a user-specified window,
and 3) item taxonomies, enabling the discovery of patterns
across different levels of a user-defined taxonomy. They
propose GSP (Generalized Sequential Patterns), an a priori-
style algorithm that efficiently handles all three extensions
to the basic pattern mining problem and, at the same time,
offers much better performance than their earlier schemes.
Chen et al. [5] study the problem of mining access patterns
in a hyperlinked information-providing environment. Es-
sentially, they consider a simpler version of the pattern
mining problem described by Agrawal and Srikant, where
1) elements of a data sequence are assumed to be single items
and 2) elements of a discovered pattern are required to be
consecutive in the data. Their algorithm converts the original
sequences into a set of maximal forward references and then
applies association rule mining techniques for finding
frequent reference sequences in that set. Mannila et al. [8],
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[9] consider the problem of discovering frequent episodes
(i.e., partial orders of events occurring within a small time
window) in a large input sequence of events. Their solution
is based on moving a time window across the input
sequence, counting the episodes that occur in some user-
specified percentage of windows. In a different paper, they
describe the application of their techniques in the analysis
of telecommunication network alarm databases [6]. The
issue of providing users with a rich constraint specification
language and exploiting user-specified constraints to
reduce the computational cost of the mining process has
not been addressed in any of these papers.

The problem of discovering approximate structural
patterns in a database of genetic sequences, explored by
Wang et al. [14], is closely related to our work. Besides the
minimum support threshold, their solution allows users to
specify 1) the desired form of the patterns as sequences of
consecutive symbols separated by variable-length don’t cares
(VLDCs), 2) a lower bound on the length of the discovered
patterns, and 3) an upper bound on the edit distance allowed
between a mined pattern and a data sequence that contains
it (assuming an optimal substitution for the VLDCs). Their
algorithm uses a random sample of the input sequences to
build a main-memory data structure, termed generalized
suffix tree, that is used to obtain an initial set of candidate
pattern segments and screen out candidates that are unlikely
to be frequent based on their occurrence counts in the
sample. The entire database is then scanned and filtered
(using a pattern matching algorithm) to verify that the
remaining candidates are indeed frequent answers to the
user query.

The work of Wang et al. [14] differs from ours in several
respects. First, they suggest a rather restricted form of user-
specified constraints on patterns (i.e., segments of con-
secutive symbols separated by VLDCs), compared to our
fully general RE constraints. Second, the algorithms in [14]
are based on main memory data structures and probabilistic
techniques (i.e., random sampling) for pruning unlikely
candidates with high probability, so they typically return
only a subset of the complete answer. Our techniques, on the
other hand, are not restricted by main memory constructs
and are guaranteed to find all qualifying patterns. Finally,
we show how our algorithms can be extended to deal with
the more general “sequences of itemsets” case, which is not
considered in [14]. We should note, however, that Wang et
al. also introduce the interesting idea of allowing partial
matches between a pattern and a data sequence through the
use of their edit distance threshold. Although we do not
explore such notions of “matching with limited errors” in
this paper, we plan to address the issue in our future
research.

In the related problem of mining association rules from
market-basket data, Tsur et al. [13] introduce the notion of
“query flocks” as a generalization of associations and
discuss optimization techniques that try to intelligently
schedule the use of a priori-style, support-based filtering for
efficient query-flock evaluation. Their techniques are
applicable only for filters/constraints that (like itemset
support) satisfy certain monotonicity criteria [13]. Srikant et
al. [11] and Ng et al. [10] investigate the problem of
incorporating additional constraints on frequent itemsets
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TABLE 1
Notation
Symbol | Semantics
s,t,1u, ... | Generic sequences in the input databasc
<st> Sequence resulting from the concatenation of sequences s and ¢
|s] Length, i.e., number of elements, of sequence s
84 i element of sequence s
] Number of items in element s;
57 Zero or more occurrences of element s; (Kleene closure operator)
8i | 85 Select one clement out of s; and s; (Disjunction operator)
R Regular expression (RE) constraint
Ar Deterministic finite automaton for RE R
b,c.d,... | Generic states in automaton Ag
a Start state of automaton Ag
b3 e Transition from state b to state ¢ in Ax on element s;
b3 e Transition path from state b to state ¢ in Agx on the sequence of elements s
Cy, Set of candidate k-sequences
F Set of frequent k-sequences

for faster association-rule mining. The form of the con-
straints and the algorithmic techniques developed in these
papers are tailored to simple sets of items and, conse-
quently, are inapplicable to sequences which are the focal
point of this paper. For example, none of the constraint
mechanisms presented in [10], [11] allow users to specify
item ordering, an essential ingredient of sequential patterns.
More specifically, Srikant et al. [11] propose techniques for
handling membership (i.e., subset) constraints in the context
of a user-defined item taxonomy. They make the interesting
observation that exploiting the itemset membership con-
straint to a larger degree for pruning may not always
optimize performance. A small example is presented to
show that, in some cases, more pruning due to the
membership constraint may result in fewer candidates
being pruned by the minimum support constraint. This is
very similar to the phenomenon that we have observed for
the SPIRIT family of pattern mining algorithms developed
later in this paper. Ng et al. [10] consider more general
categories of subset and aggregation constraints for item-
sets. They identify and analyze two key properties of
itemset constraints, antimonotonicity and succinctness, that
can be used to significantly increase the level of itemset
pruning. Informally, a constraint C is antimonotone if every
subset of an itemset satisfying C is also guaranteed to satisfy
C. A constraint C is succinct if there exists a concise
characterization of all itemsets satisfying C that uses only
selection, union, minus, and powerset operations over the
item domain. Unfortunately, RE constraints on sequential
patterns are not antimonotone and no obvious translation of
the succinctness property exists for the sequential pattern
domain. This clearly limits the usefulness of these earlier
results for our problem setting.

3 DEFINITIONS AND PROBLEM FORMULATION

3.1 Sequences, Regular Expressions, and Finite
Automata

The main input to our mining problem is a database of

sequences, where each sequence is an ordered list of

elements. These elements can be either 1) simple items from

a fixed set of literals (e.g., the identifiers of WWW
documents available at a server [5], the amino acid symbols
used in protein analysis [14]), or 2) itemsets, that is,
nonempty sets of items (e.g., books bought by a customer
in the same transaction [12]). The list of elements of a data
sequence s is denoted by < s; s5--- s, >, where s; is the ith
element of s. If s is a sequence of itemsets, then we represent
the set of simple items corresponding to element s; as
{s},..., 5"}, We use |s| to denote the length (i.e., number of
elements) of sequence s and |[s;| to denote the number of
items in element s;. A sequence of length k is referred to as a
k-sequence. (We consider the terms “sequence” and “se-
quential pattern” to be equivalent for the remainder of our
discussion.) Table 1 summarizes the notation used through-
out the paper with a brief description of its semantics. We
provide detailed definitions of some of these parameters in
the text. Additional notation will be introduced when
necessary.

Consider two data sequences s = < s1 53 -+ s, > and
t=<tty - - t,, >. Wesay that s is a subsequence of t if s is
a “projection” of t, derived by deleting elements and/or
items from ¢. More formally, s is a subsequence of t if there
exist integers j; < j» < ... < j, such that s; Ct;, so Ctj,

.., 8y C t;,. Note that, for sequences of simple items, the
above condition translates to sy =t;,,s2 =tj,,...,8, = ;.
For example, sequences <13 > and <124 > are sub-
sequences of <1234 >, while < 31> isnot. Srikant and
Agrawal [12] observe that, when mining market-basket
sequential patterns, users often want to place a bound on
the maximum distance between the occurrence of adjacent
pattern elements in a data sequence. For example, if a
customer buys bread today and milk after a couple of
weeks, then the two purchases should probably not be seen
as being correlated. Following [12], we define sequence s to
be a subsequence with a maximum distance constraint of 6 or,
alternately, é-distance subsequence, of ¢ if there exist integers
n<j2<...<Un such that s; C t]'1782 C tjz?’ .., 8, C t]'” and
Jr — Ji—1 < 6 for each k = 2,3,...,n. That is, occurrences of
adjacent elements of s within ¢ are not separated by more
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Fig. 1. Deterministic finite automaton for the RE 1*(2 2|2 3 4 |4 4).

than § elements.” As a special case of the above definition,
we say that s is a contiguous subsequence of ¢ if s is a 1-
distance subsequence of t, i.e., the elements of s can be
mapped to a contiguous segment of ¢.

A sequence s is said to contain a sequence p, if p is a
subsequence of s (or, é-distance subsequence) of s. (The
notion of “subsequence” used should always be clear from
the context.) We define the support of a sequential pattern p
as the fraction of the sequences in the input database that
contain p. Given a set of sequences S, we say that s € S is
maximal if there are no sequences in S — {s} that contain it.

A RE constraint R is specified as a RE over the alphabet
of sequence elements using the established set of RE
operators, such as disjunction (|) and Kleene closure (*)
[7]. Thus, a RE constraint R specifies a language of strings
over the element alphabet or, equivalently, a regular family
of sequential patterns that is of interest to the user. A well-
known result from complexity theory states that REs have
exactly the same expressive power as deterministic finite
automata [7]. Thus, given any RE R, we can always build a
deterministic finite automaton Az such that Az accepts
exactly the language generated by R. Informally, a
deterministic finite automaton is a finite state machine with
1) a well-defined start state (denoted by @) and one or more
accept states and 2) deterministic transitions across states on
symbols of the input alphabet (in our case, sequence
elements). A transmon from state b to state ¢ on element
s; is denoted by b2c. We also use the shorthand b=c to
denote the sequence of transitions on the elements of
sequence s starting at state b and ending in state c¢. A
sequence s is accepted by Ay if following the sequence of
transitions for the elements of s from the start state results
in an accept state. Fig. 1 depicts the state diagram of a
deterministic finite automaton for the RE 1* (22234 |4 4)
(i.e., all sequences of zero or more ones followed by 2 2,
234, or 4 4). Following [7], we use double circles to indicate
an accept state and > to emphasize the start state (a) of the
automaton. For brevity, we will simply use “automaton” as
a synonym for “deterministic finite automaton” in the
remainder of the paper.

3.2 Problem Statement

Given an input database of sequences, we define a
sequential pattern to be frequent if its support in the
database exceeds a user-specified minimum support thresh-
old. Prior work has focused on efficient techniques for the
discovery of frequent patterns, typically ignoring the
possibility of allowing and exploiting flexible structural
constraints during the mining process (Section 2). In this

2. Note that our definition is slightly different from that of Srikant and
Agrawal [12] who consider the 6 bound to be on the “transaction time”
difference of adjacent element occurrences. Nevertheless, the two defini-
tions are equivalent for all practical purposes.

paper, we develop novel, efficient algorithms for mining
frequent sequential patterns in the presence of user-
specified RE constraints. To simplify the presentation, most
of our discussion in the sections that follow focuses on the
case of sequences of simple items with no maximum distance
constraints. Section 5 shows how our schemes can be
extended to handle itemset sequences and distance con-
straints for pattern occurrences. The following definitions
establish some useful terminology for our discussion.

Definition 3.1. A sequence s is said to be legal with respect to
state b of automaton Ag if every state transition in Ag is
defined when following the sequence of transitions for the
elements of s from b.

