QUERY SCHEDULING AND OPTIMIZATION
IN PARALLEL AND MULTIMEDIA
DATABASES

By
Minos N. Garofalakis

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DoCTOR OF PHILOSOPHY

(COMPUTER SCIENCE)

at the
UNIVERSITY OF WISCONSIN — MADISON
1998

Abstract

Effective resource management support for parallelism and multimedia data is an important
mandate for next-generation information systems. In this thesis, we address a number of
resource scheduling issues that arise in the context of query processing and optimization in
parallel and multimedia databases. Our contributions to the area of parallel databases include
the development of a multi-dimensional framework and provably near-optimal algorithms for
scheduling both Time-Shared and Space-Shared resources in hierarchical and shared-nothing
architectures. We also present results from the implementation of our algorithms on top of
a detailed simulation model that verify their effectiveness in a realistic setting. Based on
our scheduling results, we identify a novel cost model for parallel query optimization that
manages to capture all the important execution characteristics of a parallel query plan in only
three “bulk” parameters. In the field of multimedia databases, our contributions span the
areas of resource scheduling for composite multimedia objects, on-line admission control for
multimedia databases, and scheduling support for periodic (i.e., “Pay-Per-View”-style) models
of user service. In all cases, we propose novel algorithmic formulations and solutions and we

study their performance both analytically and experimentally.

ii

Acknowledgements

Looking back on my five-year graduate life (time-sliced between Madison and Murray Hill) the
names of many people that, in one way or another, helped make this thesis possible come to
mind. Among all these names, there is one that clearly stands out above the rest — that of
my advisor Yannis Ioannidis. Yannis has been possibly the sole person responsible for some
of the best decisions that I have made over the past five years, including choosing to join the
UW-Madison graduate program and deciding to work in the area of database systems. As
a researcher, Yannis has been a true source of inspiration throughout our collaboration. His
depth and breadth of scientific knowledge and his hard work ethic, combined with his unique
ability to just “take a step back” and make sense of really messy problems have never ceased
to amaze me over the years. I can only hope that some of all his qualities have rubbed off on
me... But Yannis has been a lot more to me than just an academic advisor and a hard-working
collaborator — he has been a true friend. Our professional (and social) interactions (not to
mention, our weekly basketball battles) are some of the things that I’ve really missed since
Yannis’ decision to move back to Greece. I am truly proud to be counted among his “academic
children” and, hopefully, among his friends.

I would also like to extend my sincerest thanks to Banu Ozden and Avi Silberschatz. During
my extended visits to Bell Laboratories, Banu and Avi were gracious enough to take me “under
their wing” and provide a challenging and, at the same time, friendly environment for me
to work in. I am grateful to Banu and Avi for believing in me. I would also like to thank
professors Jeff Naughton, Anne Condon, Raghu Ramakrishnan, and Rafael Lazimy for serving
on my thesis committee.

Several friends deserve special mention in this thesis for different reasons. Andreas Moshovos,
for always being there to answer my “low-level” systems-related questions, for countless basket-
ball games, and for his hospitality during my last days in Madison. Rajeev Rastogi, Thimios
Panagos, and Alex Biliris, for putting some interest to those long, dull New Jersey weekends.
Vishy Poosala and Chee-Yong Chan, my officemates on the UW “database floor”, for patiently
sitting through several of my practice talks and putting up with my (many) idiosyncrasies.
Dionysis and Natalia Pnevmatikatos, for freely offering me their help and friendship during my
first years in Madison. Natassa Ailamaki, for providing the energy and willingness to help me
out in various situations. Thank you all!

This thesis would not have been possible without the support and encouragement of three

iii
special people: my father Nikos, my mother Xanthippe, and my sister Katerina. Their uncon-

ditional love has been the one true constant throughout my life. This thesis is dedicated to

them.

List of Figures

10
11
12
13
14

15
16

17
18
19

20
21

22

A hierarchical parallel database system L.
(a) A composite multimedia object. (b) The role of admission control.

Random Access service vs. EPPV service

(a) An execution plan tree. (b) The corresponding operator tree. (c) The corre-
sponding query task tree. The thick edges in (b) indicate blocking constraints.
Extremes in usage of d-dimensional resource sites: (a) perfect overlap and (b)
ZEro OVETlap. e e e e e e e e e e e e
Algorithm OPERATORSCHED i vt ittt et e e e e
Algorithm TREESCHED i vt ittt et e e e e e e e
(a) Effect of the granularity parameter (f). (b) Effect of the resource overlap
parameter (€). e e e e e e e

(a) Effect of query size. (b) Average Performance of TREESCHED vs. Optimal.

A site with preemptable and non-preemptable resources (d =3, s =2).
A-granular CGy execution with (a) f= f',and (b) f< f'..
Algorithm PIPESCHED et
Algorithm LEVELSCHED ottt i it e et e e e e e
Effect of A\ on (a) the average performance ratio of TREESCHED, and (b) the
average schedule response times obtained by TREESCHED. (f = 0.6, ¢ = 0.5)
TREEBOUND components for (a) A =0.2, and (b) A =0.8. (f = 0.6, e = 0.5)
Effect of A on (a) the average performance ratio of LEVELSCHED, and (b) the

average schedule response times obtained by LEVELSCHED. (f = 0.6, ¢ =0.5) . .

Experimentation Procedure.o o L o Lo Lo
Simulator query processing architecture.o L
Effect of the coarse granularity parameter f on the performance of LEVELSCHED
for two 32-join workloads with fully declustered base relations (A = 0.15).
Performance of LEVELSCHED and ZETA for (a) Declust and (b) NoDeclust. . .
Performance of LEVELSCHED and ZETA for (a) Declust-1/4 and (b) NoDeclust-
L/40 o,
Performance of LEVELSCHED and ZETA for (a) Random and (b) QueryBased-

Declust (with the “max. memory” flag activated).

v

23

25
32
33

38
38

58
59

60

64
65

71
72

23

24
25
26
27

28
29
30

31

32

33

34

35
36
37

38

39
40
41
42

Performance of LEVELSCHED and ZETA as a function of the data placement

strategy for (a) 40 and (b) 80 system sites (8 MB/site). 74

(a) A 4-ary composite multimedia object. (b) The corresponding object sequence. 77

(a) Upsliding stream X,4. (b) Downsliding stream X,. 80
Algorithm FINDMIN e e e e e 83
(a)The “smaller matching” analogy. (b) A collision with a bitonic C,. (c) Re-

solving the collision by align-ing (Algorithm BiToNic-FINDMIN). 84
Algorithm BITONIC-FINDMIN o oo 85

A “bad” example for L£S: (a) Schedule produced by LS. (b) Optimal schedule. . 86
(a)A 5-ary composite object C. (b) “Naive” stream upsliding. (c) “Clever”
stream upsliding. (d) The shield graph of C. (Thick lines indicate the matching
used in (€).) « - . . Lo e e e 89
Algorithn £8B .« o o o oo o 92
LSB(3) in action: (a)The point of the first backtracking. (b) The locally im-
proved schedule. (c) Placing the next two objects. (d) The final (optimal) schedule. 93
(a) Average schedule response times obtained by £S and MBR(FFDH) for
1000 objects. (b) Average performance ratios of LS and MBR(FFDH) for

1000 objects. e e e e e e 95
(a) Average performance ratios of LS and MBR(FFDH) for 200 Mbps of server

bandwidth. (b) Running times for £S and MBR(FFDH). 96
(a) Algorithm SBP. (b) Algorithm DBP. 103
Algorithm PBP e e 106

(a) Server throughput under Poisson arrivals. (b) Server throughput under
bursty arrivals (random correlation). (c) Server throughput under bursty ar-
rivals (positive correlation). L L L oL 108
(a) Server throughput under bursty arrivals (negative correlation). (b) Server

throughput under bursty arrivals as a function of batch size (negative correla-

tion). (c) Server throughput under Poisson+Short Bursts. 109
(a) A clip matrix. (b) Its layout ondisk. o L. 117
Algorithm PACKCLIPS o e 119
(a) Fine-grained Striping. (b) Coarse-grained Striping. 121

(a) The scheduling tree structure. (b) A tree for the set of tasks in Example 1. . 126

43

44
45
46
47
48
49
50
ol

52
53

vi

(a) Placing a period p under a scheduling tree node without splitting. (b) Period

placement when the nodeissplit. oL oL 127
Algorithm BUILDTREE it e i et 128
Construction of a scheduling tree for the set of tasks in Example 2. 129
Tllustration of the new splitting rule. 130
Algorithm FREESLOT i it 131
Algorithm BUILDEQUIDTREE ittt ie et o 133
Scheduling equidistant subtasks with edge disabling. 134
(a) Workload 1, 30% hot. (b) Workload 1, 10% hot. 138
(a) Workload 2, 50% hot. (b) Mixed Workload (30%-70%), 10% hot. 139
A packing of S’s work vectors in P sites., 164

(a) Fully-Overlapped Case. (b) Partially-Overlapped Case. 172

vii

List of Tables

1 Dimensions of the Query Scheduling Problem 12
2 Notation« . . o e 28
3 Cost Model Experiments: Parameter Settings 37
4 Additional Notation for Ss Resources 48
5 Cost Model Experiments: Parameter Settings 58

Simulation Parameter Settings oo, 66
7 Database Schema and Workload Parameters 70
8 Notation o e e e 78
9 Experimental Parameter Settings 94
10 Experimental Parameter Settings 107
11 Clip and Disk Parameters oo 114
12 Experimental Parameter Settings 137

13 Dimensions of the Query Scheduling Problem and Thesis Contributions 145

Contents

Abstract

Acknowledgements

1

2

3

Introduction

1.1 Parallel Database Systems L

1.2 Multimedia Database Systems L o oL
1.2.1 Composite Multimedia Objects
1.2.2 On-line Admission Control
1.2.3 Periodic Service. L L e e

1.3 Thesis Contributions L e
1.3.1 Parallel Query Scheduling and Optimization.
1.3.2 Scheduling Composite Multimedia Objects
1.3.3 Throughput-Competitive Admission Control
1.3.4 Resource Scheduling Support for Periodic Service
1.3.5 Parallel and Multimedia Query Scheduling: Problem Dimensions

1.4 Thesis Organization e

Related Work

2.1 Parallel Database Systems L
2.2 Multimedia Database Systems Lo oo
2.3 Scheduling Theory and On-Line Algorithms

Parallel Query Scheduling with Multiple Time-Shared Resources

3.1 Problem Formulation oo
3.1.1 Definitionso e e e e e
3.1.2 Overview e e e
3.1.3 Assumptions

3.2 Coarse Grain Parallelization of Operators
3.2.1 Resource Usage Model
3.2.2 Quantifying the Granularity of Parallel Execution
3.2.3 Degree of Partitioned Parallelism

viii

ii

10
11
11
12
13

14
14
16
18

3.3 The Scheduling Algorithm L 28
3.3.1 Notation e 28
3.3.2 Modeling Parallel Execution and Resource Sharing 29
3.3.3 A Near-Optimal Heuristic for Independent Query Tasks 31
3.3.4 Handling Data Dependencies 33
3.3.5 Comments on the Effectiveness of the Heuristics 34

3.4 Experimental Performance Evaluation 34
3.4.1 Experimental Testbed o0 0. 35
3.4.2 Experimental Results o 00000, 37

3.5 Extensions for Malleable Operators 39

3.6 Conclusions e e e e e e 41

Parallel Query Scheduling and Optimization with Time- and Space-Shared

Resources 42
4.1 Problem Formulation o 43
411 OVErvIEW L o e e e e e e e e e e e 44
4.2 Quantifying Partitioned Parallelism. 45
4.2.1 Resource Usage Model oL 45
4.2.2 Quantifying Execution Granularity in the Presence of $S Resources 46
4.2.3 Degree of Partitioned Parallelism 47
4.3 The Scheduling Algorithm Lo 48
4.3.1 Notation and Definitions oo o000 48
4.3.2 Modeling Parallel Execution and Resource Sharing 48
4.3.3 Scheduling Independent Operators 50
4.3.4 Scheduling with Pipelining Constraints 51
4.3.5 Handling Data Dependencies and On-Line Task Arrivals 54
4.4 Experimental Performance Evaluation 55
4.4.1 Experimental Testbedo 55
4.4.2 Experimental Results 0oL, 57
4.5 Parallel Query Optimization 0 Lo oo 60
4.6 Conclusions L e e 62
Performance Evaluation Using Simulation 63
5.1 Execution Environment oo L o 64
5.1.1 Query Processing Architecture 64

5.1.2 Hardware and Operating System Characteristics 65

5.1.3 Comparison with our Earlier Model and Analysis 66
5.2 Experimental Testbed and Methodology 67
5.3 Experimental Results. oo 70
5.3.1 Tuning the Clone Granularity Parameters 70
5.3.2 Effect of Data Placement Strategy 72
54 Conclusions e e e e 75
Resource Scheduling for Composite Multimedia Objects 76
6.1 Definitions and Problem Formulation 7
6.1.1 Composite Objects and Object Sequences Tl
6.1.2 Using Memory to Change Object Sequences: Stream Sliding. 79
6.1.3 Our Scheduling Problem: Sequence Packing 80
6.2 Algorithms for the Sequence Packing Problem 81
6.2.1 The Basic Step: Packing Two Sequences 82
6.2.2 A List-Scheduling Algorithm for Sequence Packing 85
6.2.3 Improving over the MBR Assumption: Monotonic Covers 87
6.2.4 Utilizing Server Memory: Stream Sliding 88
6.2.5 Local Improvements to £S: List-Scheduling with Backtracking (£LSB) . . 90
6.3 Experimental Study L 92
6.3.1 Experimental Testbed o 0. 92
6.3.2 Experimental Results o0 0. 94
6.4 Ongoing Work: Stream Sharing 96
6.5 Conclusions 97

Throughput-Competitive Admission Control for Continuous Media Databases 98

7.1 Problem Formulation o o 99
7.2 Competitive Analysis of Admission Control 100
7.2.1 The Greedy/Work-Conserving Policy 100
722 Lower Bounds e 101
7.2.3 Bandwidth Prepartitioning Policies 102
7.3 Experimental Study L 105
7.3.1 Experimental Testbed L. 105
7.3.2 Experimental Results, 108

7.4 Conclusions o o i i e e e e e e e e 110

8 Periodic Resource Scheduling for Continuous Media Databases

8.1

8.2

8.3
8.4
8.5

8.6

8.7

8.8

8.9

Notation and System Model Lo 0.
8.1.1 Retrieving Continuous Media Data
8.1.2 Multi-Disk Data Organization Schemes
8.1.3 Reducing Disk Latencies: Matrix-Based Allocation
EPPV under Clustering e
8.2.1 Bandwidth Constraint oL
8.2.2 Bandwidth and Storage Constraints
EPPV under Fine-grained Striping oL
EPPV under Coarse-grained Striping
The Scheduling Tree Structure
8.5.1 Periodic Maintenance Scheduling
8.5.2 Scheduling Equidistant Subtasks
8.5.3 Handling Slots with Multi-Task Capacities
Combining Multiple Scheduling Trees
Experimental Performance Evaluation
8.7.1 Experimental Testbed o o 0.
8.7.2 Experimental Results oo 0.
Extensions L e e e e e
8.8.1 Periods greater than Length 00,
8.8.2 Conventional Data Layout
8.8.3 Random Access Service Model

Conclusions o e e e e e e e e e

9 Conclusions and Future Research

9.1 Thesis SUmMmary o oo e e e e e e e
9.2 Future Research
Bibliography

A Proofs of Theoretical Results

Al
A2
A3
A4
A5

Proofs for Chapter 3 e
Proofs for Chapter 4 e
Proofs for Chapter 6o
Proofs for Chapter 7
Proofs for Chapter 8 e

xi
112
113
114
115
117
118
118
120
121
122
124
124
128
132
134
136
136
137
138
138
140
140
142

143
143
144

148

Chapter 1

Introduction

This thesis is concerned with resource scheduling issues that arise during query processing and
query optimization in parallel and multimedia database systems. Judicious scheduling of avail-
able resources is crucial to obtaining fast response times and effective utilization in computing
systems. As a consequence, algorithms for scheduling have been extensively researched since
the 1950’s both in theory and in practice. Parallel database systems attempt to exploit re-
cent multiprocessor architectures and combine database management with parallel processing
in order to build scalable high-performance database servers. Multimedia database systems
take advantage of recent advances in computing, communication, and storage technologies to
provide database functionality for multimedia data, such as images, graphics, audio, video, and
animation, in a number of diverse application domains. Examples of such domains include
digital libraries, satellite image archival and processing, training and education, entertainment,
and medical databases containing X-rays and MRIs. The introduction of parallelism and mul-
timedia data raises a host of novel resource scheduling challenges for the query processing and
optimization component of a database system. In Sections 1.1 and 1.2, we concentrate on par-
allel and multimedia database systems, respectively, focusing on some of these novel challenges.
Our goal is to explore the state of the art, identifying problems that motivated the work in this

thesis, which is oultined in the subsequent sections.

1.1 Parallel Database Systems

Parallelism has been recognized as a powerful and cost-effective means of handling the pro-
jected increases in data size and query complexity in future database applications. Among
all proposals, the shared-nothing [DG92] and, recently, the more general hierarchical (or, hy-
brid) [NZT96, BFV96] multiprocessor architectures have emerged as the most scalable to sup-
port very large database management. In these systems, each site consists of its own set of
local resources and communicates with other sites only by message-passing (Figure 1). De-
spite the popularity of these architectures in both research and commercial environments, the

development of effective and efficient query processing and optimization techniques to exploit

2

their full potential still remains an issue of concern [GHK92, Val93]. To date, our work on
parallel database systems has focused on the resource scheduling problems arising during the
optimization of complex declarative queries for parallel execution. More specifically, we have
concentrated on the design of multi-dimensional query scheduling algorithms for effective, coor-
dinated allocation of multiple resources in hierarchical systems. In the remainder of this section,
we describe the interaction between scheduling and query optimization in parallel database sys-
tems and we motivate the choice of a multi-dimensional problem framework. We also briefly
describe the major shortcomings of earlier approaches. (Related work is discussed extensively

in Chapter 2.)

INTERCONNECTION NETWORK CPU >
SITE NW m TS
1 interface <

SITE SITE o SITE MEMORY SS
2 3 P

Figure 1: A hierarchical parallel database system

Perhaps the major difference between parallel query optimization and its well-understood
centralized counterpart lies in the choice of response time as a more appropriate optimization
metric. This choice of metric implies that the optimizer has to be able to quantify the impact
of parallel execution on the response time of query execution plans. This suggests that it may
not be a good idea to ignore resource scheduling during the optimization process. Prior work
has demonstrated that divorcing the two will often result in a clearly suboptimal plan [JPS93,
BFG'95]. For example, using the traditional work (i.e., total resource consumption) metric
can often result in plans that are inherently sequential and, consequently, unable to exploit the
available parallelism.

On the other hand, using a detailed scheduling model can have a profound impact on
optimizer complexity and optimization cost. To avoid this penalty, many systems have opted
for a two-phase optimization approach. The idea is to divide the optimization process into
a join ordering phase that creates a least work plan using conventional query optimization
techniques, and a parallelization phase that schedules the plan at run-time [HS91, Hon92].
This approach obviously reduces the optimization cost significantly since the optimizer only
needs to explore the parallelizations of a single plan instead the parallelizations of all possible

plans. As we explained earlier, however, this reduction in optimization cost may come at

3

the price of selecting highly suboptimal plans. Nevertheless, even in this case, effective query
scheduling algorithms are still necessary for distributing the execution of the plan on the run-
time environment during the parallelization phase [HM94, CHM95]. Hence, resource scheduling
techniques form an important component of any approach to query processing and optimization
in parallel database systems.

As a result, significant research effort has concentrated on the difficult problem of minimizing
the response time of a single query through parallelization of an execution plan, i.e., scheduling
of the plan’s operators on the system’s sites [CHM95, GW93, HM94, Hon92, HCY94, LCRY93].
Most of these efforts, however, are based on simplifying assumptions that limit their applicabil-
ity. One of the main sources of complexity of query plan scheduling is the multi-dimensionality
of the resource needs of database queries. That is, during their execution queries typically
require multiple resources, such as memory buffers and CPU and disk bandwidth. This in-
troduces a range of possibilities for effectively scheduling system resources among concurrent
query operators, which can substantially increase the utilization of these resources and reduce
the response time of the query. Moreover, system resources can be categorized into two radically

different classes with respect to their mode of usage by query plan operators:

1. Time-Shared (TS) (or, preemptable) resources (e.g., CPUs, disks, network interfaces), that

can be sliced between operators at very low overhead [GHK92]. For such resources, op-
erators specify an amount of work (i.e., the effective time for which the resource is used)

that can be stretched over the operator’s execution time.

2. Space-Shared (ss) resources (e.g., memory buffers), whose time-sharing among operators

introduces prohibitively high overheads [GHK92]. For such resources, operators typically

specify rigid capacity requirements that must be satisfied throughout their execution.

Most previous work on parallel query scheduling has typically ignored the multi-dimensional
nature of database queries. It has simplified the allocation of resources to a mere allocation
of processors, hiding the multi-dimensionality of query operators under a scalar cost metric
like “work” or “time” [CHM95, GW93, HM94, HCY94, LCRY93]. This one-dimensional model
of scheduling is inadequate for database operations that impose a significant load on multiple
system resources. With respect to ss resource allocation, all previous work has concentrated
on simplified models, assuming that all SS resources are globally accessible to all tasks [GGT5,
ST94, NSHL95, CM96]. Clearly, such models do not account for the physical distribution of
resource units or the possibilities of s resource fragmentation. This limits the usefulness of

these models to a shared-everything [DG92] context.

1.2 Multimedia Database Systems

With all the euphoria surrounding the potential benefits of the multimedia revolution, database
researchers are faced with challenges that are pushing the current hardware and software tech-
nology to its limits. The fundamental problem in developing high-performance multimedia
database servers is that images, audio, and other similar forms of data differ from conventional
alphanumeric data in their characteristics, and hence require different techniques for their orga-
nization and management. A fundamental issue is that digital video and audio streams consist
of a sequence of media quanta (video frames or audio samples) which convey meaning only
when presented continuously in time. Hence, a multimedia database server needs to provide a
guaranteed level of service for accessing such continuous media (CM) streams in order to satisfy
their pre-specified real-time delivery rates and ensure intra-media continuity. Given the limited
amount of server resources (e.g., memory, disk bandwidth, disk storage), it is a challenging
problem to design effective resource scheduling algorithms that can provide on-demand support
for a large number of concurrent continuous media clients. To date, our work on query pro-
cessing in multimedia database systems has focused on (a) resource scheduling algorithms for
composite multimedia objects, (b) on-line admission control for CM requests, and (c) scheduling

solutions for supporting periodic (i.e., pay-per-view-like) service models.

1.2.1 Composite Multimedia Objects

An important requirement for multimedia database systems is the ability to dynamically com-
pose new multimedia objects from an existing repository of CM streams. Temporal and spatial
primitives specifying the relative timing and output layout of component CM streams pro-
vide perhaps the most powerful and natural method of authoring such composite multimedia
presentations. Thus, to compose tailored multimedia presentations, a user might define tem-
poral dependencies among multiple CM streams having various length and display bandwidth
requirements. For example, a story for the evening news can start out by displaying a high
resolution video clip with concurrent background music and narration added after an initial
delay (Figure 2(a)). After some time into the story, the video screen is split and a new video
clip starts playing on the left half of the screen. After the second video clip ends, the narration
stops and the story comes to a conclusion with the display of the first clip and the background
music.

In the presence of such composite multimedia objects, a scheduling algorithm must ensure
that the inter-media synchronization constraints defined by the temporal relationships among

CM components are met. Handling these synchronization constraints requires a task model

X4 :video-2
X3 : music
X, :narration
X :video-1

IO~ 202> W

(a)

Figure 2: (a) A composite multimedia object. (b) The role of admission control.

that is significantly more complex than the models employed in scheduling theory and prac-
tice [CM96, GG75, GGJY76]. Furthermore, despite the obvious importance of the problem for
multimedia database systems, our work appears to be the first systematic study of the problems
involved in scheduling multiple composite multimedia objects. We suspect that this is due to
the difficulty of the problems, most of which are non-trivial generalizations of NP-hard opti-
mization problems. Finally, note that although our discussion in this thesis is primarily geared
towards composite objects, our task model also exactly captures the problem of scheduling the
retrievals variable bit rate streams, that is, CM streams whose bandwidth requirements can
vary over time. This is also a very important application of our scheduling framework, since
real-life CM data is nearly always variable rate.

To the best of our knowledge, none of today’s multimedia storage servers offer any clever
scheduling support for composite multimedia presentations. The approach typically employed
is to reserve server resources based on the mazimum (i.e., worst-case) resource demand over
the duration of a composite presentation. Examples of systems using this worst-case resource
reservation method include the Fellini and CineBlitz multimedia storage servers developed
at Bell Labs [MNOT96], Starlight’s StarWorks (http://www.starlight.com/), and Oracle’s
Media Server (http://www.oracle.com/). Conceptually, this approach is equivalent to iden-
tifying the resource requirements of the presentation over time with their enclosing Minimum
Bounding Rectangle (MBR). Although this simplification significantly reduces the complexity

of the relevant scheduling problems, it suffers from two major deficiencies.

1. The volume (i.e., resource-time product [CM96]) in the enclosing MBR can be significantly
larger than the actual requirements of the composite object. This can result in wasting
large fractions of precious server resources, especially for relatively “sparse” composite

objects.

2. The MBR simplification “hides” the timing structure of individual streams from the
scheduler, making it impossible to improve the performance of a schedule through clever

use of memory buffers.

1.2.2 On-line Admission Control

Consider a database server storing a collection of CM clips (i.e., contiguous portions of audio
or video) and a set of on-demand clients issuing requests for the playback of specific CM clips.
Given the limited amount of server resources, providing service level guarantees for CM data
mandates an admission control mechanism, which is invoked whenever a new request arrives to
decide whether to accept or reject the request (Figure 2(b)). By accepting a request, the server
commits to satisfy the resource requirements (e.g., disk bandwidth, memory) of the correspond-
ing playback stream throughout its execution, whereas rejected requests must pursue a different
course of action (depending on the application)!. The effectiveness of the admission control
component is of vital importance for the following reasons. First, the resource requirements of
CM applications are high. Second, they require fractions of the server’s resources to be reserved
to meet their stringent performance requirements. Third, these applications tend to last for
relatively long periods of time. Reserving large portions of the resources for long durations can
result in drastic degradation of server utilization if the server makes wrong decisions whom to
admit.

An important characteristic of admission control is the introduction of an on-line decision
making element — the decision of whether to accept or reject a request has to be made without
any knowledge of future requests, with the understanding that once a request is accepted, it
is guaranteed a level of service throughout its duration (i.e., the schedule is non-preemptive).
Despite its obvious implications, the on-line nature of the admission control problem has, for

the most part, been ignored by prior work on multimedia servers.

1.2.3 Periodic Service

The finite amount of resources available in a multimedia database system obviously places a
hard limit on the number of CM streams that can be simultaneously delivered. For many
application domains (e.g., Movies-on-Demand), a multimedia server typically needs to sustain
levels of concurrency that far exceed the limits imposed by available resource capacities. This
means that the conventional Random Access (or, Fully Interactive) service model that places
resource reservations to allocate independent physical channels for each client, cannot possibly
provide cost-effective solutions in such environments [(“)BRSQ4, (“)BRS%]. As a result, several
data sharing techniques have been proposed in the literature for increasing the number of

concurrent clients beyond the capacity limitations of available resources:

'Our model corresponds to the Full-VOD service model [AGH95, BNGHA96, LV95]. Other service models
have also been explored in the literature (see Section 1.2.3).

7
e Batching [AWY96a, AWY96b, DSS94, SY95] allows several clients waiting in the server’s

queue for the same CM clip to share the same stream.

e Buffering (or Bridging) [KRT95, ORSM95, SG97] uses extra memory buffers in a con-
trolled fashion to allow requests that arrive with a small phase difference with respect to
the start of a stream to fetch their data blocks directly from memory (i.e., with no disk

access).

e Piggybacking [GLM96] allows clients to view the same clip at different display speeds so

that, eventually, they can catch up with each other and share the same stream.

e Enhanced Pay-Per-View (EPPV) (or Periodic) service [OBRS94] assigns each clip a re-
trieval period, typically determined by the clip’s popularity. Streams retrieving a clip are
initiated periodically at offsets equal to the clip’s retrieval period and multiple clients can
share the same stream?. A graphical comparison of EPPV and Random Access service is

depicted in Figure 3.

Random Access service E -
7777777777777777777777 E»]

' - t-

| MM
E‘% server

/ C={clips} .

v

EPPV service | % o

Display period = f (popularity)

Figure 3: Random Access service vs. EPPV service

Work on batching has typically concentrated on different disciplines for scheduling requests
from the server’s queue. The goal is to strike a balance between: (1) fairness, (2) minimiz-

ing average waiting time, and (3) minimizing client reneging probability (i.e., the probability

’Depending on the underlying networking technology, clips can be delivered to clients via uni, multi, or
broadcast channels.

8

that a client’s request is cancelled due to excessive waiting). Scheduling disciplines like FCFS,
Maximum Queue Length (MQL), and Maximum Factored Queue Length (MFQ) have been
proposed and evaluated using simulation models [AWY96a, DSS94]. The main problem with
these batching policies is that they are unpredictable, in the sense that they cannot offer a
guaranteed upper bound on how long a client request must wait in the queue. Furthermore,
results on the behavior of such policies (either analytical or by simulation) are typically based
on specific probabilistic models of “customer reneging behavior” whose accuracy is often ques-
tionable in practice. Buffering is based on the idea that it is possible to trade extra memory
for reduced bandwidth demand. This is a very general approach that is orthogonal to other
data sharing schemes and, consequently, can be incorporated into batching, piggybacking, or
EPPV, as an additional optimization (e.g., to facilitate VCR functionality). However, it should
be noted that with current hardware pricing and stream parameters, trading memory for disk
bandwidth is often a losing proposition [LLG97]. Piggybacking uses the fact that small dif-
ferences in the display rates (e.g., deviations of at most 5% from the normal display rate) are
usually not noticed by the typical viewer. However, difficult implementation issues arise when
MPEG-like compression is used, because of inter-frame dependencies.

Compared to other data sharing schemes (most notably batching), EPPV service offers the
advantage of predictability — the response time for transmission of a clip to a client is bounded by
the clip’s retrieval period>. This retrieval period is typically determined by the service provider,
based on factors such as clip popularity, legal/financial constraints on the distribution rights
of a clip, and specific programming choices. Because of the regular pattern of clip retrievals,
clients can be informed of the exact time that a specific transmission will start. Thus, even
when resources are scarce the EPPV service model can guarantee predictable response times
for all incoming requests. An additional benefit of the regularity of EPPV service is that it can
also support user interaction through VCR-like operations [AA96, ORS96b]. From the service
provider’s perspective, a desirable feature is that it simplifies the periodic scheduling of live
events, such as news and sports events, into the program.

Because of the advantages outlined above and its potential to provide scalable, cost-effective
CM offerings, EPPV is becoming the service model of choice for telecom, cable, broadcast, and
content companies [PRE]. Realizing this potential, however, requires schemes for effectively
scheduling the available disk bandwidth and storage capacity so that high levels of concurrency
and system utilization can be sustained. Two phenomena make this a challenging problem —

the periodic nature of EPPV service and the relatively high latencies of magnetic disk storage.

3In existing television terminology, the term “Pay-Per-View” refers to both a prescheduled playback program
and a certain pricing mechanism. We refer to our service model as EPPV to emphasize the scheduling aspect of
the service without constraining its pricing mechanism.

9

The periodicity of clip retrievals in EPPV servers generates a host of difficult periodic task
scheduling problems that fall within the realm of hard real-time scheduling theory [LL73].
The high disk latencies complicate effective utilization of disk bandwidth and storage with
reasonable amounts of buffer space, which is an important cost factor in multimedia server
design [ORS%b]. The use of multiple disks to handle the high storage volume and bandwidth
requirements of CM data exacerbates the problem. Thus, the need for intelligent scheduling

mechanisms becomes more pronounced as the scale of the system increases.

1.3 Thesis Contributions

In this section, we outline the key research contributions of this thesis. We also identify the
important dimensions of the search space of the query scheduling problem for parallel and

multimedia databases and the portions of that search space explored in this thesis.

1.3.1 Parallel Query Scheduling and Optimization

For simplicity of presentation, we start out by presenting a framework for multi-dimensional
resource scheduling in shared-nothing and hierarchical parallel database systems with sites con-
sisting of TS resources only. Using this framework, we develop an approach that is significantly
more general than earlier work, capturing all forms of intra-query parallelism and exploiting
sharing of multi-dimensional TS resource sites among concurrent plan operators. This allows
scheduling a set of independent query tasks (i.e., operator pipelines) to be seen as an instance
of the multi-dimensional bin-design problem [CGJ84]. Using a novel quantification of coarse
grain parallelism, we present a list scheduling heuristic algorithm that is provably near-optimal
in the class of coarse grain parallel executions (with a worst-case performance ratio that de-
pends on the number of resources per node and the granularity parameter). We then extend
this algorithm to handle the operator precedence constraints in a bushy query plan by splitting
the execution of the plan into synchronized phases. Experimental results based on analytical
cost models for various database operators confirm the effectiveness of our scheduling algorithm
compared both to previous approaches and the optimal solution. Finally, we consider the more
general malleable scheduling problem [Lud95] in which the degree of parallelism for operators
is no longer constrained by a coarse granularity condition. Building on the ideas of Turek et
al. [TWY92], we propose a preprocessing step with which our list scheduling method is provably
near-optimal in the space of all possible parallel schedules.

Having set the stage with the simple (TS only) case, we then go on to extend our problem

10

formulation to address the co-existence of time- and space-sharing and present a general frame-
work for TS and SS resource scheduling in hierarchical parallel database systems. We develop
a general approach capturing the full complexity of scheduling distributed multi-dimensional
resource units for all forms of parallelism within and across queries and operators. We present
a level-based list scheduling heuristic algorithm for independent query tasks (i.e., operator
pipelines) that is provably near-optimal for given degrees of partitioned parallelism (with a
worst-case performance ratio that depends on the number of TS and SS resources per site and
the granularity of the clones). We also provide extensions to handle precedence constraints in
bushy query plans as well as on-line task arrivals (e.g., in a dynamic or multi-query execution
environment). Once again, experimental results based on cost model computations confirm
the effectiveness of our algorithms compared to the optimal solution. Based on our analytical
and experimental results, we revisit the open problem of designing efficient cost models for
parallel query optimization and propose a solution that captures all the important parameters
of parallel execution.

Finally, we present a set of results from the implementation of our resource scheduling
strategies within a detailed simulation environment for shared-nothing and hierarchical database

systems based on the Gamma parallel database system [Bro94].

1.3.2 Scheduling Composite Multimedia Objects

We formulate the resource scheduling problems for composite multimedia objects and we de-
velop novel efficient scheduling algorithms, drawing on a number of techniques from pattern
matching and multiprocessor scheduling. Our formulation is based on a novel sequence packing
problem, where the goal is to superimpose numeric sequences (representing the objects’ resource
needs as a function of time) within a fixed capacity bin (representing the server’s resource ca-
pacity). Given the intractability of the problem, we propose heuristic solutions using a two-step
approach. First, we present a “basic step” method for packing two composite object sequences
into a single, combined sequence. Second, we show how this basic step can be employed within
different scheduling algorithms to obtain a playout schedule for multiple objects. More specifi-
cally, we present an algorithm based on Graham’s list scheduling method [Gra69, GG75] that
is provably near-optimal for monotonic object sequences. We also suggest a number of opti-
mizations on the base list scheduling scheme. Experimental results with randomly generated

composite objects confirm the effectiveness of our approach.

11

1.3.3 Throughput-Competitive Admission Control

We explore the implications of the on-line nature of the admission control problem which have,
for the most part, been ignored in the multimedia literature. Employing competitive analysis
techniques [ST85], we address the problem in its most general form with the following key
contributions: (1) we prove a tight upper bound on the competitive ratio of the conventional
Work-Conserving (WC) policy, showing that it is within a factor % of the optimal clairvoyant
strategy that knows the entire request sequence in advance, where A is the ratio of the maxi-
mum to minimum request length (that is, time duration), and p is the maximum fraction of the
server’s bandwidth that a request can demand; (2) we prove a lower bound of Q(l%g_;%) on the
competitive ratio of any deterministic or randomized admission control scheme, demonstrat-
ing an exponential gap between greedy and optimal on-line solutions; (3) we propose simple
deterministic schemes based on the idea of bandwidth prepartitioning that guarantee competi-
tive ratios within a small constant factor of log A (i.e., they are near-optimal) for sufficiently
large server bandwidth; (4) we introduce a novel admission control policy that partitions the

server bandwidth based on the expected popularities of different request lengths and present

experimental results that demonstrate the benefits of our policy compared to WC.

1.3.4 Resource Scheduling Support for Periodic Service

We provide a comprehensive study of the resource scheduling problems associated with sup-
porting EPPV for CM clips with (possibly) different display rates, frequencies, and lengths.
In particular, given a collection of clips to be scheduled, we present schemes for determining a
schedulable subset of clips under different assumptions about data layout (Clustering, Striping).
Our main objective is to maximize the amount of disk bandwidth that is effectively scheduled
under the given layout and storage constraints. Qur formulation gives rise to AN/P-hard combi-
natorial optimization problems that fall within the realm of hard real-time scheduling theory.
Given the intractability of the problems, we propose novel heuristic solutions with polynomial-
time complexity. We also present experimental results for the average case behavior of the
proposed scheduling schemes and examine how they compare to each other under different
workloads. A major contribution of our work is the introduction of a robust scheduling frame-
work that, we believe, can provide solutions for a variety of realistic EPPV resource scheduling

scenarios, as well as any scheduling problem involving regular, periodic use of a shared resource.

12

1.3.5 Parallel and Multimedia Query Scheduling: Problem Dimensions

Table 1 summarizes the important dimensions of the query scheduling problem for parallel and
multimedia databases, indicating the regions of the search space explored in this thesis. In the
remainder of this section, we provide some additional comments on specific entries of Table 1
that, we feel, deserve further explanation. Table 1 will be revisited in the closing chapter of

this thesis, when summarizing our contributions and discussing future research directions.

| | Parallel DB Systems | Multimedia DB Systems |

Multi-dimensionality Vv Vv

Malleability Vv

On-line scheduling Vv

Time-varying resource demands
Admission control

Periodic service
Impact on Query Vv
Optimization

NN

Table 1: Dimensions of the Query Scheduling Problem

The issue of multi-dimensionality, i.e., concurrent management and allocation of multiple
systems resources, plays a central role in our work on parallel query scheduling and optimization.
With respect to multimedia query scheduling, most of the results presented in this thesis focus
on the disk bandwidth resource, which has typically been the bottleneck for multimedia server
and database applications [RV91, 0BRSQ4, 0R895a]. We do, however, explore some issues of
concurrent disk bandwidth and memory allocation in Chapter 6.