Definition 3.2. A sequence s is said to be valid with respect to
state bofautomaton Ag if s is legal with respect to band the final
state of the transition path from b on input s is an accept state of
Ar. We say that s is valid if s is valid with respect to the start
state a of A (or, equivalently, if s is accepted by Ag).

Informally, a sequence is legal (respectively, valid)
with respect to some state if its list of elements defines a
proper transition path (respectively, transition path to an
accept state) in the automaton, starting from that state.
The following example helps in illustrating the above
definitions.

Example 3.1. Consider the RE constraint
R=1"(22|234|44)
and the automaton Az, shown in Fig. 1. Sequence

<123>
sequence <34 >

is legal with respect to state a and
is legal with respect to state b,
while sequences < 134> and <24 > are not legal
with respect to any state of Ag. Similarly, sequence
< 34> is valid with respect to state b (since b d
and d is an accept state); however, it is not valid
since it is not valid with respect to the start state a of
Ar. Examples of valid sequences include <1122 >
and <234>.

Having established the necessary notions and terminol-

ogy, we can now provide an abstract definition of our
constrained pattern mining problem as follows:

e Given. A database of sequences D, a user-specified

minimum support threshold, and a user-specified

RE constraint R (or, equivalently, an automaton Ag).

o Find. All frequent and valid sequential patterns in D.

Thus, our objective is to efficiently mine patterns that are

not only frequent but also belong to the language of

sequences generated by the RE R.> To this end, the next

section introduces the SPIRIT family of mining algorithms

for pushing user-specified RE constraints to varying
degrees inside the pattern mining process.

3. Our algorithms can readily handle a set of RE constraints by collapsing
them into a single RE [7].
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Procedure SPIRIT(D , ()

9. Cp=C, - P
10.  // candidate counting

12.  Fj := frequent sequences in C},
13. F:=FUF,
4. k=k+1

17. output sequences in F' that satisfy C
end

begin

1. let C' := a constraint weaker (i.e., less restrictive) than C

2. F:= F) := frequent items in D that satisfy C'

3. k=2

4. repeat {

5. // candidate generation

6. using C' and F generate C}, := { potentially frequent k-sequences that satisfy C’ }
7. // candidate pruning

8. let P := {s € C} : s has a subsequence t that satisfles ' and ¢t ¢ F' }

11.  scan D counting the support for candidate k-sequences in Cy,

15. } until TerminatingCondition(F , C") holds
16. // enforce the original (stronger) constraint C

Fig. 2. The SPIRIT constrained pattern mining framework.

4 MINING FREQUENT AND VALID SEQUENCES: THE
SPIRIT ALGORITHMS

4.1 Overview

Fig. 2 depicts the basic algorithmic skeleton of the SPIRIT
family, using an input parameter C to denote a generic user-
specified constraint on the mined patterns. The output of a
SPIRIT algorithm is the set of frequent sequences in the
database D that satisfy constraint C. At a high level, our
algorithmic framework is similar in structure to the general
a priori strategy of Agrawal and Srikant [2]. Basically,
SPIRIT algorithms work in passes, with each pass resulting
in the discovery of longer patterns. In the kth pass, a set of
candidate (i.e., potentially frequent and valid) k-sequences
C}, is generated and pruned using information from earlier
passes. A scan over the data is then made, during which the
support for each candidate sequence in Cj, is counted and
Fj, is populated with the frequent k-sequences in Cj. There
are, however, two crucial differences between the SPIRIT
framework and conventional a priori-type schemes (like
GSP [12]) or the Constrained APriori (CAP) algorithm [10]
for mining associations with antimonotone and/or succinct
constraints:

1. Relaxing C by inducing a weaker (i.e., less restrictive)
constraint C' (Step 1). Intuitively, constraint C' is
weaker than C if every sequence that satisfies C also
satisfies C'. The “strength” of C’ (i.e., how closely it
emulates C) essentially determines the degree to
which the user-specified constraint C is pushed
inside the pattern mining computation. The choice
of (' differentiates among the members of the SPIRIT
family and leads to interesting trade-offs that are
discussed in detail later in this section.

2. Using the relaxed constraint C' in the candidate genera-
tion and candidate pruning phases of each pass. SPIRIT
algorithms maintain the set F' of frequent sequences
(up to a given length) that satisfy the relaxed
constraint . Both F and C' are used in:

a. the candidate generation phase of pass k
(Step 6), to produce an initial set of candidate
k-sequences Cj, that satisfy C' by appropriately
extending or combining sequences in F' and

b. the candidate pruning phase of pass k (Steps 8-
9), to delete from Cj, all candidate k-sequences
containing at least one subsequence that satisfies
C' and does not appear in F.

Thus, a SPIRIT algorithm maintains the following invariant:
At the end of pass k, F}, is exactly the set of all frequent
k-sequences that satisfy the constraint C'. Note that incorpor-
ating C’ in candidate generation and pruning also impacts
the terminating condition for the repeat loop in Step 15.
Finally, since at the end of the loop, F' contains frequent
patterns satisfying the induced relaxed constraint C’, an
additional filtering step may be required (Step 17).

Given a set of candidate k-sequences Cj, counting
support for the members of Cj, (Step 11) can be performed
efficiently by employing specialized search structures, like
the hash tree [12], for organizing the candidates. The
implementation details can be found in [12]. The candidate
counting step is typically the most expensive step of the
pattern mining process and its overhead is directly
proportional to the size of Cj [12]. Thus, at an abstract
level, the goal of an efficient pattern mining strategy is to
employ the minimum support requirement and any
additional user-specified constraints to restrict as much as
possible the set of candidate k-sequences counted during
pass k. The SPIRIT framework strives to achieve this goal by
using two different types of pruning within each pass k.

e  Constraint-based pruning using a relaxation C' of the
user-specified constraint C; that is, ensuring that all
candidate k-sequences in Cj, satisfy C'. This is
accomplished by appropriately employing C' and F
in the candidate generation phase (Step 6).

e  Support-based pruning; that is, ensuring that all
subsequences of a sequence s in Cj, that satisfy C'
are present in the current set of discovered frequent
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sequences ' (Steps 8-9). Note that, even though all
subsequences of s must in fact be frequent, we can
only check the minimum support constraint for
subsequences that satisfy C' since only these are
retained in F.
Intuitively, constraint-based pruning tries to restrict C, by
(partially) enforcing the input constraint C, whereas sup-
port-based pruning tries to restrict Cj; by checking the
minimum support constraint for qualifying subsequences.
Note that, given a set of candidates C}, and a relaxation C of
C, the amount of support-based pruning is maximized
when C' is antimonotone [10] (i.e., all subsequences of a
sequence satisfying C’ are guaranteed to also satisfy C'). This
is because support information for all of the subsequences
of a candidate sequence s in Cj can be used to prune it.
However, when C' is not antimonotone, the amounts of
constraint-based and support-based pruning achieved vary
depending on the specific choice of C'.

Pushing Nonantimonotone Constraints Inside the
Mining Process. Consider the general problem of mining
all frequent sequences that satisfy a user-specified con-
straint C. If C is antimonotone, then the most effective way
of using C to prune candidates is to push C “all the way”
inside the mining computation. In the context of the SPIRIT
framework, this means using C as is (rather than some
relaxation of C) in the pattern discovery loop. The
optimality of this solution for antimonotone C stems from
two observations. First, using C clearly maximizes the
amount of constraint-based pruning since the strongest
possible constraint (i.e., C itself) is employed. Second, since
C is antimonotone, all subsequences of a frequent candidate
k-sequence that survive constraint-based pruning are
guaranteed to be in F' (since they also satisfy C). Thus,
using the full strength of an antimonotone constraint C
maximizes the effectiveness of constraint-based pruning as
well as support-based pruning. Note that this is exactly the
methodology used in the CAP algorithm [10] for antimo-
notone itemset constraints. An additional benefit of using
antimonotone constraints is that they significantly simplify
the candidate generation and candidate pruning tasks.
More specifically, generating Cj is nothing but an appro-
priate “self-join” operation over Fj_; and determining the
pruned set P (Step 8) is simplified by the fact that all
subsequences of candidates are guaranteed to satisfy the
constraint.

When C is not antimonotone, however, things are not that
clear-cut. A simple solution, suggested by Ng et al. [10] for
itemset constraints, is to take an antimonotone relaxation of
C and use that relaxation for candidate pruning. Never-
theless, this simple approach may not always be feasible.
For example, our RE constraints for sequences do not admit
any nontrivial antimonotone relaxations. In such cases, the
degree to which the constraint C is pushed inside the
mining process (i.e., the strength of the (nonantimonotone)
relaxation C' used for pruning) impacts the effectiveness of
both constraint-based pruning and support-based pruning
in different ways. More specifically, while increasing the
strength of C' obviously increases the effectiveness of
constraint-based pruning, it can also have a negative effect
on support-based pruning. The reason is that, for any given

sequence in C}, that survives constraint-based pruning, the
number of its subsequences that satisfy the stronger, nonantimo-
notone constraint C' may decrease. Again, note that only
subsequences that satisfy C' can be used for support-based
pruning since this is the only “state” maintained from
previous passes (in F).

Pushing a nonantimonotone constraint C’ in the pattern
discovery loop can also increase the computational com-
plexity of the candidate generation and pruning tasks. For
candidate generation, the fact that C' is not antimonotone
means that some (or all) of a candidate’s subsequences may
be absent from F. In some cases, a “brute-force” approach
(based on just ') may be required to generate an initial set
of candidates Cj. For candidate pruning, computing the
subsequences of a candidate that satisfy C' may no longer be
trivial, implying additional computational overhead. We
should note, however, that candidate generation and
pruning are inexpensive CPU-bound operations that typi-
cally constitute only a small fraction of the overall
computational cost. This fact is also clearly demonstrated
in our experimental results (Section 6). Thus, the major
trade-off that needs to be considered when choosing a
specific ¢’ from among the spectrum of possible relaxations
of C is the extent to which that choice impacts the
effectiveness of constraint-based and support-based prun-
ing. The objective, of course, is to strike a reasonable balance
between the two different types of pruning so as to
minimize the number of candidates for which support is
actually counted in each pass.