Malleable resource demands describe a scheduling scenario in which the scheduling algorithm
is allowed the additional flexibility of trading off resources for time or, in a more general setting,
some types of resources for others. For example, when scheduling a parallel query plan operator
it may be possible to increase its degree of parallelism and reduce its response time at the
cost of increasing the operator’s overall resource consumption (because of increased startup
and communication overheads) [Lud95, TWY92]. We address some of the malleable resource
scheduling problems in the context of parallel query scheduling in Chapter 3.

On-line scheduling algorithms are necessary to deal with situations where the collection of
jobs to be scheduled arrives over time and is not entirely known beforehand. We explore on-line
scheduling issues in the context of both parallel and multimedia query scheduling. It is also

important to note that many of the suboptimality bounds proven in this thesis for an off-line

13

setting can be directly extended to on-line job arrivals with only a factor of 2 increase in the
bound, thanks to a recent result of Shmoys, Wein, and Williamson [SWW95].

Finally, the impact of query scheduling on query optimization is another important problem
dimension that this thesis explores mostly in the context of parallel database systems. Re-
search on query optimization for multimedia databases is still in its infancy, with no universally
accepted problem models or solutions. Thus, it is very difficult to assess how our results on
multimedia query scheduling will affect the query optimization process. We do, however, offer

some ideas on this issue in the closing chapter of this thesis.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews related work in the
areas of database systems, scheduling, and on-line algorithms. In Chapter 3, we initiate our
study of the parallel query scheduling problem by considering the simpler version of the problem
that assumes only TS resources. The full version of the problem is then addressed in Chapter 4,
where the implications of our results for parallel query optimization are also explored. Chapter 5
discusses our experimental findings from the implementation of our query scheduling algorithms
in a detailed simulation model of a parallel database system. In Chapter 6, we present our work
on the problem of composite multimedia object scheduling. Chapter 7 discusses our results on
on-line admission control for CM database systems. In Chapter 8, we address the problem
of supporting periodic service in CM databases. Finally, Chapter 9 concludes the thesis and
identifies directions for future research. Proofs of theoretical results presented in this thesis can

be found in Appendix A.

14

Chapter 2

Related Work

This chapter surveys related work in the areas of parallel and multimedia database systems,
deterministic scheduling theory, and on-line algorithms, and discusses the relation of earlier
results to the work presented in this thesis. Particular technical references are also given in

specific chapters.

2.1 Parallel Database Systems

The problem of scheduling complex query plans on parallel machines has recently attracted
a lot of attention from the database research community. Hasan and Motwani [HM94] study
the tradeoff between pipelined parallelism and its communication overhead and develop near-
optimal heuristics for scheduling a star or a path of pipelined relational operators on a multipro-
cessor architecture. Chekuri et al. [CHM95] extend these results to arbitrary pipelined operator
trees. The heuristics proposed in these papers ignore both independent and partitioned paral-
lelism. Ganguly and Wang [GW93] describe the design of a parallelizing scheduler for a tree
of coarse grain operators. Based on a one-dimensional model of query operator costs, the au-
thors show their scheduler to be near-optimal for a limited space of query plans (i.e., left-deep
join trees with a single materialization point in any right subtree). Ganguly et al. [GGW95]
obtain similar results for the problem of partitioning independent pipelines without the coarse
granularity restriction. The benefits of resource sharing and the multi-dimensionality of query
operators are not addressed in these papers. Furthermore, no experimental results are reported.
Lo et al. [LCRY93] develop optimal schemes for assigning processors to the stages of a pipeline
of hash-joins in a shared-disk environment. Their schemes are based on a two-phase minimazx
formulation of the problem that ignores communication costs and prevents processor sharing
among stages. Moreover, no methods are proposed for handling multiple join pipelines (i.e.,
independent parallelism).

With the exception of the papers mentioned above, most efforts are experimental in nature
and offer no theoretical justification for the algorithms that they propose. In addition, many

proposals have simplified the scheduling issues by ignoring independent (bushy tree) parallelism;

15

these include the right-deep trees of Schneider [Sch90a] and the segmented right-deep trees of
Chen et al. [CLYY92]. Nevertheless, the advantages offered by such parallelism, especially for
large queries, have been demonstrated in prior research [CYW92].

Tan and Lu [TL93] and Niccum et al. [NSHL95] consider the general problem of scheduling
bushy join plans on parallel machines exploiting all forms of intra-query parallelism and suggest
heuristic methods of splitting the bushy plan into non-overlapping shelves of concurrent joins.
For the same problem, Hsiao et al. [HCY94] propose a processor allocation scheme based on the
concept of synchronous execution time: the set of processors allotted to a parent join pipeline are
recursively partitioned among its subtrees in such a way that those subtrees can be completed
at approximately the same time. For deep execution plans, there exists a point beyond which
further partitioning is detrimental or even impossible, and serialization must be employed for
better performance. Wolf et al. [WTCY94] present a (one-dimensional) hierarchical algorithm
for scheduling multiple parallel queries. Their main idea is to collapse each query plan to a single
“large” parallel job and then apply the known results for independent jobs. This has the serious
drawback that some obvious, critical co-scheduling may be lost. For example, although it may
be highly desirable to combine CPU-bound and I/O-bound tasks from different plans [Hon92],
this may not be possible after the collapse. Wilschut et al. [WFA95] present a comparative
performance evaluation of various multi-join execution strategies on the PRISMA /DB parallel
main-memory database system. Mehta and DeWitt [MD95] and Rahm and Marek [RM95]
present experimental evaluations of various heuristic strategies for determining the degree of
intra-operation parallelism and assigning processors in shared-nothing database systems. Both
of these papers avoid dealing with complex query scheduling issues by assuming workloads
consisting of simple binary joins and/or OLTP transactions. Bouganim et al. [BFV96] propose
methods for optimizing load-balancing on each site of a hierarchical architecture at run-time so
that inter-site data transfers are minimized. In their model, the optimizer still has to determine
the assignment of operators to sites and the run-time environment has to make up for optimizer
inaccuracies. The issue of how the high-level mapping should be done at the optimizer is not
addressed.

A common characteristic of all approaches described above is that they consider a one-
dimensional model of resource allocation based on a scalar cost metric (e.g., “work”), which
ignores any possibilities for effective resource sharing among concurrent operations. Perhaps the
only exception is Hong’s method for exploiting independent parallelism in the XPRS shared-
memory database system [Hon92]. His approach is based on dynamically balancing resource
use between one I/O-bound and one CPU-bound operator pipeline to ensure that the system

always executes at its I/O-CPU balance point. However, the substantial cost of communication

16

renders such a scheduling method impractical for shared-nothing or hierarchical systems.
Finally, it is worth noting that the two resource classes described in Section 1.1 have been
identified in prior work, e.g., the “stretchable” and “non-stretchable” resources of Pirahesh
et al. [PMC*'90] and Ganguly et al. [GHK92]. However, the general problem of scheduling
operator graphs with both types of resources has not been addressed in prior work on databases

or deterministic scheduling theory.

2.2 Multimedia Database Systems

Most prior research in multimedia database systems and multimedia storage servers has concen-
trated on resource management schemes and data organization techniques for efficiently sup-
porting the continuous retrieval of independent, atomic CM streams [BGMJ94, CKY93, Gem95,
GC92, G195, ORS95a, ORSMI5, ORS96¢, RVI1, SGI5]. A number of conceptual models have
been developed for capturing the temporal aspects of CM data and complex multimedia presen-
tations. They can be roughly classified into three categories, namely: graph-based models (e.g.,
object composition petri nets [LG90] and presentation graphs [NTB96)), language-based models
(e.g., HyTime [NKN91] and MHEG [Pri93]), and temporal abstraction models (e.g., temporal
intervals and relations [All83, LG93]). Candan et al. present a method based on linear differ-
ence constraints for defining flexible inter-media synchronization requirements and show how
these constraints can be solved and/or modified to ensure consistency [CPS96a]. Thimm et al.
describe a feedback-based architecture for adapting a multimedia presentation to the changes
in resource availability by modifying the presentation quality [TK96].

The only work prior to ours to address some of the issues in scheduling composite multi-
media objects is that of Chaudhuri et al [CGS95] and Shahabi et al. [SGC95]. However, their
research on composite objects has focused on (a) the use of memory to resolve the problem
of “internal contention”, which occurs when the temporal synchronization constraints cause
stream retrievals for a single object to collide; and, (b) the development of heuristic memory
management policies to distribute a fixed amount of server memory among multiple competing
objects. More specifically, Chaudhuri et al. suggest a conservative and a greedy heuristic for
allocating memory among multiple binary composite objects, under the assumption of regular,
round-robin striping of component streams [CGS95]. However, extending their heuristics to
general, n-ary objects appears to be problematic [CGS95]. Shahabi et al. show how these con-
servative and greedy methods can be adapted to the problem of resolving internal contention
in a single n-ary composite object, again assuming round-robin layout [SGC95]. Although the

authors outline some ideas on how to actually schedule multiple composite objects, they offer

17

no concrete algorithmic solutions for the problem. Furthermore, their development is based
on the assumption of a round-robin distribution of stream fragments across disks, whereas we
assume a more abstract “black-box” model of server disk bandwidth.

Prior research has proposed a number of admission control policies for multimedia servers
that can provide service level guarantees that are either deterministic (i.e., based on worst-
case assumptions) [ORS95a, ORS96a] or stochastic (i.e., based on statistical models of system
behavior) [NMW97, VGGG94]. However, little attention has been paid in the multimedia lit-
erature to the on-line nature of the admission control problem for CM database servers. Long
and Thakur [LT93] present simple adversary arguments to show that no on-line algorithm can
achieve a constant competitive ratio in the context of the Swift distributed I/O architecture.
Aggarwal et al. [AGH95, BNGHAY96] present a competitiveness analysis for a different ser-
vice model, termed Shared Video-On-Demand. Requests are notified of acceptance or rejection
within a server-specified time interval (termed notification interval) from their arrival. Admit-
ted requests waiting for the same clip, can be batched onto a single stream. They show that
allowing for sufficiently large notification intervals (linear in the length of the clips) can guar-
antee constant competitive ratios for simple scheduling algorithms [AGH95, BNGHA96]. The
Shared Video-On-Demand model is different from our model of CM service in the sense that
it tries to capture the effects of wait tolerance and batching on the number of clients served.
Therefore, their results can be viewed as orthogonal to ours. Furthermore, the corresponding
analysis assumes that (a) all CM clips have the same length (i.e., time duration) and require
the same amount of bandwidth, and (b) any two requests by the same client must be separated
by at least the duration of a clip. These assumptions severely limit the applicability of their
results to general CM servers.

Despite the importance of the resource scheduling problem for EPPV service, prior work has
typically concentrated on other issues such as data layout schemes to efficiently support periodic
retrieval [OBRS94, OBRS95], and support for VCR functionality under EPPV [AA96, LLG97].
The matriz-based scheme was designed to support periodic video retrieval for a given period
while minimizing video buffering requirements [OBRS94, OBRS95]. Extensions to the base
scheme that deal with the varying transfer rates of commonly used SCSI disks and different
video display rates were presented in [ORS96b, ORS96c]. Abram-Profeta and Shin [APS97]
used simple queueing models to solve the problem of assigning optimal retrieval periods to the
set of clips stored at an EPPV server. Their models assume that all clips have the same length
and display rate requirement and ignore multi-disk data organization issues. None of the above
efforts has considered the general problem of EPPV resource scheduling and, consequently,

they can be viewed as orthogonal to our work. Only in very recent work, Ozden et al. [ORS97]

18

presented schemes for the periodic retrieval of videos from disk arrays using striping. Their
work, however, addressed only a restricted form of the EPPV resource scheduling problems that
assumes all clips to have identical display rates. Furthermore, they assume specific conditions
on the video lengths that limit the usefulness of their results. Clearly, it is crucial for a CM
server to be able to retrieve clips with arbitrary retrieval periods based on their popularity

without placing any restrictions on the lengths and display rates of clips.

2.3 Scheduling Theory and On-Line Algorithms

Moving away from the database field, there is a significant body of interesting work on task
scheduling in the field of deterministic scheduling theory. Early theoretical work on schedul-
ing focused mainly on the problem of allocating processors to computation-intensive tasks.
Deterministic models for resource-constrained scheduling constitute a relatively recent line of
theoretical research that strives to create more realistic models for scheduling problems through
the introduction of additional scarce resources [BCSW86]. Since the overwhelming majority of
task scheduling problems are NP-hard [BLRK83, GLLRK79, HLvdV97, KSW97], most re-
search efforts have concentrated on providing fast heuristics with provable worst case bounds
on the suboptimality of the solution.

Parallel task scheduling (obviously related to our parallel query scheduling problem) has
attracted significant research interest since Graham’s seminal papers in the late 1960’s [Gra66,
Gra69]. The problem is known to be NP-hard in the strong sense [DL89] and a number
of heuristic approaches have been explored in the scheduling theory literature. However,
scheduling query plans on shared-nothing or hierarchical architectures requires a significantly
richer model of parallelization than what is assumed in the classical [Gra66, GG75, GGJY76,
GLLRKT79] or even more recent [BB90, BB91, KM92, TWY92, WC92, ST94, CM96] efforts in
that field. To the best of our knowledge, there have been no theoretical results in the literature
on parallel task scheduling that consider multiple TS system resources and explore sharing of
such resources among concurrent tasks, or study the implications of pipelined parallelism and
data communication costs. Perhaps most importantly, even the very recent results of Shachnai
and Turek [ST94] and Chakrabarti and Muthukrishnan [CM96] on multi-resource scheduling
are based on the assumption that all resources are globally accessible to all tasks. In contrast,
our target architectures are characterized by a physical distribution of resource units and an
affinity of system resources to sites: an operation scheduled at a particular site can only make
use of the resources locally available to that operation. To the best of our knowledge, there are

no previous theoretical results on multi-resource scheduling in this context.

19

Scheduling composite multimedia objects also introduces novel algorithmic challenges. More
specifically, handling the inter-media synchronization constraints defined by the temporal re-
lationships among CM components requires a task model that is significantly more complex
than the models employed in scheduling theory and practice. Composite multimedia objects
essentially correspond to resource-constrained tasks with time-varying resource demands. Re-
source constraints come from the limited amount of server resources available to satisfy the
requirements of CM streams and time-variability stems from the user-defined inter-media syn-
chronization requirements. To the best of our knowledge, this is a task model that has not been
previously studied in the context of deterministic scheduling theory.

A significant body of research related to our on-line admission control problem has been
conducted in the field of on-line algorithms for bandwidth allocation and circuit routing in
communication networks. Lipton and Tomkins [LT94] study the competitiveness of random-
ized strategies for the non-preemptive On-line Interval Scheduling (OIS) problem, which essen-
tially corresponds to on-line admission control in a server that can support a single playback
stream. Under the assumption that the ratio A of longest to shortest interval is not known
a-priori, they present an O((log A)'*¢)-competitive randomized algorithm and show that no
O(log A)-competitive algorithm can exist. Extensions to their randomized scheme are pre-
sented by Faigle et al. [FGK96]. Awerbuch et al. [ABFR94] examine the more general problem
of non-preemptive circuit routing on tree-structured networks and propose a general random-
ized technique termed “Classify and Randomly Select”. The main idea is to classify on-line
events in disjoint classes and then consider only the events that are assigned to a randomly
selected class. By averaging over all possible random choices, “Classify and Randomly Select”
achieves logarithmic competitive ratios (in an expected sense). However, the idea of an ad-
mission control scheme that considers only one randomly selected class of user requests and
simply ignores all others is obviously not very appealing for CM database servers, since it ig-
nores fundamental requirements such as fairness. Our proposed schemes also employ the idea
of on-line classification, but they also are completely deterministic without compromising near-
optimal competitiveness (for sufficiently large server bandwidth). Awerbuch et al. [AAP93]
consider non-preemptive circuit routing on general networks. They present a deterministic

scheme (called ROUTE_OR_BLOCK) which, assuming that the bandwidth requested by a single

1

m) fraction of edge capacity, achieves a competitive ratio

circuit never exceeds an O(
of O(log nTyaz) , where n is the number of nodes in the network and T},,; is the maximum
duration of a call. They also prove that their scheme is near-optimal for deterministic on-line
routing. The ROUTE_OR_BLOCK algorithm is based on ideas developed for multicommodity

network flow problems. Roughly speaking, the main idea is to assign each edge a “length” that

20

is exponential in its current load and route an incoming circuit only if the length of the short-
est routing path is less than the “benefit” associated with the circuit. However, as reported
by Plotkin [Plo95] and Gawlick [Gaw95], ROUTE_OR_BLOCK exhibited consistently poor per-
formance in an actual implementation. Ad-hoc changes in the algorithm’s parameters were
necessary to improve its behavior. Furthermore, the ROUTE_OR_BLOCK scheme itself is rather
complex and unintuitive and it is not clear how it can benefit from the knowledge of statistical
information, such as request popularities. Finally, we should note that allowing preemption
of requests can lead to better competitive ratios for on-line scheduling and admission control
problems [BKM 191, BNCK'95, FN95, GGK 97, KS91, Woe94]. However, the assumption of

preemptability is unrealistic in the context of CM applications.

21

Chapter 3

Parallel Query Scheduling with
Multiple Time-Shared Resources

In this chapter!, we present a framework for multi-dimensional resource scheduling in shared-
nothing and hierarchical parallel database systems with sites consisting of TS resources only.
Building on the work of Ganguly et al. [GHK92|, we represent query operator costs as work
vectors with one dimension per TS resource. This allows a scheduler to explore the possibilities
for TS resource sharing among concurrent operators and to accurately quantify the effects of
this sharing on query response time. In order to account for the communication overhead of
parallelism, we initially restrict our attention to operator parallelizations that are sufficiently
coarse grain. We present a quantification of the notion of coarse granularity based on the
relative costs of communication and computation and use it to derive the degree of partitioned
parallelism.

Based on this framework, the problem of scheduling a collection of concurrently executed
operators is reduced to an instance of the multi-dimensional bin-design problem [CGJ84] for
work vector packings. Based on this observation, we develop a fast resource scheduling algo-
rithm called OPERATORSCHED that belongs to the class of list scheduling algorithms [Gra66).
The response time (or, makespan) of the parallel schedule produced by OPERATORSCHED is

analytically shown to be

(a) within (2d + 1) of the optimal schedule length for given degrees of partitioned parallelism,

and
(b) within (2d(fd + 1) + 1) of the optimal coarse grain schedule length,

where d is the dimensionality of the work vectors and f is a “small” parameter capturing the
granularity of the parallel execution. We also extend the algorithm to handle the operator prece-
dence constraints in a bushy query plan by splitting the execution of the plan into synchronized

phases. The resulting algorithm, called TREESCHED, uses OPERATORSCHED as a subroutine

!Parts of this chapter have appeared in the Proceedings of the 1996 ACM SIGMOD International Conference
on Management of Data (SIGMOD’96) [GI96].

22

to determine the scheduling of operators within each phase. Experimental results based on
analytical cost models for various database operators confirm the effectiveness of these algo-
rithms compared to previous one-dimensional approaches. In addition, our results show that
the analytical worst-case bounds are rather pessimistic compared to the average performance,
which is extremely close to optimal. Finally, we consider the more general malleable problem
in which the solution is no longer constrained by a coarse granularity condition. Instead, the
scheduler is free to determine the degrees of partitioned parallelism with the objective of min-
imizing response time over all possible parallel schedules. Building on the ideas of Turek et
al. [TWY92], we present a technique that allows our list scheduling rule for independent oper-
ators to achieve a suboptimality bound of (2d + 1) for the malleable problem at the additional

cost of a preprocessing parallelization step.

3.1 Problem Formulation

3.1.1 Definitions

We consider hierarchical parallel systems [BFV96] with identical multiprogrammed resource
sites connected by an interconnection network. Each site is a collection of d system resources
that are assumed to be time-sliceable or preemptable, in the sense that they can be time-shared
among different operations at low overhead. Resources like the CPU(s), the disk(s), and the
network interface(s) or communication processor(s) are preemptable, while memory is not.

An operator tree GHK92, Hon92, Sch90a] is created as a “macro-expansion” of an execution
plan tree by refining each node into a subtree of physical operator nodes, e.g., scan, probe,
build (Figure 4(a,b)). Edges represent the flow of data as well as two forms of timing constraints
between operators: pipelining (thin edges) and blocking (thick edges). With respect to blocking
edges, not only do they imply that an operator cannot start execution until all its children
via blocking edges have finished, but they occasionally imply that all these children must be
executed in parallel and the parent operator must be executed immediately afterwards as well.
This is for instance the case with the build operators of Figure 4(b), which must build their
hash tables in memory in parallel, so that the corresponding probe operators, being executed
immediately after them, find those tables in memory. A query task is a maximal subgraph of
the operator tree containing only pipelining edges. A query task tree is created from an operator
tree by representing query tasks as single nodes (Figure 4(c)).

The above trees clarify the definitions of the three forms of intra-query parallelism:

e Partitioned parallelism: A single node of the operator tree is executed on a set of sites by

23

CproBE 10
HASH JOIN

/ \ HASH JOIN BUIﬁLDb’ “/’ROBE @
> g \

R4 / :
_SCAN(R4)’

/ \ SORTMERGE T4 / BUILDY T MERGES
R3 > som 4\ ‘ ’ ; .
/ \ . SCAN(RS) SORT, | SORT ™
R2 R1 o ; /F K T '
T3 | SCANR?) © . SCAN(RD)
TZV ' T1

(@ (b) (©
Figure 4: (a) An execution plan tree. (b) The corresponding operator tree. (c) The correspond-
ing query task tree. The thick edges in (b) indicate blocking constraints.

appropriately partitioning its input data sets.

o Pipelined parallelism: The operators of a single node of the task tree are executed on a

set of sites in a pipelined manner.

o Independent parallelism: Nodes of the task tree with no path between them are executed
on a set of sites independent of each other (and as mentioned above, they occasionally
must be executed in parallel). For example, in Figure 4, tasks T1-T4 may all be executed
in parallel, with T3-T4 having no other choice but to be executed in parallel. Task Tb5
must await the completion of T1-T4 before it is executed, which should be immediately

after T3-T4 complete.

The home of an operator is the set of sites allotted to its execution. Each operator is either
rooted, if its home is fixed by data placement constraints (e.g., scanning the materialized result

of a previous task), or floating, if the resource scheduler is free to determine its parallelization.

3.1.2 Overview

A parallel schedule consists of (1) an operator tree and (2) an allocation of system resources to
operators. Given a query execution plan, our goal is to find a parallel schedule with minimal
response time. To account for the communication overhead of parallelism, we initially restrict
our attention to partitioned parallelism that is coarse grain [GW93, GY93]. That is, we ignore
operator parallelizations whose ratio of computation costs to communication overhead is not
sufficiently high, as most of them are bound to be ineffective.

Based on the above restriction, we devise an algorithm for scheduling bushy execution plan

trees that consists of the following steps:

24

1. Construct the corresponding operator and task trees, and deterministically split the latter
into synchronized phases [TL93], where each phase contains tasks with no (blocking) paths

between them.

2. For each operator, determine its individual resource requirements using hardware param-

eters, DBMS statistics, and conventional optimizer cost models (e.g., [HCY94, SACT79]).

3. For each floating operator, determine the degree of coarse grain parallelism based on the

relative cost of computation and communication (partitioned parallelism).

4. For each phase of the task tree, schedule all floating operators on the set of available sites
using a multi-dimensional list scheduling heuristic that is provably near-optimal in the

space of coarse grain parallel executions (pipelined and independent parallelism).

We then propose a technique for selecting an operator parallelization that allows us to relax
the coarse granularity restriction (Step 3). Combining this technique with our list scheduling
rule for independent operators results in an algorithm that is provably near-optimal in the space

of all possible parallel executions.

3.1.3 Assumptions

Our approach is based on the following set of assumptions:

Al. No Memory Limitations. An operator is always allotted sufficient memory buffers to
allow the execution of an operator pipeline to proceed in a single phase. For example,
when executing a pipeline of probe operators, the hash tables built on the inner relations
are assumed to be memory-resident. To the best of our knowledge, developing an accurate
memory usage model for parallel query optimization is an open problem; besides being
non-preemptable, memory introduces an additional level of complexity since the resource

requirements of an operator often depend on the amount of available memory.

A2. No Time-Sharing Overhead for Ts Resources. Following Ganguly et al. [GHK92],
slicing a preemptable resource among multiple operators introduces no additional resource

costs.

A3. Uniform TS Resource Usage. Following Ganguly et al. [GHK92], usage of a preempt-

able resource by an operator is uniformly spread over the execution of the operator.

A4. Non-increasing Operator Execution Times. For the range of coarse grain parallelism
considered, an operator’s execution time is a non-increasing function of its degree of

parallelism, i.e., allotting more sites cannot increase its response time.

25

A5. Dynamically Repartitioned Pipelined Outputs. The output of an operator in a
pipeline is always repartitioned to serve as input to the next one. This is almost always
accurate, e.g., when the join attributes of pipelined joins are different, the degrees of
partitioned parallelism differ, or different declustering schemes must be used for load

balancing.

3.2 Coarse Grain Parallelization of Operators

3.2.1 Resource Usage Model

Our treatment of resource usage is based on the model of preemptable resources proposed by
Ganguly et al. [GHK92], which we briefly describe here. The usage of a single resource by an
operator is modeled by two parameters, T' and W, where T is the elapsed time after which
the resource is freed (i.e., the response time of the operator) and W is the work measured as
the effective time for which the resource is used by the operator. Intuitively, the resource is
kept busy by the operator only W/T of the time. Although this abstraction can model the
true utilization of a system resource, it does not allow us to predict exactly when the busy
periods are. Thus, we make assumption A3 which, in conjunction with assumption A2, leads

to straightforward quantification of the effects of resource sharing [GHK92].

TIME TIMEL . ..

TW) = max { Wil }

TW) => Wil
|

RESOURCES RESOURCES

(@ (b)

Figure 5: Extremes in usage of d-dimensional resource sites: (a) perfect overlap and (b) zero
overlap.

We extend the model of Ganguly et al. [GHK92] and describe the usage by an isolated
operator of a site comprising of d preemptable resources by the pair (7°¢4, W). Parameter 1%
is the stand-alone sequential execution time of the operator, while W is a d-dimensional work
vector whose components denote the work done on individual resources. Our model assumes
a fixed numbering of system resources for all sites; for example, dimensions 1, 2, 3, and 4 may

correspond to CPU, disk-1, disk-2, and network interface, respectively. Time 7%¢? is actually a

26

function of the operator’s individual resource requirements, i.e., its work vector W (sometimes
emphasized by using T*¢¢(W) instead of T°¢?), and the amount of overlap that can be achieved
between processing at different resources. This overlap is a system parameter that depends on
the hardware and software architecture of the resource sites (e.g., buffering architecture for disk
I/O) as well as the algorithm implementing the operator. An important constraint for 757,
however, is that it can never be less than the amount of work done on any single resource and
it can never exceed the total work performed. As shown in Figure 52, this is more formally

expressed as

d
max (Wi} <T™(W) < Z_Zl Wli].

3.2.2 Quantifying the Granularity of Parallel Execution

As is well known, increasing the parallelism of an operator reduces its execution time until a
saturation point is reached, beyond which additional parallelism causes a speed-down, due to
excessive communication startup and coordination overhead over too many sites [DGS*90]. To
avoid operating beyond that point, we need to ensure that the granules of the parallel execution
are sufficienty coarse. In particular, in the spirit of Stone [Sto87], we define the granularity of

a d-dimensional parallel operator op as the ratio W),(op)/W,(op, N), where

e W,(op) denotes the total amount of work performed during the execution of op on a
single site, when all its operands are locally resident (i.e., zero communication cost); it
corresponds to the processing area [GW93] of op and is constant for all possible executions

of op; and

e W,(op, N) denotes the total communication overhead incurred when the execution of op is
partitioned among N clones; it corresponds to the communication area of the partitioned

execution of op and is a non-decreasing function of V.

Using the above notions, we extend earlier quantifications of coarse grain parallelism [GW93]

to our multi-dimensional operator model as follows:

Definition 3.2.1 A parallel execution of an operator op on N resource sites is coarse grain
with parameter f (referred to as a CGy execution) if the communication area of the execution

is no more than f times the processing area of op, that is, W,(op, N) < f W,(op). 0

Figure 5 is actually a little misleading since, by assumption A3, the work performed on any resource should
be uniformly spread over T°%.

27

3.2.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the resource requirements of the operator are described by
a d-dimensional work vector W whose components can be derived from system parameters and
traditional optimizer cost models [SACT79]. By definition, the processing area of the operator
W,,(op) is simply the sum of W’s components, i.e., W,(op) = 2% ; W[i].

Let D denote the total size (in bytes) of the operator’s input and output data set(s) that are
transferred over the interconnect. We use a simple model of communication costs in which the
total communication overhead for the parallel execution of an operator on N sites is estimated

as:
We(op,N) =a N+ D,

where «, 8 are architecture-specific parameters specified as follows:
e « is the startup cost for each participating site, and

e (3 is the time spent at the network interface and/or communication processor per unit of

data transferred.

This model of operator communication costs is substantiated by the experimental results of
DeWitt et al. on the Gamma shared-nothing database machine [DGS*90], and simpler forms of
this model have been adopted in previous studies of shared-nothing systems [GMSY93, WFA92].

Note that the startup cost cannot, in general, be distributed among the participating sites.
Rather, it is inherently serial and is incurred at a single site (the designated “coordinator” for
the parallel execution). This implies that there always exists some degree of parallelism beyond
which the startup overhead at the coordinator dominates the actual processing time.

The following proposition is an immediate consequence of Definition 3.2.1 and our commu-

nication cost model.

Proposition 3.2.1 The maximum allowable degree of intra-operator parallelism for a CGy
execution of operator op is denoted by Nyq.(0p, f) and is determined by the formula

IWylo) 5D

(0%

R —

3.3 The Scheduling Algorithm

3.3.1 Notation

28

Table 2 summarizes the notation used in this section with a brief description of its semantics.

Detailed definitions of some of these parameters are given below. Additional notation will be

introduced when necessary.

Parameter | Semantics

P | Number of system sites
d | Site dimensionality (number of TS resources per site)
B; | System site (i.e., “bin”) number j (j =1,..., P)
B | Set of Ts work vectors scheduled at site B;
Ts%¢(B;) | Execution time for all operator clones at site B;
M | Number of operators to be scheduled
op, | Operator, e.g., scan, build (i =1,..., M)
N; | Degree of partitioned parallelism (number of clones) for op;
Wopi Work vector for op; (including communication costs for NV; clones)
T™%(op,;, N;) | Maximum execution time among the N; clones of op, while alone in system
T%¢4(W) | Time of sequential execution of operator with TS resource requirements W
(Section 3.2.1)
S | Set of (floating) operator clones to be scheduled
SW | Set of work vectors for all clones to be scheduled
1(0),1(S?) | Length of a vector v or set of vectors S”

Vector WOPi describes the total (i.e., processing and communication) TS resource require-

Table 2: Notation

ments of op;, given its degree of parallelism N;. Using the notions of communication and

processing area defined in Section 3.2, the above is expressed as

The individual components of WoPi are computed using architectural parameters and database

d
Z Wopi [k] = Wp(opi) + Wc(opia Nz)
k=1

statistics, as well as the ss allotment for op; and our model for communication costs®.

The length of a n-dimensional vector v is its maximum component. The length of a set S

of n-dimensional vectors is the maximum component in the vector sum of all the vectors in S”.

More formally,

[() = max {v[k]} ,

1<k<n

1(8°) = 1?1?5{%;1, v[k]}.

3The actual distribution of work among the vector’s components is immaterial as far as our model is concerned.

29

The performance ratio of a scheduling algorithm is defined as the ratio of the response time
of the schedule it generates over that of the optimal schedule. All the parallel query scheduling
problems addressed in this thesis are non-trivial generalizations of traditional multiprocessor
scheduling [GJ79] and, thus, they are clearly N'P-hard. Given the intractability of the problems,
we focus on developing polynomial time heuristics that are provably near-optimal, i.e., with a
constant bound on the performance ratio.

Since the parallelization of rooted operators is pre-determined, our algorithms are only
concerned with the scheduling of floating operators. Also, for the purposes of this section, the
degree of partitioned parallelism for all floating operators is determined based on a granularity
condition, as shown in Proposition 3.2.1. In short, all algorithms presented in this section
assume a pre-processing step that places rooted operator clones at their respective sites and
computes the degree of coarse grain parallelism for all floating operators. Techniques to relax
the coarse granularity restriction and deal with the more general malleable operator scheduling

problem are discussed in Section 3.5.

3.3.2 Modeling Parallel Execution and Resource Sharing

We present a set of extensions to the (one-dimensional) cost model of a traditional DBMS
based on the multi-dimensional TS resource usage formulation described in Section 3.2.1. Our
extensions account for all forms of parallelism and quantify the effects of TS resource sharing

on the response time of a parallel execution.

Partitioned Parallelism

In partitioned parallelism, the work vector of an operator is partitioned among a set of operator
clones [GHK92]. Each clone executes on a single site and works on a portion of the operator’s
data. Consider an operator op; that is distributed across NN; sites and runs in isolation, without
experiencing resource contention. Partitioning WOPi into the work vectors for the operator
clones is determined based on statistical information kept in the DBMS catalogs. Given such a
partitioning < W1, Wa,...,Wx, >, where 211:;1 Wy = WOPH the parallel execution time for
op; can be expressed as the maximum of the sequential execution times of the N; clones; that
is,

T op,, N;) = max {T*9(W)). (1)

30

Pipelined and Independent Parallelism

In the presence of multiple concurrent operators, we need a more precise definition of a parallel

schedule.

Definition 3.3.1 Given a collection of M operators to be executed concurrently {op;,i =
1... M} and their respective degrees of partitioned parallelism {N;,i =1... M}, a schedule is
a mapping of the Efil N; operator clones to the set of available sites such that no two clones

of the same operator are mapped to the same site. 0

The constraint on the mapping of operator clones to sites ensures that IV; is the true degree of
parallelism for op; so that Equation (1) is still valid.

The effects of time-sharing a site among many operators can be quantified as follows. Let
B]W denote the set of all operator clones (or, equivalently, all work vectors) mapped to site
Bj under a particular schedule. Since all resources are preemptable, the execution time for all
the operator clones scheduled at Bj is determined by the ability to overlap the processing of
resource requests by different operators. Specifically, under our model of preemptable resources
described in Section 3.2.1, the execution time for all the operator clones scheduled at B, is
defined as

T (B;) = max{ _max {T*(W)}, 1(BY) }. (2)
WEB

For example, consider two 2-dimensional operator clones with resource usage pairs (77, W)
= (22,[10,15]) and (757, W3) = (10,[10,5]) placed at B;. In this case, W1+ Wy = [20,20], which
means that the total requirements of the two clones (I({W1,W3}) = 20) can be “squeezed”
into the response time of the first clone (77 = 22), i.e., T*"%(B;) = 22. On the other hand,
consider (T7°7, W) placed at B, with (T3°7, W3) = (10,[5,10]). In this case, W1 + W3 =
[15,25], and the second resource gets congested, i.e., T5%¢(B;) = I({W,W3}) = 25, while
max{T5, T30} = 22

Let SCHED be a schedule for the parallel execution of {op,,i = 1... M} on a set of resource
sites {Bj,j = 1... P}. Clearly, the response time of SCHED is determined by the most heavily
loaded site. Thus, we can combine Equations (2) and (1) to estimate the response time as
follows:

par — site
TP (SCHED, P) 1I<n]aL<XP{T (Bj) }

= max{ max, (e, (T7)}}, max (1B})

31

Observe that the first term on the right-hand side takes the maximum over the sequential
execution times of all concurrent operator clones. So, we can use Equation (1) to obtain

par — max) . w
TP (SCHED, P) = max{ max, T™% (op;, Ni)}, llsnja,SxP{I(BJ)} (3)

Equation (3) defines the optimization metric for our scheduling algorithm, described in the next
section. Intuitively the formula states that the response time of a parallel execution schedule is
determined by either the slowest executing operator, or the load at the most heavily congested

resource in the system, whichever is greater.

3.3.3 A Near-Optimal Heuristic for Independent Query Tasks

In this section, we develop a provably near-optimal heuristic for scheduling independent query
tasks. In Section 3.3.4, we address the general query task tree scheduling problem. A collec-
tion of independent query tasks (pipelines) is essentially a collection of operators that can be
executed concurrently. Operators within each task form producer-consumer pairs that commu-
nicate across the interconnection network, whereas operators in different tasks are completely
independent.

More specifically, let S denote the set of all (floating) operators to be scheduled and let
N = Ziﬂil N;, where the degree of parallelism V; is determined by Proposition 3.2.1 for op, € S.
As discussed earlier, the degree of parallelism and the mapping of rooted operators is fixed by
data placement. Hence, depending on the operator type (rooted or floating), the left input
of max in (3), ie., T™%(op;, N;), is either fixed or minimized. Consequently, minimization
of response time (equation (3)) translates to determining a mapping of the N work vectors

obtained through the cloning of operators in S to the P d-dimensional sites, such that
(A) no two vectors from the same operator are mapped to the same site,
(B) data placement constraints for rooted operators are satisfied, and

(C) the maximum resource usage among all system resources, i.e., the right input of max in

(3), is minimized.

This is essentially an instance of the d-dimensional bin-design problem (the dual of the d-
dimensional vector-packing problem) [CGJ84]. In vector-packing terminology, our scheduling

problem may be stated as follows:

Given a collection of positive d-dimensional vectors (the work vectors) and a set of

P d-dimensional bins (the system sites), determine a packing of the vectors in the

32

bins that obeys constraints (A) and (B) and minimizes the required common bin

capacity (the mazimum TS resource usage in the system).

This problem is clearly NP-hard since it reduces to traditional multiprocessor scheduling for
d =1and N; = 1 for all . Given the intractability of the problem, we develop an approximation
algorithm, OPERATORSCHED , that runs in polynomial time and guarantees a constant bound
on the performance ratio. OPERATORSCHED belongs to the class of list scheduling algorithms
originally proposed by Graham [Gra66]. The algorithm begins by placing the work vectors of all
rooted operators at their respective sites and computing the degree of coarse grain parallelism
for all floating operators. It then proceeds to schedule floating operators according to the
following list scheduling rule: Consider the list of work vectors resulting from the cloning of
all floating operators in non-increasing order of their maximum component; at each step, pack
the next vector in the least filled allowable bin/site (that is, pack the vector in the site s;
such that I(work(s;)) is minimal among all bins not containing other vectors of that operator).