The SPIRIT Algorithms. The four SPIRIT algorithms for
constrained pattern mining are points spanning the entire
spectrum of relaxations for the user-specified RE constraint
C = R. Essentially, the four algorithms represent a natural
progression, with each algorithm pushing a stronger
relaxation of R than its predecessor in the pattern mining
loop.4 The first SPIRIT algorithm, termed SPIRIT(N) (“N”
for Naive), employs the weakest relaxation of R—it only
prunes candidate sequences containing elements that do
not appear in R. The second algorithm, termed SPIRIT(L)
(“L” for Legal), requires that every candidate sequence be
legal with respect to some state of Az. The third algorithm,
termed SPIRIT(V) (“V” for Valid), goes one step further by
filtering out candidate sequences that are not walid with
respect to any state of Ag. Finally, the SPIRIT(R) algorithm
(“R” for Regular) essentially pushes R “all the way” inside
the mining process by counting support for only wvalid
candidate sequences, i.e., sequences accepted by Ax. Table 2
summarizes the constraint choices for the four members of
the SPIRIT family within the general framework depicted in
Fig. 2. Note that of the four SPIRIT algorithms, SPIRIT(N) is
the only one employing an antimonotone (and, trivial)
relaxation C'. Also, note that the progressive increase in the
strength of C' implies a subset relationship between the
frequent sequences determined for each pass k; that is,

FI;S‘PIRIT(R)

SPIRIT(V)

CF SPIRIT(N)

C F

c F];S‘PIRIT(L)

4. The development of the SPIRIT algorithms is based on the equivalent
automaton form Ag of the user-specified RE constraint R. Algorithms for
constructing Ag from R can be found in the theory literature [7].
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TABLE 2
The Four SPIRIT Algorithms

Algorithm | Input Constraint C | Relaxed Constraint C’
SPIRIT(N) RE constraint R all elements appear in R
SPIRIT(L) RE constraint R legal wrt some state of Ag
SPIRIT(V) RE constraint R valid wrt some state of Ag
SPIRIT(R) RE constraint R valid, i.c., (' =R

Example 4.1. Consider the set of sequences D shown in

Fig. 3a and the automaton Az depicted in Fig. 3b for
R=1"(22|234]44) (from Example 3.1). Let the
minimum support threshold be 0.4; thus, a frequent
sequence must be contained in at least two sequences in
the data set. Figs. 3c, 3d, 3e, and 3f illustrate the sets of
candidate sequences Cj, for which support is computed
by each of the four SPIRIT algorithms. (The details of the

candidate generation and pruning phases are presented
in the remainder of this section.) We also show the
support counts for each candidate in Cj and the frequent
sequences in Fj. (For sequences generated by SPIRIT(L)
and SPIRIT(V), the corresponding state of Az is also
specified.)

Note that, even though the frequent sets Fj, obviously
satisfy the subset relationship mentioned above, the same

()

Data Sct D 1
<1232> 2
<1122> 5 Y
<2434> a @ —& @
<2343> 4
<1123>
(@) (b)
Cg Count
Fs <111> 0
<1l1> <l1l2> 2 7
<12> <113> 1 <1f2>
<13> <122> 2 c1232> Cy Count,
< 22> <123> 2 <123> <1122> 1
<23> <222> 0 <934> <1123> 1
<24> <223> 0 <9243
<34> <224> 0
<43> <234> 2
<243> 2
(c)

State <f§1> Stz;te <1C£31> Co(;mt, ‘State 7,

z <12 a <c112> 2 a <112> State Cy Count
a <929 a <1292> 9 a <122> a <1122> 1
a <23 N <1923> 9 a <123> a <1123> 1
b | <34> a | <234>]| 2 a | <234>

(d)

State jZ) State Cy Count | [ State Iy State Cy Couut
a <22> a <122> 2 a <122> a <l122> 1
b <34> a <234> 2 a <234> a <1234> 0

(e)
7 Cy Count Fy Cy Count,
<2§> <122> 2 <122> <1122> 1
<234> 2 <234> <1234> 0

Fig. 3. Candidates generated by SPIRIT algorithms for R =1*(22 (234 |4 4). (a) Data set, (b) Automaton Az, (c) SPIRIT(N), (d) SPIRIT(L),

(e) SPIRIT(V), and (f)

SPIRIT(R).
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does not necessarily hold for the candidate sets Cj. For
instance, in Fig. 3, both SPIRIT(V) and SPIRIT(R) generate
the sequence < 1234 > that is not generated by either
SPIRIT(N) or SPIRIT(L). This is a direct consequence of the
constraint-based versus support-based pruning trade-off
for nonantimonotone constraints.

The remainder of this section provides a detailed
discussion of the candidate generation and candidate
pruning phases for each of the SPIRIT algorithms. Appro-
priate terminating conditions (Step 15) are also presented.
The quantitative study of the constraint-based versus
support-based pruning tradeoff for the SPIRIT algorithms
is deferred until the presentation of our experimental
results (Section 6).

4.2 The SPIRIT(N) Algorithm

SPIRIT(N) is a simple modification of the GSP algorithm
[12] for mining sequential patterns. SPIRIT(N) simply
requires that all elements of a candidate sequence s in Cj
appear in the RE R. This constraint is clearly antimonotone,
so candidate generation and pruning are performed exactly
as in GSP [12].

Candidate Generation. For every pair of (k — 1)-sequences
s and ¢ in Fj_, if s;; =t; for all 1 <j<k—2, then
< stp_1 > is added to Cj. This is basically a self-join of
Fj—1, the join attributes being the last £ — 2 elements of the
first sequence and the first k — 2 elements of the second.

Candidate Pruning. A candidate sequence s is pruned
from Cj, if at least one of its (k — 1)-subsequences does not
belong to Fj,_;.

Terminating Condition. The set of frequent k-sequences,
F}, is empty.

4.3 The SPIRIT(L) Algorithm

SPIRIT(L) uses the automaton Az to prune from Cj
candidate k-sequences that are not legal with respect to
any state of Ag. In our description of SPIRIT(L), we use
Fy(b) to denote the set of frequent k-sequences that are legal
with respect to state b of Ag.

Candidate Generation. For each state b in A, we add to
C, candidate k-sequences that are legal with respect to b and
have the potential to be frequent.

Lemma 4.2. Consider a k-sequence s that is legal with respect to
state b in Agr, where b-Lsc is a transition in Ax. For s to be
frequent, < sy ---sp_1 > mustbein F,_q(b)and < sy --- s >
must be in Fy,_1(c).

Thus, the candidate sequences for state b can be computed
as follows: For every sequence s in Fj_;(b), if b-Lc is a
transition in Ag, then for every sequence ¢ in Fj_;(c) such
that s;,1 =t; for all 1 < j <k —2, the candidate sequence
< sty—1 > is added to Cj. This is basically a join of Fj_;(b)
and Fj,_1(c) on the condition that the (k — 2)-length suffix of
s € F;,_1(b) matches the (k — 2)-length prefix of ¢t € Fj,_1(c)
and b-5¢ is a transition in Ag.

Candidate Pruning. Given a sequence s in Cj, the
candidate generation step ensures that both its prefix and
suffix of length k —1 are frequent. We also know that in
order for s to be frequent, every subsequence of s must also

be frequent. However, since we only count support for
sequences that are legal with respect to some state of Az,
we can prune s from Cj; only if we find a legal subsequence
of s that is not frequent (i.e.,, not in F). The candidate
pruning procedure computes the set of maximal subse-
quences of s with length less than k that are legal with
respect to some state of automaton Agz. If any of these
maximal subsequences is not contained in F, then s is
deleted from C}.

Example 4.3. Consider the generation of candidate set Cy in
Fig. 3d. For state q,

Fa)={<112>,<122>,<123>,<234>}.

For sequence < 112>, the transition a—1>a is in Ag.
Thus, since the first two elements of <122 > and
< 123> match the last two elements of <112 >,
the sequences <1122> and <1123 > are added
to Cy. Similarly, sequence < 1234 > is also added to
Cy in the candidate generation step, but it is pruned in
the candidate pruning step. This is because <1234 >
has a maximal legal subsequence (i.e., <14 >) that is
not frequent.

We now describe an algorithm for computing the
maximal legal subsequences of a candidate sequence s.
Let maxSeq(b, s) denote the set of maximal subsequences of
s that are legal with respect to state b of Az. Then, if we let
t=<sy---8, >, maxSeq(b,s) can be computed from
maxSeq(b, t) using the following relationship:

maxSeq(b,s) C
{ maxSeq(b,t) U {<s; u>:u € maxSeq(c,t)} U {s } if b-Lic is a transition in Ar

maxSeq(b,t) otherwise.

The intuition is that for a subsequence v € maxSeq(b, s),
either 1) v does not involve s;, in which case v is a maximal
subsequence of ¢ that is legal with respect to b, or 2) v; = s;
and <wy---v, > is a maximal subsequence of t with
respect to state c. Based on the above recurrence, we
propose a dynamic programming algorithm, termed FIND-
MAXSUBSEQ, for computing maxSeq(b, s) for all states b of
Ar (Fig. 4). Intuitively, FINDMAXSUBSEQ works by
computing the set maxSeq for successively longer suffixes
of the input sequence s, beginning with the suffix consisting
of only the last element of s.

More specifically, given an input sequence s and two sets
of states in Ag (Start and End), algorithm FINDMAXSUBSEQ
returns the set of all maximal subsequences t of s such that 1)
the length of ¢ is less than |s| and 2) ¢ is legal with respect to a
state b in Start and if b:t>c, then ¢ € End.In each iteration of
the for loop spanning Steps 3-17, for each state b in Ag,
maximal legal subsequences for the suffix < s;--- 5 > are
computed and stored in maxSeq[b]. At the start of the Ith
iteration, maxSeq[b] contains the maximal subsequences of
< 8141+ 85| > that are both legal with respect to state b and
result in a state in End. Thus, if a transition from b to ¢ on
element s; is in Ay, then the maximal legal subsequences for b
comprise those previously computed for < s;,1 --- sy > and
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if (there exists a sequence w in maxSecq[b] — {< s;--- 5|5 >} such that ¢t is a subsequence of u)

Procedure FINDMAXSUBSEQ(Start, End, s)
begin

1. for each state b in automaton A5 do

2. maxSeq[b] := 0

3. for!:=|s| down to 1 do {

4. for each state b in automaton A do {

5. tmpSeq[b] = 0

6. if (there exists a transition b =% ¢ in Ag) {
7. if (c € End) tmpSeq[b] := {s;}

8. tmpSeq[b] := tmpSeq[b] U{< s; t >: € maxSeq[c]}
9. }

T

11.  for each state b in automaton Az do {

12. maxScq[b] := maxScq[b] U tmpSeq[h]

13. for each scquence ¢ in maxSeq[b] do

14.

15. delete ¢ from maxScq[b]

6. }

17. }

18. return | J,. g4qp¢ maxScq[d] - {s} (after deleting non-maximal sequences)
end

Fig. 4. Algorithm for finding maximal subsequences.

[ maxSeq][a] maxSeq[b] maxSeq|c]
4 {<4>} {<4>}
3 {<4>} {<3>,<34>} | {<4>}
2 {<4>,<23>,<234>} {<2>,<34>} | {<4>}
11{<14>,<123>,<234>,<1234>}|{<2><34>}|{<4>}

Fig. 5. Execution of FINDMAXSUBSEQ for s =< 1234 > .

certain new sequences involving element s;. These new
sequences containing s; are computed in the body of the for
loop spanning Steps 5-9 and stored in tmpSeq[b]. A point to
note is that, since we are only interested in maximal legal
subsequences that result in a state in End, we add s; to
tmpSeq[b] only if ¢ € End (Step 7).

After the new maximal subsequences involving s; are
stored in tmpSeq[b] for every state b of A, they are added
to maxSeq[b], following which, nonmaximal subsequences
in maxSeq[b] are deleted (Steps 11-16).° Finally, after
maximal legal subsequences for the entire sequence s have
been computed for all the states of Az, only those for states
in Start are returned (Step 18).

To recap, the candidate pruning procedure of SPIRIT(L)
invokes FINDMAXSUBSEQ to determine all the maximal
legal subsequences of each candidate s in Cj and deletes s
from C}, if any of these subsequences is not frequent. For
SPIRIT(L), algorithm FINDMAXSUBSEQ is invoked with
Start and End both equal to the set of all states in Ax.

Example 4.4. Fig. 5 illustrates the maxSeq set for the various
states of automaton Ag (from Fig. 3b) and for decreasing
values of [ when FINDMAXSUBSEQ is invoked by

5. In Steps 13-15, we have to be careful not to consider < s;--- s > to
delete other sequences in maxSeq[b] since we are interested in maximal
sequences whose length is less than |s|. If we were to use < s;---5) > to
prune other subsequences, then it is possible that maxSeq[b] for a state b may
only contain the sequence s which has length |s| and other maximal
subsequences of length less than |s| may have been pruned by it.

SPIRIT(L) with s =< 1234 > . Consider the final itera-
tion, i.e.,, [ = 1. At the start of the iteration, maxSeq[a]
contains the sequences < 4>, <23 > and <234>.
Since ai>a, sequences <1>, <14>, <123>, and
<1234 > are added to maxSeq[a] (Steps 7-8). Of
these, sequences <1>, <4>, and <23> are
deleted from maxSeq[a] since they are subsequences
of <14> and <123 > (Steps 14-15). The remaining
subsequences stay in maxSeq[a], since <1234 >
cannot be used to prune nonmaximal subsequences.
Consequently, the final set of maximal legal subse-
quences returned by FINDMAXSUBSEQ is

{<14><123><234>}

Note that, given the candidate s=<s;---s;, > € C},
algorithm FINDMAXSUBSEQ actually needs to check only
the legal subsequences of s that start with s; and end with
si. This is because all other legal subsequences of s are also
legal subsequences of either < s;---s;,_1 > or < sy---s; >
which are themselves frequent and legal (by the Candidate
Generation process). Thus, a possible optimization for
SPIRIT(L) is to invoke algorithm FINDMAXSUBSEQ with

Start = {b : the transition b—>d is in Az}

and

End = {c : the transition d—c is in Ag}.



540 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

(In the above example, this optimization implies that only
subsequence < 14 > would be returned.)

Terminating Condidition. The set of frequent
k-sequences that are legal with respect to the start state
a of Ap is empty; that is, Fi(a) is empty.

Time Complexity. Consider the candidate pruning
overhead for a candidate k-sequence s in Cy. Compared to
the candidate pruning step of SPIRIT(N), which has a time
complexity of O(k) (to determine the k subsequences of s),
the computational overhead of candidate pruning in
SPIRIT(L) can be significantly higher. More specifically,
the worst-case time complexity of computing the maximal
legal subsequences of s using algorithm FINDMAXSUBSEQ
can be shown to be O(k? * | Ar| * [maxSeq(s)|), where |Ag| is
the number of states in Az and |maxSeq(s)| is the number of
maximal legal subsequences for s. To see this, note that the
outermost for loop in Step 3 of FINDMAXSUBSEQ is
executed k times. The time complexity of the first for loop
in Step 4 is O(]Ag| * |maxSeq(s)|), while that of the second
for loop in Step 11 is O(k* |Ag|* |maxSeq(s)|), since
maxSeq[b] can be implemented as a trie, for which
insertions, deletions, and subsequence checking for k-
sequences can all be carried out in O(k) time.

We must point out that the higher time complexity of
candidate pruning in SPIRIT(L) is not a major efficiency
concern since 1) the overhead of candidate generation and
pruning is typically a tiny fraction of the cost of counting
supports for candidates in Cj, and 2) in practice, |maxSeq(s)|
can be expected to be small for most sequences. In the worst
case, however, for a k-sequence, |maxSeq(s)| can be O(2F).
This worst-case scenario can be avoided by imposing an a
priori limit on the size of maxSeq[b] in FINDMAXSUBSEQ
and using appropriate heuristics for selecting victims (to be
ejected from maxSeq[b]) when its size exceeds that limit.

Space Overhead. SPIRIT(N) only utilizes Fj_; for the
candidate generation and pruning phases during the kth
pass. In contrast, the candidate pruning step of SPIRIT(L)
requires F' to be stored in main memory since the maximal
legal subsequences of a candidate k-sequence may be of any
length less than k. However, this should not pose a serious
problem since each Fj, computed by SPIRIT(L) contains only
frequent and legal k-sequences, which are typically few
compared to all frequent k-sequences. In addition, powerful
servers with several gigabytes of memory are now fairly
commonplace. Thus, in most cases, it should be possible to
accommodate all the sequences in F' in main memory. In the
occasional event that F' does not fit in memory, one option
would be to only store Fj_;,...,F;_; for some !> 1. Of
course, this means that maximal subsequences whose
length is less than k — [ cannot be used to prune candidates
from Cj, during the candidate pruning step.

4.4 The SPIRIT(V) Algorithm

SPIRIT(V) uses a stronger relaxed constraint C' than
SPIRIT(L) during candidate generation and pruning. More
specifically, SPIRIT(V) requires every candidate sequence to
be valid with respect to some state of Az.® In our description

6. Note that an alternative approach would be to require candidates to be
legal with respect to the start state of Agz. This approach is essentially
symmetric to SPIRIT(V) and is not explored further in this paper.

of SPIRIT(V), we use Fj,(b) to denote the set of frequent k-
sequences that are valid with respect to state b of Az.

Candidate Generation. Since every candidate sequence
s in C}, is required to be valid with respect to some state
b, it must be the case that the (k — 1)-length suffix of s is
both frequent and valid with respect to state ¢, where
b->Ss¢ is a transition in Ag. Thus, given a state b of Ag,
the set of potentially frequent and valid k-sequences with
respect to b can be generated using the following rule: For
every transition b—oc, for every sequence ¢ in Fi_(c),
add < s; t > to the set of candidates for state b. The set
Cy is simply the union of these candidate sets over all
states b of Ax.

Candidate Pruning. The pruning phase of SPIRIT(V) is
very similar to that of SPIRIT(L), except that only valid
(rather that legal) subsequences of a candidate can be used
for pruning. More specifically, given a candidate sequence s
in Cj, we compute all maximal subsequences of s that are
valid with respect to some state of Az and have length less
than k. This is done by invoking algorithm FINDMAXSUB-
SEQ with Start equal to the set of all states of Az and End
equal to the set of all accept states of Ar. (Again, a possible
optimization for SPIRIT(V) is to use

Start = {b : the transition b——d is in Ag}.)

If any of these subsequences are not contained in F, then s
is deleted from C.

Example 4.5. Consider the generation of candidate set Cj
in Fig. 3e. For state a, Fs(a) contains the sequences
<123 > and <234 >. Since a—a is a transition in
Ar, sequences <1123> and <1234 > are added
to Cy in the candidate generation step. Note that the
sequence <1234 > in C, in Fig. 3e is not pruned
since it has only one maximal valid subsequence,
<234>, which is frequent. The same candidate
sequence was deleted in the pruning step of SPIRIT(L)
because one of its legal subsequences, <14 >, was
not frequent.

Terminating Condition. The set of frequent k-sequences
Fy is empty. Unlike SPIRIT(L), we cannot terminate
SPIRIT(V) based on just Fj(a) becoming empty (where a
is the start state of Ag). The reason is that, even though
there may be no frequent and valid sequences of length &
for a, there could still be longer sequences that are frequent
and valid with respect to a.

4.5 The SPIRIT(R) Algorithm

SPIRIT(R) essentially pushes the RE constraint R “all the
way” inside the pattern mining computation by requiring
every candidate sequence for which support is counted to
be valid (ie., C' = R).

Candidate Generation. Since F' contains only valid and
frequent sequences, there is no efficient mechanism for
generating candidate k-sequences other than a “brute force”
enumeration using the automaton Az. The idea is to
traverse the states and transitions of Az enumerating all
paths of length k that begin with the start state and end at
an accept state. Obviously, each such path corresponds to a
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begin

if (ce B){

}

= © ™o o

0.}

end

Procedure GENCANDIDATES(s, b, B)

1. for each transition b —% ¢ in Ax do {
if (|s| = k — 1 and ¢ is an accept state) Cp, = Cp U {< s w; >}
if (|s| # k — 1 and (c is not an accept state or < s w; >€ F)) {

let s =<t u >, where ¢t is the prefix of s for which a L ¢
Cr:=Cr U {< tuw v><tv>€ ka\u\fl}

else GENCANDIDATES(< s w; >,¢, BU {b})

Fig. 6. Algorithm for generating candidates for SPIRIT(R).

valid k-sequence containing the elements that label the
transitions in the path. (The terms “path” and “sequence”
are used interchangeably in the following description.)

We employ two optimizations to improve the efficiency
of the above exhaustive path enumeration scheme. Our first
optimization uses the observation that, if a path of length
less than k corresponds to a sequence that is valid but not
frequent, then further extending the path is unnecessary
since it cannot yield frequent k-sequences. The second
optimization involves exploiting cycles in Ag to reduce
computation.

Lemma 4.6. Suppose for a path <twu > (of length less than
k), both t and <tw> result in the same state from the
start state a. (That is, u corresponds to a cycle in Ag.)
Then, if the path <twwv> obtained as a result of
extending <tw> with v is to yield a candidate k-
sequence, it must be the case that < twv > is both frequent
and valid.

Consider the generation of candidate k-sequences Cj.
Given a path <twu > satisfying the assumptions of
Lemma 4.6, we only need to extend < ¢ © > with sequences
v for which < ¢ v > belongs to Fj.; | (since the length of
<twv> is less than k). Algorithm GENCANDIDATES,
depicted in Fig. 6, uses these observations in the computation
of Cj. The algorithm enumerates paths by recursively
invoking itself every time it traverses a transition of Ag.
The input parameters to GENCANDIDATES are 1) s, the
sequence corresponding to the transitions traversed so far, 2)
the current state b, which is also the state that results when the
path sis traversed from the start state a of A, and 3) B, the set
of states visited when s is traversed starting from a. In order to
compute the set of candidates Cj, for SPIRIT(R), algorithm
GENCANDIDATES is invoked with input parameters s = ¢
(the empty sequence), b = a, and B = {a}.

The first of our two optimizations is performed in Step 3.
If < s w; > is a valid sequence that is not frequent, then the
edge labeled wj; is not traversed further since no extension
of < s w; > canbe frequent either. Our second optimization
is applied in Steps 4-7. If < s w; > contains a cycle, then
edge w; is not traversed any further. Instead, assuming s =
<twu> with <uw; > causing the cycle, the candidates
that result from extending < s w; > are computed (Step 6).

Example 4.7. Consider the generation of candidate set C;
in Fig. 3f. At the start of the fourth pass, F' contains
the sequences <22 >, <122>,and <234 >. Since
GENCANDIDATES is invoked with parameters ¢, a, and
{a}, for transition aia, the optimization for cycles is
used to generate candidates in Steps 5-6. Here, s =t =
e and w; = 1; thus, sequences v € F3 are appended to
w; to generate candidates. Consequently, <1122 >
and <1234 > are added to C;.

Candidate Pruning. A candidate sequence s in Cj, can be
pruned if a valid subsequence of s is not frequent. The
maximal valid subsequences of s can be computed by
invoking algorithm FINDMAXSUBSEQ with Start equal to
{a} and End equal to the set of all accept states of Axp.