OPERATORSCHED is depicted in Figure 6.

Algorithm OPERATORSCHED(S, P)

Input: A set of f-coarse grain floating operator clones S and a set of P sites {By,...,Bp}.

Output: A mapping of the clones to sites ({B]W,j =1,...,P}) for the CG; execution of S satisfying
(A)-(B). (Goal: Minimize response time.)

1. let L; =< W1,...,Wx, > be the list of work vectors for op,’s clones.
2. let L=< Wji,...,Wn > be the list of all floating work vectors in non-increasing order of I(W;).
3. fork=1to N do

3.1. let op, be the operator whose cloning produced W.

3.2. let B be a site with BY N L; = § such that I[(BY) = minBj:B]WnLi:@{l(BJ‘-’V)}.

3.3. set BY = BW U {W,}.

Figure 6: Algorithm OPERATORSCHED

The following theorem establishes upper bounds on the time complexity and the worst-case

performance ratio of our algorithm.

Theorem 3.3.1 OPERATORSCHED runs in time O(M P(M + log P)), where M is the number
of concurrent operators and P is the number of system sites. The parallel execution time of

the schedule returned by OPERATORSCHED is

33

(a) within (2d 4+ 1) of the length of the optimal schedule that uses the same degrees of intra-

operator parallelism for all floating operators, and

(b) within (2d(fd + 1) + 1) of the optimal CG schedule length.

3.3.4 Handling Data Dependencies

Scheduling arbitrary query task trees must ensure that the blocking constraints specified by
the tree’s edges are satisfied. For this, we split a query task tree into synchronized phases or
“shelves” [NSHL95, TL93]. Each phase contains independent tasks that are to be executed
concurrently, after the completion of all tasks in the previous phase. The number of phases is
equal to the height of the task tree and each task is scheduled in the phase closest to the root
that does not violate the precedence constraints. For example, the plan in Figure 4 is executed
in two distinct phases containing tasks T1-T4 and task T5, respectively. This corresponds
to the MinShelf policy of Tan and Lu [TL93]. Resource scheduling within each phase is
performed by the OPERATORSCHED algorithm. The full algorithm, TREESCHED is depicted
in Figure 7. Note that by scheduling tasks according to their level TREESCHED also satisfies
the more “subtle” timing constraints discussed in Section 3.1.1. For example, all build-tasks
in a join pipeline are executed together and the corresponding probe-task is scheduled in the

immediately following phase.

Algorithm TREESCHED(T, P, f)
Input: A query task tree T' = (V, E), a set of P sites {By,...,Bp}, and a granularity parameter f.
Output: A schedule for the CGy execution of T'. (Goal: Minimize response time.)

1. for ¢ = height(T) downto 0 do

1.1. OP =0.
1.2. for each node v € V such that level(v) =i do
1.2.1. OP = OP U {operators in task v}.

1.3. place all rooted clones in OP and determine the degree of parallelism for each floating
operator in OP.

1.4. call OPERATORSCHED(OP, P).

Figure 7: Algorithm TREESCHED

Observe that for any query execution plan the number of nodes in the operator tree is

34

bounded by a small constant times the number of joins in the query, e.g., expanding a hash-join
gives at most four operator nodes. Combining this observation with Theorem 3.3.1 gives the

following complexity bound for TREESCHED .

Proposition 3.3.1 TREESCHED runs in time O(JP(J + log P)), where J is the number of

nodes in the query execution plan and P is the number of system sites. 0

3.3.5 Comments on the Effectiveness of the Heuristics

Theorem 3.3.1 derives an upper bound on the worst-case performance ratio of the OPERA-
TORSCHED algorithm for scheduling a collection of CG; concurrent operators. In general, the
expected output quality of our heuristic should be much better than the worst-case bounds,
especially for a set of operators with a good “mix” of resource requirements. This conjecture is
supported by theoretical results on the expected performance of vector packing [KLMS84]. The
big advantage of OPERATORSCHED compared to previous approaches is its ability to explore
resource sharing possibilities and balance the resource workloads at individual sites.

Deriving performance bounds for the schedule produced by the TREESCHED algorithm is
a much more difficult problem. Theorem 3.3.1 ensures that scheduling within each phase is
near-optimal given its data placement constraints. When scheduling a query task tree, the
scheduling decisions made at earlier phases may impose data placement constraints on the
phases that follow. For example, the build and probe operators of a hash join belong to two
adjacent phases because of their sequential dependency (the hash table has to be complete
before probing can begin). Furthermore, the probe operator has to be executed at the set
of sites that hold the hash table, that is, the home of the build. Such interdependencies
between phases complicate any proof of suboptimality bounds for the TREESCHED algorithm.
At this point, we have not been able to obtain theoretical results on the quality of the schedule
produced for the entire query task tree. However, given the load balancing capabilities of
the OPERATORSCHED algorithm, we feel confident that TREESCHED will outperform previous
approaches. QOur conjectures for both OPERATORSCHED and TREESCHED are supported by

the results of an experimental evaluation presented in the next section.

3.4 Experimental Performance Evaluation

In this section, we describe the results of several experiments we have conducted using analytical
cost model computations for randomly generated query execution plans. A primary goal of

our experimentation is to verify the benefits of our proposed multi-dimensional framework

35

by comparing the average performance of our multi-dimensional scheduling algorithm with a
one-dimensional “synchronous execution time” algorithm that we developed based on previous
work [HCY94, LCRY93]. Another point of interest, given our worst-case analytical bounds,
is examining how close the response time of the generated schedule is to that of the optimal
coarse grain schedule on the average. We start by presenting our experimental testbed and

methodology.

3.4.1 Experimental Testbed
We have experimented with the following algorithms:

e SYNCHRONOUS : Combination of the synchronous execution time method of Hsiao et
al. [HCY94] for processor allocation for independent parallelism with the two-phase mini-
max technique of Lo et al. [LCRY93] for optimally distributing processors across the stages
of a hash-join pipeline. Although these strategies were originally proposed for shared-disk
systems, they were appropriately extended to account for the data redistribution costs in

a shared-nothing environment.
e TREESCHED : Multi-dimensional list scheduling in synchronized phases.

e OrPTBOUND : Hypothetical algorithm achieving a lower bound on the optimal response
time. This bound was calculated as the maximum of the average work per site (see

Lemma A.1.2) and the length of the critical path in the query execution plan.

We selected SYNCHRONOUS as a one-dimensional adversary since it is the “state-of-the-art”
method for exploiting bushy tree parallelism in parallel query execution* [WFA95]. Prior
research has demonstrated the advantages offered by such parallelism, especially for large
queries [CYW92]. To the best of our knowledge, optimal processor distribution within gen-
eral join pipelines remains an open problem. We therefore decided to restrict our experiments
to bushy hash-join query plans so that the optimal technique of Lo et al. could be used in
SYNCHRONOUS. We should stress, however, that TREESCHED is a general query scheduling
algorithm that can be applied to any bushy plan.

Some additional assumptions were made to obtain a specific experimental model from the
general parallel execution model described in Sections 3.2 and 3.3. These are briefly summarized

below.

EA1l. No Execution Skew: With the exception of startup cost, the work vector of an operator

is distributed perfectly among all sites participating in its execution. Startup is added to

4The Fully Parallel Ezecution Method [WFA95] applies only to main-memory parallel database systems.

36

only one of these sites, the “coordinator site” for the parallel execution, and is equally

divided between the coordinator’s CPU and its network interface.

EA2. Uniform Resource Overlapping: The amount of overlap achieved between processing
at different resources at a site can be characterized by a single system-wide parameter
e € [0,1] for all query operators. This parameter allows us to express the response time
of a work vector as a convex combination of the maximum and the sum of the vector

components (see Section 3.2.1), i.e.,

1<i<d

d
T(W) = e(max {W[i]}) + (1 — ¢) Z WTil.

Small values of € imply limited overlap, whereas values closer to 1 imply a larger degree

of overlap. In the extreme cases, € = 1 gives T(W) = max;<;<4{W[i]} (perfect overlap),

and € = 0 gives T(W) = Y%, W[i] (zero overlap).

Finally, special precautions were taken to ensure that assumption A4 is not violated for any
given value of the granularity parameter f. For each query operator, there exists an optimal
degree of partitioned parallelism that minimizes the response time [WFA92], and beyond which
startup costs will cause a speed-down. Our implementation makes sure that this optimal degree
of parallelism is never exceeded for any operator.

We experimented with tree queries of 10, 20, 30, 40, and 50 joins. For each query size, twenty
query graphs (trees) were randomly generated and for each graph a bushy execution plan was
randomly selected. We assumed simple key join operations in which the size of the result
relation is always equal to the size of the largest of the two join operands. The comparison
metric was the average response times of the schedules produced by the algorithms over all
queries of the same size. Experiments were conducted with the resource overlap parameter €
varying between 10% and 70% and the granularity parameter f varying between 0.3 and 0.9.
(The results presented in the next section are indicative of the results obtained for all values of
e and f.)

In all experiments, we assumed a system consisting of 3-dimensional sites with one CPU,
one disk unit, and one network interface. The work vector components for the CPU and
the disk were estimated using the cost model equations given by Hsiao et al. [HCY94]. The
communication costs were calculated using the model described in Section 3.2.2. The values of
the cost model parameters were obtained from the literature [GW93, HCY94, WFA92] and are

summarized in Table 3°.

®The CPU speed and disk service rate were chosen so that the system is relatively balanced (i.e., not heavily
CPU or I/O bound).

37

| Configuration/DB Catalog Param. | Value ||

Number of Sites 10 - 140

CPU Speed 1 MIPS || || CPU Cost Parameters | No. Instr. ||
Effective Disk Service Read Page from Disk 5000
Time per page 20 msec Write Page to Disk 5000
Startup Cost per site («) 15 msec Extract Tuple 300
Network Transfer Cost Hash Tuple 100
per byte (5) 0.6 usec Probe Hash Table 200
Tuple Size 128 bytes

Page Size 40 tuples

Relation Size 10% - 10° tuples

Table 3: Cost Model Experiments: Parameter Settings

3.4.2 Experimental Results

The first set of experiments studied the effect of different values of the granularity parameter f
on the performance of TREESCHED compared to that of SYNCHRONOUS (which is, of course, not
affected by different values of f). The results for queries of 40 joins and a resource overlap of 30%
(i.e., e = 0.3) are depicted in Figure 8(a). Clearly, for small values of f the coarse granularity
condition is too restrictive, not allowing the execution system to fully exploit the available
parallelism. As the value of f increases, the average plan response time drops substantially until
the bound on operator parallelism is reached. As expected, the advantages of resource sharing
are most evident for resource-limited situations (i.e., small parallel systems). Nevertheless, for
sufficiently large values of f, our algorithm outperformed its one-dimensional adversary in the
entire range of system and query sizes.

The second set of experiments studied the effect of the resource overlap parameter € on the
performance of the two algorithms, while the granularity parameter was kept constant. The
performance results shown in Figure 8(b) (for queries of 40 joins) demonstrate that TREESCHED
consistently outperformed the SYNCHRONOUS algorithm for various values of f. Clearly, the
benefits of multi-dimensional scheduling are more significant for smaller values of the overlap
parameter. The reason is that lower overlap results in longer idle periods for the individual
resources which our algorithm can exploit through time-sharing with other operations.

The average performance of the two scheduling algorithms for different query sizes is de-
picted in Figure 9(a) for two different system sizes (20 and 80 sites) and overlap ¢ = 0.5. For
TREESCHED we assume f to be fixed at 0.7. Note that, for a given system size, the relative

improvement obtained with TREESCHED increases monotonically with the query size and, as

38

40 Joins, 30% overlap 40 Joins, f=0.7
800 : ‘ ‘ ‘ 800 — ‘ ‘ ‘ ‘
SYNC —— xi SYNC (10% overlap) ——
700 +\\ TREESCHED (f=0.3) -+ - 700 SYNC (30% overlap) -+ -
\ TREESCHED (f=0.5) o SYNC (50% overlap) ~a—
. 800l TREESCHED (=0.7) < | . so0l SYNC (70% overlap) - |
2 . TREESCHED (f=0.9) -=-- 2 TREESCHED (10% overlap) -+--
@ ! K2 i TREESCHED (30% overlap) -*--
© 500 - Y 500 F % TREESCHED (50% overlap) ¢ 1
E £ X TREESCHED (70% overlap)
o 400 - 5 400 f
L 2
S 300 S 300F
3 3
& 200 [
100 | ’ B R 100 |
0 L L L L L L 0 L L L L L L
20 40 60 80 100 120 140 20 40 60 80 100 120 140
No of sites No of sites

Figure 8: (a) Effect of the granularity parameter (f). (b) Effect of the resource overlap param-
eter (e).

before, is higher for smaller systems and lower degrees of overlap.

50% overlap, f = 0.7 50% overlap, f = 0.7
700 : : : : : 600 : : : :
SYNC (20 sites) —— TREESCHED (40 joins) ——
600 - TREESCHED (20 sites) -—+-— | OPTBOUND (40 joins) -+
SYNC (80 sites) = 500 7 TREESCHED (20 joins) & 1

- TREESCHED (80 sites) - - b OPTBOUND (20 joins) -
9 500 1 9 |
K2 @9 400
[} [}
= 400 1 =
[= L
° ° 300
2 300] s
2 2
2) 2 200 -
x 200 - x

100] 100

0 L L L L L L L 0 L L L L L L
10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140
No of joins No of sites

Figure 9: (a) Effect of query size. (b) Average Performance of TREESCHED vs. Optimal.

We should also mention that the asymptotic time complexity of SYNCHRONOUS is
O(JPlog(JP)), where J is the number of joins in the query and P is the number of sites [LCRY93].
Thus, TREESCHED appears to be slightly more expensive than SYNCHRONOUS, being quadratic
in the size of the query (Proposition 3.3.1). We believe that this is a small price to pay com-
pared to the significant performance improvement offered by resource sharing, especially for
large queries and/or resource-limited situations.

For our final set of experiments, we examined the average performance of TREESCHED

39

compared to a lower bound on the response time of the optimal CG; execution for a constant

value of f. This lower bound, OPTBOUND, was estimated using the formula
l
OPTBOUND = max{ % , T(CP) },
where

e S is the set of work vectors for all operators in the query execution plan assuming zero

communication costs for each operator, and

e T(CP) is the total response time of the critical (i.e., most time-consuming) path in the

plan assuming the mazimum allowable degree of coarse grain parallelism for each operator.

By Lemma A.1.2 (Appendix A.1) and assumption A4, OPTBOUND is indeed a lower bound on
the length of the optimal CGy execution. The results for queries of 20 and 40 joins are shown
in Figure 9(b) for f = 0.7 and overlap ¢ = 0.5. These curves verified our expectations, showing
that the average performance of TREESCHED is much closer to optimal than what we would
expect from the worst-case bound derived in Theorem 3.3.1 for each plan phase. These results
are in accordance with the theoretical results of Karp et al. [KLMS84] who used a probabilistic
model to prove that even very simple vector-packing heuristics can be expected to produce

packings in which very little of the capacity of the bins is wasted.

3.5 Extensions for Malleable Operators

In this section, we extend our list scheduling technique to handle the more general malleable
scheduling problem. The difference with respect to our previous scheduling model is that the
degree of parallelism for floating operators is no longer determined through a coarse granularity
condition. Instead, floating operators are malleable, in the sense that the scheduler is free
to determine their parallelization so that the execution time is minimized over all possible
parallel schedules. Based on the work of Turek et al. [TWY92], we present a method that
allows the (2d + 1) suboptimality bound shown for the case of non-malleable independent
operators (Theorem 3.3.1) to be duplicated for the more general malleable problem. Since
rooted operators have no effect on the quality of the generated schedule (their scheduling is
determined by data placement constraints) we will once again consider only floating operators
in this section.

Let N = (Ny,...,Ny) denote a parallelization (i.e., the degrees of parallelism) of a given
set of independent operators, and let S(N) = (Wop, (N1),- .., Wop,,(Nu)) be the set of (total)

work vectors for the operators (including the communication costs for the given parallelization).

40
Finally, define h(IN) = max;<;<p {7 (op;, N;)}, i.e., the parallel execution time of the slowest
operator. In proving the (2d + 1) suboptimality bound for OPERATORSCHED (Appendix A.1),
we actually show that the makespan of the schedule produced by our list scheduling rule for
any given operator parallelization IV satisfies the following inequality:

TP (SCHED, P, N) < (2d + 1) max{ @ , h(N) },

where LB(N) = max{ @ , h(N) } is a lower bound on the optimal response time for the
given parallelization.

Our goal is to determine a particular operator parallelization N such that when N is used as
input to our list scheduling technique the resulting schedule is guaranteed to be within (2d + 1)
of the optimal schedule (over all possible parallelizations). The following lemma formalizes our

expectations.

Lemma 3.5.1 Let N* denote the parallelization of operators in the optimal execution schedule.
Let N be another (possibly identical) parallelization such that LB(N) < LB(N*). Then,
applying our list scheduling rule to N will return an execution schedule whose length is within

(2d 4+ 1) of the optimal schedule length. n

We now present a greedy selection algorithm for generating a family of parallelizations. The
algorithm is an adaptation of the GF method presented by Turek et al. [TWY92] based on
the observation that in our work vector model, for any operator op, if n < m then Wop (n) <q4

Wop (m)° :
1. The first candidate parallelization is the minimum total work parallelization N' = (1,1,...,1).

2. The k' candidate parallelization is determined by the (k — 1)** parallelization by first
finding the operator whose execution time is equal to h(NN k_l) and increasing its degree

of parallelism by one.

3. The algorithm terminates when no more sites can be allotted to the largest operator.

Lemma 3.5.2 Let N* denote the parallelization of operators in the optimal execution sched-
ule. The above algorithm produces at least one parallelization N such that the following two

properties hold:
1. T™(op;, N;) < h(N*) for all 4, and

6<4 stands for componentwise less-than, i.e., W1 <4 W iff W1[i] < Ws[i] for i =1,...,d.

41

O

From Lemma 3.5.2 and the definition of the lower bound LB(), at least one of the operator

parallelizations produced by the algorithm will satisfy the conditions of Lemma 3.5.1.

Theorem 3.5.1 Let A be the family of parallelizations generated and let N € A such that
LB(N) = mingea{ LB(K) }. Then, the schedule generated by our list scheduling rule for the
parallelization N is within (2d 4+ 1) of the optimal parallel schedule length. 0

The number of parallelizations generated by our algorithm is bounded by 14+ M (P—1) and so the
complexity of selecting an operator parallelization is O(M P log M). Thus, this preprocessing
step does not affect the asymptotic complexity of our scheduler. Also note that Theorem 3.5.1
does not depend on the non-increasing execution times assumption (A4) or any particular model

for communication costs. The only assumption required is that of non-decreasing work vectors.

3.6 Conclusions

In this chapter, we have addressed the open problem of multi-dimensional TS resource schedul-
ing for complex queries in parallel database systems. Our approach is based on (1) a model of
resource usage that allows the scheduler to explore the possibilities for resource sharing among
concurrent operations and quantify the effects of this sharing on the parallel execution time,
and (2) a quantification of the notion of coarse grain parallelism for query plan operators. Us-
ing these tools we developed a vector-packing formulation of the resource scheduling problem
for independent query tasks, and proposed OPERATORSCHED, a fast list scheduling heuristic
that is provably near-optimal in the class of coarse grain executions. We then extended our
approach to handle the blocking constraints in a bushy query plan by splitting its execution
into synchronized phases. The resulting algorithm, TREESCHED, exploits all forms of intra-
query parallelism and allows effective resource sharing among operators executing concurrently.
We also verified the effectiveness of our scheduling methods compared to both previous (one-
dimensional) approaches and the optimal solution through a series of experimental results.
Finally, we proposed a technique that allows us to relax the coarse granularity restriction and
obtain a provably near-optimal list scheduling method for the malleable independent operator
scheduling problem. In practice, the coarse granularity condition provides a fast way of deter-
mining an efficient parallelization based on system parameters. The more sophisticated greedy

selection technique can be used when the additional scheduling overhead is justified.

42

Chapter 4

Parallel Query Scheduling and
Optimization with Time- and

Space-Shared Resources

In this chapter!, we extend our earlier problem formulation to address the co-existence of
time- and space-sharing and present a general framework for TS and SS resource scheduling
in hierarchical parallel database systems. Building on our earlier results, we represent query
operator costs as pairs of work and demand vectors with one dimension per TS and SS resource,
respectively. We observe that the inclusion of the sS resource dimension(s) gives rise to certain
interesting tradeoffs with respect to the degree of partitioned parallelism. Smaller degrees
result in reduced communication overhead and, therefore, increased total work (i.e., TS resource
requirements) for the operator execution (i.e., coarse grain parallel executions [GW93, GGS96]).
On the other hand, larger degrees of parallelism in general imply smaller SS requirements for each
operator clone, thus allowing for better load balancing opportunities and tighter schedulability
conditions. The importance of such tradeoffs for parallel query processing and optimization has
been stressed earlier [HFV96] and is addressed in this work.

Based on our multi-dimensional framework, we develop a fast list scheduling algorithm
for operator pipelines called PIPESCHED and analytically show that it produces a parallel
schedule with response time within d(1 + 5) of the optimal schedule length for given degrees
of partitioned parallelism, where d and s are the dimensionalities of the TS and SS resource
vectors respectively, and A is an upper bound on the (normalized) ss demands of any clone in
the pipeline. We then extend our approach to multiple independent pipelines, using a level-
based scheduling algorithm [CGJT80, TWPY92] that treats PIPESCHED as a subroutine within
each level. The resulting algorithm, termed LEVELSCHED, is analytically shown to be near-
optimal for given degrees of operator parallelism. Furthermore, we show that LEVELSCHED

can be readily extended to handle the operator precedence constraints in a bushy query plan as

!Parts of this chapter have appeared in the Proceedings of the 23rd International Conference on Very Large
Data Bases (VLDB’97) [GI97].

43

well as on-line task arrivals (e.g., in a dynamic or multi-query execution environment). Once
again, experimental results based on cost model computations confirm the effectiveness of our
algorithms compared to a lower bound on the optimal solution, showing that our analytical
worst-case bounds are rather pessimistic compared to the average performance. Motivated
by our scheduling results, we revisit the open problem of designing efficient cost models for
parallel query optimization. In recent work, Ganguly et al. [GGS96] identified two important
“bulk parameters” of a parallel query execution plan, namely average work and critical path
length, that are crucial to characterizing its expected response time. Based on our analytical and
experimental results, we identify a third parameter, the average volume (i.e., the resource-time
product) for Ss resources that is an essential component of query plan quality since it captures
the constraints on query execution that derive from ss (i.e., memory) resources. Based on
our results we believe that this 3-dimensional cost model is sufficient for efficient and accurate

parallel query optimization.

4.1 Problem Formulation

We extend the parallel query scheduling model described in the previous chapter by introducing
SS resources in our problem setup. More specifically, we view each site of a hierarchical paral-
lel system as a collection of d TS resources (e.g., CPU(s), disk(s), and network interface(s) or
communication processor(s)) and s SS resources (e.g., memory). Although memory is probably
the only ss resource that comes to mind when discussing traditional database query operators,
often the distinction between TS and Ss resources depends on the needs of a particular applica-
tion. For example, the playback of a digitized video from a disk requires a specific fraction of
the disk bandwidth throughout its execution. Clearly such an operator views the disk as an ss
resource although traditional database operators view it as a TS resource. For this reason, we
decided to address the scheduling problems for general s rather than restricting our discussion
to s = 1 (i.e., memory). An obvious advantage of this general formulation is that it allows us
the flexibility to “draw the line” between TS and SS resources at any boundary, depending on
factors such as application requirements or user view of resources.

Since the algorithms presented in this chapter explicitly account for the scheduling of mem-
ory resources, our results are no longer based on assumption Al (“No Memory Limitations”)
employed in the previous chapter. We do, however, require the following (more realistic) as-

sumption in addition to assumptions A2-A5 from Section 3.1.3.

A6. Constant ss Resource Demand. The total SS requirements of an operator are constant

and independent of its degree of parallelism. For example, the total amount of memory

44

required by all the clones of a build operator equals the size of a hash table on the build
relation. Further, increasing the degree of parallelism does not increase the sS demands

of individual clones.

4.1.1 Overview

Accounting for both TS and ss resource dimensions, our scheduling framework gives rise to in-
teresting tradeoffs with respect to the degree of partitioned parallelism. Coarse grain operator
parallelizations [GGS96, GW93] are desirable since they typically result in reduced communi-
cation overhead and effective parallel executions with respect to TS resource use. On the other
hand, fine grain operator parallelizations are desirable since they imply smaller ss requirements
for each clone thus allowing for better load balancing opportunities and tighter schedulability
conditions. A quantification of these tradeoffs and our resolution for them are presented in
Section 4.2.1.

We have devised an algorithm for scheduling bushy execution plan trees that consists of the

following steps:

1. Construct the corresponding operator and task trees, and for each operator, determine
its individual resource requirements using hardware parameters, DBMS statistics, and

conventional optimizer cost models (e.g., [HCY94, SACT79]).

2. For each floating operator, determine the degree of parallelism based on the TS vs. sS

resource tradeoffs discussed above (partitioned parallelism).

3. Place the tasks corresponding to the leaf nodes of the task tree in the ready list L of the
scheduler. While L is not empty, perform the following steps:

3.1. Determine a batch of tasks from L that can be executed concurrently and sched-
ule them using a provably near-optimal multi-dimensional list scheduling heuristic

(pipelined and independent parallelism).

3.2. If there are tasks in the tree whose execution is enabled after Step 3.1, place them

in the ready list L.

We prove that our approach is near-optimal for scheduling multiple independent pipelines.
Further, it can be readily used to handle on-line task arrivals (e.g., in a dynamic or multi-query

execution environment).

45
4.2 Quantifying Partitioned Parallelism

4.2.1 Resource Usage Model

Extending the multi-dimensional model presented in Section 3.2.1, we describe the usage by an
isolated operator of a site comprising d TS resources and s SS resources by the triple (7%¢¢, W, V),

where:
e T%¢ is the (stand-alone) sequential execution time of the operator,

e W is a d-dimensional work vector whose components denote the work done on individual
TS resources, i.e., the effective time [GHK92] for which each resource is used by the

operator; and

e V is an s-dimensional demand vector whose components denote the SS resource require-
ments of the operator throughout its execution. For notational convenience we assume
that the dimensions of V are normalized using the corresponding SS capacities of a single

site.

This generalized view of a system site is depicted in Figure 10.

d-dimensional s-dimensional
open-ended unary capacity

T
|
|
|
|
|
]
|
I
1
1
|
1

W (preemptable) V (non-preemptable)

Figure 10: A site with preemptable and non-preemptable resources (d = 3, s = 2).

As explained earlier, time T%¢? is actually a function of the operator’s individual resource
requirements, i.e., its work vector W (sometimes emphasized by using 7°¢/(W) instead of T¢9),
and the amount of overlap that can be achieved between processing at different resources. The
operator’s Ss resource requirements (V) depend primarily on the size of its inputs and the
algorithm used to implement the operator. On the other hand, the operator’s work requirements
(W) depend on both of these parameters as well as its SS resource allotment V.

Note that, in this chapter, we are adopting a somewhat simplified view of the $S resource

demands, assuming that components of V have fixed values determined by plan parameters.

46

In most real-life query execution engines, operator memory requirements are malleable, in the
sense that they are typically specified as a range of possible memory allotments. This flexibility
adds an extra level of difficulty to our scheduling problem. It means that the scheduler also
has to select specific SS demand vectors V that minimize query response time over all possible
(W,V) combinations. We plan to address this more general scheduling problem in our future

work.

4.2.2 Quantifying Execution Granularity in the Presence of ss Resources

As explained in Section 3.2.2, employing coarse grain operator parallelizations ensures efficient
(i.e., low overhead) parallel query execution. In the presence of ss resources, however, any
scheduling method is restricted in its mapping of clones to sites by SS capacity constraints, i.e.,
it is not possible to concurrently execute a set of clones at a site if their total ss requirements
exceed the site’s capacity (in any of the s dimensions). Clearly, coarse operator clones imply
that each clone has sS resource requirements that are relatively large. This means that when
restricted to coarse grain operator executions a scheduling method can be severely limited in its
ability to balance the total work across sites. Furthermore, coarse SS requests can cause severe
fragmentation that may lead to underutilization of system resources. Thus, taking both TS and
SS resources into account gives rise to interesting tradeoffs with respect to the granularity of
operator clones. Our analytical results in Section 4.3 clearly demonstrate this effect.

To account for $S resource constraints, we view the granularity of a parallel operator op as

a function of the ratio % and V(op, N), where

e Wy(op) and W, (op, N) denote the processing and communication area of the execution

of op(Section 3.2.2); and

e V(op, N) denotes the maximum (normalized) SS resource requirement of any clone when
the execution of op is partitioned among N clones; it corresponds to the ss grain size of

the partitioned execution of op and is a non-increasing function of N.

Note that the execution of op with degree of partitioned parallelism equal to IV is feasible only
if V(op, N) < 1; that is, the partitioning of op must be sufficiently fine-grain for each clone to
be able to maintain its SS working set at a site. We only consider such “reasonable” operator

parallelizations in the remainder of the chapter.

Definition 4.2.1 A parallel execution of an operator op with degree of partitioned parallelism

equal to N is A-granular if V(op, N) < X, where A < 1. n

The following quantification of coarse grain parallelism extends our earlier formulation.

47

Definition 4.2.2 A parallel execution of an operator op with degree of partitioned parallelism
equal to N is A-granular CGy, if the communication area of the execution is no more than f’
times the processing area of op, i.e., W,(op, N) < f' Wp(op), where f’ is the minimum value

larger than or equal to f such that V(op, N) < A. 0

The intuition behind this definition is that we may sometimes have to compromise our restric-
tions on communication overhead to ensure that the parallelization is in the A-granular region.

This is graphically demonstrated in Figure 11.

C C
% _ o

i)\—granular \-granular

o ——

range of degree of
A-granular CG A-granular CG
parallelism paralelism

(@ (b)
Figure 11: A-granular CG execution with (a) f = f', and (b) f < f".

4.2.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the TS and SS resource requirements of an operator are
described by a d-dimensional work vector W and an s-dimensional demand vector V whose com-
ponents can be derived from system parameters and traditional optimizer cost models [SACT79].
The processing area Wp(op) is simply the sum of W’s components, and the communication area
W.(op, N) is estimated using our linear model of communication costs (Section 3.2.3). The fol-
lowing proposition extends Proposition 3.2.1 and is an immediate consequence of Definition 4.2.2

and our communication cost model.

Proposition 4.2.1 The maximum allowable degree of partitioned parallelism for a A-granular
CG execution of operator op is denoted by Npaz(op, f,A) and is determined by the formula
f Wy(op) — 8D

«

Niaz(0op, f, A) = max{1, { J , min{ N : V(op, N) < A }}.

48
4.3 The Scheduling Algorithm

4.3.1 Notation and Definitions

Table 4 summarizes the main extensions to the notation of the previous chapter (Section 3.3.1)
to deal with the addition of SS resources. Detailed definitions of some of these parameters are

given below. Additional notation will be introduced when necessary.

| Parameter | Semantics |

s | Number of SS resources per site
BY | Set of ss demand vectors scheduled at site B;
V°Pi Demand vector for op;
SV | Set of demand vectors for all clones to be scheduled
Set of volume (time x demand) vectors for all clones to be scheduled

Table 4: Additional Notation for SS Resources

Vector VOPi describes the total (normalized) SS resource requirements of op,. The compo-
nents of V°P¢ are computed using architectural parameters and database statistics. Note that
these components are independent of the degree of partitioned parallelism N; (assumption A6).

Given an operator clone with a (stand-alone) execution time of T and a $s demand of V, we
define the volume wector of the clone as the product T -V, i.e., the resource-time product? for
the clone’s execution [CM96]. SV, SV and STV are used to denote the set of work, demand,
and volume vectors (respectively) for the set S of all the clones to be scheduled. We use the

W, V, and TV superscripts in this manner throughout this chapter.

4.3.2 Modeling Parallel Execution and Resource Sharing

In this section, we discuss the extensions necessary to our earlier multi-dimensional query
execution model to account for the introduction of ss resources.

Partitioned and Independent Parallelism

Consider an operator op; with degree of partitioned parallelism equal to N;. The parti-
tioning of Wopi and V°P¢ into work and demand vectors for operator clones is determined
based on statistical information kept in the DBMS catalogs. Given such a partitioning <

(W1,V1),(Wo,V3),...,(Whn,,Vn,) >, where Z,]cvil Wi = Wopi and Z,]cvil Vi= VOPN a lower

2The wolume of an operator is defined as the product of the amount of resource(s) that the operator reserves
during its execution and its execution time.

49

bound on the parallel execution time for op; is the maximum of the sequential execution times
of its N; clones; that is, the parallel execution time for op; is greater than or equal to
T (opy, Ni) = | max {T°/(W) }-
By our definitions of the TS and ss resource classes, it is obvious that a collection of operator
clones < (W1,V1),(W2,V3),...,(Wy, Vi) > can be executed concurrently at some system site
only if 1(X¥V;) <1, ie., their ss requirements do not exceed the capacity of the site. We call

such clone collections compatible.

Definition 4.3.1 Given a collection of M independent operators {op,,7 = 1... M} and their
respective degrees of partitioned parallelism {N;,i = 1... M}, a schedule is a partitioning of
the Ei]\il N; operator clones into a collection of compatible subsets Si,...,S, followed by a

mapping of these subsets to the set of available sites. 0

Consider such a compatible subset of clones S; and let S}V denote the set of work vectors
for all clones in S;. Following Equation 2, the execution time for all the operator clones in S;

is defined as

T(S;) = max{ WI@%};{Tseq(W)} RICHOR?

Thus, if we let S(B;) denote the collection of compatible subsets mapped to B; under a given

schedule SCHED, the execution time for site B; is

T(By) = Y. T(S)= Y, max{_max {T*/(W)}, U(S}") }. (4)
5;€S(Bj) S;€S(Bj) Wes;

Clearly, the response time of SCHED is determined by the longest running site, that is,
TPGT(SCHED’P) = maxlsjsp{ TSite(Bj) }

Pipelined Parallelism

Pipelined parallelism introduces a co-scheduling requirement for query operators, requiring
a collection of clones to execute in producer-consumer pairs using fine-grain/lock-step syn-
chronization. The problems with load-balancing a pipelined execution have been identified in
previous work [Gra93]. Compared to our model of a schedule for partitioned and independent
parallelism (Definition 4.3.1), pipelined execution constrains the placement and execution of
compatible clone subsets to ensure that all the clones in a pipe run concurrently — they all start
and terminate at the same time [HM94]. This means that it is no longer possible to schedule
resources at one site independent of the others, as we suggested in the previous section. Com-

patible subsets containing clones from the same pipeline must run concurrently. Furthermore,

50

given that the scheduler is not allowed to modify the query plan, scheduling a pipeline is an
“all-or-nothing” affair: either all clones will execute in parallel or none will. The implications of
pipelined parallelism for our scheduling problem will be studied further in Section 4.3.4 where

a near-optimal solution will be developed.

4.3.3 Scheduling Independent Operators

In this section, we extend our earlier lower bound on the optimal parallel execution time of
independent operators (i.e., operators not in any pipeline) with a new term that accounts
for the effect of ss resources. We then demonstrate that a heuristic based on Graham’s LPT
(Largest Processing Time) list scheduling method [Gra69] can guarantee near-optimal schedules

for such operators.

Lemma 4.3.1 Let {op;,i = 1,... M} be a collection of independent operators with respective
degrees of partitioned parallelism N = (N1, N, ..., Nps). Let S be the corresponding collection
of clones and define T™%(S) = max;—=1,.. m{T™*(op;, N;)}. If TP*"(OPT, P) is the response
time of the optimal execution on P sites then TP (OPT, P) > LB(S, P), where

U™y us™)
P ' P b

LB(S, P) = max{ T™**(9) ,

O

Compared to our earlier results (Lemma A.1.2), the lower bound in Lemma 4.3.1 introduces a
third term containing 1(STV), i.e., the total volume of the parallel execution. We will see that
this new parameter plays an important role in our analytical and experimental results.

The basic idea of our heuristic scheduling algorithm, termed OPERATORSCHED, is to con-
struct the partition of clones into compatible subsets incrementally, using a Next-Fit rule [CGJ84,
CGJT80]. Specifically, OPERATORSCHED scans the list of clones in non-increasing order of exe-
cution time. At each step, the clone selected is placed in the site B; of minimal height T%¢(B;)
(see Equation 4). This placement is done as follows. Let S; ,, denote the topmost compatible
subset in B;. If the clone can fit in S;,, without violating SS capacity constraints, then add
the clone to S; ,, and update T*"¢(B;) accordingly. Otherwise, set n; = n; + 1, place the clone
by itself in a new topmost subset S;,,, and set T%¢(B;) accordingly. The following theorem

establishes an absolute performance bound of d 4+ 2s + 2 for our heuristic.

Theorem 4.3.1 Given a set of clones S, OPERATORSCHED runs in time O(|S|log|S|) and

produces a schedule SCHED with response time

51

1(SW) !
par RS .
TP (SCHED, P) < d + 25

(s™)

+2-T™%(8) < (d+2s+2)- LB(S,P).

O

Theorem 4.3.1 guarantees an asymptotic performance bound?® of d+2s for OPERATORSCHED.
This bound gives us a feeling for the performance of the algorithm when the optimal response
time is much larger that the longest execution time of all clones and is a better measure of
performance when |S| is large [CGJT80, BS83].

Note that our scheduling algorithm combines the list scheduling method of Graham [Gra69]
with the Next-Fit Decreasing Height (NFDH) shelf-based algorithm of Coffman et al. [CGJT80].
Using the First-Fit Decreasing Height (FFDH) algorithm in place of NFDH, we can use the

methodology of Coffman et al. to demonstrate a d + 1.7s asymptotic performance bound.

4.3.4 Scheduling with Pipelining Constraints

The co-scheduling requirement of pipelined operator execution introduces an extra level of
complexity that OPERATORSCHED cannot address, namely the problem of deciding whether
a pipeline is schedulable on a given number of sites. Given a collection of operator clones
in a pipeline, the schedulability question poses an NP-hard decision problem that essentially
corresponds to the decision problem of s-dimensional vector packing [CGJ84]. Thus, it is highly
unlikely that efficient (i.e., polynomial time) necessary and sufficient conditions for pipeline
schedulability exist. Note that no such problems were raised in the previous section, since the
clones were assumed to be feasible (i.e., 1-granular) and executing independently of each other.