Terminating Condition. For some iteration j,
Fj, ..., Fjiap—1 are all empty, where |Az| is the number
of states in automaton Ag. To see this, consider any
frequent and valid sequence s whose length is greater than
j+ |Ar| — 1. Obviously, s contains at least one cycle of
length at most |Az| and, therefore, s must contain at least
one frequent and valid subsequence of length at least j.
However, no valid sequence with a length greater than or
equal to j is frequent (since Fj, ..., I}, 4,—1 are all empty).
Thus, s cannot be a frequent and valid sequence.

5 EXTENSIONS: ITEMSET SEQUENCES AND
DISTANCE CONSTRAINTS

5.1 Generalization to Itemset Sequences

Recall from Section 3.1 that an itemset sequence is a
sequence whose elements are ifemsets containing one or
more items. Further, for a pair of itemset sequences s and ¢,
s =< s;---8, > is a subsequence of ¢ (or, ¢t contains s) if
|t| > n and there exist integers j; < js < --- < j, such that
s1 Ctj, 82 Ctj,, ..., 8, Ctj,. Finally, an itemset sequence is
frequent if the fraction of data sequences containing it
exceeds the (user-specified) minimum support threshold.
The syntax of RE constraints and the semantics of valid
sequences can be naturally extended to the case of
sequences with itemset elements. The RE constraint R for
itemset sequences has itemsets (containing at least one item)
serving as its basic building blocks. Consequently, transi-
tions between states of automaton Az for R are on itemsets.
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< {1,2} {3} {45} >
< {1,2} {3,4} {4,5} >
< {2} {3,4} >

(@)

‘ Frequent and Valid Sequences | Count
< {1} {5} > 2
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Fig. 7. Frequent and valid sequences for R = {1}({3,4}|{5}). (a) Data set. (b) Automaton for {1}({3,4}|{5}). (c) Frequent and valid sequences.

We define an itemset sequence s =<s;---s, > to be a
restriction of another sequence t =<t;---t, > containing
the same number of elements, if s; C #1,...,s, C t,. Given a
RE constraint R, an itemset sequence s is wvalid if some
restriction of s satisfies R; that is, there exists a restriction of
s that defines an accepting path in the constraint automaton
Ag. Our pattern mining problem for itemset sequences is
essentially the same as before: find all itemset sequences
that are both frequent and valid.

Note the distinction between a restriction and a
subsequence of a sequence t—while a subsequence of ¢
can have fewer elements than ¢, a restriction of ¢ has
exactly the same number of elements as ¢. The notion of a
subsequence is used to define the sequence containment
and frequency, but the stricter notion of restriction is
required to define validity with respect to R since the
length of the valid sequence has to match the length of
the accepting path in Az. We also require every element
of a subsequence/restriction of ¢ to be nonempty (ie.,
contain at least one item).

Example 5.1. Consider the data set in Fig. 7a and the RE
constraint R = {1}({3,4} | {5}) (corresponding to the
automaton Az shown in Fig. 7b). In Ag, aE»b and

<{1} {34}>
a

c. For a minimum support threshold of 0.6 and
the above RE constraint, the frequent and valid
sequences are as shown in Fig. 7c. The itemset sequence
< {1,2} {4,5} > is valid because one of its restrictions
< {1} {56} > satisties R. Furthermore, it is also frequent
since it is contained in the following two data sequences:
<{1,2} {3} {4,5} > and < {1,2}{3,4} {4,5} >. Se-
quences < {1,2} {3} > and < {2} {3,4} > are examples

of frequent sequences that are not valid.
Note that our definition of a valid sequence in terms of its
restriction is both powerful and general. For instance, we can

compute all the frequent itemset sequences for the data set in
Fig. 7aby choosing R tobe ({1} | {2} | {3} | {4} | {5})" since,

for this R, every itemset sequence is valid (by our definition).
In the remainder of this section, we describe in detail how the
SPIRIT(L), SPIRIT(V), and SPIRIT(R) algorithms can be
extended to handle itemset sequences. (The details for
SPIRIT(N) are omitted since they follow directly from the
GSP algorithm of Srikant and Agrawal [12].)

5.1.1 SPIRIT(L) for Itemset Sequences
In the kth pass, the set Cj, consists of all candidate k-item

sequences for which support is counted, where a k-item
sequence is an itemset sequence containing exactly & items.
Givenastate bin A, we define asequence s tobe semilegal with
respecttobif thereexistsarestrictionrof < s - - - Ss—1 > anda
state cin Ag with the following properties: 1) b=>cand 2) there
isatransition out of c for anitemset w; such that either w; C s
or s, € w;. Intuitively, this means that the sequence s either
defines or can be extended (by adding items to s/) to define a
path from b in the constraint automaton Ag. During pass k,
SPIRIT(L) stores in F}, all the frequent k-item sequences that
aresemilegal withrespecttosomestate of A . (Note thatthisset
clearly subsumes all frequent and valid k-item sequences.)
Fig. 8 depicts the frequent and semilegal k-item sequences
computed by SPIRIT(L) for the data set and RE constraint in
Fig. 7. Each table in the figure contains, for each sequence,
the state of Az with respect to which the sequence is
semilegal. In the figure, sequence < {1,2} {3} > is semi-
legal with respect to a since a<:1>}>b and {3} C {3,4} (for
transition b{ﬁ}c). Similarly, sequence < {1,2} {4,5} > is
semilegal with respect to a since a = band {5} C {4,5}

. {5}
(for transition b—-c).

The details of the candidate generation and pruning
steps for SPIRIT(L) are presented below. As in the case of
item sequences, the set of sequences in Fj, that are semilegal
with respect to a specific state b of Ag is denoted by F}.(b).

State Fy
= State I
State Fi a < {172} >

o [<A>| [a [<{p{(sy>| e SiBlE F
b <{31> a < {1} {4} > a <A{1} {45} > tate .
b | <{4}> « | <{1} {5} > o | <{l,2} {3} > a | <{1,2} {4,5} >
b [<{5}> b | <341 > a | <{L2}{4}>

b | <{4,5 > a_ | <{1,2} {5} >

Fig. 8. Frequent and semilegal sequences for R = {1}({3,4}|{5}).
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Candidate Generation. We define a sequence s to be a
restricted prefix of sequence t if sy =t1,...,5y—1 = t—; and
either 1) |s| = |t| — 1, or 2) |s| = |t| and sy C 5. Then, from
our definition of semilegality, it follows that every k-item
sequence s that is semilegal with respect to state b of
automaton Ag (with a first transition of b-5c) must satisfy
the following two properties:

1. If k<|wjl then s contains exactly one element/
itemset s; and s; C w;.

2. Ifk > |wi|, thenw; C s; and the suffix < sy --- sy > is
semilegal with respect to state c. Further, if w; C sy,
then for any item ¢ not contained in w;, < (s; —
{i}) 5255 > is also semilegal with respect to b.
Finally, it is easy to see that there always exists a (k —
1)-item sequence ¢ that is both a restricted prefix of s
and semilegal with respect to b.

In order to illustrate the latter property, consider the 4-item
sequence s =< {1,2} {4,5} > from Fig. 8 that is semilegal
with repect to state a (due to transition aﬁb). Note that the
sequence < {4,5} > is semilegal with respect to b. Further,
< {1} {4,5} > 1is a 3-item sequence (resulting from the
deletion of item 2 from s;) that is also semilegal with respect
to state a. Finally, of the two 3-item restricted prefixes of s,
<{1,2} {4} > and < {1,2} {5} >, the latter is obviously
semilegal with respect to state a.

An implication of the above properties is that every
candidate k-item sequence s can be generated from (k—
1)-item frequent and semilegal sequences in Fj_; that are
either 1) restricted prefixes of s, or 2) derivable from s by
deleting a single item from s;. Thus, for every state b in
automaton Ay and, for every transition bﬂc, we generate
candidate k-item sequences that are semilegal with respect
to b based on the following set of rules: (When possible, we

provide examples of candidate generation for the data set
and RE constraint shown in Fig. 7.)

1. k< |wl. In this case, all k-subsets of w; (that is,
subsets containing k items) whose (k — 1)-subsets are
in Fj_1(b) are added to Cj. As an example, for k =1,
state b, and transition b{g—%}c, candidate 1-sequences
< {3} > and < {4} > are added to C,. Note that, if
any of these subsets prove to be infrequent, then the
transition b—¢ can be safely pruned from the
constraint automaton Az. (As a possible optimiza-
tion, the support for all itemset labels in Az can be
counted in a preprocessing step and transitions with
infrequent labels can be pruned; of course, this
means that all subsets of surviving labels w; can be

directly added to Fj.)

2. k> |w]. In this case, our candidate-generation
process produces two types of candidate k-item
sequences based on the aforementioned properties
of semilegality. For the first type, termed path-
extending candidates, we employ the information
stored in frequent sets Fj(c), where | < k, to try to

“extend” the path corresponding to semilegal (k —
1)-item sequences in Fj_;(b) by appending new
items or itemsets. For the second type, termed first-
element-augmenting candidates, we try to “augment”
the first itemset of (k — 1)-item sequences in Fj_;(b)
by adding new items. More formally:

a. Path-Extending Candidates. For every (k — 1)-item
sequence ¢t =< t; v > in Fj_;(b) (where v can be
any itemset sequence, possibly empty), if there
exists a sequence u in F_j,|(c) such that v is a
restricted prefix of u, then the k-item sequence
s =<ty u>
k=3, state a, and transition ai}b, itemset
sequences < {1} {3,4} > and < {1} {4,5} >
are added to C5. The reason for adding

is added to C). For instance, for

<A{1} {3,4} >

is that < {1} {3} > isin

Fy(a), < {3,4} >
belongs to Fy(b), and < {3} > is a restricted
prefix of < {3,4} > . (Similar justification ap-
plies for the candidate < {1} {4,5} >.) As an
optimization to the above rule, if w; C ¢;, then
we add the sequence s =<t; u > to Cj only if
< (t1 —{i}) u > belongs to Fj_1(b) for every
item ¢ € t; — w;.

b. First-Element-Augmenting Candidates. We have
two distinct candidate-generation rules for aug-
menting the first itemset of a sequence in Fj,_; (b)
that give rise to candidates with |w;| + 1 or more
items in the first itemset. First, if the itemset
sequence < w; > is in Fj_;(b) then, for every
frequent item i, < w; U{i} > is added to Cj.
(Note that this first rule is applicable only for
k=|w;| +1.) As an example, for k = 2, state q,
and transition a—b, our first rule causes the
following itemset sequences to be added to

Cy:< {1,2} >, < {1,3} >, < {1,4} >, and
<{1,5} >.