In this section, we show that A-granularity with A < 1 for all operator parallelizations can
provide an easily checkable sufficient condition for pipeline schedulability*. Once schedulability
is ensured, balancing the work of the pipeline across sites to minimize its response time still poses
an N'P-hard optimization problem. We present a polynomial time scheduling algorithm that
is within a constant multiplicative factor of the response time lower bound for schedulable A-
granular pipelines. Further, we demonstrate that using a level-based approach, our methodology
can be extended to provide a provably near-optimal solution for multiple independent pipelines
(i.e., query tasks). Finally, we extend our techniques to handle the data dependencies in a

bushy query plan and on-line task arrivals.

3An asymptotic performance bound characterizes the behavior of an algorithm as the ratio of the optimal
. . - PR TP4T(OPT,P)
makespan to the longest job processing time goes to infinity, i.e., when —fmaw(sy .~ 00

4We use the term A-granular pipeline to describe a pipeline in which all operator parallelizations are A-granular.

52

Scheduling a Single A-granular Pipeline

We present a near-optimal algorithm for scheduling a pipeline C' consisting of A-granular parallel
operators, where A < 1. Let S¢ denote the collection of clones in C' and define SEV , S}J/ , and
T™4(S¢) in the obvious manner. Note that, by our definitions, the pipeline C' will require at
least 1(S;) sites for its execution (otherwise, A would have to be greater than 1). The following

lemma provides a sufficient condition for the schedulability of a A-granular pipeline.

Lemma 4.3.2 The number of sites required to schedule a A-granular pipeline C (A < 1) is
I(S

Y)-s . ..
always less than or equal to =7%—. Furthermore, this bound is tight. 0

Our heuristic, PIPESCHED, belongs to the family of list scheduling algorithms [Gra69].
PIPESCHED assumes that it is given a number of sites P that is sufficient for the scheduling of

C, according to the condition of Lemma 4.3.2. The algorithm considers the clones in S¢ in non-
(W)
WVi)
is placed in the least filled (i.e., least work) site that has sufficient SS resources to accommodate

increasing order of their work density ratio . At each step, the clone under consideration

it; that is, clone (W;,V;) is packed in bin B such that [(B") is minimal among all sites B;
such that [(BJV U{V;}) < 1. The PIPESCHED algorithm is depicted in Figure 12.

Algorithm PIPESCHED(C, Pr)
u(s

4
Input: A set of A\-granular pipelined operator clones S¢ and a set of Py sites, where P > 1%2\5 (see
Lemma 4.3.2).
Output: A mapping of the clones to sites that does not violate Ss resource constraints. (Goal: Minimize
response time.)
l(?i)

1. let L=< (W1,V1),...,(Wn, V) > be the list of all clones in non-increasing order of AR

2. fork=1to N do

2.1. let SBy, = {B; : I(Bj U {V}) < 1}, i.e, the set of bins with sufficient ss resources for the
kth clone.

2.2. let B € B be asite such that [(BY) = ming,esp, {I(B]")}-
2.3. place clone (W, V) at site B and set BY = BU{Wx}, BY = BU{Vxn}.

Figure 12: Algorithm PIPESCHED

The following theorem establishes an asymptotic upper bound of d- (1 + t25) on the worst-

case performance ratio of our algorithm.

Theorem 4.3.2 Given a A-granular pipeline C' (A < 1) PIPESCHED runs in time O(|S¢|log |Sc|)

53

and produces a schedule SCHED with response time

w
TP (SCHED, Po) < d(1+ —°—). {5C) | pmas(g0) < (a1 + —*—) +1]- LB(Se, Po).
1-x P 1—x
O

Note that the volume term does not come into the expression for the performance bound of
PIPESCHED. This is because, by definition, all the clones in S¢ must execute in parallel and thus
1(S%) < Pc. Thus, for a single pipeline, we always have % < T™(S¢) - % < T™e(Se).

The bound established in Theorem 4.3.2 clearly captures the granularity tradeoffs identified
in Section 4.2. Increasing the degree of partitioned parallelism decreases both T"**(S-) and
A allowing for a better asymptotic bound on the ratio and a smaller additive constant. On
the other hand, it also increases the total amount of work I(SZ) because of the overhead of
parallelism. The importance of such work-space tradeoffs for parallel query processing and

optimization has been stressed in recent work [HFV96].

Scheduling Multiple Independent A-granular Pipelines

The basic observation here is that the PIPESCHED algorithm presented in the previous section
can be used to schedule any collection of independent pipelines as long as schedulability is
guaranteed by Lemma, 4.3.2.

Our algorithm for scheduling multiple independent pipelines uses a Next-Fit Decreasing
Height (NFDH) policy [CGJT80] in conjunction with Lemma 4.3.2 to identify pipelines that
can be scheduled to execute concurrently on P sites (i.e., in one layer of execution). PIPESCHED
is then used for determining the execution schedule within each layer. The overall algorithm,
LEVELSCHED, is formally outlined in Figure 13.

The following theorem gives an upper bound on the worst-case performance ratio of LEV-
ELSCHED. Note that the co-scheduling requirement for the clones in a pipe implies that the
total volume for all the clones in {C},...,Cy} is I(STV) = (XN e ZiES‘C’i 7), since any
clone in C; will require its share of ss resources for at least T(*" time. The lower bound in

Lemma 4.3.1 holds using the above definition of volume.

Theorem 4.3.3 Given a collection of N independent A-granular pipelines (A < 1) consisting
of the set of clones S, LEVELSCHED runs in time O(N|S|log P|S|) and produces a schedule
SCHED with response time

TP(SCHED,P) < &(1+175)-=5> + 1= —p— + I"(S)
< @0+ —)+ -2 .S, P)
= 1—X "1-a s

54

Algorithm LEVELSCHED({C1,...,Cn}, P)

Input: A set of A\-granular operator pipelines {Cj,...,Cn} and a set of P sites.

Output: A mapping of clones to sites that does not violate SS resource constraints or pipelining depen-
dencies. (Goal: Minimize response time.)

1. Sort the pipelines in non-increasing order of T™** ije., let L =< Cy,...,Cny >, where
T™*(Scy) 2 ... 2 T (Soy)-

2. Partition the list L in k£ maximal schedulable sublists: L; =< Ci,...,Ci; >, Ly =<
Ci+1,---,Ciy >, .., L =< Ci,_,41,--.,Cn > based on Lemma 4.3.2. That is,

. Pa=Y
S

P(1 -\
l(Uoes,SY) < (1=

and l((ucELjS};’)uSgiﬁl) > = forall j=1,...,k—1.

3. forj=1,...,k do
3.1. call PIPESCHED((Ucer;C), P)

Figure 13: Algorithm LEVELSCHED

O

It is important to note that the lower bound estimated in Lemma 4.3.1 will, in most cases,
significantly underestimate the optimal response time since it assumes that 100% utilization
of system resources is always possible independent of the given task list. Thus, the quadratic
multiplicative constants in Theorem 4.3.3 reflect only a worst case that is rather far from the

average, as our experimental results have verified as well.

4.3.5 Handling Data Dependencies and On-Line Task Arrivals

Scheduling arbitrary query task trees must ensure that the blocking constraints specified by the
tree’s edges are satisfied. The LEVELSCHED algorithm can be readily extended to handle such
constraints by ensuring that the (sorted) ready list of tasks L always contains the collection of
query tasks that are ready for execution, i.e., they are not blocked waiting for the completion
of some other (descendant) task in the task tree. In addition, as mentioned in Section 3.1,
care must be taken to ensure that co-scheduling dependencies across sibling tasks and timing
constraints across blocking edges are maintained. For example, the operators of all sibling
build-tasks in the same join pipeline must be co-scheduled and those of the parent probe-task
must be treated as rooted and scheduled in the immediately following shelf. All this is done by

modifying LEVELSCHED as follows (see Figure 13):

55

1. Any sibling pipelines in the task tree with a co-scheduling dependency are treated as a
unit, i.e., the way individual pipelines are treated in LEVELSCHED. For the purposes of

this algorithm, assume that the term “pipeline” is interpreted as such a unit.

2. Initially, the input set of pipelines {C1,...,Cn} contains exactly the tasks at the leaf

nodes of the query task tree.

3. After Step 3.1, determine the set of tasks C that have been enabled (i.e., are no longer
blocked) because of the last invocation of PIPESCHED. If C# (), then merge the tasks in
C into the ready list L and go to Step 2. Otherwise, continue with the next invocation

of PIPESCHED.

The exact same idea of dynamically updating and partitioning the ready list L can be used
to handle on-line task arrivals in a dynamic or multi-query environment. Basically, newly
arriving query tasks are immediately merged into L to participate in the partitioning of L into
schedulable sublists right after the completion of the current execution layer. Thus, our layer-
based approach provides a uniform scheduling framework for handling intra-query as well as
inter-query parallelism.

As we have already indicated in Chapter 3, deriving performance bounds in the presence of
data dependencies is a very difficult problem that continues to elude our efforts. The difficulty
stems from the interdependencies between different execution layers: scheduling decisions made
at earlier layers can impose data placement and operator execution constraints on the layers

that follow. We leave this problem open for future research.

4.4 Experimental Performance Evaluation

In this section, we present the results of several experiments we have conducted using cost model
computations for various query operators in order to examine the average-case performance of
our scheduling algorithms. To the best of our knowledge, the issue of complex query scheduling
with both TS and $s resources has not been addressed in prior work on databases or deterministic
scheduling theory. Given this lack of adversaries, our experiments focus on how close the
response time of the generated schedule is to a lower bound on the response time of the optimal
execution schedule (Lemma 4.3.1) on the average. We start by presenting our experimental

testbed and methodology.

4.4.1 Experimental Testbed

We have experimented with the following algorithms:

56

e LEVELSCHED : Level-based scheduling of multiple independent query tasks (i.e., operator

pipelines).

e TREESCHED : Level-based scheduling of query task trees, observing blocking constraints

in the tree as well as main-memory dependencies across execution levels (Section 4.3.5).

For both scheduling scenarios (independent tasks, task trees), we compared the average per-
formance of our scheduling algorithms with a lower bound on the response time of the optimal
execution schedule for the given degrees of partitioned parallelism (determined by the granu-
larity parameters A and f). These lower bounds for independent query tasks (LEVELBOUND)

and query task trees (TREEBOUND) were estimated using the formulas:

(™) us™)

LEVELBOUND = max{ P 7™ (S) } and
w TV
TREEBOUND = max{ l(i)) Z(SP) , T(CP) },

where S is the collection of all operator clones in the query tasks and task tree (respectively),
T™(S) is the maximum stand-alone execution time among all clones in S, and T'(CP) is the
total response time of the critical (i.e., most time-consuming) path in the query task tree.
Once again, some additional assumptions were made to obtain a specific experimental model
from the general parallel execution model described in Sections 4.2 and 4.3. More specifically, in
addition to experimental assumptions EA1 and EA2 of Section 3.4, we also made the following

assumption to estimate the sS demand vectors for join operators.

EA3. Simple Hash-Join Plan Nodes: The query tasks handed to our algorithms are gen-
erated by bushy hash-join plans, where the memory demand for each join equals the size
of the inner relation times a “fudge factor” accounting for the hash table overhead. Note
that even though it is possible to execute a hash-join with less memory [Sha86], such
memory limitations complicate the processing of multi-join pipelines — since probe oper-
ators cannot keep their entire data sets (i.e., inner hash tables) in memory, it is no longer
possible to execute the probe pipeline in one pass. This means that intermediate disk
I/0 has to be performed at one or more pipeline stages, essentially modifying the origi-
nal plan with the addition of extra blocking and data dependencies. Various multi-pass
schemes for pipelined hash-join execution under limited memory were studied in the work
of Schneider [Sch90a]. As part of our future work, we plan to investigate the effects of

such memory limitations on our scheduling methodology and results.

Finally, we should note that our implementations of TREESCHED and LEVELSCHED incorpo-

rated an additional optimization to the basic scheme shown in Figure 13: After the placement

57

of a schedulable sublist (Lemma 4.3.2) of ready pipelines, each remaining ready pipeline was
checked (in non-increasing order of T™%) for possible inclusion in the current level before
starting the next execution level. Although this optimization does not help improve worst-
case performance (since Lemma 4.3.2 is tight), we found that it really helped the average-case
performance of the heuristics at the cost of a small increase in running time.

We experimented with tree queries of 10, 20, 30, 40, and 50 joins. For each query size, twenty
query graphs (trees) were randomly generated and for each graph an execution plan was selected
in a random manner from a bushy plan space. We assumed simple key join operations in which
the size of the result relation is always equal to the size of the largest of the two join operands.
For algorithm LEVELSCHED, all data dependencies in the query task trees were removed to
obtain a collection of independent tasks from each tree query. We used two performance metrics
in our study: (1) the average performance ratio defined as the response time of the schedules
produced by our heuristics divided by the corresponding lower bound and averaged over all
queries of the same size; and, (2) the average response time of the schedules produced by our
heuristics over all queries of the same size. Experiments were conducted with the resource
overlap parameter e varying between 10% and 70%, the coarse granularity parameter f varying
between 0.3 and 0.9, and the ss granularity parameter A varying between 0.1 and 0.9. Since the
effects of f and € on scheduler performance were also studied in Section 3.4, the experiments
discussed in this chapter mostly concentrate on the new parameter A. (The results presented
in the next section are indicative of the results obtained for all values of f and e.)

In all experiments, we assumed system nodes consisting of d = 3 TS resources (one CPU,
one disk unit, and one network interface) and s = 1 sS resource (memory). The work vector
components for the CPU and the disk were estimated using the cost model equations given by
Hsiao et al. [HCY94]. The communication costs were calculated using the model described in
Section 4.2. The memory requirement of hash-join operators was estimated as F' times the size
of the inner join relation, where F is a “fudge factor” capturing the hash table overheads [Sha86].
The values of the cost model parameters were obtained from the literature [HCY94, GW93,
WFA92] and are summarized in Table 5.

4.4.2 Experimental Results

The first set of experiments studied the average-case behavior of our level-based TREESCHED
heuristic for different query, system, and memory sizes and various settings for the A, f, and €
parameters. Figure 14(a) depicts the average performance ratio of TREESCHED for queries of 40
joins and 32MB of memory at each site, assuming a coarse-granularity parameter f = 0.6 and

a resource overlap of 50% (i.e., e = 0.5). Note that our algorithm is consistently within a small

| Configuration/DB Catalog Param. | Value |

Number of Sites 10 - 120
CPU Speed 10 MIPS
Memory per Site 16 - 64 MB
Effective Disk Service

Time per page 5 msec
Startup Cost per site (a) 15 msec
Network Transfer Cost

per byte (8) 0.3 psec
Fudge Factor (F) 1.4
Tuple Size 128 bytes
Page Size 32 tuples

Relation Size

10* - 10° tuples

58

| CPU Cost Parameters | No. Instr. |

Read Page from Disk 5000
Write Page to Disk 5000
Extract Tuple 300
Hash Tuple 100
Probe Hash Table 200

Table 5: Cost Model Experiments: Parameter Settings

constant factor (i.e., less than 2) of the lower bound on the optimal schedule length. Although

the distance from the lower bound has certainly increased compared to our results for only TS

resources, the results clearly demonstrate that the worst-case multiplicative factors derived in

our analytical bounds are overly pessimistic as far as average performance is concerned.

40 Join Queries, 32MB/Site

2.2 T T T T
lambda = 0.2 -
2L lambda = 0.5 -+~ |
lambda = 0.8 =
o)
E 1.8 | U
e Y
& e e T T
I + 2 a - R L
= - ey . oo
5 14 f s Botge
@
o 12 f
j=2
>
<
1
0.8 |
20 40 60 80 100 120
No. of sites

Avg. Response Time

40 Join Queries, 32MB/Site

800 T T

700

600

500 -

400

300

200 |+ g =

100

lambda = 0.8 ——
lambda =0.5 -+ -
lambda =0.2 &

20 40 60 80
No. of sites

Figure 14: Effect of A on (a) the average performance ratio of TREESCHED, and (b) the average
schedule response times obtained by TREESCHED. (f = 0.6, ¢ = 0.5)

Observing Figure 14(a), it appears that TREESCHED performs better for larger values of

the memory granularity parameter A. This is slightly counterintuitive and seems to contradict

Section 4.3.4: “finer” memory requirements should allow our schedulers to obtain better load

59

balancing and, consequently, better schedules. However, as shown in Figure 14(b), although the
performance ratio of the algorithms improves with larger values of A, the actual performance
(i.e., the response time) of the schedules deteriorates with larger A, as expected. The explanation
of this phenomenon lies in Figure 15 which shows how the three components of the TREEBOUND
lower bound vary with the number of sites for our example set of 40-join queries and 16MB of
memory per site. (We chose a smaller value for memory because it better illustrates the effect

of the volume term for our system setting.)

40 Join Queries, 16MB/Site, Lambda = 0.2 40 Join Queries, 16MB/Site, Lambda = 0.8

800 T T T 800 T T T
Volume Bound —— Volume Bound ——
700 Work Bound -+ A 700 Work Bound -+ A
+ CP Bound & « CP Bound -
600 F 1 600 |
500 - 500 -
@ g @ 5,
£ 400 £ 400
= =
300 - 300 |
200 200
100 | 100 |-
O L L L L I O L L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
No. of sites No. of sites

Figure 15: TREEBOUND components for (a) A = 0.2, and (b) A =0.8. (f = 0.6, ¢ = 0.5)

Note that for small values of the number of sites P the dominant factor in TREEBOUND is

TV
%). For larger values of P (and, consequently, increased system

memory), TREEBOUND is determined by the average work term (@) Eventually, as P

the average volume term (

continues to grow, the critical path term (7'(CP)) starts dominating the other two terms in
the bound. Also, note that as the critical path becomes the dominant factor in the query plan
execution, our level-based methods become more accurate in approximating the lower bound.
Intuitively, this is because the “height” of each execution level as determined by the plan’s
critical path will be sufficient to pack the work in that level and, thus, the resource loss due to
“shelving” is not important. (This also explains why the average performance ratios for various
values of A all converge to a value close to unity as the number of sites is increased.) For the
parameter settings in our experiments, larger values for the memory granularity A typically
imply lower degrees of parallelism for the operators in the plan, which means that the critical
path will start dominating the other two factors in TREEBOUND much sooner. Furthermore,
the aforementioned effect on the performance ratio becomes more pronounced since the critical

path term will be significantly larger for larger A (Figure 16). Consequently, larger values for A

60

imply better performance ratios (Figure 14(a)), even though the actual schedule response times
are worse (Figure 14(b)).

For our second set of experiments, we removed all the blocking and data dependencies
from the query task trees and scheduled the resulting collection of independent query tasks
using LEVELSCHED. Again, we focused on the effect of A on the average performance of our
heuristic for different query and system sizes and different amounts of memory per site. The
average performance ratio and average response times of the schedules obtained for various
values of A with f = 0.6 and € = 0.5 are shown in Figures 16(a) and 16(b), respectively. With
respect to our previous discussion, the main observation here is that when all dependencies are
removed, smaller values of A (i.e., “finer” clones) result in both better response times and better
performance ratios. The reason is that, in the absence of scheduling constraints, “finer” clones
allow LEVELSCHED to produce better packings and minimize resource wastage within each level.
Also, note that both curves are significantly better (i.e., lower) than those of TREESCHED, since

the lack of dependencies allows LEVELSCHED to obtain better execution schedules.

Tasks from 40 Join Queries, 32MB/Site Tasks from 40 Join Queries, 32MB/Site

2.2 T T 800 T T
lambda = 0.8 -+ lambda = 0.8 ——
2 lambda = 0.5 -+] 700 lambda = 0.5 -+ 4
lambda =0.2 = lambda = 0.2 &
2 L
= 18 g 600
14 £
L L
8 1.6 S g 500
£ ’ o § 400}
s 14 T g
@ Fr e T o - o 24 300 -
& 12f o I Be o
j=2 Ia} =) <>:
2 200 |
1
100 -
0.8 [
L L L L L L 0 L L L L L L
20 40 60 80 100 120 20 40 60 80 100 120
No. of sites No. of sites

Figure 16: Effect of A on (a) the average performance ratio of LEVELSCHED, and (b) the average
schedule response times obtained by LEVELSCHED. (f = 0.6, € = 0.5)

4.5 Parallel Query Optimization

In this section, we study the implications of the analytical and experimental results presented
in this chapter for the open problem of designing efficient cost models for parallel query opti-

mization [DG92].

61

As noted in Section 1.1, the use of response time as optimization metric implies that a paral-
lel query optimizer cannot afford to ignore resource scheduling during the optimization process.
Prior work has demonstrated that a two-phase approach [HS91, Hon92] using the traditional
work metric during the plan generation phase often results in plans that are inherently sequen-
tial and, consequently, unable to exploit the available parallelism [JPS93, BFGT95]. On the
other hand, using a detailed resource scheduling model during plan generation (as advocated
by the one-phase approach [SE93, JPS93, LVZ93]) can have a tremendous impact on optimizer
complexity and optimization cost. For example, a Dynamic Programming (DP) algorithm must
use much stricter pruning criteria that account for the use of system resources [GHK92, LVZ93].
This leads to a combinatorial explosion in the state that must be maintained while building the
DP tree, rendering the algorithm impractical even for small query sizes.

As in centralized query optimization, the role of the optimizer cost model is to provide
an abstraction of the underlying execution system. In this respect, the one- and two-phase
approaches lie at the two different ends of a spectrum, incorporating either detailed knowledge
(one-phase) or no knowledge (two-phase) of the parallel execution environment in the optimizer
cost metric. The goal is to devise cost metrics that are more realistic than total resource
consumption, in the sense that they are cognizant of the available parallelism, and at the same
time are sufficiently efficient to keep the optimization process tractable.

In recent work, Ganguly et al. [GGS96] suggested the use of a novel scalar cost metric for
parallel query optimization. Their metric was defined as the maximum of two “bulk parameters”
of a parallel query plan, namely the critical path length of the plan tree and the average work
per site. Although the model used in the work of Ganguly et al. was one-dimensional, it is
clear that the “critical path length” corresponds to the maximum, over all root-to-leaf paths,
sum of T™%’g in the task tree, whereas the “average work” corresponds to @ with S being
all operator clones in the plan.

Based on our analytical and experimental results, there clearly exists a third parameter,
namely the average volume per site @ that is an essential component of query plan quality.
The importance of this third parameter stems from the fact that it is the only one capturing
the constraints on parallel execution that derive from ss (i.e., memory) resources.

We believe that the triple (critical path, average work, average volume) captures all the
crucial aspects characterizing the expected response time of a parallel query execution plan.
Consequently, we feel that these three components can provide the basis for an efficient and
accurate cost model for parallel query optimizers. Finally, note that although Ganguly et
al. [GGS96] suggested combining the plan parameters through a max{} function to produce a

scalar metric, the way these parameters are used should depend on the optimization strategy.

62

For example, a DP-based parallel optimizer should use our three “bulk parameters” as a 3-
dimensional vector and use a 3-dimensional “less than” to prune the search space [GHK92].
Clearly, using only three dimensions turns the Partial Order DP (PODP) approach of Ganguly
et al. [GHK92] into a feasible and efficient paradigm for DP-based parallel query optimization.

4.6 Conclusions

The problem of scheduling complex queries in hierarchical parallel database systems of multiple
time-shared and space-shared resources has been open for a long time both within the database
field and the deterministic scheduling theory field. Despite the importance of such architectures
in practice, the difficulties of the problem have led researchers in making various assumptions
and simplifications that are not realistic. In this chapter, we have provided what we believe
is the first comprehensive formal approach to the problem. We have established a model of
resource usage that allows the scheduler to explore the possibilities for concurrent operations
sharing both Ts and ss resources and quantify the effects of this sharing on the parallel execution
time. The inclusion of both types of resources has given rise to interesting tradeoffs with respect
to the degree of partitioned parallelism, which are nicely exposed within our analytical models
and results, and for which we have provided some effective resolutions. We have provided
efficient, near-optimal heuristic algorithms for query scheduling in such parallel environments,
paying special attention to various constraints that arise from the existence of SS resources,
including the co-scheduling requirements of pipelined operator execution, which has been the
most challenging to resolve. Our set of results apply to all types of query plans and even sets
of plans that are either provided all at the beginning or arrive dynamically for scheduling. As
a side-effect of our effort, we have identified an important parameter that captures one aspect
of parallel query execution cost, which should play an important role in obtaining realistic cost

models for parallel query optimization.

63

Chapter 5

Performance Evaluation Using

Simulation

In this chapter, we present a performance study of our parallel query scheduling algorithms
conducted using a detailed simulation model for a hierarchical/shared-nothing parallel database
system [Bro94]. The simulator was written in the CSIM/C++ process-oriented simulation
language [Sch90b] and was based on the Gamma parallel database machine [DGS190].

Figure 17 gives a high-level overview of the experimentation procedure employed in this
chapter, in comparison with the analytical model experiments presented in earlier chapters. In
both settings, the scheduling algorithms investigated receive as input a set of query execution
plans along with schema and system configuration information (e.g., declustering of base re-
lations, sizes of intermediate results, disk and CPU characteristics) and produce as output an
execution schedule (i.e., a mapping of query plan operators onto system sites). The scheduling
algorithm makes its mapping decisions off-line, based on its input and (possibly) on cost model
computations. For example, LEVELSCHED makes its scheduling choices using a cost model to
determine the work and demand vectors for operator clones and taking the componentwise sum
of vectors mapped to a specific site to estimate the expected TS and ss resource loads at that
site. The next step is to determine the actual response time of the schedule. In our analytical
model experiments, this was done simply by using the site workload estimates of the scheduling
algorithms. In this chapter, however, the schedule response time is determined by actually
ezecuting the schedule on a detailed simulation model of a hierarchical parallel database sys-
tem. As we will see, this introduces many elements of realism that were abstracted out in our
analytical model and earlier experiments.

The following section describes the various components of our simulation model in detail,
focusing on the differences between the simulator environment and the query execution envi-
ronment assumed in the last two chapters. We then go on to describe our experimental testbed

and discuss the simulation results.

64

RESPONSE TIME

SIMULATOR

/ operation costs

4
COST MODEL

PLANS

Figure 17: Experimentation Procedure.

5.1 Execution Environment

5.1.1 Query Processing Architecture

The system consists of a collection of query processing sites, comprising a CPU, memory, and
one or more disk drives. The sites use an interconnection network for all communication.
Query plans are submitted for execution from external terminals to a GlobalScheduler process
running on a dedicated scheduler site that lies outside the set of query processing sites in the
system. The GlobalScheduler determines a mapping of plan operators to sites, allocates
the appropriate resources for the plan, and finally initiates a QueryScheduler process on the
scheduler site that is responsible for executing the plan to completion. For each operator to
be executed, the QueryScheduler creates an execution thread on every site executing a clone
of the operator. For each such thread, appropriate communication channels are set up for the
exchange of control messages between the QueryScheduler and the thread (e.g., transition from
the build-phase to the probe-phase of a join pipeline, split table broadcasting, and “clone done”
messages) and data messages between threads of neighboring operators in the plan. When a
plan is run to completion the corresponding QueryScheduler dies and a reply message is sent
to the submitting terminal. The GlobalScheduler may then choose to activate another query
plan that had been waiting for some system resources to be released. Figure 18 provides a

high-level view of the query processing architecture in our simulation environment.

65

A obal Schedul er

Quer ySchedul ep
Quer ySchedul ep

PROCESSING NODES SCHEDULER

NODE

Interconnection Network

Figure 18: Simulator query processing architecture.

5.1.2 Hardware and Operating System Characteristics

Query processing sites in the system consist of a CPU, a buffer pool of 8 KByte pages, and one
or more disk drives. The CPU uses a round-robin scheduling policy with a 5 msec timeslice.
The buffer pool models a set of main memory page frames whose replacement is controlled
by a 3-level LRU policy extended with “love/hate” hints [HCL*90]. In addition, a memory
reservation mechanism under the control of the GlobalScheduler process allows memory to
be reserved for a particular query operator. This mechanism is employed to ensure that hash
table page frames allocated to join operators will not be stolen by other operators.

The simulated disks model a Fujitsu Model M2266 (1 GByte, 5.25”) disk drive. This disk
drive provides a cache that is divided into four 32 KByte cache contexts to effectively support up
to four concurrent sequential prefetches. In the disk model, which slightly simplifies the actual
operation of the disk, the cache is managed as follows. Each I/O request, along with the required
page number, specifies whether or not prefetching is desired. If prefetching is requested, four
additional pages are read from the disk into a cache context as part of transferring the originally
requested page from disk to memory. Subsequent requests for one of the prefetched pages can
then be satisfied without incurring an I/O operation. A simple round-robin policy is used to
allocate cache contexts if the number of concurrent prefetch requests exceeds the number of
available cache contexts. The disk queue is managed using an elevator algorithm [SG98].

The simulator models latency in the interconnection network, but essentially assumes infinite
network bandwidth. Earlier studies have argued that this assumption is in agreement with most

real parallel systems (e.g., iPSC/2, Hypercube, Paragon), where the interconnect rarely is the

66

bottleneck during parallel processing. Besides the end-to-end latency, messages also require
CPU processing at both the sender and receiver sites. Table 6 summarizes the execution
environment parameters employed in our simulations. The CPU instruction counts for various

database operations are based on earlier simulation studies [Meh94, P196].

[Configuration/Site Parameters | Value || || CPU Cost Parameters | No. Instr. ||
Number of Sites 20 - 80 Initiate Select 20000
CPU Speed 20 MIPS Initiate Join 40000
Number of Disks per Site 2 Initiate Store 10000
Memory per Site 8 — 16 MB Terminate Select 5000
Page Size 8 KB Terminate Join 10000
Latency for 8K Message 1.8 msec Terminate Store 5000
Disk Seek Factor 0.617 Read Tuple 300
Disk Rotation Time 16.667 msec Write Tuple into Output Buffer 100
Disk Settle Time 2.0 msec Probe Hash Table 200
Disk Transfer Rate 3.09 MB/sec Insert Tuple in Hash Table 100
Disk Cache Context Size 4 pages Hash Tuple Using Split Table 500
Disk Cache Size 8 contexts Apply a Predicate 100
Disk Cylinder Size 83 pages Copy 8K Message to Memory 10000
Buffer Manager 3-level LRU Message Protocol Costs 1000

Table 6: Simulation Parameter Settings

5.1.3 Comparison with our Earlier Model and Analysis

Using a detailed simulation environment to determine the execution time of a schedule for a
given set of query plans factors in many elements of realism that were abstracted out in the ana-
Iytical model experiments of Chapter 4. For example, as we already mentioned in Section 5.1.2,
the simulator models the effects of buffer management, disk caching, and overheads (i.e., disk-
arm contention) due to disk time-sharing at a considerable level of detail. Since most of these
effects are extremely hard to capture in an analytical model (e.g., the seek overheads depend
not only on the number of threads sharing a disk but also on the exact placement of blocks on
the disk surface), our scheduling algorithm continues to make its mapping decisions (Figure 17)
based on our original cost model with only minor modifications (e.g., using larger I/O transfer
units to model prefetching for disk cache contexts). Of course, the resource requirements for
the various operators (i.e., their work and demand vectors) were carefully estimated based on
the optimizer’s execution model and costs.

Another important difference between our simulation model and the problem model devel-

oped in Chapter 4 is the modeling of operator startup and communication costs. The simulator

67

assumes the existence of a dedicated scheduler site that is not used for query processing and
takes care of initiating and synchronizing all executing operator clones. Essentially, this means
that the sequential startup cost for clones is not a “surcharge” to an operator’s processing,
as we assumed in the last two chapters. We clearly expect the effects of high startup costs
for multiple clones to be less obvious under these assumptions. The simulator also models
the interconnection network as an infinite bandwidth resource, rather than as a finite, per site
TS resource. Thus, the network can never be the bottleneck resource during query execution,
which led us to discard the network dimension from the query operators’ work vectors. We also
modified our definition of the coarse granularity parameter f slightly, defining a CG execution

across N clones (Definition 3.2.1) as one which satisfies:

N - CloneOverhead
Wp (op)

where W) (op) is the processing area of op and “CloneOverhead” denotes the extra CPU process-

</

ing required for initiating and terminating a clone, including control messages to and from the
scheduler site. (The extension to A-granular CG s executions is obvious.) We should note that we
decided to maintain the simulator’s execution model intact even though we could have modified
it to fit our earlier assumptions, since the same base simulation model has been used in a num-
ber of recent experimental studies on parallel query processing [MD95, MD97, Meh94, P1I96]. In
a real system, where some of the simulator’s assumptions above may not hold, simple changes

to our algorithm’s cost model to improve effectiveness should be easily doable.

5.2 Experimental Testbed and Methodology

We have experimented with scheduling a collection of independent right-deep hash-join trees
using a slightly modified version of our LEVELSCHED algorithm. Briefly, our level-based sched-
uler continues to pack query tasks into disjoint execution “shelves” but views a right-deep join
tree as a single query task rather than breaking up its execution across two neighboring shelves
(one for the build-pipe(s) and one for the probe-pipe). LEVELSCHED uses the combined work
vector of the build and probe phase to make load-balancing decisions for joins, whereas the
demand vector for allocating memory remains roughly the same across the two phases (modulo
some very small number of pages for select’s and store’s). Although our original algorithm
was designed having general task systems in mind, the version proposed above is probably bet-
ter tuned to handle the specific form of dependency that exists between the probe task and its
build children in a right-deep join tree.

Given the lack of adversary algorithms for complex query scheduling with both S (memory)

68

and TS (CPU and disk(s)) resources, we decided to compare the performance of LEVELSCHED
to that of the standard query scheduling algorithm, termed ZETA, that had already been built-
in the GlobalScheduler process of our detailed simulation model. ZETA simply runs each
join operator at the set of sites where its left input (i.e., build-relation) is declustered. Since
the performance of ZETA obviously depends on the declustering decisions made for the base
relations, we experimented with various possible data placement strategies for the base relations

of our workload queries:
e Declust: Every base relation is horizontally partitioned across all sites in the system.

e Declust-1/4: Every base relation is horizontally partitioned across the same subset of

the system sites, comprising 1/4th of the entire system.

e NoDeclust: A base relation resides on a single system site, chosen randomly for every

relation from the set of all sites.

e NoDeclust-1/4: A base relation resides on a single system site, chosen randomly for
every relation from the same subset of the system sites, comprising 1/4th of the entire

system.

e Random: Both the degree of declustering and the actual sites storing a relation are
selected randomly from the underlying set of sites. To avoid partitioning small relations
over too many sites (which is typically avoided in real systems), we placed an upper bound
on the degree of declustering of a relation that is proportional to its size. (The upper
bound for the largest relation in the system is the total number of sites.) The actual

degree of declustering was then randomly chosen between 1 and that upper bound.

e QueryBasedDeclust: The degree of declustering for a base relation is equal to the
minimum number of sites required to hold the entire build hash table in main memory.
Furthermore, the actual set of sites given to a build relation is carefully selected so that

it does not overlap with any of the homes of the other build relations in the same query.

Obviously, Declust and NoDeclust represent the two extreme choices in the space of data
declustering strategies. The 1/4-versions of these strategies were chosen to represent situations
in which input queries will experience hotspots due to data placement choices. Although the
choice of the fraction of the system used for mapping data (1/4) was arbitrary, we believe
that our experimental observations will remain valid for other system fractions. The Random
placement strategy tries to relieve query hotspots by mapping relation fragments to randomly

selected sites. Such hotspots may still occur, however, based on the actual relations accessed

69

by a query. For example, it may very well happen that the homes of the four build relations
in a 4-join right-deep query overlap at one or more system sites. These sites will then be the
bottlenecks for the build phase of the pipe. It is exactly such bottlenecks that our final and
more sophisticated data placement strategy, QueryBasedDeclust, tries to avoid by explicitly
examining the set of queries to be executed. Of course, determining the exact query workload
may not always be possible (e.g., in an ad-hoc querying environment).

Note that the simulator implements a hybrid hash-join processing algorithm for right-deep
trees, so it is possible for ZETA to schedule each join in a pipe to be executed with as little
as the square root of its maximum memory demand [Sch90a, Sha86]. Of course, using less
memory implies that the join pipeline is executed in multiple passes. (This is never the case for
LEVELSCHED, since demand vectors are always determined using the maximum (i.e., one-pass)
memory demand for a join.) We also implemented a scheduling switch that forces ZETA not to
start the execution of a query until its maximum memory requirement can be satisfied, since
our results showed that multi-pass join pipelining can really hurt response time performance.
(Note, however, that this may not be possible given the degree of declustering of the build
relations.)

We executed both scheduling algorithms (i.e., LEVELSCHED and ZETA) over the same set
of input right-deep plans (submitted from the external terminals at time 0), for each of the
aforementioned base relation placement strategies. Our workloads consisted of right-deep hash-
join query plans, with the total number of joins in the workload varying between 8, 16, and
32. For each workload, we generated right-deep query plans of various sizes over randomly
selected base relations. Given the total number of joins in the workload, different right-deep
plan size combinations were tested (e.g., our 32-join workloads included one workload with
two 8-join plans and four 4-join plans, one workload with four 8-join plans, etc.). For each
workload combination, we executed five randomly generated workloads (by randomly selecting
the participating base relations) and averaged the observed simulation times over the five runs.
The results presented in the next section are indicative of the results obtained for all workload
combinations. For the experiments presented in this chapter, there was no base relation sharing
across query plans, i.e., each relation was part of at most one join in a workload. The purpose of
this was to mitigate the effects of the buffer management algorithm on our scheduling results’.
We plan to explore these effects in future work.

All our right-deep plans included a final step of storing the result relation across all sites

using a single disk at each site. We decided to use this default strategy for store’s rather than

! Also note that allowing for such relation sharing across queries really complicates the definition of a query-
based placement strategy like our QueryBasedDeclust.