Second, for each pair of sequences
<(tu{i})u>, < (ttU{j}) u>

belonging to Fj._; (b) for two distinctitems ¢, j, and
such that w; Ct;, the k-item sequence < (t; U
{i,7}) u> 1is added to C}. This is because, as
mentioned earlier, for < (¢, U {i,j}) u> to be
semilegal and frequent, each of < (¢t; U {i}) u >
and < (t; U{j}) v > must also be semilegal and
frequent. (Note that this second rule applies only
for k > |w;| + 1.)
Candidate Pruning. The key idea in this step is to
generate for every candidate k-item sequence s € Cj, all its
subsequences (with fewer than k items) that are semilegal
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Procedure FINDMAXSUBSEQITEMSETS(Start, End, s)

begin

1. for each state b in automaton Ar do

2. maxSeq[b] := 0

3. for!l:=|s| down to 1 do {

4. for each state b in automaton Ax do {

5. tmpSeq[b] =

6. for each transition b — ¢ in Ag such that w; N s; #0 do {

7. if (c € End)

8. if (w; C s;) add s; and all (|s;] — 1)-subsets of s; that contain w; to tmpSeq[b)

9. else add w; N s; and all (Jw; N s;| — 1)-subsets of w; N s; to tmpSeq[b]

10. if (w; C s;) add to tmpSeq[b] all itemset sequences < vy t >, where t is in maxSeq[c] and v
11. is either s; or a (|s;| — 1)-subset of s; that contains w;

12. else if (w; = s;) add to tmpSeq[b] itemset sequences < w; t >, where t is in maxSeq|c]
13. }

4.}

15.  for each state b in automaton Ag do {

16. maxSeq[b] := maxSeq[b] U tmpSeq[b]

17. for each sequence ¢t in maxSeq[b] do

18. if (there exists a sequence u #< s;--- 8, > in maxSeq([b] such that t is a subsequence of u)
19. delete ¢ from maxSeq[b]

20. 1}

21. }

22. return {J, . g;4r¢ maxSeq[b] - {s} (after deleting non-maximal sequences)

end

Fig. 9. Algorithm for finding maximal itemset subsequences.

l maxSeq]a]

maxSeq[b]

2

{< {5} >, < {4,5} >}

1] {< {1} {4,5} >, < {1,2} {6} >, < {1,2} {4,5} >}

{< {5} >, < {4,5} >}

Fig. 10. Execution of FINDMAXSUBSEQITEMSETS for s =< {1,2}{4,5} > .

with respect to some state of Ag. If any of these
subsequences is not frequent, then s cannot possibly be
frequent and can thus be safely deleted from C.
Algorithm FINDMAXSUBSEQITEMSETS in Fig. 9 (similar
to FINDMAXSUBSEQ presented earlier for item sequences)
computes the maximal semilegal subsequences of a
candidate k-item sequence s that contain less than k items.
Each of the sequences is semilegal with respect to a state in
Start and, when applied over the automaton Az, results in
a state in End. In order to compute all the semilegal
subsequences of s, FINDMAXSUBSEQITEMSETS is invoked
with Start and End both equal to the set of all states in Axg.
Similar to INDMAXSUBSEQ, algorithm FINDMAXSUBSE-
QITEMSETS computes the maximal semilegal subsequences
for increasing suffixes of s in each iteration of the for loop
spanning Steps 3-21. The computed semilegal sequences for
a state b are stored in maxSeq[b]. The key differences
between the two algorithms arise in Steps 7-12 and can be
attributed to the fact that every element of s is an itemset
(instead of simply an item). Specifically, for a sequence that
contains a single element/itemset v; and that is semilegal
with respect to state b (due to a first transition of b0, it
must be the case that either w; C v; or v; C w;. The single-
element itemset sequences added to tmpSeq[b] in Steps 8-9

correspond to these two cases. In addition, for sequences

that are semilegal with respect to b (due to a first transition

bﬂc) and that contain two or more elements, the first of
which is v;, it must be the case that w; C v;. These multi-
element sequences are generated in Steps 10-12 of the

algorithm. Note that in Steps 7-12, whenever we generate a

semilegal sequence begining with s;, we also generate

semilegal sequences whose first elements are maximal
subsets of s;. This is because we are interested in maximal
subsequences of s that contain less than k items. If we do not
consider maximal subsets of s;, then it is possible that
maxSeq[b] for a state b may only contain the k-item sequence

S.

Example 5.2. Fig. 10 illustrates the maxSeq set for the
various states of the automaton from Fig. 7 and for
decreasing values of /, when FINDMAXSUBSEQITEMSETS
is invoked by SPIRIT(L) with

s=<{1,2} {4,5} >.

Consider the final iteration, i.e., [ = 1. At the start of the
iteration, maxSeq[b] contains two sequences < {5} >
and < {4,5} > . Since a{gb and s; = {1,2}, sequences
<{1} > and < {1,2} > are added to maxSeq[a] in
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State Fy State F3
State F a < {1} {3} > a < {1} {3,4} >
b < {3} > a < {1} {4} > a < {1} {4,5} > State F,
b < {4} > a < {1} {5} > a < {1,2} {3} > a < {1,2} {4,5} >
b < {5} > b <{3,4} > a <{1,2} {4} >
b < {4,5} > a <{1,2} {6} >

Fig. 11. Frequent and semivalid sequences for R = {1}(3,4}|{5}.

Steps 7-8, and sequences < {1} {5} >, < {1} {4,5} >,
<{1,2} {6} >, and < {1,2} {4,5} > are added to
maxSeq[a] in Steps 10-11. Of these, < {1} {5} >
deleted from maxSeq[a] since it is a subsequence of
both < {1} {4,5} > and < {1,2} {6} > (Steps 17-19).
Consequently, the final set of maximal semilegal
subsequences returned by FINDMAXSUBSEQITEMSETS is

{< A1} {4,5} >, < {1,2} {5} >}.

is

Terminating Condition. The set of frequent sequences
that are semilegal with respect to the start state, Fi(a), is

empty.

5.1.2 SPIRIT(V) for Itemset Sequences

For a state b in Ag, we define a sequence s to be
semivalid with respect to b if there exists a restriction r
of < sp---85-1 > in Az with the
following properties: 1) b=, 2) there is a transition

and a state ¢

¢2d out of ¢ such that either w; C s or sy € w;, and
3) d is an accept state of Ag. Intuitively, this means that
the sequence s either defines or can be extended (by
adding items to sj) to define a path from b to an
accept state in the constraint automaton Ag. SPIRIT(V)
stores in Fj(b) all frequent k-item sequences that are also
semivalid with respect to state b of Az and in Fj all
frequent and semivalid k-item sequences.

Fig. 11 depicts the frequent and semivalid k-item
sequences computed by SPIRIT(V) for the data set and
RE constraint in Fig. 7. Note that the semilegal sequence
< {1,2} > that was generated by SPIRIT(L) is not gener-
ated by SPIRIT(V) since it is not semivalid (the final state b
is not an accept state of Ag). A crucial difference between
semivalid and semilegal sequences is that, for a semivalid
sequence s, a restricted prefix that is also semivalid may
not always exist (unless the last element of s contains two
or more items). For example, the sequence < {1,2} {5} >
is semivalid, but its only restricted prefix < {1,2} > is
not. On the other hand, the sequence < {1,2} {4,5} >
whose last element contains two items has a restricted
prefix < {1,2} {5} > that is semivalid. Thus, the candi-
date generation step of SPIRIT(V), described below,
differs slightly from that of SPIRIT(L).

Candidate Generation. Our definition of semivalidity
implies that every k-item sequence s that is semivalid with
respect to state b of automaton Az (due to a first transition
of b=4c) must satisfy the following two properties:

1. If k<|w]| then c¢ is an accept state of Az and s
contains exactly one element/itemset s; with
s1 C w;.
If k> |wi|, then w; C 5; and the suffix < sy---54 >
is semivalid with respect to state c. Further, if
w; C 51 then, for any item 4 not contained in wj,
< (s1 —{i}) s2--- 5y > 1is also semivalid with
respect to b. Finally, if [sy| > 2, then there exists
a (k—1)-item sequence t that is both a restricted
prefix of s and semivalid with respect to b.

Our candidate-generation rules for SPIRIT(V) are based on
these properties. More specifically, for every state b in the
automaton Az and for every transition b=>c, we generate
candidate k-item sequences that are semivalid with respect
to b as follows:

1. k<|w|. In this case, if ¢ is an accept state, all k-
subsets of w; (that is, subsets containing % items)
whose (k — 1)-subsets are in Fj,_1(b) are added to Cj.
Note that, if any of these subsets prove to be
infrequent, then the (accepting) transition b—>c can
be safely pruned from the constraint automaton Ax.
(A preprocessing optimization similar to that devel-
oped for the same case of SPIRIT(L) is also
applicable here.)

k> |w;|. In this case, our candidate-generation
process again produces two types of candidate k-
item sequences, based on the aforementioned prop-
erties of semivalidity.

a. Path-Extending Candidates. For every sequence u
in Fj,_p,,(c), the k-item sequence s =< w; u > is
added to Cj. An optimization for candidate
sequences s =< w; u > for which the last ele-
ment of u contains more than one item is to add
s to C}, only if there exists a sequence < w; ¢t >
in Fj_1(b) such that t is a restricted prefix of w.
First-Element-Augmenting Candidates. We have
two distinct candidate-generation rules for
augmenting the first itemset of a sequence in
Fj—1(b) that give rise to candidates with |w;| +
1 or more items in the first itemset. First, for
every sequence < w;t> in Fj_(b), the se-
quence < (w;U{i})¢t> is added to Cj for
every frequent item i. An optimization for
sequences < w; t > for which the last element
of ¢t contains more than one item is to add
< (w; U{i})t> to Cj only if there exists a
sequence < (w; U{i})u> in F;_;(b) such that
u is a restricted prefix of ¢. Second, for each
pair of sequences < (H1U{i})u>, < ({1U
{j}) u > Dbelonging to F;_;(b) for two distinct
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Procedure GENCANDIDATEITEMSETS(s, b, B)

begin

1. for each transition b -5 ¢ in Ax do {

2. if (numltems(< s w; >) =k and ¢ is an accept state) C, = Cp U {< s w; >}
3. if (numltems(< s w; >) < k and (c is not an accept state or < s w; >€ Buymltems(<s wi>))) 1
4. if(ceD){

5. let s =<t u >, where t is the prefix of s for which a L

6. Cr:=CrU{<tuw v><tv>€ By numitems(<u wi>) )

7.

8. else GENCANDIDATEITEMSETS(< s w; >, ¢, BU{b})

9. }

10. }

end

Fig. 12. Algorithm for generating candidate base sequences.

items 4,7 and such that w; C¢;, the k-item
sequence < (t; U {4,j}) u> is added to Cj.

Candidate Pruning. For a candidate sequence s in Cj,
algorithm FINDMAXSUBSEQITEMSETS can be used to
compute the maximal semivalid subsequences of s (with
respect to some state of the automaton Az) containing
fewer than k items. The parameter Start is set to be equal to
all the states of Az, while End is the set of all accept states of
Agr. If any of these subsequences is not contained in F', then
s is deleted from Cj.

Terminating Condition. For some j, Fj, ..., FiimazLabel-1
is empty where maxLabel is the maximum number of items
contained in any transition label of automaton Az. The
reason for this is that if there is a frequent and semivalid
sequence s containing (j 4+ maxzLabel) or more items, then
< sy---5, > must also be a semivalid and frequent
sequence containing at least j items and, thus, one of
Fj ..., Fiimasiabei—1 would not be empty.

5.1.3 SPIRIT(R) for ltemset Sequences

During the kth pass, SPIRIT(R) stores in Fj, frequent and
valid k-item sequences. Fig. 7 depicts the frequent and valid
k-item sequences computed by SPIRIT(R) for the data set
and RE constraint in the figure. We shall refer to sequences
that can be derived by concatenating the sequence of
transitions from the start state to an accept state as base
sequences. Sequences that are derived from a base sequence
by adding items to itemsets in the base sequence are
referred to as derived sequences. Thus, every valid sequence is
either a base sequence or a derived sequence. For example,
in Fig. 7, < {1} {5} > is a base sequence and sequences
<{1,2} {5} > and < {1,2} {4,5} > are sequences derived
from it. Note that it is possible for a valid sequence to be
both a base sequence, as well as a derived sequence.