70

treating them as floating operators since for many real-world queries the results do not actually
need to be stored on disk, so we wanted to minimize the impact of store’s on the relative quality
of the execution schedules. We also employed the simulator’s built-in assumption of uniform
join attribute distributions and decided to leave the study of join skew effects to future work.
It should be clear, however, that skew can only increase the gains of our algorithm over ZETA,
since by its definition ZETA is not allowed to re-balance the tuples of a build relation across
sites. As previously, our basic comparison metric was the response time for a given workload.
The values of our database schema and workload parameters are summarized in Table 7. Some
motivation for our choices for the coarse granularity parameter f and the memory granularity
parameter A is provided in the next section. The join probability is the factor multipled by the
cardinality of the right input to determine the result cardinality of a join, and the projection
factor indicates the percentage of the sum of the left and right input tuple widths that should
be retained in the result. We kept these join parameters fixed at 1.0 and 0.5, respectively during

all our experiments.

| Schema/Workload Parameters | Value ||
Tuple Size 200 bytes
Base Relation Size 1K - 100K tuples
Join Attribute Distribution Uniform
Workload Size (Total No. of Joins) 8, 16, 32
Right-Deep Query Size 2, 4, 8 joins
Coarse Granularity Parameter (f) 0.001 - 0.1
Memory Granularity Parameter()) 0.15-0.25
Join Probability 1.0
Projection Factor 0.5

Table 7: Database Schema and Workload Parameters

5.3 Experimental Results

5.3.1 Tuning the Clone Granularity Parameters

Selecting effective values for the coarse granularity parameter f and the memory granularity
parameter X is a very difficult problem. The right choice depends on a number of parameters
and characteristics of the underlying architecture, such as the CPU overhead of messages and
clone synchronization and the speed of the interconnection network. Furthermore, as explained
in Section 4.2.2, it is important to strike a balance between the overhead of parallelism and the

ability to effectively “pack” memory demands at system sites.

71

In our simulation runs, we decided to choose a value for the memory granularity parameter
A between 0.15 and 0.25. This seemed like a reasonable choice, given that the largest relation
in our experiments was approximately 20 MBytes and the smallest configuration tested had 20
sites with 8 MBytes each, for a total memory of 160 MBytes. (We would typically want the
“large” relations to be declustered over a sufficiently large number of sites.) Another reason for
choosing relatively small memory granularities comes from the small overhead of parallelism
in our simulation model, due to the dedicated scheduling node and the infinite bandwidth
interconnection network. As our results showed, the specific choice of A between 0.15 and 0.25
does not really affect the performance of our LEVELSCHED algorithm. Thus, we will only be

presenting our results for A = 0.15 in the remainder of this section.

32 Join Workload (4 X 8-join), Declust, 8MB/site 32 Join Workload (2 X 8-join + 4 X 4-join), Declust, 8MB/site
T T T T T T

40000 T 40000
N ZETA <— ZETA <—
LEVEL, = 0.001 ~+- 5 LEVEL, = 0.001 ~+-
LEVEL, = 0,005 -0 LEVEL, = 0,005 -0--

35000 - N LEVEL, f=0.01 -x- 7] 35000 - ERN LEVEL, f=0.01 -x- 7]

LEVEL,f=0.1 &~ LEVEL,f=0.1 &~

30000 [30000 [

25000 - 25000

20000 |- R

TEITTeA— L

20000

Piod
oxb

15000 | e TERnaL 15000 [

Workload Response Time (in msec)
i

xedl

Workload Response Time (in msec)

10000 [1 10000 [

5000 1 5000

L L L
80 100 0 20 80 100

40 60 40 60
No. of Simulated Sites No. of Simulated Sites

Figure 19: Effect of the coarse granularity parameter f on the performance of LEVELSCHED
for two 32-join workloads with fully declustered base relations (A = 0.15).

Given the small overhead of parallelism in our simulation model and after observing some
actual values for operator processing and communication costs during the operation of the
simulator, we decided to vary the coarse granularity parameter f between the values 0.001
and 0.1. Our results for the various workloads showed that although a value of 0.001 was
occasionally too small to exploit the available parallelism, values of f larger than 0.01 offered
little or no benefits in terms of response time and occasionally gave rise to speed-downs for
the larger configurations. An example of these trends is illustrated in Figure 19 for two 32-join
workloads, one consisting of four 8-join queries and one consisting of two 8-join queries and
four 4-join queries. (The performance of ZETA is also included in the plots for comparison
purposes.) Consequently, in the remainder of this section we will be presenting our results for

f =0.01. We should once again stress, however, that the appropriate choices for A and f could

72

differ depending on system parameters and characteristics.

5.3.2 Effect of Data Placement Strategy

Figures 20-22 depict the performance of the LEVELSCHED and ZETA scheduling algorithms
for the various data placement strategies investigated in this chapter and site memory sizes of
8 and 16 MBytes. These results were obtained for 32-join workloads consisting of two 8-join
queries and four 4-join queries.

As can be seen from Figure 20(a), the ZETA algorithm performs well under fully declus-
tered data placement, managing to stay close to LEVELSCHED especially for small system
configurations. This was something we expected for the following reasons. First, given that
all base relation scans for a pipeline occur concurrently at all sites and all result stores are
again defaulted to execute on all sites, LEVELSCHED really has no opportunities to exploit its
multi-dimensional cost model in order to balance CPU and I/O processing across system sites.
Second, since the overhead of parallelism is rather small in our simulator, the cost of cloning
every join across all sites does not penalize performance, especially for small configurations.
However, it is clear from Figure 20(a) that these penalties do appear for larger numbers of
sites, whereas our algorithm can avoid these costs and still manage to balance execution loads

effectively. We definitely expect these trends to become even more marked as the system size

grows.
Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), Declust Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), NoDeclust
40000 T T T T 400000 T T T
ZETA, 8MB/site -— ZETA, 8MB/site -—
ZETA, 16MB/site —+- ZETA, 16MB/site —+-
35000 |- LEVELSCHED, 8MB/site -8+~ | 350000 - LEVELSCHED, 8MBsite -8-- |
LEVELSCHED, 16MB/site - LEVELSCHED, 16MB/site -
~ 30000 1 —~ 300000 1
o o
- 2
& &
E E
< <
= 25000 1 = 250000 1
o o
E £ e
= = -
o o
2 20000 |- 4 2 200000 - S R . 4
g g
@ @
4] 4]
4 S o4
2 15000 [st q 2 150000 q
s TR ® S
= =
5 5
= 10000 | B = 100000 | E B
P
T
5000 - B 50000 |- B ﬁ B
0 1 1 1 1 0 1 1 1 1

80 100 0 20

40 60 40 60
No. of Simulated Sites No. of Simulated Sites

Figure 20: Performance of LEVELSCHED and ZETA for (a) Declust and (b) NoDeclust.

As expected, LEVELSCHED was the clear winner for the NoDeclust, Declust-1/4, and

100

73

Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), Declust-1/4 Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), NoDeclust-1/4
T T T T T T T T

500000

100000
ZETA, 8MB/site -— ZETA, 8MB/site -—
ZETA, 16MB/site -+~ ZETA, 16MB/site -+~
LEVELSCHED, 8MB/site -5-- 450000 LEVELSCHED, 8MB/site -5--
LEVELSCHED, 16MB/site - LEVELSCHED, 16MB/site -
80000 |- i 400000
2 2 .
2 & 350000 -
£ x £
£ \ £
s 60000 | . \ q s 300000 |
£ ’ £ N
= iy = R
@ S 9 T
2 2 250000 -
§ §
2 2
8 8 ~+
& 40000 - . N & 200000 -
ki “g.. S k|
S - k-l
= =
5 = 5 150000
s § s 5
B
20000 Tea g 100000 x
_—
.
-a
50000
0 0

L L
80 100 0 20 80 100

40 60 40 60
No. of Simulated Sites No. of Simulated Sites

Figure 21: Performance of LEVELSCHED and ZETA for (a) Declust-1/4 and (b) NoDeclust-
1/4.

NoDeclust-1/4 data placement policies, yielding substantial improvements over ZETA (Fig-
ures 20(b) and 21(a,b)). The main reason, of course, is that LEVELSCHED manages to balance
the memory demand for build relations across the system without being restricted by where
these relations reside on disk.

Similar observations can be made for Figure 22(a), where LEVELSCHED is shown to offer
significant gains over ZETA for Random data placement. Figure 22(b) depicts the performance
of the two algorithms for the QueryBasedDeclust data placement policy. In this particular
experiment, we activated the “maximum memory” flag for the ZETA algorithm which ensures
that a join will only be executed with its maximum memory allocation. We found that this really
helped the response time performance of ZETA under QueryBasedDeclust. Nevertheless,
LEVELSCHED still manages to outperform ZETA by a significant margin across most of our
system size range. A main reason for this phenomenon is that, by its data placement rule,
QueryBasedDeclust essentially decides the degree of parallelism for a join by looking only
at the build relation, which is not always a good predictor for the amount of work that needs
to be done. For example, consider a very small build relation that is joined with a very
large probe input. QueryBasedDeclust will probably assign only one site to that relation,
which means that it will very likely be a bottleneck during the probe phase of the pipeline.
LEVELSCHED, on the other hand, considers both the memory and the work requirements of a
join, by its combined memory granularity and coarse granularity condition. Needless to say,
this observation places even more weight on the correct choice of A and f.

Finally, Figure 23 gives a different view of the same results for a different 32-join workload

74

Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), Random Average over five 32-Join Workloads (2 X 8-join + 4 X 4-join), QueryBasedDeclust
100000 T T T T 80000 T T T T
ZETA, 8MB/site ~— . ZETA + MAXMEM, 8MB/site ~—
ZETA, 16MB/site ~+- ZETA + MAXMEM, 16MB/site -+
LEVELSCHED, 8MB/site -8-- 70000 |- . LEVELSCHED, 8MB/site -8-- |
LEVELSCHED, 16MB/site - S LEVELSCHED, 16MB/site -
80000 - 1
+
- N, —~ 60000 1
o o
- 2
& &
E E
< <
5 60000 [| < 50000 |
E R E
F = ‘ F
o 8 o
a 2 40000 |- 4
S S
2 =3
8 N, 8 B SRR a
T 40000 [* 1 =
2 e g 30000 [q
k-] k-]
2 y . 2
5 e -+ 5
g L g = 20000 | 1
20000 |- -]
10000 [1
0 1 1 1 1 0 1 1 1 1
0 20 80 100 0 20 80 100

40 60 40 60
No. of Simulated Sites No. of Simulated Sites

Figure 22: Performance of LEVELSCHED and ZETA for (a) Random and (b) QueryBased-
Declust (with the “max. memory” flag activated).

combination, consisting of four 8-join queries. The plots depict the observed response times for
LEVELSCHED and ZETA as a function of the input data placement, for two different system sizes
(40 and 80 sites). The numbers clearly demonstrate the ability of our algorithm to distribute
the query load across the system, independent of how “bad” the initial placement may be. The

performance of LEVELSCHED remains essentially unaffected by data placement choices.

Average over five 32 Join Workloads (4 X 8-join), 40 sites, 8 MB/site Average over five 32 Join Workloads (4 X 8-join), 80 sites, 8 MB/site
450000 T T T T T 450000 T T T T T
ZETA -— ZETA -—
LEVELSCHED -+- LEVELSCHED -+-
400000 1 400000 [1
350000 q 350000 [q
o T
- o
& &
£ 300000 g £ 300000 g
£ £
o o
E E
= 250000 1 = 250000 1
o o
@ @
2 2
2 2
@ 200000 1 @ 200000 1
4] 4]
4 o4
: :
S 150000 B S 150000 B
5 5
= =
100000 q 100000 q
50000 1 50000 1
0 1 1 1 1 1 0 1 1 1 1 1
Declust Declust-1/4 NoDeclust NoDeclust-1/4 Random QueryBasedDeclust Declust Declust-1/4 NoDeclust NoDeclust-1/4 Random QueryBasedDeclust

Data Placement Strategies Data Placement Strategies

Figure 23: Performance of LEVELSCHED and ZETA as a function of the data placement strategy
for (a) 40 and (b) 80 system sites (8 MB/site).

75

5.4 Conclusions

In this chapter, we have presented a performance study of our multi-dimensional query schedul-
ing algorithms using a detailed simulation model of a hierarchical parallel database system.
Compared to our earlier analytical model results, this simulation study has added many ele-
ments of realism including a detailed model of disk drive operation and disk caching, and an
LRU-type buffer manager. Although the simulation environment violated some of our earlier
assumptions about communication and clone startup costs, the results of our simulations have
shown that our algorithms can provide very effective load balancing in this environment. In
the near future, we plan to experiment with workloads that allow for relation sharing across

queries as well as bushy query plans.

76

Chapter 6

Resource Scheduling for Composite

Multimedia Objects

In this chapter!, we formulate the resource scheduling problems for composite multimedia
objects and we develop novel efficient scheduling algorithms, drawing on a number of techniques
from pattern matching and multiprocessor scheduling. Our formulation is based on a novel
sequence packing problem, where the goal is to superimpose numeric sequences (representing
the objects’ resource needs as a function of time) within a fixed capacity bin (representing
the server’s resource capacity). We propose heuristic algorithms for the sequence packing
problem using a two-step approach. First, we present a “basic step” method for packing two
object sequences into a single, combined sequence. Second, we show how this basic step can
be employed within different scheduling heuristics to obtain a playout schedule for multiple
composite objects. More specifically, we examine greedy scheduling heuristics based on the
general list-scheduling (£S) methodology of Graham [Gra69, GG75]. We show that although
LS schemes are provably near-optimal for packing monotonic sequences, they can have poor
worst-case performance when the monotonicity assumption is violated. Based on this result,
we: (1) suggest methods for improving the behavior of simple £S through the use of extra
memory buffers; and, (2) propose a novel family of more clever scheduling algorithms, termed
list-scheduling with backtracking (LSB), that try to improve upon simple £S by occasional
local improvements to the schedule. Experimental results with randomly generated composite
objects show that our LS strategy offers excellent average-case performance compared to both
an MBR-based approach and the optimal solution. We also briefly discuss our ongoing work on
how the idea of stream sharing (i.e., allowing several presentations to share component streams)

can be exploited to improve the quality of a schedule.

'Parts of this chapter have appeared in the Proceedings of the 24th International Conference on Very Large
Data Bases (VLDB’98) [GIO98].

7

6.1 Definitions and Problem Formulation

6.1.1 Composite Objects and Object Sequences

A composite multimedia object consists of multiple CM streams tied together through spatial
and temporal primitives. Since the spatial layout of the output is predetermined by the user
and does not affect the resource bandwidth requirements of CM streams, we concentrate on the
temporal aspects of CM composition. Following the bulk of the multimedia systems literature,
we also concentrate on the server disk bandwidth resource which is typically the bottleneck for
multimedia applications [CGS95, RV91, OBRS94, SGC95]. To simplify the presentation, we
assume that the stream resource demands have been normalized to [0,1] using the aggregate
disk bandwidth of the server B. We also assume that the time scale is discrete so that both the
lengths of CM streams and their lag parameters have integer values. This is usually the case
in practice, since most multimedia storage servers employ a round-based data retrieval scheme
and thus timing can only be specified at the granularity of a round’s length, which is typically
very small (a few seconds) [RV91, OBRS94]. Of course, finer-grain synchronization can always
be implemented using extra memory buffering [SGC95].

Following Chaudhuri et al. [CGS95], we define an n;-ary composite multimedia object C; as
a (2n; — 1)-tuple < X,, Xjp, ..., Xi, , tiy, - - -, ti,, > where the X;;’s denote the component CM
streams (in order of increasing start times) and t;; denotes the lag factor of X;, with respect to
the beginning of the display of X;, (i.e., the beginning of the composite object). This definition
covers the 13 qualitative temporal interval relationships of Allen [All83] and also allows us to
specify quantitative temporal constraints. Figure 24(a) depicts a 4-ary object corresponding to
the news story example mentioned in Section 1.2.1, consisting of two overlapping video clips
with background music and narration. The height of each stream in Figure 24(a) corresponds
to its bandwidth requirement, and the length corresponds to its duration (in general, the x-axis

represents time).

4 — X4 :video-2
13— X3 : music
t) —e X, :narration
X :video-1
(a) (b)

Figure 24: (a) A 4-ary composite multimedia object. (b) The corresponding object sequence.

For each component CM stream X;; of C;, we let [(Xi].) denote the time duration of the

78

stream and 7(Xj;;) denote its resource bandwidth requirements. Similarly, we let /(C;) denote
the duration of the entire composite object Cj, i.e., [(C;) = max;{t;; + 1(X;;)}, and 7(C,1)
denote the bandwidth requirements of C; at the ¢** time slot after its start (0 < t < I(C})).
Table 8 summarizes the notation used throughout this chapter with a brief description of its
semantics. Detailed definitions of some of these parameters are given in the text. Additional

notation will be introduced when necessary.

I Parameter | Semantics |

B | Aggregate server disk bandwidth (in bits per sec — bps)
T | Length of a time unit (i.e., round) (in sec)
C; | Composite multimedia object
n; | Number of component streams in C;
1(C;) | Length (i.e., time duration) of C;
r(C;,t) | Bandwidth requirement of C; at time slot ¢ (0 < t < I(C}))
Tmaz(Ci) | Max. bandwidth requirement of C;
X;, | The j*" component stream of C;
I(X3;) , r(Xy;) | Length and bandwidth requirement of stream X,
k; | Number of constant bandwidth “blocks” in the run-length compressed form of C;
) | Length and bandwidth requirement of the j** run-length “block” of C;
V(C;) | Volume (i.e., total resource-time product) of C;
d(C;) | Density of C;

Table 8: Notation

The bandwidth requirements of our example news story object can be represented as the
composite object sequence depicted graphically in Figure 24(b), where each element of the
sequence corresponds to the object’s bandwidth demand at that point in time (i.e., during that
time unit). Note that the rising and falling edges in a composite object sequence correspond
to CM streams starting and ending, respectively. Essentially, the object sequence represents
r(C;,t), that is, the (varying) bandwidth requirements of the object as a function of time ¢.
Since our scheduling problem focuses on satisfying the bandwidth requirements of objects, we
will treat the terms “composite object” and “sequence” as synonymous in the remainder of the
chapter.

Typically, CM streams tend to last for long periods of time. This means that using the full-
length, [(C;)-element object sequence for representing and scheduling a composite multimedia
object is a bad choice for the following two reasons. First, these full-length sequences will
be very long (e.g., a 2-hour presentation will typically span thousands of rounds/time units).
Second, full-length object sequences will be extremely redundant and repetitive since they only
contain a small number of transition points. For our purposes, a more compact representation

of composite objects can be obtained by using the run-length compressed form of the object

79

sequences [AG97]. Essentially, the idea is to partition the composite object into “blocks” of
constant bandwidth requirement and represent each such block by a pair (I;;,r;;), where r;;
represents the constant requirement of the object over a duration of /;; time units. This process
is shown graphically in Figure 24(b). Thus, we can represent the n-ary composite object C; in
a compact manner by the sequence: < (l;;,7i;)s---, (liki’riki) >, where k; << I(C;). In fact,
k; < 2-n; — 1, where n; is the number of component CM streams in C;.

Following the terminology of Chapter 4, we define the volume (V) of a composite object C;
as the total resource-time product over the duration of C;. More formally, V(C;) = Zf;l Li;ri; .-
The density (d) of a composite object C; is defined as the ratio of the object’s volume to the
volume of its MBR, i.e., d(Ci) = jrzm -

6.1.2 TUsing Memory to Change Object Sequences: Stream Sliding

Although inter-media synchronization constraints completely specify the relative timing of
streams at presentation time, the scheduler can use extra memory buffers? to alter an ob-
ject’s retrieval sequence. The idea is to use additional memory to buffer parts of streams that
have been retrieved before they are actually needed in the presentation and play them out from
memory at the appropriate time. This method, termed stream sliding, was originally introduced
by Chaudhuri et al. for resolving internal contention under the assumption of round-robin strip-
ing [CGS95]. The general method is depicted in Figure 25(a) which shows our example 4-ary
news story object with the second video clip (stream X,) upslided by x time units. In this
example, the server needs to use an extra z - T - B - r(X4) bits of memory in order to support
the object playout as required by the user (Figure 24(a)). Since it is possible for the amount
of upsliding to exceed the actual length of the stream (i.e., z > [(X})), the general expression
for the amount of memory required to upslide X4 by z is min{z,l(X4)} - T - B - r(X4). This
expression says that if x > [(X}4), then we only need enough memory to buffer the entire stream
X4. (Note that multiplying by the server bandwidth B is necessary, since r() is normalized
using B.)

Similarly, the server may also choose to downslide a stream, which means that the retrieval
of the stream starts after its designated playout time in the presentation (Figure 25(b)). Downs-
liding introduces latency in the composite object presentation, since it is clearly impossible to
start the playout of a stream before starting its retrieval. Thus, in Figure 25(b), the entire pre-
sentation must be delayed by y time units. This also means that once a stream is downslided,

all the other streams must be buffered unless they are also downslided by the same amount.

2 Assuming round-based retrieval of streams with a round length of T, each stream X;; requires a minimum
buffering of 2- T - B - r(X;,) during its retrieval [OBRS94, ORS95a].

80

Il : stream retrieval
» : stream playout

ty+ Y.
13 — o
) —e

(a) y (b)

Figure 25: (a) Upsliding stream X4. (b) Downsliding stream Xj.

Because of these two problems upsliding is preferable to downsliding, whenever both options

are available [CGS95, SGC95].

6.1.3 Our Scheduling Problem: Sequence Packing

Given a collection of composite objects to be scheduled using the server’s resources, a schedule
is an assignment of start times to these objects so that, at any point in time, the bandwidth and
memory requirements of concurrent presentations (to, perhaps, different users) do not violate
the resource capacities of the server. In this chapter, we concentrate on the problem of off-line
makespan (i.e., response time) minimization, in which the objective is to minimize the overall
schedule length for a given collection of objects (i.e., tasks) [GGT75, Gra69]. Prior scheduling
theory research has shown how to employ solutions to this problem for both on-line response
time minimization (where tasks arrive dynamically over time) and on-line average response time
minimization [CPST96b, HSSW97, SWW95].

Ignoring the flexibilities allowed in stream synchronization through additional memory
buffering (i.e., sliding), the bandwidth requirements of each object to be scheduled are com-
pletely specified by its resource demand sequence (Figure 24(b)). Thus, assuming sliding is not

an option, our scheduling problem can be abstractly defined as follows.
e Given: A collection of (normalized) composite object sequences {C;} over [0, 1].

e Find: A start time slot s(C;) for each %, such that for each time slot ¢
Z ’I"(C,’,t - S(CZ)) < 1,
{C;:5(Ci)<t<s(C)+HU(Cs)}
and max;{s(C;) +1(C;)} is minimized.
Conceptually, this corresponds to a sequence packing problem, a non-trivial generalization of

traditional NP-hard optimization problems like bin packing and multiprocessor scheduling that,

to the best of our knowledge, has not been previously studied in the combinatorial optimization

81
literature [CGJ84, CGJ96, Gra69, GG75]. In bin packing terminology, we are given a set of

items (normalized object sequences) that we want to pack within unit-capacity bins (server
bandwidth) so that the total number of bins (makespan, used time slots) is minimized. Our
sequence packing problem also generalizes multi-dimensional bin packing models known to be
intractable, like orthogonal rectangle packing [BCR80, BS83, CGJT80] (a rectangle is a trivial,
constant sequence) and vector packing [GGJY76, KMT77] (vectors are fixed length sequences
with start times restricted to bin boundaries). Note that rectangle packing algorithms are
directly applicable when the MBR simplification is adopted. However, it is clear that this
simplification can result in wasting large fractions of server bandwidth when the object densities
are low. Given the inadequacy of the MBR simplification and the intractability of the general
sequence packing formulation, we propose novel efficient heuristics for scheduling composite
object sequences using a combination of techniques from pattern matching and multiprocessor
scheduling.

Sliding further complicates things, since it implies that the scheduler is able to modify
the composite object sequences at the cost of extra memory. Given a set of object sequences
and a finite amount of memory available at the server, the problem is how to utilize memory
resources for sliding various object streams around (i.e., modifying the object sequences) so that
the scheduler can effectively minimize some scheduling performance metric such as schedule
length or average response time. This is obviously a very complex problem that, in many ways,
generalizes recently proposed malleable multiprocessor scheduling problems [Lud95, TLW 94,
TWY92]. To the best of our knowledge, the general sliding problem, as outlined above, has yet
to be addressed in the scheduling or multimedia literature.

Our results for the sequence packing problem indicate that simple, greedy scheduling algo-
rithms based on Graham’s list-scheduling method [Gra69] can guarantee provably near-optimal
solutions, as long as the sequences are monotonic. On the other hand, we show that list-
scheduling can perform poorly when the monotonicity assumption is violated. Based on this
result, we examine the problem of exploiting extra memory and sliding to make object se-
quences monotonic. Although this problem is itself NP-hard, we propose a polynomial-time

approximate solution.

6.2 Algorithms for the Sequence Packing Problem

In this section, we present heuristic algorithms for the object sequence packing problem iden-
tified in Section 6.1. Our approach is based on the observation that the result of packing a

subset of the given object sequences is itself an object sequence. Thus, we begin by presenting

82

a “basic step” algorithm for obtaining a valid packing of two sequences. We then show how this
method can be employed within two different scheduling heuristics to obtain a playout schedule

for multiple composite objects.

6.2.1 The Basic Step: Packing Two Sequences

Our basic algorithmic step problem can be abstractly described as follows. We are given two
(normalized) object sequences C, (a new object to be scheduled) and C), (the partial schedule
constructed so far) over [0,1]. We want to determine a valid packing of the two sequences, that
is, a way to superimpose C, over C), that respects the unit capacity constraint (i.e., all elements
of the combined sequence are less than or equal to 1). Given that our overall scheduling
objective is to minimize the length of the resulting composite sequence, the presentation of
this section assumes a “greedy” basic step that searches for the first point of C, at which
C, can be started without causing capacity constraints to be violated. Since, as we argued
in Section 6.1.1, the full-length representation of the object sequences is very inefficient we
assume that both object sequences are given in their run-length compressed form. That is,
Co =< (loy;T01); - (loy,»Toy,,) > and Cp =< (lp;,7p,),-- -, (lpy,,Tp,) >- In Figure 26, we
present an algorithm, termed FINDMIN, for performing the basic sequence packing step outlined
above. FINDMIN is essentially a “brute-force” algorithm that runs in time O(k, - kp), where k,,
k, are the lengths of the compressed object sequences.

Since our composite obect sequences can be seen as patterns over the alphabet [0,1], it is
natural to ask whether or not ideas from the area of pattern matching can be used to make
our basic algorithmic step more efficient. As in most pattern matching problems [AG97], the
requirement that all “characters” of both patterns must be examined imposes a linear, i.e.,
O(ko, + kp) (since we are dealing with the compressed representations), lower bound on the
running time of any algorithm. The question is whether or not this lower bound is attainable
by some strategy. An equivalent formulation of our basic step packing problem comes from
considering the complementary sequence C, of the partial schedule C,, which informally, corre-
sponds to the sequence of free server bandwidth over time. More formally, C), is determined by
defining 7(C,,t) = 1 — r(C),, t), for each time slot ¢. Thus, our problem is equivalent to finding
the earliest time slot at which C,, is completely “covered” /dominated by C, (Figure 27(a)). This
is a problem that has received some attention from the pattern matching research community.
Amir and Farach define the above problem for uncompressed patterns as the “smaller match-
ing” problem and give an algorithm that runs in time O (l (Cp) - VI(C,) - logl (Co)), where I()
denotes uncompressed sequence lengths (Table 8) [AF91]. Muthukrishnan and Palem show that

this is in fact a lower bound on the time complexity of the problem in a special, yet powerful

83

Algorithm FINDMIN(C,, Cp)

Input: Sequences
C,, Cp over [0,1] in run-length compressed form (i.e., Co =< (Io,,70,);-- -5 oy, Tor,) > and
Cp =< (lplarm)a R (lpkpalrpkp) >)'

Output: The least 0 < k < I(Cp) such that C, can be validly superimposed over C), starting at time
slot k.

1. For each constant bandwidth block < [,;,7,; > of C,, determine the set of feasible starting points
So; for < I,;,r,, > over Cp,. For a given j, this can be done in time O(k,) and the result is a
union of m; = O(k,) disjoint temporal intervals:

SOj = [ajlabjl) u...u [ajmj ’ bjmj),

where bj,, . = oo (at the end of the current partial schedule Cy).

2. Let ; = S,,. For j =2 to k, do

L=L_in([aj, = oy + ..o+ 1lo;_1)sbj — oy +-- -+ 1o,_,)) U
Ulaj,., = oy +---+1loj_s), b5, — (loy +---+10,1)))

Let |S| denote the number of intervals in S. Since the intervals in the unions S, are disjoint and
in sorted order, each intersection I; can be computed in time O(|I;_1|+|S,,|) using a MERGE-like
algorithm, and a simple argument can establish that |I;| < min{|I;_1],|So,|} = O(kp).

3. At this point, I}, contains the entire set of feasible starting time slots for C,. Return the earliest
slot in I, .

Figure 26: Algorithm FINDMIN

convolution-based model; their result implies that faster algorithms for the smaller matching
problem would imply a faster method than the Fast Fourier Transform for certain generaliza-
tions of convolutions [MP94]. None of these papers addressed the problem when the run-length
compressed forms of the patterns are used. Furthermore, it is not clear whether the rather
complicated algorithm of Amir and Farach will outperform a straightforward O(I(Cy) - 1(C)))
solution in a practical implementation [Far97]. Finally, even if the “optimal” method of Amir

and Farach could be extended to run-length compressed patterns, the asymptotic performance

Vko
log ko

improvement with respect to FINDMIN would only be O(), a small gain since the number
of streams in a single composite object k, is typically bounded by a small constant.
Thus, prior results from the pattern matching community assure us that our “brute-force”

FINDMIN algorithm is a reasonably good strategy for the basic sequence packing step for general

84

G G collision al i gn(3, 2)
\‘ |

G
@ (b) (©)

Figure 27: (a)The “smaller matching” analogy. (b) A collision with a bitonic C,. (c) Resolving
the collision by align-ing (Algorithm Brronic-FINDMIN).

object sequences. However, for special cases of object sequences (C,), we may still be able
to come up with faster algorithms. We now present such an algorithm for the special case
of bitonic object sequences. Informally, a sequence is bitonic if it can be partitioned into a
monotonically increasing prefix followed by a monotonically decreasing prefix. This means that
no new component streams can be initiated after the end of a stream in the presentation.
Although one can argue that bitonic objects are rather common in multimedia practice (e.g.,
our example news story composite object shown in Figure 24 is bitonic), our method can also be
used within more complex basic step algorithms for general sequences. The idea is to partition
objects into a (small) number of bitonic components and schedule each component using our
improved strategy for bitonic objects. We will not pursue this idea further in this thesis.

The basic operation of our improved algorithm for bitonic objects is similar to that of the
Knuth-Morris-Pratt string matching algorithm, in that it shifts the C, pattern over C), until a
“fit” is discovered [KMP77]. The crucial observation is that, for bitonic C, patterns, we can
perform this shifting in an efficient manner, without ever having to backtrack on C,. This is
done as follows. Consider a particular alignment of C, and C) and let (Ip;,7p;) be the first
block of Cp, at which a “collision” (i.e., a capacity violation) occurs. Then the earliest possible
positioning of C, that should be attempted (without losing possible intermediate positions) is
that which aligns the right endpoint of block (l,,,p,) with that of block (le o,), where 4; is
the index of the latest block in the increasing segment of C, such that rp, + 7o, < 1. We denote
this alignment operation by align(j,7;). An example is depicted in Figure 27(b,c). To make
the presentation uniform, we assume the existence of a zero block for both sequences, with
lpo = loy = 0. Our improved basic step algorithm for bitonic C,, termed BiTONIC-FINDMIN, is
depicted in Figure 28.

The time complexity of algorithm BITONIC-FINDMIN is O(k, + k;, - logk,). The first term
comes from the preprocessing step for C,. The second term is based on the observation that both

the partial sums vector s; and the bandwidth requirements vector for the increasing segment

85

Algorithm BITONIC-FINDMIN(C),, Cp)

Input: Sequences C,, Cp over [0,1] in run-length compressed form
(ie, Co =< (loy;T01)s---5(loy,>Tox,) > and Cp =< (Ipy;7p,)s- - (ps, o,) >). Sequence Co
is assumed to be bitonic.

Output: The least 0 < k < I(Cp) such that C, can be validly superimposed over C, starting at time
slot k.

1. Preprocess C, to obtain a “partial sums” vector s; = Ziﬂzl ly, forj=1,... k.
2. Initialize: align(0,0), 7 =¢ =0, lcop = 0.
3. while (I, < I(C,)) do

3.1. Find the least i; such that s;;, —lcov > 1,;.
3.2. To check for a collision at block (I,;,7p;) we distinguish two cases.

o C, is decreasing after l.o,. (We just need to check the first block of C, placed over
(Ip;s7rp;)-) I rp, +ro,, < 1 (i.e., no collision) then set lcoy = leow +1p;, 7 = j+ 1,4 = ij.
Else, find the largest block index m in the increasing part of C,, such that r,, <1—r,,
shift C, to align(j,m),andset i =m, j =j + 1, looy = Sp-

o C, is increasing after l.,,. If the block index i; is in the decreasing part of C, then
check if rp; 4+ rmaz(C,) < 1, otherwise check if rp,; + Toi, < 1. If the condition holds set
leow = leow +1p;, j = j+1, i = i;. Else, find the largest block index m in the increasing
part of C, such that r,,, <1 -7, , shift C, to align(j,m), and set i =m, j = j + 1,

lcov = Sm-

4. Return the starting time slot for the current placement of C,.

Figure 28: Algorithm BiToNIC-FINDMIN

of C, are sorted, which means that the “find the least/largest index s.t. <condition>” steps of
BiToNIC-FINDMIN can be performed in time O(logk,), using binary search. More elaborate
search mechanisms (e.g., based on Thorup’s priority queue structures [Tho96]) can be employed

to reduce the asymptotic complexity® of BITONIC-FINDMIN to O(k, + k, - loglog k).

6.2.2 A List-Scheduling Algorithm for Sequence Packing

We present a heuristic algorithm that uses the basic packing step described in the previous
section in the manner prescribed by Graham’s greedy list-scheduling strategy for multiprocessor
scheduling [Gra69]. The operation of our heuristic, termed LS, is as follows. Let L be a list of
the composite object sequences to be scheduled. At each step, the LS algorithm takes the next

3Note, however, that the practicality of such search structures for the small domains encountered in this
chapter is questionable [Mut98].

86

object from L and (using FINDMIN or BITONIC-FINDMIN) places it at the earliest possible start
point based on the current schedule. Note that this rule is identical to Graham’s list-scheduling
rule for an m-processor system, when all objects have a constant bandwidth requirement of
1/m throughout their duration.

Unfortunately, this simple list-scheduling rule does not offer a good guaranteed worst-case
bound on the suboptimality of the obtained schedule. Even for the special case of bitonic
objects, it is easy to construct examples where the makespan of the list schedule is Q(min{l, |L|})
times the optimal makespan, where |L| is the number of objects and [is the length (in rounds)
of an object sequence. One such bad example for LS is depicted in Figure 29. Note that as the
example object sequences become more “peaked”, the behavior of LS compared to the optimal
schedule becomes even worse. However, even for this bad example, LS will behave significantly
better than MBR scheduling, which would not allow any overlap between consecutive “columns”

in the schedule.

al objects:

- .

€Y (b)
Figure 29: A “bad” example for £S: (a) Schedule produced by LS. (b) Optimal schedule.

Thus, in the worst case, the behavior of LS can be arbitrarily bad compared to the optimal
schedule. Furthermore, note that since all the objects in the example of Figure 29 are identical,
ordering the list L in any particular order (e.g., by decreasing object “height”) will not help
worst-case behavior. Assuming the maximum resource requirements of objects (i.e., T'mqaz(Ci)’s)
to be bounded by some small constant (a reasonable assumption for large-scale CM servers)
also does not help, as long as the objects are sufficiently “peaky”. However, as the following
theorem shows, the situation is much better when the object sequences in L are appropriately

constrained.

Theorem 6.2.1 Let L be a list of monotonically non-increasing composite object sequences

C; and assume that 7., (C;) < A < 1, for each i. Also, let lya.(L) = max;{I(C;)} and

V(L) = >, V(C;) (i.e., the total volume in L), and let Topr(L) be the makespan of the

optimal schedule for L. Then, the makespan returned by LS, Trs(L), satisfies the inequality:
V(L)

1
CS() = 1 lmaw() = (1 1 A) TOPT(L)

87

O

It is easy to see that a slightly modified version of LS can guarantee the same worst-case
performance bound for any list of monotonically non-decreasing objects, as well. The basic idea
is to “time-reverse” each object sequence and schedule these reversed (non-increasing) sequences
using LS. Of course, the schedule obtained is then played out in reverse (i.e., from end to start).
We can combine these observations with algorithm LS to obtain the following simple strategy,
termed Monotonic LS (MLS), for scheduling monotonic objects. First, schedule all non-
increasing sequences using LS. Second, reverse all remaining objects and schedule them using

LS. Third, concatenate the two schedules. It is easy to prove the following corollary.

Corollary 6.2.1 For any list L of monotonic composite objects C; with 7,4,(C;) < A < 1, for
each i, algorithm MLS guarantees a makespan Thrs(L) such that:

V(L)

T L) <
mes(L) = 7

1
+ 2 lmaw(L) < (2 + ﬁ) : TOPT(L)'

O

With respect to the time complexity of our list-scheduling algorithms, it is easy to see
that the decisive factor is the complexity of the basic packing step discussed in Section 6.2.1.
Using the FINDMIN algorithm for general object sequences implies an overall time complexity
of O(N?), where N = "¢, . n; is the total number of streams used in L. If all the sequences
are bitonic or monotonic, BITONIC-FINDMIN can be used giving an overall time complexity of
O(N - |L| - log %) (Note that that the number of composite objects |L| is smaller than the
number of streams N and the average number of streams per object % is typically a small

constant.)

6.2.3 Improving over the MBR Assumption: Monotonic Covers

Informally, we define a monotonic cover of a composite object C; as another composite object

C; that (a) is monotonic, and (b) completely “covers” C; at any point in time. More formally:

Definition 6.2.1 A monotonic cover for C; =< (I;,,74,),- .-, (liki’riki) > is an object C; =<
(lil,fil),...,(liki,fiki) > such that #;; > r;; for each j and 7y, > 7, for j =1,...,k; —1 or
fi; < Fijy, forg=1,...,k — 1. 0

Corollary 6.2.1 suggests an immediate improvement over the simplistic MBR assumption

for scheduling composite multimedia objects: Instead of using the MBR of an object C;, use

88

a minimal monotonic cover of Cj, that is, a monotonic cover that minimizes the extra vol-
ume. List-scheduling the monotonic covers of composite objects (using MLS) is an attractive
option because of the following two reasons. First, compared to scheduling the object se-
quences unchanged, using the covers implies a simpler placement algorithm (a special case of
BrTonic-FINDMIN), with reduced time complexity. Second, compared to using MBRs, mini-
mal monotonic covers can significantly reduce the amount of wasted volume in the cover. (Note
that a MBR is itself a trivial monotonic cover.) For example, in the case of a bitonic object,
a minimal monotonic cover wastes at most half the volume that would be wasted in an MBR
cover. Also note that the minimal monotonic cover of a compressed composite object sequence

can be easily computed in linear time.

6.2.4 Utilizing Server Memory: Stream Sliding

A different way of employing our near-optimality results for list-scheduling in the case of mono-
tonic objects is through the use of the stream sliding techniques described in Section 6.1.2. The
idea is to use extra server memory to turn non-monotonic object sequences into monotonic ones.
In this section, we attack the problem of efficiently utilizing server memory to make composite
object sequences monotonic. More specifically, we concentrate on the use of stream upsliding
to convert an object sequence to a non-increasing sequence with minimal extra memory. Our
techniques are also applicable to the dual problem (i.e., making sequences non-decreasing by
stream downsliding). However, as we discussed in Section 6.1.2, downsliding introduces laten-
cies into the schedule and should therefore be avoided. Possible techniques that combine both
upsliding and downsliding are left as an open problem for future work.

A straightforward way of making an object sequence non-increasing is to simply upslide all
streams with a non-zero lag to the beginning of the composite object (Figure 30(a,b)). Given an
object C;, this naive approach will obviously require a total memory of B - Z;-L;z lti; - 7i;, where
we define It;; = min{l(X;;),t;;} (Section 6.1.2). However, we might be able to do significantly
better than that. The idea is that, depending on the object’s structure, it may be possible
for some stream to “shield” the starting edge of another stream, without requiring the second
stream to be upslided all the way to the beginning of the object. This is depicted graphically in
Figure 30(c). Note that the use of such clever upsliding methods not only reduces the amount of
memory required for making the object monotonic, but it also reduces the maximum bandwidth
requirement of the object (i.e., rmq5(C;)). This is obviously important since it implies smaller
A’s in Theorem 6.2.1 and, consequently, better worst-case performance guarantees for £S.

Unfortunately, as the following theorem shows, this problem of optimal (i.e., minimum

memory) stream upsliding is AP-hard. This result can be proved using the observation that

89

g Xs
Xaq

t3 X3

t X2
X1

(@ (b)

X5 Xa
— ~/
X3
© (d)

Figure 30: (a)A 5-ary composite object C. (b) “Naive” stream upsliding. (c) “Clever” stream
upsliding. (d) The shield graph of C. (Thick lines indicate the matching used in (c).)

each stream can “shield” multiple streams to give a reduction from PARTITION [GJ79].

Theorem 6.2.2 Given a composite object sequence C;, determining an optimal (i.e., minimum

memory) sequence of stream upslides to make C; non-increasing is N'P-hard. 0

Given the above intractability result, we now propose a simple heuristic strategy for im-
proving upon the naive “upslide everything” method. Owur solution is based on the following

definition that simply states the above observations in a more formal manner.

Definition 6.2.2 Consider a composite object C;. We say that stream X;; can shield stream
Xy, (k # j) if and only if I(X;;) < 1;, and r(X;;) > r(X;,). The benefit of shielding X;, by X,

is defined as:

b k) — { B-r(X;,)- (lt,-k — min{l(X;,), t;, — Z(Xij)}) . if X;, can shield X;,

, otherwise

O

The intuition behind Definition 6.2.2 can be seen from Figure 30. The benefit b(j, k) is
exactly the gain in server memory (compared to the naive “upslide everything” solution) by
using X;; to shield X;,. Our heuristic strategy for stream upsliding uses a edge-weighted graph
representation of the “can shield” relationships in a composite object C;. Specifically, we
define the shield graph of C;, SG(C;), as an undirected graph with nodes corresponding to the
streams X;; of C; and an edge ej; between node X;; and X;, if and only if X;; can shield X;,
or X, can shield X;,. The weight w() of an edge is defined as the maximum gain in memory
(compared to the naive approach) that can result by utilizing that edge. More formally, we

define w(ejx) = max{ b(j, k) , b(k,j) }.

90

Our heuristic method for stream upsliding builds the shield graph SG(Cr) for object C; and
determines a mazimum weighted matching M on SG(Cy). Essentially, this matching M is a col-
lection of node-disjoint edges of SG(Cr) with a maximum total weight w(M) = DejueM w((ejk)-
The maximum weighted matching problem for SG(Cy) can be solved in time O(n}), where n; is
the number of streams in C; [PS82]. The edges in M determine the set of “stream shieldings”
that will be used in our approximate upsliding solution. Furthermore, by our edge weight defi-
nitions, it is easy to see that the the total amount of memory that will be used equals exactly
B - (22“22 It -rij) — w(M), that is, the memory required by the naive approach minus the
weight of the matching.

6.2.5 Local Improvements to £S: List-Scheduling with Backtracking (LSB)

The problem with the stream sliding approach outlined in the previous section is that it may
often require large amounts of memory per object that the server simply cannot afford. In such
cases, we are still faced with the general sequence packing problem. The results of Section 6.2.2
indicate that using a simple list-scheduling approach for general object sequences can result in
arbitrarily bad sequence packings, leading to severe underutilization of the server’s bandwidth
resources. The main problem of LS is that by making greedy (i.e., earliest start time) decisions
on the placement of objects at each step, it may end up with very “sparse” sequence packings
(i.e., schedules with very poor density). This is clearly indicated in the example of Figure 29.
Thus, it appears that a better scheduling rule would be, instead of trying to minimize the
start time of the new object in the current schedule, try to mazimize the density of the final,
combined sequence. However, maximizing density alone also does not suffice. Returning to the
example of Figure 29, it is fairly easy to see that the placement that maximizes the density
of the final object is one that simply juxtaposes all the object peaks (i.e., never places one
peak on top of another). Since our goal is to minimize the overall schedule length, this is not
satisfactory. Instead of trying to maximize density alone, the scheduler should also make sure
that the entire bandwidth capacity of the server (i.e., height of the bin) is utilized. (Note that
using the server’s bandwidth capacity instead of 7., to define object density does not help;
since the bandwidth is fixed, placing objects to maximize this new density is equivalent to
trying to maximize their overlap with the current schedule, i.e., the £S rule.)

In this section, we propose a novel family of scheduling heuristics for sequence packing,
termed list-scheduling with k-object backtracking (LSB(k)). Informally, these new algorithms
try to improve upon simple LS by occasional local improvements to the schedule. More specif-
ically, the operation of LSB(k) is as follows. The algorithm schedules objects using simple

LS, as long as the incoming objects can be placed in the current schedule without causing

91

the length of the schedule to increase. When placing a new object results in an increase in
the makespan, LSB(k) tries to locally improve the density of the schedule and check if this
results in a better schedule. This is done in four steps. First, the last & objects scheduled
are removed from the current schedule. Second, these k object sequences are combined into
a single sequence in a manner that tries to maximize the density of of the resulting sequence.
Third, the “combined” sequence is placed in the schedule using simple £S. Finally, the length
of this new schedule is compared to that of the original schedule, and the shorter of the two is
retained. The second step in the above procedure can be performed using a slightly modified
version of FINDMIN (Figure 26). The main idea is to maintain some additional state with each
interval of candidate start times (step 1) and update this state accordingly when taking inter-
val intersections (step 2). More specifically, for each candidate interval [a;,,b;,) in S, (step
1), we maintain a “height” h;, storing the bandwidth demand at that interval after placing
<lo;,70; > to start there. (Note that the total number of intervals remains O(kp).) Then, in
step 2, when taking the intersection of two intervals [a;_1,,b;—1,) and [a;,,b;,) (with the appro-
priate displacement), we associate a height of max{h;,,h;_1,} with the intersection (assuming
it is non-empty). Finally, in step 3, we select the interval [a;, b;) from Iy that minimizes the
product max{h(Cyp), h;} - max{l(Cp),a; +1(C,)} , and schedule C, to start at a;. We term the
resulting basic step algorithm FINDMIN-D. Similar modifications can also be defined for the
BironNic-FINDMIN algorithm for bitonic object sequences C,. The complete LSB(k) algorithm
is depicted in Figure 31.

Figure 32 shows the operation of the £SB(3) algorithm on our “bad” example for LS
(Figure 29). More specifically, Figure 32(a) shows the schedule after the placement of the 5th
object, at which point the algorithm is first forced to backtrack, trying to locally improve sched-
ule density. The result of the improved density packing (after using FINDMIN-D to combine
the last three objects) is depicted in Figure 32(b). Since this schedule is shorter than the one in
Figure 32(a), it is retained and LSB(3) goes back to using LS. Figure 32(c) shows the schedule
after LS places the 6th and 7th objects. Finally, Figure 32(d) shows the final schedule obtained
by £SB(3), which is in fact the optimal schedule. Further, note that £LSB(3) had to backtrack
only once during the whole scheduling process.

The extra effort involved in backtracking to improve schedule density translates to increased
time complexity for LSB(k) compared to simple LS. Specifically, the complexity of of LSB(k)
can be shown to be O(|L|- N?), where |L| is the number of objects to be scheduled and N is the
total number of component streams. This, of course, assuming general object sequences that

cannot employ the more efficient basic step algorithms.

92

Algorithm LSB(k , L)

Input: A list of composite object sequences L =< C4,...,C, > and a backtracking parameter k.

Output: A valid packing of the object sequences in L.

1. Set Toyrr =0, Cp = 0.
2. Fori=1ton do

2.1. Schedule C; at time slot FINDMIN(C;, C,). Let T}, be the length of the resulting schedule.
2.2. If T!,,... = Teurr continue. Else, do the following.

curr
2.2.1. Remove C; and the last k — 1 objects from C,. (If k exceeds the number of objects in
Cyp, remove all objects from C).)
2.2.2. Set C = () and schedule each object C; removed from C, using FINDMIN — D(C}, C).

2.2.3. Schedule C over the remaider of C}, using FINDMIN(C;, C},). Let T/, .. be the length of
the resulting schedule.

224 T, <T\, . set Teyrr = T, restore the original Cp, and continue with the next
C;. Else, leave C), as is, set Teyrr = record that C' is now a single object, and

continue with the next C;.

"
curr?

Figure 31: Algorithm LSB

6.3 Experimental Study

In this section, we present the results of several experiments we have conducted in order to
compare the average-case performance of our composite object scheduling algorithms with that
of (a) schedulers based on the MBR simplification; and, (b) the optimal schedule. Given the
increased complexity of our algorithms compared to simple MBR packing, another interesting
issue is the cost/benefit tradeoff involved in choosing a more elaborate scheduler. We start by

presenting our experimental testbed and methodology.

6.3.1 Experimental Testbed
We have experimented with the following algorithms:
o LS: Greedy, list-based scheduling of composite multimedia objects.

e MBR(FFDH): Level-based scheduling of composite multimedia objects using the MBR,
simplification and the First-Fit-Decreasing-Height (FFDH) rectangle packing method of
Coffman et al. [CGJT80].

93

@ (b) (© (d)

Figure 32: £SB(3) in action: (a)The point of the first backtracking. (b) The locally improved
schedule. (c) Placing the next two objects. (d) The final (optimal) schedule.

We selected the level-based FFDH rectangle packing algorithm since it is known to be one the
best-performing rectangle packing methods, both in theory and in practice [CGJT80, CGJ84,
BS83]. The average performance of LS was compared to that of MBR(FFDH) in order
to understand the potential performance benefits of using more clever scheduling techniques
to avoid the MBR simplification. We also compared the performance of the two algorithms
to a lower bound on the response time of the optimal execution schedule. This lower bound
(LBOUND) was estimated using the formula LBOUND = max{ [(L), V(L) }, where L
is the list of objects to be scheduled, l,,45(L) is the maximum object length in L, and V(L) is
the total volume of all objects in L.

We experimented with randomly generated composite objects, obtained with the following
procedure. First, the length and bandwidth requirement of the first (i.e., with zero lag) stream
of the object was selected randomly from a set of possible lengths and rates (see Table 9).
Second, the number of additional component streams was chosen randomly between 0 and 7.
Third, for each of the additional streams a length and bandwidth demand was again randomly
selected, and a starting point (i.e., lag) was randomly chosen across the length of the first
stream. This scheme ensures that our objects are continuous, i.e., they have no gaps in the
presentation. Note that the MBR assumption is particularly bad for objects with gaps, whereas
our LS algorithm can handle these bandwidth gaps and use them effectively to schedule other
objects. Thus, we expect LS to outperform MBR-schemes by an even larger margin when non-
continuous objects are allowed. Other than the continuity restriction, note that the “shape” of
the object sequences obtained with the above procedure is completely general; that is, it is not
constrained to be bitonic, monotonic, etc.

The number of objects to be scheduled varied between 400 and 1400, and the server band-
width ranged between 40 and 400 Megabits per second (Mbps). For each choice of the number
of objects, ten different object lists L were generated randomly using the procedure described

above for each object. We used two performance metrics in our study of £S and MBR(FFDH):

94

(1) the average response time of the schedules produced by the two algorithms over all lists
of the same size; and, (2) the average performance ratio defined as the response time of the
schedules produced by the algorithms divided by the corresponding lower bound and averaged
over all lists of the same size. (The results presented in the next section are indicative of the
results obtained for all values of the number of objects and server bandwidth.)

In all experiments, stream bandwidth demands were chosen from a discrete set of choices,
ranging from 62.5 Kbps (e.g., low-quality audio) to 5 Mbps (e.g., MPEG-2 quality video).
Similarly, the choice of stream lengths ranged between 10 min (e.g., a short audio clip) and

5 hrs (e.g., a long documentary). Table 9 summarizes the parameter settings used in our

experiments.
| Experimental Parameter | Value |

Aggregate Server Disk Bandwidth (in Megabits per sec — Mbps) | 40Mbps — 400Mbps
Number of Composite Objects 400 — 1400
Number of CM Streams per Object 1-8
Set of Possible Stream Lengths {10, 20, 30, 60, 90,
(in min) 120, 180, 240, 300 }
Set of Possible Stream Bandwidth {0.0625,0.125, 1,
Requirements (in Mbps) 15,2,3,4,5}

Table 9: Experimental Parameter Settings

6.3.2 Experimental Results

Figure 33(a) depicts the average response time (in minutes) of the schedules produced by
LS and MBR(FFDH) for 1000 random composite objects. Our numbers show that LS
counsistently outperformed MBR(FFDH) over the entire range of available server bandwidth,
offering relative improvements in the range of 50%-55%. That is, £LS managed to cut down
the schedule response time to less than half of that obtained by MBR(FFDH). The average
density of the composite objects created during this experimental run was 0.461448, i.e., on the
average, more than half of an object’s MBR was “empty”. Thus, although MBR(FFDH) does
a very good job of packing the given rectangles, it is still bounded by the inherent inefficiency
of the MBR simplification. On the other hand, LS takes advantage of the object shapes
and irregularities to achieve better densities in the final schedule and, consequently, improved
schedule response times.

The average performance ratios of LS and MBR(FFDH) obtained over the same experi-

mental run (i.e., with 1000 composite objects) are shown in Figure 33(b). Figure 34(a) shows

95

1000 Composite Objects 1000 Composite Objects

40000 T T 2.8 T T
MBR(FFDH) —— MBR(FFDH)/LBOUND ——
~ 35000 - LS -+ 4 26 LS/LBOUND -+
£ o
£ B K 24 1
2 30000 g
\]
€ \ 22 NI SRS S e e Sl
= 25000 | | =
@ \ £ 2r
S 20000 b % 8
7 N [18 F
o] o
@ 15000)
2 E 1.6 +
3 3
§ 10000 £ 14l
[3) 0
? 5000 - 126
R RS -
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Server Bandwidth (Mbps) Server Bandwidth (Mbps)

Figure 33: (a) Average schedule response times obtained by £LS and MBR(FFDH) for 1000
objects. (b) Average performance ratios of LS and MBR(FFDH) for 1000 objects.

the average performance ratios of the two algorithms as a function of the number of objects for a
fixed amount of server bandwidth (200Mbps). Note that the performance of LS is consistently
within less than 15% of the lower bound on the optimal response time. Thus, even though we
have shown that simple LS can be arbitrarily bad under certain worst-case scenarios, our results
show that it offers excellent average-case behavior (for randomly generated object sequences).
Furthermore, since LS is so close to optimal, the margin of possible improvement becomes
very limited. Even if more complicated schemes like LSB could offer some improvement on the
average over LS, the potential benefit certainly does not seem to warrant the extra complexity.
It is still possible, however, that small local perturbations on the greedy LS schedule, like the
ones performed by LSB(k) with a small backtracking parameter k, or stream sliding methods
could prove useful to avoid “bad” scenarios. Such scenarios could occur, for example, when
object shapes are not completely random. We intend to investigate this issue in our future
experimental work.

Finally, the table in Figure 34(b) shows the running times of £LS and MBR(FFDH) for
scheduling a list of 1000 composite objects. These times were recorded on a 100Mhz SUN
SPARCstation. As expected, MBR(FFDH) is significantly faster than £S, since its complex-
ity is only O(|L| - log|L|), where |L| is the number of composite objects to be scheduled. On
the other hand, LS is still fast enough for all practical purposes (the average scheduling time
per object is a few milliseconds) and, as our results have shown, offers dramatically improved
schedules compared to MBR(FFDH).

96

Server Bandwidth = 200 Mbps

28 MBR(;:FDH)/LBOUND %

26 LS/LBOUND -+ 1 . .
e L.l] Time to schedule 1000 objects
N (in sec)
8 22 1
s Bandwidth| MBR(FFDH) LS
g Ll 100 0.016 9.041
€ - 200 0.012 6.233
3 My] 300 0.010 4.709
FEE 1 400 0.009 3.760

e L e L 4

400 600 800 1000 1200 1400
No. of Composite Objects

Figure 34: (a) Average performance ratios of LS and MBR(FFDH) for 200 Mbps of server
bandwidth. (b) Running times for £S and MBR(FFDH).

6.4 Ongoing Work: Stream Sharing

Until now, we have implicitly assumed that the composite multimedia objects to be scheduled
are disjoint, in the sense that their component streams correspond to different data objects in
the underlying repository. However, it is quite possible for distinct composite objects to have
one or more components in common. Examples of such non-disjoint composite objects range
from simple movie presentations, where the same video needs to be displayed with different
soundtracks (e.g., in different languages), to complex news stories authored by different users,
that can share a number of daily event clips.

In the presence of such common components, it is possible that exploiting stream sharing
can lead to better schedules. The basic idea is that by appropriately scheduling non-disjoint
composite objects, the streams delivering their common component(s) can be shared by all
the composite object presentations. Clearly, stream sharing can reduce the aggregate resource
requirements of a set of non-disjoint objects and it is easy to construct examples for which
exploiting stream sharing can drastically improve the response time of a presentation schedule.
On the other hand, stream sharing possibilities also increase the complexity of the relevant
scheduling problems. Even simple cases of the problem (e.g., when all streams and composite
objects are of unit length) give rise to hard scheduling problems that, to the best of our knowl-
edge, have not been addressed in the scheduling literature [Cof98]. The problem becomes even
more challenging when extra memory is available, since stream sliding and caching techniques
can be used to increase the possibilities for stream sharing across composite objects. Finally,

note that our stream sharing problem also appears to be related to the problem of exploiting

97

common subexpressions during the simultaneous optimization of multiple queries [Sel88]. How-
ever, the use of a schedule makespan optimization metric (instead of total plan cost) makes our

problem significantly harder to formulate and solve.

6.5 Conclusions

Effective resource scheduling for composite multimedia objects is a crucial requirement for
next generation multimedia database systems. Despite the importance of the problem, the
complexity of the relevant task scheduling models has limited prior research to very specific
subproblems. Furthermore, today’s systems typically employ worst-case (i.e., MBR) assump-
tions that can lead to severe wastage of precious server resources. In this chapter, we have
presented a novel sequence packing formulation of the composite object scheduling problem
and we have proposed novel efficient algorithms drawing on techniques from pattern match-
ing and multiprocessor scheduling. More specifically, we have developed efficient “basic step”
methods for combining two object sequences into a single, combined sequence and we have incor-
porated these methods within: (1) a simple, greedy scheduler base on Graham’s list-scheduling
paradigm (£S); and, (2) a more complex scheduler (£LSB) that tries to improve upon simple LS
by occasional local backtracking. We have shown that although simple list-scheduling schemes
are provably near-optimal for monotonic object sequences, they exhibit poor worst-case per-
formance for general object sequences. It is exactly this worst-case behavior that £LSB has
been designed to avoid. On the other hand, our experimental results with randomly generated
objects have shown that simple LS offers excellent average-case performance compared to both

an MBR-based approach and the optimal solution.

98

Chapter 7

Throughput-Competitive Admission
Control for Continuous Media

Databases

In this chapter!, we explore the implications of the on-line nature of the admission control prob-
lem for CM databases which has, for the most part, been ignored in the multimedia literature.
Our performance metric for admission control strategies is the total server throughput over
a sequence of requests and our methodology is based on the competitive analysis framework
for on-line algorithms [ST85]. The basic quality metric in this framework is the competitive
ratio of an on-line algorithm, which is defined to be the maximum (over all possible request
sequences) value of the ratio of the performance of the optimal off-line algorithm for a request
sequence to the performance of the on-line algorithm for the same request sequence. Note that,
by definition, competitive analysis is tantamount to a worst-case analysis in the off-line case.
An algorithm with a low competitive ratio is one that performs close to optimal in all situa-
tions. Since no assumptions are made about the sequence of requests offered to the server, the
competitive ratio provides a very robust measure of performance.

We assume a centralized database server where incoming playback requests require some
fraction of the server’s bandwidth for some period of time. For example, a request to view a
half-hour MPEG-1 video clip requires 1.5 Megabits per second (Mbps) of the server’s bandwidth
for the 30 minutes of playback. We consider two different cases of the problem. In the first case,
we assume that all requests require the same fraction of the server’s bandwidth (e.g., all clips are
MPEG-1 encoded videos); thus, the server can be viewed as a of collection of available playback
channels. In the second, more general case, different fractions of the server’s bandwidth can
be reserved. We show that the conventional Work-Conserving (WC) policy where an incoming
request is always admitted if there is sufficient bandwidth to accommodate it, can behave

poorly in an on-line setting. More specifically, we show that the competitive ratio of WC is

!Parts of this chapter have appeared in the Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS’98) [GIOS98].

99

1+ A for the case of identical bandwidth requests and for the case of variable bandwidth

1+A
1-p
requests, where A is the ratio of maximum to minimum request length and p is the maximum
fraction of the server’s bandwidth that a request can demand. We introduce novel admission
control strategies based on the idea of prepartitioning the bandwidth capacity of the server

among requests of different length and prove that, for sufficiently large server bandwidth, these
log A
1—p
on the competitive ratio of any deterministic or randomized algorithm for the identical (resp.

strategies are O(log A)-competitive. We also show an Q(log A) (resp. €)) lower bound
variable) bandwidth case, thereby establishing the near-optimality of our on-line algorithms.
Based on the above results, we propose a bandwidth prepartitioning scheme that makes use of
clip popularities to ensure good average-case as well as worst-case performance. The results of
our experimental study verify the benefits of our scheme as compared to WC. More specifically,
both algorithms are shown to perform adequately well when the server is underutilized or
persistently overloaded. However, we expect that a well designed system has undergone effective
capacity planning and, therefore, will not be overloaded persistently but only at short time
intervals. We capture such short term overloads in our experiments, and demonstrate that our

admission control scheme outperforms WC substantially under these workloads.

7.1 Problem Formulation

We view a CM database server as a “black box” capable of offering a sustained bandwidth
capacity of B. The input sequence consists of a collection of requests @ = o1,09,...,0nN.
The i'* request is represented by the tuple o; = (t;,1;,7;), where I;, r; denote the length and
bandwidth requirement (respectively) of the requested CM clip and ¢; is the arrival time of o;.
Given a collection of different requests that are handled by a server (based, for example, on
the clips available at the server or the server’s usage patterns), we use lyaz (Imin) to denote
the length of the longest (shortest) request. (rmaz and rmi, are defined similarly.) Finally, we
define A = ll:ﬁ and p = Tmas,

We use competitive analysis [ST85] to measure the performance of different admission control
strategies. Our optimization metric is the total throughput; that is, the bandwidth-time product
over a given sequence of requests. More formally, given an on-line scheduling policy A and an
input sequence @, we define the benefit of A on 7 as V4(7) = > g, l; - ri, where Sy C @ is
the set of requests scheduled by A. The competitive ratio of an on-line algorithm A is defined
as the maximum value k(A) over all possible request sequences of the ratio of the throughput
achieved by the optimal off-line algorithm for a request sequence to the throughput achieved

by A for the same sequence. If A is a randomized algorithm, then the throughput achieved by

100
A for a request sequence is averaged over all possible “coin flips” of A [MR95]. More formally,

Vax (@)

SUP 4+ 7 V() , if A is deterministic
r(A) =
SUpP g+ 7 E‘:*[“*/i% , if A is randomized

where & ranges over all possible request sequences, A* ranges over all off-line (i.e, clairvoyant)
algorithms, and the expectation E 4[] is taken over the random choices of A. Thus, an algorithm
with a small competitive ratio is guaranteed to perform close to optimal in all situations. We
say that algorithm A is k-competitive if k(A) < k.

It is conventional in the analysis of on-line methods to describe things in terms of a game
between a player (the on-line algorithm) and an adversary (the off-line algorithm), whose goal
is to produce a request sequence that would force the player to perform poorly. For randomized
algorithms, different models of adversaries have been proposed depending on the adversary’s
knowledge of the player’s random choices [MR95]. The lower bounds presented in this chapter
assume the “weakest” model of an oblivious adversary; that is, an adversary that is oblivious

to the random choices made by the on-line algorithm.

7.2 Competitive Analysis of Admission Control

7.2.1 The Greedy/Work-Conserving Policy

The scheduling strategy used as a starting point in our study is the basic Work- Conserving (WC)
scheme traditionally used for admission control in CM servers. WC is based on the following
greedy rule: “schedule request o; immediately if the server has at least r; bandwidth available
at time t;; otherwise, reject o;”. As our results show, WC offers rather poor performance
guarantees in an on-line setting.

First, consider a restricted version of the admission control problem in which all requests

require a constant fraction of the server’s bandwidth B. That is, r; = r for all . Let ¢ = [gJ >

2

1 denote the number of playback channels available at the server. The following theorem

establishes the competitiveness of WC in this setting.

Theorem 7.2.1 WC is (1 + A)-competitive for scheduling requests with identical bandwidth
requirements on-line; that is, K(WC) < 1 + A. Furthermore, this bound is tight. 0

In general, a playback request requires an arbitrary portion of the server’s bandwidth B.

This bandwidth requirement depends, for example, on the data encoding method used (e.g.,

2Note that, in this case, maximizing throughput is equivalent to maximizing total scheduled request
length [LT94].

101
MPEG-1, MPEG-2) or the Quality of Service (QoS) specified by the client. The following

theorem shows the effect of this more general model on the competitive factor of the WC

policy.
Theorem 7.2.2 WC is max] gfjiﬁ)rmm}—competitive for scheduling requests with different
bandwidth requirements on-line. 0

Thus, allowing variability along the second dimension (i.e., bandwidth) multiplies the com-
petitiveness of WC by a factor that depends on B, T4z, and 7p,,. Intuitively, this term
captures the effects of the worst-case bandwidth loss due to fragmentation. If B > 700 + Tmin,

as will usually be the case for CM servers and requests, then the following corollary applies.

Corollary 7.2.1 If B > yag + Fimin then WC is TE2-competitive, where p = mgz. -

1+A
I—p

of B and 7y45 + Tmin- Theorem 7.2.2 just gives a tighter bound when B < Tz + Tmin- Also,

Note that the competitiveness bound of is, in fact, valid regardless of the relative sizes
note that for typical CM numbers the fraction p is much smaller than unity. For example, even
for the relatively high MPEG-2 rate requirements of 6-8 Mbps, a CM server with a low-end
RAID can sustain 40-60 concurrent streams [ORS95b, WLDHY6]. The denominator in our
competitiveness bound agrees with the bounds given by Bar-Noy et al. [BNCK'95] for the
preemptive version of the problem. (They avoid dependence on A through clever use of the

preemption mechanism.)

7.2.2 Lower Bounds

In this section, we prove lower bounds on the competitive ratio of any deterministic or ran-
domized algorithm for on-line admission control. Our results demonstrate the existence of an
exponential separation between the competitive ratio of WC and the lower bound on the com-
petitive ratio of any deterministic or randomized algorithm. This clearly suggests the possibility
for improvement by using non-greedy schemes. We propose such schemes with near-optimal
competitiveness in Section 7.2.3.

Once again, let us start with the identical bandwidth case (i.e., r; = r for all 7). A sim-
ple adversary argument shows that for the case of a single bandwidth channel (i.e., the OIS
problem [LT94]), there is a lower bound of 1 + A on the competitiveness of any deterministic
scheduler. This argument fails when the number of channels is increased. However, as the fol-
lowing theorem shows, no deterministic or randomized admission control scheme can be better

than Q(log A) competitive.

102

Theorem 7.2.3 Any deterministic or randomized on-line admission control algorithm for CM

requests with identical bandwidth requirements has a competitive ratio of Q(log A). O

Similar lower bounds on the competitive ratio hold for the variable bandwidth case. Again,

the effect of bandwidth fragmentation introduces a multiplicative factor of li—p.

Theorem 7.2.4 Consider a sequence of CM requests with variable bandwidth requirements.
Then:
(1) Any deterministic on-line admission control algorithm has a competitive ratio of (a)
Q(p'(%t?)), if p > %; and, (b) Q(%%), otherwise.
(2) Any randomized on-line admission control algorithm has a competitive ratio of Q('%82) |

1-p
: 1
ifp < oroga-

O

We should note that Awerbuch et al. [AAP93] also proved an Q(log A) lower bound for de-
terministic on-line circuit routing in the case of requests with identical bandwidth requirements.
However, our lower bounds for the more general variable bandwidth case also demonstrate the
effect of the maximum bandwidth demand (p) which was not factored into their results. Fur-
thermore, we have shown that the logarithmic lower bounds cannot be improved upon through

the use of randomization.

7.2.3 Bandwidth Prepartitioning Policies

We now propose novel deterministic admission control policies that guarantee near-optimal
competitive ratios for reasonably large bandwidth capacities. Our policies are based on prepar-
titioning the bandwidth capacity of a CM server among requests of different length. Roughly
speaking, the basic idea of the bandwidth prepartitioning schemes is to isolate requests with
large differences in length, thus ensuring that short requests cannot “steal” the entire server
bandwidth from longer (and, more profitable) requests®.

The first policy we introduce is termed Simple Bandwidth Prepartitioning (SBP) and is
depicted in Figure 35(a)*. The SBP algorithm exploits the server’s knowledge of the A ratio
by classifying requests to channel groups based on their length and then using a WC policy
within each group. The idea is that by classifying the requests into different partitions according
to their length range, we are ensuring that the maximum to minimum length ratio is bounded

by a constant within each partition.

3Note that, if A =1 (i.e., all requests have identical lengths) then simple WC offers optimal competitiveness.
Thus, we will assume that A > 1 or, equivalently, log A > 0 in the remainder of this chapter.

“We describe our policies in terms of the more general variable bandwidth case. The restriction to identical
bandwidth requests should be straightforward.

103

Simple Bandwidth Prepartitioning
1. Divide the available bandwidth B
into [log A] partitions Bi,..., Bfogal,
where the size of the " partition is

__B
|Bil = trog a7
2. For each arriving request o; = (¢;,1;,7;)
2.1. Let
i € {1,...,[log Al} be such that:
2i-1. linin < lj < 2t. linin (allowing
for I; = 2° - L if i = [log A).
2.2. If the amount of free bandwidth in
partition B; is less than rj;, then

Down-shift Bandw. Prepartitioning
1. Divide the available bandwidth B
into [log A] partitions Bi,..., Bfiog a1,
where the size of the 4th

partition is
_ _B
Bl = rrog a7
2. For each arriving request o; = (¢;,1;,7;)
2.1. Let
i € {1,...,[log A1} be such that:
2i-1. lmz’n. < lj < 2t. lnin (allowing
for I; = 2" - I if @ = [log A]).
2.2. If the total amount of free band-
width in B; U ... U B; is less than

reject oj; T, then reject o;;
Otherwise, schedule ¢; in partition Otherwise, schedule o; using avail-
B;; able bandwidth from partitions

B;,B;_1,...,B; in that order.

Figure 35: (a) Algorithm SBP. (b) Algorithm DBP.

The following theorem shows that this simple prepartitioning scheme results in a significant
improvement in the competitive ratio for CM servers with bandwidth B larger than 4, -
[log A1. This requirement is typically satisfied by today’s servers, even for large values of 7,4z
and A. For example, if 7,4, = 8 Mbps and l;00 = 120 - lyyin, then 7,4, - [log Al = 56 Mbps,
i.e., less than the transfer rate of a single high-end magnetic disk [(“)RSQGC].

Theorem 7.2.5 Assume p = ™2z < m (or, equivalently, ¢ > [log A] for the identical

bandwidth case). Then the SBP admission control policy is:
(1) 3 [log Al-competitive for the identical bandwidth case; and,

(2) 39821 ompetitive for the variable bandwidth case.

1—p-[log A]
O

Thus, by merely isolating different length ranges, the SBP admission control policy improves
the competitiveness of WC from linear to logarithmic in A, at least for the identical bandwidth
case. The main idea behind SBP is that in order to be competitive under a worst-case scenario,
the scheduler should not allow short duration requests to monopolize the server’s bandwidth.
However, SBP can also suffer from bandwidth fragmentation in the variable bandwidth case.
In the worst case, bandwidth approximately equal to 7,44 is lost in each partition, leading to

a total bandwidth loss of 7,4 - [log A] in the server. Intuitively, we would like to be able to

104

“combine” these bandwidth fragments to allow for incoming requests to be scheduled across
partitions, especially if these requests are long since this implies more guaranteed profit.

The Down-shift Bandwidth Prepartitioning (DBP) policy depicted in Figure 35(b) is based
exactly on these observations. As in SBP, the DBP algorithm also prohibits short requests
from monopolizing the server, but it also allows longer (and thus, more profitable requests) to be
“down-shifted” to lower groups and steal unused bandwidth that would otherwise be dedicated
to shorter requests. Theorem 7.2.6 shows that incorporating this change does not compromise

logarithmic competitiveness.

Theorem 7.2.6 Assume p = 'mg2 < m (or, equivalently, ¢ > [log A] for the identical
bandwidth case). Then the DBP admission control policy is:
(1) (14 8- [log A])-competitive for the identical bandwidth case; and,

(2) (1 + %)-competitive for the variable bandwidth case.

O

Corollary 7.2.2 follows directly from Theorems 7.2.5 and 7.2.6. Combined with the lower
bounds in Section 7.2.2, Corollary 7.2.2 establishes the near-optimality of the SBP and DBP
policies for the variable bandwidth case, assuming that the server bandwidth B is larger than
2 rinag - [log A]. Again, this is a requirement that is typically satisfied by today’s CM servers
and applications. (See the discussion before Theorem 7.2.5.) Note that even smaller competitive

ratios can be obtained if B > k - 74y - [log A], where k& > 2.

Corollary 7.2.2 Assume p = ™z < m. Then:
1. The SBP admission control policy is 6 - [log A]-competitive for the variable bandwidth

case; and,

2. The DBP admission control policy is (1 + 16 - [log A])-competitive for the variable band-

width case.

O

Although the constants in the competitiveness bounds we have shown for DBP are larger
than those of SBP, we conjecture that they can be improved. To support our conjecture, note
that for the identical bandwidth case when a request of length I; € [2i_1 mins 2° lin) is
rejected in SBP, the scheduler can guarantee that the benefit of running requests is at least

m 2071, in, whereas with DBP the corresponding guaranteed benefit is at least:

i
¢ c -
7.2:2’“—1. o (1) ...
[log A] = bmin [log AT () - bmin,

105

that is, nearly double the benefit for SBP. Of course, the main advantage of DBP over SBP
is that, by “down-shifting”, it can significantly reduce the effects of bandwidth fragmentation
in the variable bandwidth case. A formal proof of improved competitive ratios for DBP is left
as an open problem for future research.

Even though SBP and DBP guarantee logarithmic competitiveness under a worst-case
scenario, they may also severely underutilize the server in average cases. For example, when all
the requests address the shortest group of clips residing on the server, both schemes will end up
utilizing only m of the available bandwidth. This is clearly undesirable. We now propose a
novel on-line admission control policy that employs the intuition of prepartitioning schemes (to
avoid worst-case scenarios for WC) within a framework that also allows for good average-case
performance. Roughly speaking, the idea is to use the methodology of DBP but define the
sizes of the bandwidth partitions B; as a function of the popularities and/or the lengths of all
requests in the length range [2=1-I,in, 2% -lnin). The resulting admission control scheme, termed
Popularity-based Bandwidth Prepartitioning (PBP), is depicted in Figure 36. Note that PBP
is given in parameterized form with the parameter f being the specific function of popularities
and lengths used to define the partition sizes. In Section 7.3, we describe two specific choices for
f used in our preliminary experimental study. The PBP admission control scheme relies on the
assumption that request (i.e., clip) popularities can be estimated with reasonable accuracy (e.g.,
using a “moving window” prediction method [LV95]). Clearly, taking popularities into account
is necessary to avoid worst-case scenarios for DBP (i.e., when the most frequent requests are
also the shortest). In fact, assuming that requests are independent and the given popularities
are accurate, we can give simple arguments based on Chernoff bounds [MR95] to show that the

probability of a worst-case “loss” for PBP (with specific choices for f) is exponentially small.

7.3 Experimental Study

In this section, we describe the results of a preliminary set of experiments we have conducted
with the WC and PBP strategies for on-line admission control. Since our competitiveness
results clearly demonstrate the superiority of prepartitioning schemes with respect to worst-
case scenarios, our goal was to ensure that the worst-case guarantees did not impair average-case

performance.

7.3.1 Experimental Testbed

To examine the average-case behavior of the WC and PBP schemes, we have experimented

with three distinct random arrival patterns:

106

Popularity-based Bandwidth Prepartitioning[f: function]

1. Let p; denote the probability that the length of an incoming request is [;
(i-e., the popularity of I;). Let PL; denote the set of (popularity, length)
pairs with lengths in the i** range; that is,

PL; = { (pj,lj) | lj S [Qi_l . lminazi . lmin) }
2. Divide the available bandwidth B into [log A] partitions By, ..., Bfieg a7,

with f(PL)
Bl = ey B

3. For each arriving request o; = (t;,1;,7;)
3.1. Leti € {1,...,[log A1} be such that: 2i=-1,,,;,, < l; < 2%-I4, (allowing
for l; = 2% Ly if i = [log A]).
3.2. If the total amount of free bandwidth in By U... U B; is less than r;,
then reject o;

Otherwise, schedule o; using available bandwidth from partitions
B;,B;_1,...,B in that order.