The base candidate itemset sequences containing k items
can be computed in the same manner as in the simple items
case described in Section 4.5. Algorithm GENCANDIDATE
ITEMSETS, depicted in Fig. 12, computes all candidate base
sequences with k items by essentially enumerating paths in
the automaton Ag. In the following, we show how the
derived sequences can also be computed. The set B
denotes the frequent base k-item sequences, while Fj,
denotes all the frequent sequences (base and derived)

containing k items. The function numlItems(s) returns the
total number of items contained in sequence s.

Candidate Generation. As mentioned earlier, candidate
base k-item sequences can be generated by invoking
procedure GENCANDIDATEITEMSETS with input argu-
ments s = ¢ (the empty sequence), b = a (Ag’s start state),
and B = {a}. Candidate derived sequences that result due
to the addition of items to some base sequence of size less
than k can be generated as follows:

1. For each base sequence s in Bj._1, for each element w;
of s, and for each frequentitem ¢, a candidate sequence
containing k items is derived by replacing w; in the
sequence s with w; U {i} (the derived sequence is
added to Cy). Thus, in Fig. 7, for k = 3, since itemset
sequence < {1} {5} > belongs to B,, derived se-
quences < {1,2} {5} > and < {1} {4,5} > (among
others) are added to Cs.

2. For each pair of derived sequences s and ¢ (from the
same base sequence) of length k£ — 1 in F}_,, if it is
the case that for some I,m: s, —t; = {i} and ¢, —
Sm = {j} for two distinct items i and j, and for the
remaining itemsets p #[,m, s, =t,, then the se-
quence < s1--- (8, U{j}) -5, > is added to Cj. To
see why this works, note that if a sequence is derived
from a base sequence by adding two or more items,
then every subsequence that results from deleting
one of the added items is a derived sequence of the
base sequence. Thus, in Fig. 7, for k = 4, sequence
<{1,2} {4,5} > is added to Cj since the pair of
sequences < {1,2} {5} > and < {1} {4,5} > (both
derived from the same base sequence < {1} {5} >)
belong to F3.

Candidate Pruning. For each candidate sequence s in Cj,
if a valid subsequence of s with fewer than & items is not
contained in F, then s is deleted from C,. The maximal
valid subsequences of s can be computed using algorithm
FINDMAXSUBSEQITEMSETS (Fig. 9) with a slight modifica-
tion since we are interested in valid (rather than semivalid)
subsequences. Thus, Step 9 should read “else if (w; = s;)
add w; to tmpSeq[b]” (since if w; Z s;, then s; cannot be part
of a valid sequence involving transition w;). Of course,
algorithm FINDMAXSUBSEQITEMSETS must be invoked
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with Start and End equal to the start and accept states of A,
respectively.

Terminating Condition. For some j, Fj, ..., FjinazPath—1
are all empty, where maxPath is the maximum number of
items along paths of Az that do not contain cycles. To see
this, consider any frequent and valid sequence s containing
greater than j 4 maxPath — 1 items. Obviously, s contains
at least one cycle containing at most maxz Path items and,
therefore, s must contain at least one frequent and valid
subsequence consisting of at least j items. However, no
valid sequence with greater than or equal to j items is
frequent (since Fj, ..., Fiimazpan—1 are all empty). Thus, s
cannot be a frequent and valid sequence.

Optimizations. If a base sequence s contains a cycle in
the automaton Az, then when generating derived candidate
sequences from s that contain numltems(s) + 1 items by
adding an item to an element of s, we can exploit our earlier
cycle optimizations to make this step more efficient. For
instance, let s =< t u v >, where the subsequence u defines
a cycle in Az. Now, <tv > is a base sequence that is
frequent with fewer items than s. Thus, when considering
the items with which an element of ¢ or v of the new longer
base sequence s can be extended by, we only need to
consider the items that, when used to extend the corre-
sponding element of ¢ or v in the shorter base sequence
< twv>, resulted in a frequent itemset sequence. This can
be used to prune the number of candidates derived from
the longer base sequence s by the addition of a single item.

5.2 Handling the Maximum Distance Constraint

In the presence of a distance constraint 6, the problem is to
compute valid sequences s such that the fraction of data
sequences of which s is a é-distance subsequence exceeds
the minimum support threshold (see Section 3.1). A key
difference, when the distance constraint is specified, is that
every subsequence of a frequent sequence may not necessarily also
be frequent [12]. However, every contiguous (i.e., 1-distance)
subsequence of a frequent sequence is still guaranteed to be
frequent. We consider the impact of maximum distance
constraints on the SPIRIT algorithms for both the item and
itemset cases.

Item Sequences. The contiguity requirement for fre-
quent subsequences obviously makes the candidate prun-
ing steps of SPIRIT(N) and SPIRIT(L) presented earlier
inapplicable. However, except for this, the candidate
generation and termination steps remain the same and
can be used to mine sequences in the presence of distance
constraints.

For SPIRIT(V), too, except for the candidate pruning
step, the other steps remain the same. The candidate
pruning phase first computes the maximal prefix of the
candidate k-sequence s whose length is less than k and that
is valid with respect to some state of A (the computation of
this in time O(k * |Ag|) is straightforward). If this maximal
prefix is not contained in F, then the candidate is pruned.

Finally, both the candidate generation and the candidate
pruning steps of SPIRIT(R) need to be modified to handle
the distance constraint. In the candidate generation step, the
second optimization to exploit cycles in the automaton Ax
cannot be used since eliminating cycles from a sequence
does not result in a contiguous subsequence of the original

sequence. Thus, Steps 4-9 that span the body of the if
condition in Step 3 must simply be replaced with
GENCANDIDATES(< s w; >,b, BU{b}). In the candidate
pruning step, a candidate sequence s is pruned from Cj, if
some valid contiguous subsequence of s with length less
than k is not in F (this can be computed in O(k?) steps).

Itemset Sequences. As in the case of simple items, the
contiguity requirement imposed by the maximum distance
constraint mainly affects the candidate pruning phase of the
SPIRIT algorithms. More specifically, the new pruning rules
can be summarized as follows:

e SPIRIT(L). Consider the longest (contiguous) prefix t
of a candidate k-item sequence s, such that a) ¢
contains at most k£ — 1 items and b) ¢ is semilegal with
respect to some state of Ag. If ¢ is not frequent, then
s can be pruned from Cj.

e SPIRIT(V). Consider the longest (contiguous) prefix t
of a candidate k-item sequence s, such that a) ¢
contains at most k — 1 items and b) ¢ is semivalid with
respect to some state of Ag. If t is not frequent then s
can be pruned from Cj.

e SPIRIT(R). Consider any contiguous subsequence ¢
of a candidate k-item sequence s such that a) ¢
contains at most k£ — 1 items and b) ¢ is valid. If ¢ is
not frequent then s can be pruned from Cj.

6 EXPERIMENTAL RESULTS

In this section, we present an empirical study of the four
SPIRIT algorithms with synthetic and real-life data sets. The
objective of this study is twofold: 1) to establish the
effectiveness of allowing and exploiting RE constraints
during sequential pattern mining and 2) to quantify the
constraint-based versus support-based pruning tradeoff for
the SPIRIT family of algorithms (Section 4.1).

In general, RE constraints whose automata contain fewer
transitions per state, fewer cycles, and longer paths tend to
be more selective since they impose more stringent restric-
tions on the ordering of items in the mined patterns. Our
expectation is that, for RE constraints that are more
selective, constraint-based pruning will be very effective
and the latter SPIRIT algorithms will perform better. On the
other hand, less selective REs increase the importance of
good support-based pruning, putting algorithms that use
the RE constraint too aggressively (like SPIRIT(R)) at a
disadvantage. Our experimental results corroborate our
expectations. More specifically, our findings can be sum-
marized as follows:

1. The SPIRIT(V) algorithm emerges as the overall
winner, providing consistently good performance
over the entire range of RE constraints. For certain
REs, SPIRIT(V) is more than an order of magnitude
faster than the “naive” SPIRIT(N) scheme.

2. For highly selective RE constraints, SPIRIT(R) out-
performs the remaining algorithms. However, as the
RE constraint becomes less selective, the number of
candidates generated by SPIRIT(R) explodes and the
algorithm fails to even complete execution for
certain cases (it runs out of virtual memory).
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number of items per term

number of blocks

Fig. 13. Structure of automaton for the RE constraint generator.

3. The overheads of the candidate generation and
pruning phases for the SPIRIT(L) and SPIRIT(V)
algorithms are negligible. They typically constitute
less than 1 percent of the total execution time, even
for complex REs with automata containing large
numbers of transitions, states, and cycles.

Thus, our experimental results validate the thesis of this
paper that incorporating RE constraints into the mining
process can lead to significant performance benefits. All
experiments reported in this section were performed on a
Sun Ultra-2/200 workstation with 512 MB of main
memory, running Solaris 2.5. The data sets were stored
on a local disk.

6.1 Synthetic Data Sets

We used a synthetic data set generator to create a database
of sequences containing items. The input parameters to our
generator include the number of sequences in the database,
the average length of each sequence, the number of distinct
items, and a Zipf parameter z that governs the probability of
occurrence, +/%; %, of each item i in the database. The
length for each sequence is selected from a Poisson
distribution with mean equal to the average sequence
length. Note that an item can appear multiple times in a
single data sequence.

In addition, since we are interested in a sensitivity
analysis of our algorithms with respect to the RE constraint
R, we used a RE generator to produce constraints with a
broad range of selectivities. Each RE constraint output by
the generator consists of blocks and each block in turn
contains terms with the following structure. A term 7 is a
disjunction of items and has the form (s; | s2 |---| s). Each
block B; is simply a concatenation of terms, 11715 ---T),.
Finally, the constraint R is constructed from blocks and has
the form

(BI|BQ|"'|B7L)*

—thus, every sequence that satisfies R is a concatenation of
one or more sequences satisfying the block constraints. The
generic structure of the automaton Az for R is shown in
Fig. 13. RE constraints with different selectivities can be
generated by varying the number of items per term, the
number of terms per block, and the number of blocks in R.
Note that, in terms of the automaton Az, these parameters

number of terms per block

correspond to the number of transitions between a pair of
states in Ay, the length of each cycle, and the number of
cycles contained in Ag, respectively.

The RE generator accepts the maximum number of items
per term, the number of terms per block, and the number of
blocks as input parameters. In the RE constraint that it
outputs, the number of items per term is uniformly
distributed between one and the maximum specified value.
The items in each term of R are chosen using the same
Zipfian distribution that was used to generate the data set.
The RE generator thus enables us to carry out an extensive
study of the sensitivity of our algorithms to a wide range of
RE constraints with different selectivities.

Table 3 shows the parameters for the data set and the
RE constraint, along with their default values and the range
of values for which experiments were conducted. The
default value of z=1.0 was chosen to model an (approx-
imate) 70-30 rule and to ensure that the item skew was
sufficient for some interesting patterns to appear in the data
sequences. In each experiment, one parameter was varied
with all other parameters fixed at their default values.