Figure 36: Algorithm PBP

e Poisson Arrivals. Requests of different lengths arrive at the server according to a Poisson

process model with an arrival rate of A. This is a plausible probabilistic model for servers
with a reasonably steady traffic flow (e.g., video servers in scientific research labs serving

clips of recorded experiments to scientists around the globe).

e Bursty Arrivals. Requests of different lengths arrive at the server in bursts at regular

intervals of time (termed burst separation). Each such burst itself consists of a sequence
of request batches, where each batch consists of requests of identical length arriving during
a very short period of time. The batch arrivals are again modeled as a Poisson process
with an arrival rate of A\. This workload is intended to model “rush-hour traffic” situations

in CM servers.

e Poisson + Short Burst Arrivals. Long requests arrive at the server according to a Poisson

process model with an arrival rate of X\jyny. At the same time, bursts of short requests
arrive based on a Poisson process with an arrival rate of Agpos. This workload model
combines some features of the previous two models. It is intended to represent situations
where servers operating under a relatively steady flow of long requests (e.g., movies or

sports events), occasionally have to handle bursts of short requests (e.g., the 6 o’clock

107

news).

In most of our experiments, the request lengths were sampled from a discrete set of values
between 5 and 150 minutes, with sampling probabilities (i.e., popularities) taken from a Zipfian
distribution with skew parameter z [Zip49]. We varied this skew parameter from 0.0 (uniform)
to 2.0 (very skewed). Results were obtained for three different models of correlation between

request lengths and popularities:
e Positive. Larger popularities are assigned to longer requests.
e Negative. Larger popularities are assigned to shorter requests.

e Random. No length/popularity correlation exists; that is, the values of the Zipfian prob-

ability vector are assigned to the different request lengths in a random manner.

We also experimented with two different choices for the f function parameter of the PBP
scheme. The first choice f; captured the cumulative popularity of a length range, that is
fi(PL;) = 2 (p)epr; P- The second choice fy was the total popularity-length product of a
range, that is fo(PL;) = YppepL; Pl

In our experiments for the identical bandwidth case, we assumed a server with 100 available
channels. For the variable bandwidth case, we varied the server’s sustained bandwidth capacity
between 100 and 250 Megabits per second (Mbps) and selected the rate requirement of a request

randomly between 500 Kbps and 8 Mbps. The parameter values are summarized in Table 10.

| System Parameter | Value ||
Server Bandwidth Capacity 100 channels / 100-250 Mbps
Request Lengths 5 minutes — 150 minutes
Request Rates (Variable Bandwidth Case) 500 Kbps - 8 Mbps
Zipfian Popularity Skew (z) 0.0-20

Table 10: Experimental Parameter Settings

For each different combination of input parameters, we modeled the system behavior under
each scheduling policy for 20,000 minutes of simulated time and 10 randomly generated request
sequences. The results presented here represent the averages over these 10 runs of the system.

In all cases, the comparison metric was the fraction of the server capacity effectively utilized;
Va(o)
server bandwidth) x (simulation time

that is, the ratio (k for each scheduler A and request sequence

o.

108

7.3.2 Experimental Results

We present an overview of our experimental comparison of the WC and PBP schemes for
the (general) variable bandwidth case. Similar results were obtained for identical bandwidth
requests. For the numbers presented here, the request lengths were sampled (based on z and
the model of correlation) from the collection {5, 10, 15,90,120,150} (in minutes), the request
rates were selected (uniformly) from the set {0.5,1.5,3.0,4.5,6.0,8.0} (in Mbps), and the server
bandwidth capacity was 250 Mbps. The plots shown in this section are indicative of the results
obtained for other values of request and server parameters.

We focus our discussion on PBP[fs]; that is, PBP using the “total popularity xlength”
partitioning criterion, since it exhibited uniformly better performance than PBP[f1] in our
experiments. We should stress, however, that even with “cumulative popularity” partitioning,
PBP outperformed WC by a significant margin for our “bursty” workloads.

The first set of experiments studied the relative effectiveness of the WC and PBP schemes
under Poisson arrivals for different values of the Zipfian skew parameter z and different length/
popularity correlations. Figure 37(a) shows the performance of the schemes as a function of the
Poisson arrival rate A for z = 0.6 and random length/popularity correlation. Our basic finding
is that, by exploiting its knowledge of clip popularities PBP is able to do at least as good as
WC in all cases. We should mention that we also experimented with different models of the
arrival process (e.g., using uniformly rather than exponentially distributed inter-arrival times)
that also led to the same conclusions regarding the relative performance of the strategies under

random arrivals.

Poisson Arrivals, z=0.6, Random Correlation Bursty Arrivals, Batch Size=40, z=0.6, Random Correlation Bursty Arrivals, Batch Size=40, z=0.6, Positive Correlation
Y 1 1

1

0.8

0.6

0.4

0.2

0.2

Fraction of Server Capacity Used
Fraction of Server Capacity Used
Fraction of Server Capacity Used

0

L 0 L L L L L 0 L L L L L
25 3 300 250 200 150 100 50 300 250 200 150 100 50

0 0.5 ! 2
Request Arrival Rate Burst Separation Burst Separation

Figure 37: (a) Server throughput under Poisson arrivals. (b) Server throughput under bursty
arrivals (random correlation). (c) Server throughput under bursty arrivals (positive correlation).

The second set of experiments concentrated on the relative performance of the algorithms
under the Bursty Arrival model described in the previous section. We studied the server uti-

lization as a function of the length of the burst separation interval as well as the size of a batch

109

of arrivals for different values of the z and A parameters, the size (i.e., number of batches) of a
burst, and different modes of correlation. Figure 37(b) shows the server utilization as a function
of the burst separation interval for batch size equal to 40, z = 0.6, batch arrival rate A = 0.8,
burst size equal to 10, and random length/popularity correlation. (We show burst separations
decreasing from left to right as this reflects increasing load, as in Figure 37(a).) Our results
show that under such conditions, PBP outperforms WC by an average margin of 15% - 40%.
Note that the “jump” observed in the curves as the burst separation approaches 150 minutes
is caused by our specific choice of request lengths and our model of “bursty” arrivals. The
numbers from the same experiment but for positive length/popularity correlation (i.e., longer
requests are more popular) are depicted in Figure 37(c). WC clearly performs better under the
positive correlation assumption, since it is able to allocate more of its channels to the more
popular (and, more profitable) long requests. Still, PBP continues to outperform WC by up to
25%. Figure 38(a) shows the results of the same experiment but for negative length/popularity
correlation (i.e., shorter requests are more popular). Under such scenarios, our results show
that the relative improvement offered by PBP over WC can reach 50% - 60%. A different
perspective is depicted in Figure 38(b), where server utilization (for the same parameter values
and negative correlation) is given as a function of the batch size for a fixed burst separation
of 180 minutes. Note that as the batch size increases, the Bursty Arrival model gives rise to
worst-case scenarios for WC, where a large batch of short requests can flood the server leaving
no capacity for a following batch of larger requests. On the other hand, our PBP scheme is

capable of maintaining a reasonable level of utilization under all circumstances.

Bursty Arrivals, Batch Size=40, z=0.6, Negative Correlation Bursty Arrivals, Burst Separation=180, z=0.6, Negative Correlation Poisson + Short Burst Arrivals, lambda(long)=0.7
1 0.8 1

07 WC
06 /
05

0.4

’ [S U

0.6 0.6

04 03|l T 04

0.2

02+ 02

Fraction of Server Capacity Used
Fraction of Server Capacity Used
Fraction of Server Capacity Used

0.1

0 0 0
300 250 100 50 10 20 60 70 0 0.01 0.0:

0.05 0.06

200 150 0 40 2 0.03 0.04
Burst Separation Batch Size lambda(short)

Figure 38: (a) Server throughput under bursty arrivals (negative correlation). (b) Server
throughput under bursty arrivals as a function of batch size (negative correlation). (c) Server
throughput under Poisson+Short Bursts.

The final set of experiments studied the behavior of the algorithms under the combined
Poisson + Short Bursts arrival process. We concentrated on a particular scenario which, we

believe, is common in Video-On-Demand environments. Specifically, we assumed that the server

110

is working close to capacity serving requests for long (i.e., {90,120,150} minutes) movies but
occasionally has to handle bursts of short (i.e., {5,10,15} minutes) requests. That is, Ajopg Was
selected large enough to ensure high system utilization and we studied the server utilization as
a function of Agper¢- All length popularities were assumed uniform for this experiment. The
results depicted in Figure 38(c) show that, under this scenario, PBP can offer a 10% - 15%

performance improvement over WC, even at high levels of system utilization.

7.4 Conclusions

In this chapter, we have addressed the admission control problem associated with CM database

servers from a novel, on-line perspective. Using server throughput as our optimization metric,

1+A
1-p>

we showed that the traditionally used Work-Conserving policy has a competitive ratio of
where A is the ratio of the maximum to minimum request length and p is the maximum fraction
of the server’s bandwidth that a request can demand. We developed novel admission control
strategies based on the simple idea of preprepartitioning the bandwidth capacity of the server
among requests of different length and proved that that our strategies are O(log A)-competitive
for sufficiently large server bandwidth. We also showed an Q(l%ﬁ%) lower bound on the compet-
itive ratio of any deterministic or randomized algorithm for the problem, thus establishing that
our bandwidth prepartitioning algorithms are within a multiplicative constant of the optimal
on-line strategy. Based on the intuition gained from our competitiveness results, we proposed
prepartitioning schemes that make use of request popularities to ensure good average-case as
well as robust worst-case performance, and experimentally verified their effectiveness against
the Work-Conserving policy.

We believe that the analytical and experimental results presented in this chapter offer new
insights to other optimization problems that arise in CM data management. For example,
consider the problem of data placement and static load balancing in distributed CM servers.
Briefly, the problem can be described as follows: Given a collection of continuous media clips
with lengths (I;), rates (r;), and expected popularity (or, probability of access, p;), determine
a “good quality” mapping of these clips to a collection of servers, where each server is charac-
terized by a bandwidth capacity (B;) and a storage capacity (S;) and a clip can be mapped to
more than one servers (i.e., replication of clips is allowed).

Traditionally, the goal of data placement schemes in this setting is to balance the expected
bandwidth load (according to the popularities {p;}) across the available servers under the
given server storage constraints [LV95, DS95, WYS95]. This model of “popularity-based data

”

placement” aims at achieving good system utilization and balanced system load in an average

111

sense. On the other hand, our competitiveness results indicate that to ensure robust system
performance, a placement strategy should also try to achieve some secondary “goals”. One such
goal, for example, would be to place clips with large bandwidth requirements on servers with
large bandwidth capacities to guarantee small p fractions for each server. As another example,
the placement policy should try to replicate short clips across many servers, so that there are
many possibilities of dynamically re-assigning (e.g., using a baton passing primitive [WYS95])
streams delivering these clips to different servers. This obviously reduces the probability of a
short request causing the rejection of a long request from the system, which is the worst-case
scenario in all our competitiveness results. Achieving such secondary data placement goals is
especially important in order to ensure good system utilization under short-term fluctuations of
the load away from the averages {p;} or overload situations where some client requests simply

must be rejected. A detailed investigation of the problem is left for future research.

112

Chapter 8

Periodic Resource Scheduling for

Continuous Media Databases

In this chapter!, we address the resource scheduling problems associated with supporting EPPV
service in multimedia database systems in their most general form. We present a scheduling
framework that handles Continuous Media (CM) data with (possibly) different display rates
(depending on the media type and/or the compression scheme), different periods (depending on
the popularity of a clip), and arbitrary lengths. Given a hardware configuration and a collection
of CM clips to be scheduled, we present schemes for determining a schedulable subset of clips

under different assumptions about data layout:

e Clustering. Each disk is viewed as an independent storage unit; that is, the data of each
clip is stored on a single disk and multiple clips can be clustered on each disk. Despite
its conceptual simplicity, clustered placement can suffer from disk bandwidth and storage

fragmentation, leading to underutilization of available resources.

e Striping. Each clip’s data is declustered over all available disks. Striping schemes elimi-
nate disk storage fragmentation. On the other hand, as we will see, striping significantly

increases the complexity of scalable and cost-effective EPPV services.

In each of the above two cases, our main objective is to maximize the amount of disk bandwidth
that is effectively scheduled under the given layout and storage constraints. This is typically
the situation facing large-scale CM servers that periodically need to re-schedule their offer-
ings to adapt to a changing audience, content, and popularity profile?[LV95, PRE]. For the
Clustering scheme, we formulate these optimization problems as generalized variants of the 0/1
knapsack problem [IK75, Law79, Sah75]. Since the problems are N'P-hard, we present provably

near-optimal heuristics with low polynomial-time complexity. We then present two alternative

"Parts of this chapter have appeared in the Proceedings of the 23rd International Conference on Very Large
Data Bases (VLDB’97) [GOS97] and in the Proceedings of the Eighth International Workshop on Research Issues
in Data Engineering — Continuous-Media Databases and Applications (RIDE’98) [GOS98].

2A related problem is capacity planning: Given a fixed user profile, determine the minimum system config-
uration that can accommodate it. This problem is essentially dual to ours, and we believe that most of our
techniques are applicable. We will not address capacity planning further in this thesis.

113

schemes for striping clips. Fine-grained Striping (FGS) views the entire disk array as a sin-
gle large disk in a manner similar to the RAID-3 data organization [ORS95b, PGKS88]. This
scheme is conceptually simple and significantly reduces the complexity of the relevant resource
scheduling problems. However, FGS suffers from increased disk latency overheads that render
it impractical, especially for large disk arrays. Coarse-grained Striping (CGS) is based on a
round-robin distribution of clip data across the disks and has the potential of offering much bet-
ter scalability and disk utilization than Fine-grained Striping. This, however, comes at the cost
of the more sophisticated scheduling methods required to support periodic stream retrieval.
Specifically, we demonstrate that the scheduling problems involved in supporting the EPPV
service model under the CGS data layout are non-trivial generalizations of the Periodic Main-
tenance Scheduling Problem (PMSP) [WL83]. Given that PMSP is known to be N'P-complete
in the strong sense [BRTV90], we propose novel heuristic algorithms for scheduling the periodic
retrieval of Coarse-grained striped clips. We follow a two-step approach. First, we introduce the
novel concept of a scheduling tree structure and demonstrate its use in obtaining collision-free
schedules for Periodic Maintenance. Next, we extend our definitions and algorithms to handle
the more complex problems introduced by the periodic retrieval under CGS. Thus, our work
also contributes to the area of hard real-time scheduling theory by proposing the scheduling
tree structure and algorithms as a new approach to Periodic Maintenance. We also present a
scheme for packing multiple scheduling trees to effectively utilize disk bandwidth and storage,
and show that all the scheduling problems examined in this chapter can be seen as special cases
of this general packing formulation. Finally, we present experimental results that compare the
average performance of the schemes proposed in this chapter and confirm the superiority of the
“Coarse-grained Striping + Scheduling Trees” combination under different workloads. We be-
lieve that our proposed scheduling tree framework is a powerful tool, applicable to any scenario

involving regular, periodic use of a shared resource.

8.1 Notation and System Model

In this section we present a brief overview of our CM server model and the notation that will be
used throughout this chapter. First, we present a model of round-based retrieval for continuous
media. Our model follows the conventions used in most earlier work on multimedia storage
servers [CKY93, GVK 95, ORS95a, RV91, RV93]. Next, we present the three different multi-
disk data organization schemes considered in this chapter (Clustering, Fine-grained and Coarse-
grained Striping) and describe how the round-based retrieval model adapts to each different or-

ganization scenario. Finally, we describe the matriz-based allocation scheme [ORS%b, ORSQGC]

114

used to optimize the data layout of a clip based on the knowledge of its retrieval period. Ta-
ble 11 summarizes the notation used in this chapter with a brief description of its semantics.

Additional notation will be introduced when necessary.

|| Param. | Semantics ||

C; | Continuous media clip (i = 1,...,N)
(also, task of retrieving C;)

r; | Display rate for clip C; (in Mbps)
T; | Retrieval period for clip C; (in sec)
T | Time unit of clip retrieval (round
length)

l; | Length of clip C; (in sec)

n; | Retrieval period of C; in rounds

¢; | Number of columns in the matrix
of clip C;

d; | Maximum column size (in bits)

|| Param. | Semantics ||

ngisk | Number of disks in CM server
raisk | Disk transfer rate
caisk | Disk storage capacity
tseer. | Disk seek time
tiat | Disk latency

Table 11: Clip and Disk Parameters

8.1.1 Retrieving Continuous Media Data

Counsider a single magnetic disk storing a collection of continuous media clips. We assume that
the disk has a transfer rate of rg,, a storage capacity of cg;si, a worst-case seek time of tgeef,
and a worst-case latency of ¢;4; (which consists of rotational delay and settle time). A clip C; is
characterized by a display rate r; (the rate at which data for C; must be transmitted to clients)
and a length /; (in units of time) We refer to the transmission of a clip starting at a given time
as a stream. Data for streams is retrieved from the disk in rounds of length T. For a stream
displaying clip C; (denoted by stream(C;)), a circular buffer of size 2 - T - r; is reserved in the
server’s buffer cache. In each round, while the stream is consuming 7" - r; bits of data from
its buffer, the T - r; bits that the stream will consume in the next round are retrieved from
the disk into the buffer. This ensures that each stream will have sufficient data to display the
corresponding clip continuously. The quantity 7" - r; is termed the retrieval unit of clip Cj.
During a round, for streams stream(C1), ..., stream(C}y) for which data is to be retrieved
from disk, T"-71, ..., T'-r}, bits are read using the C-SCAN disk head scheduling algorithm [SG94].
C-SCAN scheduling ensures that the disk heads move in a single direction when servicing
streams during a round. As a result, random seeks to arbitrary locations are eliminated and
the total seek overhead during a round is bounded by 2 - fseer. Furthermore, retrieval of each
non-contiguously stored piece of data can incur a disk latency overhead of at most ;,; during a

round. To ensure that no stream starves during a round, the sum of the total disk transfer time

115

for all data retrieved and the overall latency and seek time overhead cannot exceed the length
T of the round [GVK™95, ORS95b, RV91, RV93]. More formally, we require the following

inequality to hold3:
T- T;

Tdisk

>

{stream(C;)}

+ tlat) S T -2 'tseelc- (5)

8.1.2 Multi-Disk Data Organization Schemes
Clustering

In Clustering, each disk of a multi-disk system is viewed as an autonomous unit — entire clips
are stored on and retrieved from a single disk and multiple clips can be clustered on each disk.
For our round-based model of data retrieval, this means that Inequality (5) must be satisfied
on each disk, where the summation is taken over all streams retrieving clips C; stored on that
disk. Note that by the definition of EPPV service, the number of concurrent streams retrieving
clip C; is exactly [%-I Furthermore, each disk has a limited storage capacity that cannot be
exceeded by the set of stored clips. Thus, if we let {C;} denote the set of clips clustered on any

single disk in the server, we require the following conditions to be satisfied:

%]

Fine-grained Striping

Z(T-n

T
{Cz} disk

+ tiat)| ST — 2-tgeer and D li-7i < Cais- (6)

{Ci}

A major deficiency of clustered data organization for large scale continuous media services is
that it can lead to bandwidth and storage fragmentation, and, consequently, underutilization of
server resources. Striping schemes eliminate storage fragmentation by declustering a clip’s data
across all available disks. This essentially means that we no longer need to satisfy a storage
capacity constraint on each disk, as long as the total storage requirements of the clips to be
scheduled do not exceed the storage capacity of the disk array.

In Fine-grained Striping (FGS) [ORS96a], each retrieval unit of a clip is striped across
all ng;sr disks of the server. Consequently, every stream retrieval involves all the mg;s disk
heads working in parallel, with each disk being responsible for fetching %@; bits of C; in each
round. This striping strategy is employed in the RAID-3 data distribution scheme [PGK88|.

For EPPYV service, the number of concurrent streams retrieving clip C; from the array is exactly

3 Although our schemes can be extended to handle disk calibration and multi-zone disks [ORS95a], these issues
are not addressed in this thesis.

116

[IT_Z-I Thus, to ensure continuous delivery, the following condition must be satisfied:

M-&wa < T_2.¢ o
Tyl | = Tdisk - Ndisk “ = seck

where N is the total number of clips on the server (see Table 11). Despite its conceptual
simplicity, Fine-grained Striping can lead to underutilization of available disk bandwidth due
to increased latency overheads [ORSQGa]. This is clearly demonstrated in the above condition
for continuity, which shows that, during each round, all disks incur a penalty of #;,; for each
clip stored in the entire server. These latency penalties limit the scalability of an EPPV server
based on Fine-grained Striping since the problem is obviously exacerbated as the size of the

disk array grows.

Coarse-grained Striping

In the Coarse-grained Striping (CGS) scheme [ORSQG&], the retrieval units of each clip are
mapped to individual disks in a round-robin manner. Consequently, the retrieval of data for a
stream on clip C; proceeds in a round-robin fashion along the disk array. During each round,
a single disk is used to fetch a retrieval unit of C; and consecutive rounds employ consecutive
disks®. This striping strategy is employed in the RAID-5 data distribution scheme [PGKS88].
Coarse-grained Striping avoids the large latency overheads of the Fine-grained scheme and,
consequently, can offer much better scalability and bandwidth utilization [ORS96a]. On the
other hand, supporting periodic stream retrieval requires much more sophisticated scheduling
methods than either Clustering or Fine-grained Striping. This is because, unlike the two previ-
ous data organization schemes, Coarse-grained Striping does not impose a steady load on each
disk during each round. Consider the retrieval of clip C; from a particular disk in the array.
By virtue of the round-robin placement, each stream retrieving data of C; needs to fetch a
retrieval unit of T"-r; bits from that disk periodically, at intervals of ng4;s, rounds. Furthermore,
to support EPPYV service, the streams retrieving clip C; are themselves periodic with a period
T; = n; - T. Thus, supporting continuous, periodic service under Coarse-grained Striping gives
rise to complex periodic real-time task scheduling problems [LL73] that cannot be reduced to
simple algebraic conditions like Inequalities (6) and (7). A concise description of these problems

and our proposed solution will be given later in this chapter.

4We assume that a disk has sufficient bandwidth to support the retrieval of one or more clips. If this does
not hold, one or more disks can be viewed as a single composite disk.

117
8.1.3 Reducing Disk Latencies: Matrix-Based Allocation

By definition, the EPPV service model associates with each clip C; a retrieval period 7;. We
assume that retrieval periods are multiples of the round length T'. This is a reasonable assump-
tion, since retrieval periods will typically be multiples of minutes or even hours and the length
of a round (usually bounded by buffering constraints) will not be more than a few seconds.
The matriz-based allocation scheme [OBRS94, ORS96¢], increases the number of clients that
can be serviced under the EPPV model by laying out data based on the knowledge of retrieval
periods. The basic idea is to distribute, for each clip C;, the starting points for the H—ﬂ con-
current display phases of C; uniformly across its length. Each such display phase corresponds
to a different stream servicing (possibly) multiple clients. Conceptually, each clip C; is viewed

as a matrix consisting of elements of length 7' (Figure 39(a)).

coll col2 col3 col4 col5

col 1 col 2 g

period Ti

@ (b)

Figure 39: (a) A clip matrix. (b) Its layout on disk.

We define n; = % (i.e., the length of the retrieval period of C; in rounds). The matrix for
C; consists of ¢; = min{n;, H—E-I} columns and H—ﬂ rows (corresponding to the clip’s display
phases). Note that we can have ¢; < n; when the retrieval period of the clip exceeds its length
(i.e., l; < T;). Finally, we let d; denote the amount of data in a column of C;’s matrix, that is
d; = [%-I .T -r;. (Although some columns may actually contain less data than d; [ORS96c], in
this chapter, we are ignoring possible optimizations for smaller columns.)

To support periodic retrieval, a clip matrix is stored in column-major form (i.e., data in
each column is stored contiguously on disk) and its retrieval is performed in columns (i.e.,
one column per round) with each element handed to a different display phase (Figure 39(b)).
Matrix-based allocation reduces the overhead of disk latency per stream since, in each round,
it incurs a total overhead of only ¢;,; for [IT—Z-‘ streams of Cj, rather than |-é—21-| - tiat (using

Inequalities (5), (6), and (7)). This means that a single disk using the matrix-based scheme

118

can support the periodic retrieval of C', ..., Cy provided that the following inequality holds:

Y (-

s
{C’L} disk

+ tlat) + 2'tseek S T. (8)

The disk bandwidth effectively utilized by a clip during a round is the amount of raw disk
bandwidth consumed by the clip without accounting for the latency overhead. For Cj, this is
exactly %, or, equivalently, H—ﬂ -7y

The matrix-based allocation scheme benefits all three multi-disk data organization strategies
considered in this chapter by significantly reducing the latency overhead in each round. For
example, in Inequalities (6) and (7) for Clustering and Fine-grained Striping the term ¢, is
replaced by %, - H—ﬂ o Thus, we present our results assuming that matrix-based allocation
is used. For Fine-grained (Coarse-grained) Striping, this means that the retrieval unit striped
(resp. distributed) across the disks of the server is an entire column of C; rather than a single
matrix element. However, we should stress that the schemes presented in this chapter are

equally applicable to the original data organization methods without the matrix-based scheme

optimization.

8.2 EPPYV under Clustering

Under a Clustered data organization, the EPPV resource scheduling problem reduces to ef-
fectively mapping clip matrices onto the server’s disks so that the bandwidth and storage
requirements of each matrix are satisfied. That is, Inequalities (6) need to hold for each disk.
We address this scheduling problem in two stages. First, we present a solution that considers
only the bandwidth requirements of clips (essentially, assuming that each disk has infinite stor-
age capacity). Next, we extend our approach to handle disk storage limitations. We present
the first case separately since our results for this case will also prove useful for Fine-grained

Striping.

8.2.1 Bandwidth Constraint

We associate two key parameters with each clip:

i1 ta
e A size: size(C;) = %, that captures the normalized contribution of C; to the
length of a round, or, equivalently, its (normalized) disk bandwidth consumption (see

Inequality (8)); and,

e A walue: value(C;) = [%-I - r;, that corresponds to the bandwidth effectively utilized by

C; during a round.

119

Using these definitions, the problem of maximizing the effectively scheduled disk bandwidth can
be formally stated as follows: Given a collection of clips C = {C1,...,Cn}, determine a subset
C' of C and a packing of {size(C;) : C; € C'} in ng;s, unit capacity bins such that the total
value 3¢, ccr value(C;) is mazimized. This problem is a generalization of the traditional 0/1
knapsack optimization problem [IK75, Law79, Sah75]. Thus, it is clearly A"P-hard 5. Given
the intractability of the problem, we present a fast heuristic algorithm (termed PACKCLIPS)
that combines the value density heuristic rule for the classical knapsack problem [GJ79] with
a First-Fit packing rule. Briefly, the main idea is to define the value density of clip C; as the
ratio p; = %e(((%) and pack the clips in decreasing order of density into unit capacity bins
using a First-Fit rule. The schedulable subset (and the corresponding schedule) is determined

by selecting the ng;s, “most valuable” bins from the final packing. Algorithm PACKCLIPS is

depicted in Figure 40.

Algorithm PACKCLIPS(C, ng;sk)

Input: A collection of CM clips C = {C},...,Cn} and a number of disks ng;s.
Output: C' C C and a packing of C’ in ng;s, unit capacity bins.(Goal: Maximize . .o, value(C;).)

1. Sort the clips in C' in non-increasing order of value density to obtain a list L =< Cy,...,Cy >
where p; > pit1. Initialize load(B;) = value(B;) = 0, B; = 0, for each bin (i.e., disk) Bj,
j=1,...,N.

2. For each clip C; in L (in that order)

2.1. Let B; be the first bin (i.e., disk) such that load(B;) + size(C;) < 1.

2.2. Set load(B;) = load(B;) + size(C};), value(B;) = value(B;) + value(C;), B; = B; U {C;},
and L = L — {C;}.

3. Let Beis, i@ = 1,...,ng;sr be the bins corresponding to the mg;sr largest value’s in the final
packing.
Return C' = UX4* B.;~.. (The packing of C' is defined by the B;s’s.)

Figure 40: Algorithm PACKCLIPS

The following theorem provides an upper bound on the worst-case performance ratio of our

heuristic.

Theorem 8.2.1 Algorithm PACKCLIPS runs in time O(N (log N+ng4;sx)) and is 1/2-approximate;

®Note that the traditional knapsack problem remains NP-hard even if the size of each item is equal to its
value (i.e., the SUBSET SUM problem [GJ79]) Thus, the fact that size:(C;) and value(C;) are correlated does
not affect the hardness of the problem.

120

that is, if Vopr is the value of the optimal schedulable subset and Vi is the value of the subset

returned by PAcCkCLIPS then % > % 0

8.2.2 Bandwidth and Storage Constraints

We now extend the PACKCLIPS algorithm to handle the storage capacity constraints imposed
by the disks. The idea is to define the size of a clip C; as a 2-dimensional size vector s; =
[size;(C;), sizea(C;)] where the first component is the normalized bandwidth consumption of
the clip (as defined in the previous section) and the second component is the normalized storage

capacity requirement of the clip. More formally,

Td.i + tiat lz “ T
size(C;) = #'tk and sizes(C;) = p—
see 1S

Let I(v) denote the maximum component of a vector v (i.e., its length). The 2-dimensional
extension of the PACKCLIPS algorithm is based on defining the value density of a clip as the
ratio p; = %‘1()0’) The load of a disk is also a 2-dimensional vector equal to the vector sum
of sizes of all clips clustered on that disk, and the condition in step 2.1 of PACKCLIPS becomes:
[(load(Bj) +s;) < 1. That is, we require that both the bandwidth and storage load on each disk
do not exceed the disk’s capacities. For our worst-case analysis of the 2-dimensional PACKCLIPS
algorithm we also assume that the storage requirements of a clip never exceed one half of a
disk’s storage capacity, that is, sizes(C;) < % This is a reasonable assumption since current
disk storage capacities are in the order of several gigabytes. The following theorem shows that

the extra dimension degrades the worst-case performance guarantee of our heuristic by a factor

of two.

Theorem 8.2.2 Assuming that the storage requirements of any clip are always less than or
equal to one half of a disk’s storage capacity, the 2-dimensional PACKCLIPS heuristic is 1/4-

approximate; that is, if Vopr is the value of the optimal schedulable subset and Vg is the value

of the subset returned by PACKCLIPS then *Z— > 1. O
Vopr 4

We have already noted that Clustering can lead to disk storage and bandwidth fragmen-
tation, and this is clearly demonstrated in the rather discouraging worst-case bound of Theo-
rem 8.2.2 — for “bad” lists of clips, PACKCLIPS may be able to utilize only as little as one fourth
of the raw server capacity. Since storage fragmentation is not an issue when striping is used, we
can effectively ignore storage constraints by assuming that the aggregate storage requirements
of the clips to be scheduled do not exceed the storage capacity of the server; that is, we assume

that >°;1; - 7 < ngisk - caisk in the description of our striping-based schemes.

121
8.3 EPPYV under Fine-grained Striping

In the Fine-grained Striping (FGS) scheme, each column of the clip matrix is declustered across
all ng;s disks of the server (Figure 41(a)). This implies that each clip being retrieved imposes

a constant load per round on all disks in the server, since each disk is responsible for retrieving

nd p of the clip’s column in each round. Thus, the following condition must be satisfied on

each disk:

N
Z + N tjgt < T —2-tseek- (9)
i—1 Tdisk " Tldisk

coll col2 col3 col4 colb5

\] col 1
\ | col 2 |
[] col 3
N N o=y
disk 0 disk 1 dSk disk 0 disk 1 disk 2
ol col2 j ol 1 Load ondisk O
N R R | e
0 1 2 3 4 5 ... Round No. 0 1 2 3 4 5
first transmission first transmission |

(@ (b)

Figure 41: (a) Fine-grained Striping. (b) Coarse-grained Striping.

To ensure continuous retrieval, all disks in the system must satisfy the same condition
(namely, Inequality (9)). Consequently, the problem of maximizing the effectively scheduled

bandwidth clips under Fine-grained Striping corresponds to a traditional, single-bin, 0/1 knap-

d.
Ftiat

sack problem with (one-dimensional) clip sizes size(C;) = ‘digk"disk

frgisk— (from Ineq. 9), and

values value(C;) = [lT—ﬂ -r; (as in Section 8.2). This is clearly a much simpler version of the
knapsack model developed for Clustering and traditional knapsack heuristics can be used to
provide near-optimal solutions [IK75, Law79, Sah75]. In fact, our PACKCLIPS algorithm (with
number of bins/disks equal to 1) readily provides a 1/2-approximate heuristic for the problem.

We should once again stress that, despite its conceptual and algorithmic simplicity, Fine-
grained Striping suffers from excessive disk latency overheads that severely limit the scalability
of the scheme. This fact is analytically shown in Inequality (9)) and clearly indicated in our

experimental results.

122

8.4 EPPV under Coarse-grained Striping

In the Coarse-grained Striping (CGS) scheme, the columns of a clip matrix are mapped to (and,
retrieved from) individual disks in a round-robin manner (Figure 41(b)). Consider the retrieval
of a clip matrix C; from a particular disk in the array. By virtue of the round-robin placement,

during each transmission of Cj, a column of C; must be retrieved from that disk periodically,

2

. . . . L
at intervals of ng;sp rounds. From Formula (8), each such retrieval requires a fraction ;2“_3_775]6
see

of the disk’s bandwidth. Furthermore, to support EPPV service, the transmissions of C; are
themselves periodic with a period T; = n; - T

Thus, the retrieval of a clip matrix C; from a specific disk in the array can be seen as a
collection of periodic real-time tasks [LL73] with period T; (i.e., the clip’s transmissions), where
each task consists of a collection of subtasks that are ngsy - T time units apart (i.e., column

retrievals within a transmission). Moreover, the computation time of each such subtask is
d;
Tdisk

number of subtasks mapped to a disk by C; equals [ndc?' k-l (¢; is the number of columns in

+ tia¢- An example of such a task is shown in Figure 41(b). Note that the maximum

C;.) This number may actually be smaller for some disks in the array. However, in order to
provide deterministic service guarantees for all disks, we consider only this worst-case number
of subtasks in our scheduling formulation.

We say that two (or more) clip retrievals collide during a round if they are all reading data
off the same disk. Collisions play a crucial role in our scheduling problem. Our algorithms
need to ensure that whenever multiple retrievals collide during a round, their total bandwidth
requirements do not exceed the capacity of the disk. Before addressing the scheduling problems
associated with this general model of periodic tasks, we briefly review two special cases that

essentially correspond to the best and worst case workloads for Coarse-grained Striping.

e ¢; = n; =multiple(ng;,) for all i. In this case, the retrieval of C; from a particular disk

corresponds to a periodic real-time task with period ngs, - 77 and computation time

Td’iik + t14¢- Maximizing the effectively scheduled bandwidth can again be formulated

as a generalized knapsack problem which in fact is identical to the problem defined in

Section 8.2.1, but with a slightly different interpretation of terms: the ngy;z, unit-capacity
bins now correspond to rounds of length 7" and the items correspond to retrievals of
clip columns. The main advantage of CGS over Clustering in this case, is its ability to
equally distribute the bandwidth and storage load across all disks. Compared to FGS, the
main advantage of CGS is the reduced latency penalty for each clip, which implies better
scalability. In fact, a simple analysis shows that, for this special case, CGS is guaranteed

to outperform FGS for large disk arrays.

123

It is important to note that it is not always feasible to reduce the general scheduling
problem to this special case, e.g., by “padding” clip lengths or periods so that the equality
¢; = n; =multiple(ng;s;) is satisfied. For example, if the length of a clip is significantly
smaller than its period then ¢; << n; and padding the clip to the length of its period is
clearly not an effective solution. For example, consider a clip with r; = 1.5Mbps, [; =
5min, 7; = 100min, and a system with 7' = 1sec and ng4;s, = 10. Padding the clip’s length

to reach its period implies that 1GB of storage is wasted per clip.

e ged(ng,ny) =1 for all i # j and ¢; > ngyjs, for all 4.5 In this case, using the Chinese

Remainder Theorem [Knu81], we can prove the following lemma.

Lemma 8.4.1 Assume that CGS is used for a collection of clips such that gcd(n;, nj) =1
for all 7 # j and ¢; > ng;s for all i. Then, during any time interval of length 1y -+ -ny - T

there exists a round at which the retrievals for all clips collide. 0

Thus, retrieval periods that are pairwise relatively prime correspond to a worst-case sce-
d;
Tdisk
allocated for each clip C;. The existence of such worst-case collisions means that CGS

nario for CGS. That is, there exists a round in which + tj4¢ units of time need to be

has to be overly conservative and is typically outperformed by FGS.

Consider the case of arbitrary retrieval periods. Using the Generalized Chinese Remainder

Theorem [Knu81], we can show the following result.

. i R : ged(ni,n2)
Lemma 8.4.2 Consider two clips C; and Cs, and let ; = min{ [n;sk} ' T d("llanZanZisk) 1
1 = 1,2. The retrieval of Cy and Cs can be scheduled without collisions if and only if a1 + ag <

ged(na, ng). O

Lemma 8.4.2 identifies a necessary and sufficient condition for the collision-free scheduling
(or, mergeability [YSBT89]) of two clip retrieval patterns. Our result extends the result of Yu
et al. [YSBT89] on merging two simple periodic patterns to the case of periodic tasks consisting
of equidistant subtasks. Furthermore, Lemma 8.4.2 can be generalized to any number of clips
if their periods can be expressed as n; = k - m; for all 4, where m; and m; are relatively prime

for all 4 # j. (Note that for two clips this condition is obviously true with k& = ged(ni,ns2).)

Lemma 8.4.3 Consider a collection of clips C = {C4,...,Cn}, with retrieval periods n; =
k - m;, for all i, where gcd(m;, m;) = 1 for i # j. Let o; = min{ [n;;sk-l , ng(kfc’ndisk) }. The
retrieval of C' can be scheduled without collisions if and only if Zf\il a; < k. 0

5The ged() function returns the greatest common divisor of a set of integers.

124

Unfortunately, Lemma 8.4.2 cannot be extended to the general case of multiple clips with ar-
bitrary periods. In fact, in Section 8.5, we will show that deciding the existence of a collision-free
schedule for the general case is NP-complete in the strong sense. Thus, no efficient necessary
and sufficient conditions are likely to exist. The condition described in Lemma 8.4.2 can easily
be shown to be sufficient for no collisions in the general case. However, it is not necessary, as
the following example indicates.

Example 1: Consider three clips with periods ny = 4, no = 6, ng = 8 and let ng;sp = 4. This
set can be scheduled with no collisions, by initiating the retrieval of Cy, C2, C5 at rounds 0, 1,
and 2, respectively. However, the inequality in Lemma 8.4.2 (extended for three clips) fails to

hold, since ged(ni,ne,n3) =2 < 25’:1 o; = 3.