6.2 Performance Results with Synthetic Data Sets

Maximum Number of Items Per Term. Fig. 14a illustrates
the execution times of the SPIRIT algorithms as the
maximum number of items per term in R is increased. As
expected, as the number of items is increased, the number
of transitions per state in Az also increases and so do the
numbers of legal and valid sequences. Thus, constraint-
based pruning becomes less effective and the performance
of all SPIRIT algorithms deteriorates as more items are
added to each term. As long as the number of items per
term does not exceed 15, R is fairly selective; consequently,
constraint-based pruning works well and the SPIRIT
algorithms that use R to prune more candidates perform
better. For instance, when the maximum number of items
per term is 10, the SPIRIT(N), SPIRIT(L), SPIRIT(V), and
SPIRIT(R) algorithms count support for 7,105, 1,418, 974,
and 3,822 candidate sequences, respectively. SPIRIT(R)
makes only two passes over the data for valid candidate
sequences of lengths 4 and 8. The remaining algorithms
make eight passes to count supports for candidates with
lengths up to 8, a majority of which have lengths 4 and 5.
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TABLE 3
Synthetic Data and RE Constraint Parameters

Parameter Default Value | Range of Values
Number of Sequences 100000 50000 to 250000
Average Length of Sequence 10

Number of Ttems 1000

Zipf Value 1.0

Maximum Number of Items Per Term | 10 2 to 30

Number of Terms Per Block 4 2 to 10

Number of Blocks 4 2 to 10

Minimum Support 1.0 0.5 t0 2.0
Maximum Distance 2 0to 15

However, beyond 15 items per term, the performance of
the algorithms that rely more heavily on constraint R for
pruning candidates degenerates rapidly. SPIRIT(R) sustains
the hardest hit since it performs very little support-based
pruning and its exhaustive enumeration approach for
candidate generation results in an enormous number of
candidates of length 4. In contrast, since SPIRIT(N) only
uses R to prune sequences not involving items in R and
few new items are added to terms in R once the number of
items per term reaches 15, the execution times for the
SPIRIT(N) algorithm hold steady. Beyond 25 items per
term, the running times of SPIRIT(L) and SPIRIT(V) also
stabilize since decreases in the amount of constraint-based
pruning as R becomes less selective and are counter-
balanced by increases in support-based pruning. At 30 items
per term, SPIRIT(V) continues to provide a good balance of
constraint-based and support-based pruning and, thus,
performs the best.

Number of Terms Per Block. The graph in Fig. 14b plots
the running times for the SPIRIT algorithms as the number
of terms per block is varied from 2 to 10. Increasing the
number of terms per block actually causes each cycle
(involving the start state a) to become longer. The initial dip
in execution times for SPIRIT(L), SPIRIT(V), and SPIRIT(R)
when the number of terms is increased from 2 to 4 is due to
the reduction in the number of candidate sequences of
lengths 4 and 5. This happens because with short cycles of
length 2 in Ag, sequences of length 4 and 5 visit the start
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state multiple times and the start state has a large number of
outgoing transitions. But, when Az contains cycles of
length 4 or more, the start state is visited at most once,
thus causing the number of candidate sequences of lengths 4
and 5 to decrease. As cycle lengths grow beyond 4, the
number of legal sequences (with respect to a state in Az)
starts to increase due to the increase in the number of states
in each cycle. However, the number of valid sequences
(with respect to a state in Ag) does not vary much since
each of them is still required to terminate at the start state a.

Note that when the number of terms exceeds six, the
number of candidates generated by SPIRIT(R) simply
explodes due to the longer cycles. On the other hand,
SPIRIT(V) provides a consistently good performance
throughout the entire range of block sizes.

Number of Blocks. Fig. 15a depicts the performance of
the four algorithms as the number of blocks in R is
increased from 2 to 10. The behavior of the four algorithms
has similarities to the “number of items per term” case
(Fig. 14a). The only difference is that, as the number of
blocks is increased, the decrease in R’s selectivity and the
increase in the number of legal and valid sequences in Az
are not as dramatic. This is because the number of blocks
only affects the number of transitions associated with the
start state—the number of transitions for other states in Az
stays the same. Once again, SPIRIT(V) performs well
consistently, for the entire range of numbers of blocks. An
interesting case is that of SPIRIT(R) whose execution time
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Fig. 14. Performance results for (a) number of items and (b) number of terms.
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Fig. 16. Performance results for (a) maximum distance and (b) data set size.

does degrade beyond SPIRIT(V)’s, as the number of blocks
is increased, but it still manages to do better than SPIRIT(L),
even when R contains 10 blocks. This can be attributed
predominantly to the effectiveness of the optimization for
cycles in Ag that is applied during SPIRIT(R)’s candidate
generation phase. In general, due to our cycle optimization,
one can expect the SPIRIT(R) algorithm to perform reason-
ably well, even when Ay contains a large number of cycles
of moderate length.

Minimum Support. The execution times for the SPIRIT
algorithms as the minimum support threshold is increased
from 0.5 to 2.0 are depicted in Fig. 15b. As expected, the
performance of all algorithms improves as the minimum
support threshold is increased. This is because fewer
candidates have the potential to be frequent for higher
values of minimum support. Furthermore, note that the
running times of algorithms that rely more heavily on
support-based pruning improve much more rapidly.

Maximum Distance. Fig. 16a illustrates the effect on
execution times of varying the maximum distance con-
straint 6 from 0 to 15. The performance of all the algorithms
degrades as 6 is increased, since more subsequences
contained within each data sequence satisfy the RE
constraint R and the minimum support constraint. As a
consequence, the number of candidates generated by every

algorithm increases. Also, as discussed in Section 5.2, in the
presence of the distance constraint, very little support-based
pruning is possible. Thus, for algorithms that rely more on
constraint-based pruning, the number of candidates grows
slowly and their performance deteriorates more gradually
as ¢ is increased. For small values of ¢ (e.g., 0, 2), since the
number of candidate sequences generated by the algorithms
is small (SPIRIT(N) and SPIRIT(V) generate 2,249 and
293 candidates, respectively), the running times for all the
algorithms are similar and do not depend much on the
number of candidates.

Data Set Size. The graph in Fig. 16b plots the execution
times of the algorithms as the number of sequences in the
data set is increased. As shown in the figure, the times for
all the SPIRIT algorithms linearly scale with data set size.
This is because the number of candidates generated by each
algorithm is independent of the data set size. Furthermore,
the overall computation time is dominated by the cost of
determining which candidate sequences are contained
within each data sequence (during the support counting
step), which is proportional to the size of the data set.

6.3 Real-Life Data Set

For our real-life data experiments, we used the WWW
server access logs from the web site of an academic
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TABLE 4
Frequent and Valid Patterns Discovered in the WWW Logs

Size | Frequent and Valid Sequences
2 < /main.html /academics/ms-program.html >
3 < /main htm] /general/contacts.html /academics/ms-program.html >

< /main.html /general/nav.html /academics/ms-program.html >

< /main.html /academics/academics.html /academics/ms-program.html >
< /main.html /academics/nav.html /academics/ms-program html >

< /main.html /admissions/nav.html /academics/ms-program.html >

< /main.htm] /admissions/admissions html /academics/ms-program.html >

4 < /main.html /general/nav.html /general/contacts.html /academics/ms-program.html >
< /main html /academics/nav.html /academics/academics.html /academics/ms-program.html >
< /main.html /admissions/nav.html /admissions/admissions.html /academics/ms-program.html >

TABLE 5
Execution Times and Candiate Numbers for the SPIRIT Algorithms

Algorithm | Execution Time (secs) | Number of Candidates | Number of Passes
SPIRIT(N) 1562.8 5896 13
SPIRIT(L) 32.77 1393 10
SPIRIT(V) 16.0. 39 3
SPIRIT(R) 17.67 32 7

CS department.” The logs contain the sequences of web
pages accessed by each user® starting from the department’s
web site, for the duration of a week. The department’s home
page contains links to a number of topics, including
Academics, Admissions, Events, General informa-
tion, Research, People, and Resources. There are
additional links to the university and college home pages to
which the CS department belongs, but we chose not to use
these links in our RE constraint. Users navigate through the
web pages by clicking on links in each page, and the
sequences of pages accessed by a user are captured in the
server logs.

We used a RE constraint to focus on user access
patterns that start with the department’s home page
(located at /main.html) and end at the web page
containing information on the MS degree program
(located at /academics/ms-program.html). In addi-
tion, we restricted ourselves to patterns for which the
intermediate pages belong to one of the aforementioned
seven topics (e.g., Academics). Thus, the automaton Az
contains three states. There is a transition from the first
(start) state to the second on /main.html and a
transition from the second state to the third (accept) state
on /academics/ms-program.html. The second state
has 15 transitions to itself, each labeled with the location
of a web page belonging to one of the above seven topics.
We used a minimum support threshold of 0.3 percent.
The number of access sequences logged in the one week
data set was 12,868.

The mined frequent and valid access patterns are listed
in increasing order of size in Table 4. Note that there is a
number of distinct ways to access the MS degree program
web page by following different sequences of links (e.g., via
admissions, academics). The execution times and the
numbers of candidates generated by the four SPIRIT
algorithms are presented in Table 5. As expected, since

7. At the department’s request, we do not disclose its identity.
8. We use IP addresses to distinguish between users.

the RE constraint is fairly selective, both SPIRIT(V) and
SPIRIT(R) have the smallest running times. SPIRIT(L) is
about twice as slow compared to SPIRIT(V) and SPIRIT(R).
The execution time for SPIRIT(N) is almost two orders of
magnitude worse than SPIRIT(V) and SPIRIT(R) since it
generates a significantly larger number of candidate
sequences with lengths between 5 and 9 (almost 4,000).
We believe that our results clearly demonstrate the
significant performance gains that can be attained by
pushing RE constraints inside a real-life pattern mining task.

7 CoNcLUSIONS AND FUTURE WORK

In this paper, we have proposed the use of Regular
Expressions (REs) as a flexible constraint specification tool
that enables user-controlled focus to be incorporated into
the pattern mining process. We have developed a family of
novel algorithms (termed SPIRIT—Sequential Pattern
mlIning with Regular expresslon consTraints) for mining
frequent sequential patterns that also satisfy user-specified
RE constraints. The main distinguishing factor among the
proposed schemes is the degree to which the RE constraints
are enforced to prune the search space of patterns during
computation. The SPIRIT algorithms are illustrative of the
trade-offs that arise when constraints that do not subscribe
to nice properties (like antimonotonicity) are integrated into
the mining process. To explore these trade-offs, we have
conducted an extensive experimental study on synthetic
and real-life data sets. The experimental results clearly
validate the effectiveness of our approach, showing that
speedups of more than an order of magnitude are possible
when RE constraints are pushed deep inside the mining
process. Our experimentation with real-life data also
illustrates the versatility of REs as a user-level tool for
focusing on interesting patterns.

We believe that integrating user-specified constraints
into mining algorithms is an important and fertile area of
research that has received relatively little attention from the
data mining community. We are actively pursuing several
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open problems in this broad area, including 1) a detailed
characterization of the possible performance trade-offs for
processing nonantimonotone constraints and 2) developing
a taxonomy of nonantimonotone constraints based on key
properties that impact the candidate generation and
pruning phases.
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