8.5 The Scheduling Tree Structure

In the previous section, we identified the scheduling problem that arises when supporting EPPV
service under CGS and examined some special cases. In this section we address the general
problem. We first consider a model of simple periodic real-time tasks and show that deciding the
existence of a collision-free schedule is equivalent to Periodic Maintenance [BRTV90, WL83],
a problem known to be intractable. Motivated from this result, we define the novel concept of
a scheduling tree and discuss its application in a heuristic algorithm for Periodic Maintenance.
We then show how the scheduling tree structure can handle the more complex model of periodic

tasks identified in Section 8.4.

8.5.1 Periodic Maintenance Scheduling

The k-server Periodic Maintenance Scheduling Problem (k-PMSP) [BRTV90] is a special case
of the problem of scheduling simple periodic tasks in a hard real-time environment. Briefly, the
kE-PMSP decision problem can be stated as follows: Let C = {C1,...,Cn} be a set of periodic
tasks with corresponding periods P = {n1,...,ny}, where each n; is a positive integer. Is there
a mapping of the the tasks in C to positive integer time slots such that successive occurrences
of C; are exactly n; time slots apart and no more than k tasks ever collide in a slot? Note
that if u; is the index of the first occurrence of C; in a schedule for P then the (multi)set of
starting time slots {u1,...,un} uniquely determines the schedule, since C; occurs at all slots
ui+J-ni, 72> 0.

Baruah et al. [BRTV90] have shown that for any fixed integer £k > 1, k-PMSP is NP-
complete in the strong sense. Consequently, given a collection of simple periodic tasks with pe-

riods P, determining the existence of a collision-free schedule is intractable (i.e., it is equivalent

125

to 1-PMSP). The existence of a scheduling tree structure (as described below) that contains all
the periods in P, guarantees the existence of a collision-free schedule. Furthermore, the starting

time slot for each task can be determined from the scheduling tree’.

Definition 8.5.1 A scheduling tree is a tree structure consisting of nodes and edges with

integer weights, where:

1. Each internal node of weight w can have at most w outgoing edges, each of which has a

distinct weight in {0,1,...,w — 1}; and,

2. Each leaf node represents a period n; such that n; is equal to the product of weights of

the leaf’s ancestor nodes.

O

We define the level of a node (or, edge) as the number of its proper ancestor nodes. Thus,
the level of the tree’s root is 0 and the level of all edges emanating from the root is 1. For
any node n, let w(n) and e(n) denote the weight and the number of edges of n, respectively.
Also, let ancestor node;(n) represent the weight of the ancestor node of n at level j, and let
ancestor_edge;(n) denote the weight of the ancestor edge of n at level j, where j < level(n).
Finally, define 7;(n) = ngoancestor_nodei(n) for 0 < j <level(n).

Consider a leaf node for period n; located at level [. The first slot u; in which the corre-
sponding task is scheduled is defined from the scheduling tree structure as follows:

l
u; = ancestor_edge, (n;) + » ancestor_edge,(n;) - mj—2(n;). (10)
j=2

Some intuition for the scheduling tree structure and the above formula is provided in Figure 42.
The basic idea is that all tasks in a subtree rooted at some edge emanating from node n at
level [will utilize time slot numbers that are congruent to i (mod m;(n)), where 7 is a unique
number between 0 and m;(n) — 1. Satisfying this invariant recursively at every internal node
ensures the avoidance of collisions.

Note that the existence of a scheduling tree for a set of periods P is only a sufficient
condition for the existence of a collision-free schedule. For example, the periods 6, 10, and 15
are schedulable using start times of 0, 1, and 2, respectively, although no scheduling tree can be
built (since ged({6,10,15}) = 1). However, using the Generalized Chinese Remainder Theorem
it is straightforward to show that the existence of a scheduling forest, as defined below, is both

necessary and sufficient for the existence a collision-free schedule.

"To the best of our knowledge, no similar notion of tree structure for periodic task scheduling has been
proposed in the real-time scheduling literature [SR93].

126

slots congruent to
(e0 + el w0) (mod (wOw1))

slots congruent to €0 (mod wO)

(@ (b)
Figure 42: (a) The scheduling tree structure. (b) A tree for the set of tasks in Example 1.

Definition 8.5.2 Let I'1,...,T'x be scheduling trees for Py, ..., Py, where P, ..., Py is a parti-
tioning of of the periods in P. The trees I'; and T'; are consistent if and only if for each n,, € F;
and n; € P; we have u,, #w; (mod ged(nm,,n;)). A scheduling forest for P is a collection of

pairwise consistent scheduling trees for some partition of P. O

Corollary 8.5.1 Determining whether there exists a scheduling forest for P is equivalent to

1-PMSP, and, thus, it is NP-complete in the strong sense. 0

Given the above intractability result, we present a heuristic algorithm for constructing
scheduling trees for a given (multi)set of periods. Our algorithm is based on identifying and

incrementally maintaining candidate nodes for scheduling incoming periods.

Definition 8.5.3 An internal node n at level [is candidate for period n; if and only if m;_1(n)|n;

and ged(w(n), 770) 2 Goy—emy .

A period n; can be scheduled under any candidate node n in a scheduling tree. There are

two possible cases:

o If m(n)|n; then the condition in Definition 8.5.3 guarantees that n has at least one free

edge at which n; can be placed (Figure 43(a)).

e If m(n) fn; then, in order to accommodate n; under node n, n must be split so that the

defining properties of the scheduling tree structure are kept intact.

This is done as follows. Let d = ged(w(n), T—nfm) Node n is split into a parent node

with weight d and child nodes with weight %, with the original children of n divided

127

(a) (b)

Figure 43: (a) Placing a period p under a scheduling tree node without splitting. (b) Period
placement when the node is split.

w(n)

among the new child nodes, as shown in Figure 43(b); that is, the first batch of =;=
children of n are placed under the first child node, and so on. It is easy to see that
this splitting maintains the properties of the structure. Furthermore, the condition in
Definition 8.5.3 guarantees that the newly created parent node will have at least one free

edge for scheduling n;.

The set of candidate nodes for each period to be scheduled can be maintained efficiently,
in an incremental manner. The observation here is that when a new period n; is scheduled,
all remaining periods only have to check a maximum of three nodes, namely the two closest
ancestors of the leaf for n; and, if a split occurred, the last child node created in the split, for
possible inclusion or exclusion from their candidate sets.

As in Section 8.2, we assume each task is associated with a value and we aim to maximize
the cumulative value of a schedule. The basic idea of our heuristic (termed BUILDTREE) is to
build the scheduling tree incrementally in a greedy fashion, scanning the tasks in non-increasing
order of value and placing each period n; in that candidate node M that implies the minimum
value loss among all possible candidates. This loss is calculated as the total value of all periods
whose candidate sets become empty after the placement of n; under M. Ties are always broken
in favor of those candidate nodes that are located at higher levels (i.e., closer to the leaves),
while ties at the same level are broken using the postorder node numbers (i.e., left-to-right
order). When a period is scheduled in T', the candidate node sets for all remaining periods
are updated (in an incremental fashion) and the algorithm continues with the next task/period
(with at least one candidate in I'). Algorithm BUILDTREE is depicted in Figure 44.

Let N be the number of tasks in C'. The number of internal nodes in a scheduling tree is

always going to be O(N). To see this, note that an internal node will always have at least two

128

Algorithm BUILDTREE(C, value)

Input: A set of simple periodic tasks C = {C,...,Cn} with corresponding periods P = {nq,...,nn},
and a value() function assigning a value to each C;.

Output: A scheduling tree I for a subset C' of C. (Goal: Maximize), . value(C;).)

1. Sort the tasks in C in non-increasing order of value to obtain a list L =< C1,Cs,...,Cn >,
where value(C;) > value(Cj11). Initially, I consists of a root node with a weight equal to n1.

2. For each periodic task C; in L (in that order)

2.1. Let cand(n;,T") be the set of candidate nodes for n; in I'. (Note that this set is maintained
incrementally as the tree is built.)

2.2. For each n € cand(n;,T"), let T'U {n;}, denote the tree that results when n; is placed under
node n in I'. Let loss(n) = {C; € L — {C;}| cand(T' U {n;},) = 0} and value(loss(n)) =
Ec’j Eloss(n) value(Cj).

2.3. Place n; under the
candidate node M such that value(loss(M)) = min,eccond(n;,r){value(loss(n))}. (Ties
are broken in favor of nodes at higher levels.) If necessary, node M is split.

24. Set ' =TU{n;}pm, L =L — loss(M).

2.5. For each task C; € L, update the candidate node set cand(n;,T').

Figure 44: Algorithm BUILDTREE

children, with the only possible exception being the rightmost one or two new nodes created
during the insertion of a new period (depending on whether splitting was used, see Figure 43).
Since the number of insertions is at most NN, it follows that the number of internal nodes is
O(N). Based on this fact, it is easy to show that BUILDTREE runs in time O(N3).

Example 2: Consider the list of periods < ny = 2, ng = 12, ng = 30 > (sorted in non-
increasing order of value). Figure 45 illustrates the step-by-step construction of the scheduling
tree using BUILDTREE. Note that period ns splits the node with weight 6 into two nodes with

weights 3 and 2.

8.5.2 Scheduling Equidistant Subtasks

In Section 8.4, we identified a clip retrieval under Coarse-grained Striping as a periodic real-time

task C; with period n; = % (in rounds) that consists of a collection of [ndc? k-‘ subtasks that
need to be scheduled ng4; rounds apart. The basic observation here is that all the subtasks of
C; are themselves periodic with period n;, so the techniques of the previous section can be used

for each individual subtask. However, the scheduling algorithm also needs to ensure that all

129

(@ (b) () (d)

Figure 45: Construction of a scheduling tree for the set of tasks in Example 2.

the subtasks are scheduled together, using time slots (i.e., rounds) placed regularly at intervals
of ng;sk- In this section, we propose heuristic methods for building a scheduling tree in this
generalized setting.

An important requirement of this more general task model is that the insertion of new
periods cannot be allowed to distort the relative placement of subtasks already in the tree. The
splitting mechanism described in the previous section for simple periodic tasks does not satisfy
this requirement, since it can alter the starting time slots for all subtasks located under the
split node. We describe a new rule for splitting nodes without modifying the retrieval schedule
for subtasks already in the tree. The idea is to use a different method for “batching” the
children of the node being split, so that the starting time slots for all leaf nodes (as specified by
Equation (10)) remain unchanged. This new splitting rule is as follows: If the node n is split to
give a new parent node with weight d, then place at edge i of the new node (1 =10,...,d—1) all
the children of the old node n whose parent edge weight was congruent to i (mod d). Our claim
that retrieval schedules are kept intact under this rule is a direct consequence of Equation (10).
Example 3: Figure 46(a) illustrates a scheduling tree with two tasks with periods n; = 6,
ny = 6 assigned to slots 0 and 1. Figure 46(b) depicts the scheduling tree after a third task
with period ng = 15 is inserted. Although there is enough capacity for both n; and no in the
subtree connected to the root with edge 0, the new split forces ny to be placed in the subtree
connected to the root with edge 1.

In this setting, the notion of a candidate node is defined as follows.

Definition 8.5.4 An internal node n at level [is candidate for period n; if and only if ;1 (n)|n;
and there exists an i € {0,...,d — 1} such that all edges of n with weights congruent to i
(mod d) are free, where d = ged(w(n), m_"—M) 0

However, under our generalized model of periodic tasks, a candidate node for n; can only

130

(@ (b)

Figure 46: Tllustration of the new splitting rule.

accommodate a subtask of C;. This is clearly not sufficient for the entire task. The temporal
dependency among the subtasks of C; means that our scheduling tree scheme must make sure
that all the subtasks of C; are placed in the tree at distances of ng;g-

One way to deal with this situation is to maintain candidate nodes for subtasks based on
Definition 8.5.4, and use a simple predicate based on Equation (10), for checking the availability
of specific time slots in the scheduling tree. The scheduling of C; can then be handled as follows.
Select a candidate node for n; and a time slot u; for n; under this candidate. Place the first

subtask of C; in u; and call the predicate repeatedly to check if n; can be scheduled in slot

Ci
Ndisk

u; + 7 - Ngisk, for j = 1,..., [-| If the predicate succeeds for all j, then C; is scheduled
starting at u;. Otherwise, the algorithm can try another potential starting slot u;. Algorithm
FREESLOT, depicted in Figure 47, is a predicate for checking the availability of a specific time
slot 4 under a candidate node n for period n;. The correctness of the algorithm follows from

the fact that Equation (10) can be rewritten in nested form as follows:

u; = ancestor_edge,(n;) + ancestor nodey(n;)- (ancestor_edge,(n;) + ancestor node;(n;) - (...

(ancestor_edge; ;(n;) + ancestor node;_2(n;) - ancestor_edge;(n;))...).

A problem with the approach outline above is that even if the number of starting slots tried

for Cj is restricted to a constant, scheduling each subtask individually yields pseudo-polynomial

time complexity. This is because the number of scheduling operations in a trial will be O(n;isk)s
where ¢; = min{n;, l‘—ﬁ} is part of the problem input.

We propose a polynomial time heuristic algorithm for the problem. To simplify the pre-
sentation, we assume that every period n; is a multiple of ng. Although it is possible to
extend our heuristic to handle general periods, we believe that this assumption is not very

restrictive in practice. This is because we typically expect round lengths 71" to be in the area

131

Algorithm FREESLOT(n,n;, u)

Input: A scheduling tree node n, a period n;, and a specific time slot u.

Output: TRUE iff n; can be scheduled in slot u under node n; FALSE otherwise.
1. If n is not a candidate for n; then return(FALSE).

2. Let I = level(n) and let t = ancestor_edge, (n) + 23:2 ancestor_edge;(n) - mj_2(n).

3. If m_1(n) does not divide u — ¢ then return(FALSE);

Else let u = ml_”:(tn).

4. Let d = ged(ng, w(n)) and e = w mod d.

5. If all edges of n labeled &k -d + e, for k=0, ..., @ — 1 are free then return(TRUE);
Else return(FALSE).

Figure 47: Algorithm FREESLOT

of a few seconds and periods T; to be multiples of some number of minutes (e.g., 5, 10, 30,
or 60 minutes). Therefore, it is realistic to assume the smallest period in the system can be
selected to be a multiple of ngsp. Our goal is to devise a method that ensures that if the first
subtask of a task C; does not collide with the first subtask of any other task in the tree, then
no other combination of subtasks can cause a collision to occur. This means that once the first
subtask of C; is placed in the scheduling tree there is no need to check the rest of C;’s subtasks
individually.

Our algorithm sets the weight of the root of the scheduling tree to ng;sx. (This is possible
since the n;’s are multiples of ngsx.) By Equation (10), this implies that consecutive subtasks
of a task will require consecutive edges emanating from nodes at the first level (i.e., the direct
descendants of the root). The basic idea of our method is to make sure that when the first
subtask of a task is placed at a leaf node, a number of consecutive edges of the first-level ancestor

node of that leaf are disabled, so that the slots under those edges cannot be used by the first

G
Ndisk

subtask of any future task. By our previous observation, s; —1 = [| — 1 consecutive edges
of the first-level ancestor of the leaf for n; must be disabled, starting with the right neighbor
of the edge under which that leaf resides. (s; is the number of subtasks of C;.) This “edge
disabling” is implemented by maintaining an integer distance for each edge e emanating from
a first-level node that is equal to the number of consecutive neighbors of e that have been
disabled. Our placement algorithm has to maintain two invariants. First, the distance of an

edge e of a first-level node is always equal to maxc,{s;} — 1, where the max is taken over all

132

tasks placed under e in the tree. Second, the sum of the weight of an edge e of a first-level node
n and its distance is always less than the weight of n (so that the defining properties of the tree
are maintained). Based on the above scheme, we can define the notion of a candidate node as

follows.

Definition 8.5.5 Let n be an internal node at level [. Let n; be a period and define d =
ged(w(n), m_n—f(m) Node n is candidate for period n; if and only if m;_1(n)|n; and the following

conditions hold:
1. If n is the root node, n has a free edge.

2. If level(n) = 1, there exists an 7 € {0,...,d — 1} such that all (non-disabled) edges of n
whose sum of weight plus distance is congruent to (i +j) (mod d), for 0 < j < s;, are

free.
3. If level(n) > 2,

3.1. there exists an i € {0,...,d — 1} such that all edges of n with weight congruent to i

(mod d) are free; and,

3.2. s;—1+ancestor_edge,(n) < ancestor node;(n) and s; +ancestor_edge,(n) is less
than or equal to the weight of the (non-disabled) edge following ancestor_edge,(n),

if there is such an edge.

O

Note that clause 2 ensures that edge distances are maintained when first-level nodes are
split. Based on the above definition of candidate nodes, Algorithm BUILDEQUIDTREE (shown
in Figure 48) can be used to construct a scheduling tree in polynomial time.

Example 4: Consider three tasks C;, Cy and C3 with s1, 89,83 = 2,1, 3, n1,n9,n3 = 12,18, 10,
and ng;sp = 2. Figure 49 illustrates the three states of the scheduling tree after placing tasks

C1,Cs, and C}3 respectively.

8.5.3 Handling Slots with Multi-Task Capacities

An interesting property of the scheduling tree formulation is that it can easily be extended
to handle time slots that can fit more than one subtask (i.e., can allow for some tasks to
collide). As we saw in Section 8.4, this is exactly the case for the rounds of EPPV retrieval
under CGS. Using the notation of Section 8.2, we can think of the subtasks of C; as items

of size size(C;) < 1 (i.e., the fraction of disk bandwidth required for retrieving one column

133

Algorithm BUILDEQUIDTREE

Input: A set of periodic tasks C = {C1,...,Cn} with corresponding periods P = {n;,...,ny} and a
value() function assigning a value to each C;. Each task consists of subtasks placed at intervals
of Ndisk-

Output: A scheduling tree I for a subset C' of C. (Goal: Maximize), ., value(C;).)

1. Sort the tasks in C in non-increasing order of value to obtain a list L =< C,Cs,...,Cn >,
where value(C;) > value(Ciy1). Initially, T' consists of a root node with a weight equal to ng;sk.

2. For each task C; in L (in that order)

2.1. Select a candidate node n for n; in I'. (Ties are broken in favor of nodes at higher levels).
2.2. If w(n) fn,, split n.

2.3. Schedule the first subtask of C; under n. (Ties are broken in favor of edges with smaller
weights.)

2.4. Let d be the distance of the ancestor edge at the first level of the leaf corresponding to n;.
Set the distance of this edge to max{d, s; — 1}.

Figure 48: Algorithm BUILDEQUIDTREE

of clip C;) that are placed in unit capacity time slots. In this more general setting, a time
slot can accommodate multiple tasks as long as their total size does not exceed one. Note
that this problem is a generalization of the k-server Periodic Maintenance Scheduling Problem
(k-PMSP), where all items are assumed to be of the same size (i.e., £th of the capacity).

The problem can be visualized as a collection of unit capacity bins (i.e., time slots) located
at the leaves of a scheduling tree, whose structure determines the eligible bins for each task’s
subtasks (based on their period). With respect to our previous model of tasks, the main
difference is that since slots can now accommodate multiple retrievals it is possible for a leaf
node that is already occupied to be a candidate for a period. Hence, the basic idea for extending
our schemes to this case is to keep track of the available slot space at each leaf node and allow
leaf nodes to be shared by tasks. Thus, our notion of candidate nodes can simply be extended

as follows.

Definition 8.5.6 Let n be a leaf node for of a scheduling tree I' corresponding to period p.
Also, let S(n) denote the collection of tasks (with period p) mapped to n. The load of leaf n is
defined as: load(n) = Y ¢, e5(n) 5ize(Ci). 0

Definition 8.5.7 A node n at level | is candidate for a task of C; (with period n;) if and only
if:

134

@) (b) (©)
Figure 49: Scheduling equidistant subtasks with edge disabling.

1. n is internal, conditions in Definition 8.5.4 hold, or

2. n is external (leaf node) corresponding to n; (i.e., m;(n) = n;), and load(n)+size(C;) < 1.

O

With these extensions, it is easy to see that our BUILDEQUIDTREE algorithm can be used

without modification to produce a scheduling tree for the multi-task capacity case.

8.6 Combining Multiple Scheduling Trees

To construct forests of multiple non-colliding scheduling trees, trees already built can be used to
restrict task placement in the tree under construction. By the Generalized Chinese Remainder
Theorem, the scheduling algorithm needs to ensure that each subtask of task C; is assigned a
slot u; such that u; Zu; (mod gecd(n;,nj)) for any subtask of any task C; that is scheduled
in slot «; in a previous tree within the same forest. This obviously is a very expensive method
and efficient heuristics for constructing scheduling forests still elude our efforts. In this section,
however, we provide a general packing-based scheme that can be used for combining indepen-
dently built scheduling forests. Of course, for our purposes, a forest can always consist of a
single tree. Our goal is to improve the utilization of scheduling slots that can accommodate
multiple tasks.

Given a collection of tasks, scheduling forests are constructed until each task is assigned a
time slot. We know that no pair of tasks within a forest will collide at any slot except for tasks
with the same period that are assigned to the same leaf node as described in Section 8.5.3.
A simple conservative approach is to assume a worst-case collision across forests. That is,

we define the size of a forest as size(F;) = max,,cF,{load(n;)} where n; is any leaf node

135

in F;, and the load of a leaf node is as in Definition 8.5.6. Further, a forest F; has a value:
value(F;) = X ¢,cr, value(Cj). Thus, under the assumption of a worst-case collision, the
problem of maximizing the total scheduled value for a collection of forests is a traditional 0/1
knapsack optimization problem. A packing-based heuristic like PACKCLIPS can be used to
provide an approximate solution.

In some cases, the worst-case collision assumption across forests may be unnecessarily re-
strictive. For example, consider two scheduling trees I'y and I'o that are constructed inde-
pendently. Let e; be an edge emanating from the root node n; of I'y and ey be an edge
emanating from the root node ny of T's. If e; mod (ged(ny1,m2)) # e2 mod (ged(ni,n2)) holds,
then the tasks scheduled in the subtrees rooted at e; and ez can never collide. Using such
observations, we can devise more clever packing-based strategies for combining forests. As an
example, consider the following strategy. Assume a collection of independently built schedul-
ing forests {F;}. Let d be the gcd of all the root nodes of all the trees in every forest. Let
Fi(j), 0 < j < d, denote the collection of all subtrees rooted at a first level node (i.e., a
child of the root) in each tree within forest F;, such that the weight of the edge connecting
the subtree to the root is congruent to j (mod d). As previously, we define the size and
value of Fj(j) as size(F;(j)) = max,, cp,(j){load(ng)} where ny is any leaf node in Fj(j), and
value(F;(j)) = X¢,epy(y) value(Cy). Finally, let F'(j) denote the collection of all F;(j)’s for a

fixed value of 5. We consider three different cases of the scheduling problem.

1. No subtasks. In this case, each task is a simple periodic task. We are then faced with a
packing problem that can be described as: Given d collections of objects F = {F(0), ..., F(d—
1)}, for each collection F(j), 0 < j < d, determine a subset F'(j) of F(j) and a packing
of F'(j) in a unit capacity bin such that the total value 3 p,(jcp ;) value(F;(j) is maz-
imized. Since each collection an be treated independently, our problem corresponds to
a traditional 0/1 knapsack optimization problem. Thus, knapsack heuristics (e.g., algo-
rithm PACKCLIPS(F(j),1)) can be used for each collection F(j) of objects. (The set of
scheduled tasks is defined by the set of subtrees selected in the packing.)

2. ged(ngisk,d) > 1: In this case, if we set d to be equal to ged(ng;sk, d), then the optimization

problem is the same as in case (1). In other words, in spite of the subtasks, we can pack
subtrees of different forests, rather than packing the entire forest. This is because, if
ged(ngisk, d) > 1 holds, then all the subtasks of a task reside in subtrees rooted at edges
(emanating from the root) with weights that are congruent to j (mod ged(d, ngisx)) for

some j (0 < j < d).

3. Otherwise. With each forest Fj, we associate a d-dimensional size vector (with the j™

136

component equal to size(F;(j))) and a value value(F;) = 2?21 value(F;(j)). We are
then faced with a d-dimensional variant of our original (i.e., worst-case collision) packing
problem, in which forests are packed into a d-dimensional unit capacity bin with the
objective of maximizing the accumulated value. Again, heuristics (like PACKCLIPS) based

on d-dimensional vector packing [CGJ84] can provide approximate solutions.

8.7 Experimental Performance Evaluation

In this section, we describe the results of a preliminary performance evaluation comparing the

average performance of the schemes presented in this chapter for supporting EPPV service.

8.7.1 Experimental Testbed

For our experiments, we used two basic workload components, modeling typical scenarios en-

countered in today’s pay-per-view video servers.

e Workload 1 consisted of relatively long MPEG-1 compressed videos with a duration
between 90 and 120 minutes (e.g., movie features). The display rate for all these videos
was equal to 7; = 1.5 Mbps. To model differences in video popularity, our workload
comprised two distinct regions: a “hot region” with retrieval periods between 40 and 60

minutes and a “cold region” with periods between 150 and 180 minutes.

e Workload 2 consisted of small video clips with lengths between 2 and 10 minutes (e.g.,
commercials or music video clips). The display rates for these videos varied between 2
and 4 Mbps (i.e., MPEG-1 and 2 compression). Again, clips were divided between a “hot
region” with periods between 20 and 30 minutes and a “cold region” with periods between

40 and 60 minutes.

We experimented with each component executing in isolation and with mixed workloads con-
sisting of mixtures of type 1 and type 2 workloads. We concentrated on scaleup experiments
in which the total expected storage requirements of the offered workload were approximately
equal to the total storage capacity of the server. This allowed us to effectively ignore the stor-
age capacity constraint for the striping-based schemes. For Clustering, storage capacities were
accounted for by using the 2-dimensional version of PACKCLIPS (Section 8.2.2). Our basic per-
formance metric was the effectively scheduled disk bandwidth (in Mbps) for each of the resource
scheduling schemes presented in this chapter. (The graphs presented in the next section are

indicative of the results obtained over the ranges of the workload parameters.)

137

The results discussed in this chapter were obtained assuming a bandwidth capacity of 74
= 80 Mbps and a storage capacity of cgisx = 4 GBytes for each disk in the server. The (worst-
case) disk seek time and latency were set at tgeer, = 24 ms and ;¢ = 9.3 ms, respectively, and
the round length was T" = 1 sec. As part of our future work, we plan to examine the effect
of these parameters on the performance of our scheduling schemes. Table 12 summarizes our

experimental parameter settings.

Disk Params. Workload 1' Workload 2
raisk_| 80 Mbps li | 90 — 120 min I; | 210 min
. - - - T i
caisk, | 4 GBytes T; | 40-60 , 150-180 min T; | 20-30, 40-60 min
tseer | 24 ms r; | 1.5 Mbps
_ r; | 2—4 Mbps
tiar | 9-3 ms No. clips | 20 — 200 -
g ot ok 57 50% No. clips | 80 — 200
sec Ot ClIps 0 0 Hot clips | 5% — 50%

Table 12: Experimental Parameter Settings

8.7.2 Experimental Results

The results of our experiments with type 1 workloads with hot regions of 30% and 10% are
shown in Figures 50(a) and 50(b), respectively. Clearly, the CGS-based scheme outperforms
both Clustering and FGS over the entire range of values for the number of disks. Observe that
for type 1 workloads and for the parameter values given in Table 12, the maximum number of
clips that can be scheduled is limited by the aggregate disk storage. Specifically, it is easy to
see that the maximum number of clips that can fit in a disk is 3.95 and the average number of
concurrent streams for a clip is (0.3-340.7-1) = 1.6. Thus, the maximum bandwidth that can
be utilized on a single disk for this mix of accesses is 1.6 - 3.95 - 1.5 = 9.48Mbps. This explains
the low scheduled bandwidth output shown in Figure 50. We should note that in most cases
our scheduling tree heuristics were able to schedule the entire offered workload of clips. On
the other hand, the performance of FGS schemes quickly deteriorates as the size of the disk
array increases. This confirms our remarks on the limited scalability of FGS in Section 8.3.
The performance of our Clustering scheme under Workload 1 suffers from the disk storage
fragmentation due to the large clip sizes. We also observe a deterioration in the performance
of Clustering as the access skew increases (i.e., the size of the hot region becomes smaller).
This can be explained as follows: PACKCLIPS first tries to pack the clips that give the highest
profit (i.e., the hot clips). Thus when the hot region becomes smaller the relative value of the
scheduled subset (as compared to the total workload value) decreases.

The relative performance of the three schemes for a type 2 workload with a 50% hot region is

138

Workload #1, Hot Region: 30% Workload #1, Hot Region: 10%
T T

350

T T
Coarse-grained Striping (Scheduling Trées) —
Clustering (P

T T
Coarse-grained Striping (Scheduling Treés) <—
Clustering (PackCli

ps) —+- Clips) —+-
400 b Fine-grained Striping -8~ | rained Striping -&

300

250 -

150 |

Scheduled Disk Bandwidth (Mbps)
N
R
g

Scheduled Disk Bandwidth (Mbps)

100 -

50

L L L L L L
40 50 10 20 40 50

L L
10 20

30 30
No of disks No of disks

Figure 50: (a) Workload 1, 30% hot. (b) Workload 1, 10% hot.

depicted in Figure 51(a). Again, the CGS-based scheme outperforms both Clustering and FGS
over the entire range of ny;,,. Note that, compared to type 1 workloads, the relative performance
of Clustering and FGS schemes under this workload of short clips is significantly worse. This
is because both these schemes, being unaware of the periodic nature of clip retrieval, reserve
a specific amount of bandwidth for every clip C; during every round of length 7. However,
for clips whose length is relatively small compared to their period this bandwidth will actually
be needed only for small fraction of rounds. Figure 51(a) clearly demonstrates the devastating
effects of this bandwidth wastage and the need for periodic scheduling algorithms.

Finally, Figure 51(b) depicts the results obtained for a mixed workload consisting of 30%
type 1 clips and 70% type 2 clips. CGS is once again consistently better than FGS and
Clustering over the entire range of disk array sizes. Compared to pure type 1 or 2 workloads,
the Clustering-based scheme is able to exploit the non-uniformities in the mixed workload to
produce much better packings. This gives Clustering a clear win over FGS. Still, its wastefulness

of disk bandwidth for short clips does not allow it to perform at the level of CGS.

8.8 Extensions

8.8.1 Periods greater than Length

In general, the period T; of a clip C; may be greater than its length [;. The algorithms presented
in Sections 8.2 and 8.3 for Clustering and Fine-grained Striping (FGS) can be used to schedule

such clips, however, they may be unnecessarily restrictive. This is because for Clustering and

. . d: d: .
FGS, PACKCLIPS reserves disk time equal to i+ tiqt and YT~ + t14¢, Tespectively, every

T units of time for clip C;. However, if the length the clip is much smaller than its period, then

139

Workload #2, Hot Region: 50% Mixed Workload (30% large clips), 10% hot
T T T T

T T T T
Coarse-grained Striping (Scheduling Trees) — 500 |- Coarse-grained Striping (Scheduifig Trees) +— _|
ing(PackClips) —+- g (PackClips) —+-
Fine.gfained Striping -& Finecgrained Striping -8

200
o+

150 |

100 |

Scheduled Disk Bandwidth (Mbps)
Scheduled Disk Bandwidth (Mbps)

L L
3 4 10 12 14 16
No of disks No of disks

Figure 51: (a) Workload 2, 50% hot. (b) Mixed Workload (30%-70%), 10% hot.

in every T; time slots the reserved disk capacity in T; — [; time slots is wasted. The effects of
this bandwidth wastage and the need for periodic scheduling techniques are also demonstrated
in our experimental results in Section 8.7.2.

Under Clustering and FGS, the retrieval of a clip C; can be modeled as a collection of
periodic real-time tasks with period T; = n; - T, where each task consists of a collection of c¢;
subtasks that are T' time units apart and have a computation time equal to the column retrieval
time. (¢; is the number of columns in C;.) Note that the only difference between this task model
and the one defined in Section 8.4 is that the distance between consecutive subtasks is only one
time slot (rather than mg;s). Our scheduling tree algorithms and the packing-based schemes
for combining forests and trees can easily be modified to deal with this case.

Obviously, to deal with the storage dimension for Clustering, the packing-based scheme
presented in Section 8.6 needs to become two-dimensional. That is, each forest F; is character-
ized by a two-dimensional size vector s; = [size;(F;), sizeq(F;)] (similar to the one described
in Section 8.2.2), where size;(F;) is the maximum disk bandwidth requirement of any task
scheduled within F; and sizeq(F;) is the total storage requirement of all the tasks scheduled
within F;. More formally,

d;

size;(F;) = max { %k
1ze1(F) = o e een

+1 L«
fat } and sizey(F;) = ARFN

C]EFZ Cdisk

Using these definitions, the two-dimensional PACKCLIPS algorithm can provide an approximate
solution to the value maximization problem for a given collection of forests. Note that if the
number of subtasks of a task C; is equal to n; = %, then C; will occupy all available time slots
in a scheduling tree. Thus, if T; > I; holds for each clip C;, our scheme reduces exactly to the

one in Section 8.2.

140

FGS can be handled in a similar manner. In this case, each forest F; is characterized by

+iat

J
a scalar (i.e.,one-dimensional) size sizei(F;) = maxc;ep,{ ~4i-gish—

= }, and forests can be

packed using one unit capacity bin.

8.8.2 Conventional Data Layout

Previously in this chapter, we assumed that clips are stored on disks using the matrix-based
layout scheme. That is, each column of a clip matrix is stored contiguously. A column is nothing
more than the total amount of data that needs to be retrieved in a round for all concurrent
display phases. Thus, the matrix-based layout provides the nice property of reducing the disk
latency overhead within a round for all the concurrent phases to a single £;,;. On the other
hand, our scheduling and packing algorithms can also handle conventional data layout schemes
that do not exploit the knowledge of retrieval periods during data layout.

Assume the conventional data layout scheme that stores the clip data contiguously on disk
(i.e., stores the clip matrix in row-major order). This scheme has been the basis of most
work on continuous media. Let b; denote the disk bandwidth overhead for supporting the
periodic retrieval of clip C;. If T; < I;, then b; is the same under both the conventional and the
matrix-based scheme. However, if T; > [;, then Clustering and Coarse-grained Striping require

;] Torg

b; = [%" (% + t14t) under conventional layout, and only b; = [f-l ok

+ t14¢ under matrix-

based layout. Similarly, if T; > I;, then Fine-grained Striping requires b; = [lT—] (it 4 t4y)
T-r;

under conventional layout, and only b; = [%—-‘ A under matrix-based layout. Thus,
b

our packing and scheduling algorithms remain the same once b; and, thus, size;(C;) = 7—2—

i)
tseek

are appropriately redefined.

8.8.3 Random Access Service Model

In addition to supporting EPPV service, our tree-based scheduling algorithms can also offer
support for Random Access service models where resource reservations have to be placed to
allocate an independent channel for each admitted client.

Most CM storage systems are built using the round-based disk scheduling/buffer manage-
ment algorithm described in Section 8.1. That is, data for CM streams is retrieved into a buffer
cache from disks in rounds of length T'. For each stream Cj;, a buffer of size 2 - T - r; is reserved
for the duration of the stream and a disk time of length :TZ ~+ t74¢ is reserved in every round.
In each round, while the stream is consuming T - r; bits of data from the buffer cache, the next
T -r; bits of data that the stream will consume in the next round are retrieved from disk into the

buffer cache. The optimum value of T' that maximizes the throughput depends on the available

141

buffer space, disk bandwidth, latency and rates of the incoming stream requests. In order to
maximize the throughput under this basic round-based approach, the value of the round length
T needs to be changed dynamically depending on the incoming requests. However, adjusting
the value of T' dynamically complicates the system design.

An alternative strategy for supporting continuous retrieval of CM data is to prefetch a
constant amount, say d bits, for each stream independent of its rate and maintain a fixed round
size. The consumption time of d bits depends on the rate r; of a stream C;. More specifically,
if we denote this time by P;, then P, can be estimated as P; = T%,. Hence, for each stream
C;, instead of prefetching T - r; bits in every round, d bits can be prefetched in every p; = %
, % + t14¢ time must be reserved for a stream C;. (If each

clip is round-robin striped over ng;s; disks, then d bits need to be retrieved from a disk in every

rounds. Thus, in every p; rounds

Nisk * % rounds, in which case p; = ng;s - %) Prefetching d bits in every p; rounds ensures
that stream C; will have sufficient data to display the corresponding clip continuously. This
length is independent of a stream’s rate and constant for each stream. Moreover, in order to
reduce the buffer space requirement of a stream from 2 -d to d + T - r; one needs to schedule
each retrieval for C; exactly p; units apart. Thus, we once again need to deal with scheduling
a collection of simple periodic tasks.

Our methodology can be applied to the above problem setup as follows. For each disk
(there are mg;sx, disks in the case of Coarse-grained Striping or Clustering and one “big” disk
in case of Fine-grained Striping striping), %ﬁiﬁ scheduling trees can be maintained. When
a new stream Cj arrives, the admission cog?rkoller can check whether C; can be inserted into
any of the scheduling trees and whether there is d + T - r; bits of buffer space to reserve for
C;, and if this is the case, stream C; can be admitted. The scheduling tree guarantees that
data retrievals scheduled within the same tree will never collide. On the other hand, collisions
can occur across different scheduling trees. However, the number of data retrievals that collide
in a round will never exceed 52'7%;6’“, since only so many trees are maintained for each disk.

Tdisk ot
Thus, our approach ensures that each stream C; will always have sufficient data to display the

corresponding clip continuously while requiring only d + T - r; buffer space.

Example 5: Consider a single disk system with 74,5 = 40 Mbps, £ = 9.3 ms and tseer, = 14
ms. Suppose that the value of T' is set to 1 second in both approaches. Let d be 1.5 Mb.
Suppose that for a while all the incoming requests have a rate of 11 = 1.5 Mbps. Both schemes
will support approximately 21 requests. Now, let us assume after a while all the incoming
requests have a rate of ro = 28.8 Kbps. If the value of T is not changed in the basic round-
based scheme, this scheme can support approximately 99 requests with rate ro. On the other

hand, the scheduling-tree based approach can support 1092 requests with rate rs.

142

8.9 Conclusions

In this chapter, we have addressed the resource scheduling and data organization problems
associated with supporting EPPV service in their most general form; that is, for clips with pos-
sibly different display rates, periods, lengths. We studied three different approaches to utilizing
multiple disks: Clustering, Fine-grained Striping (FGS), and Coarse-grained Striping (CGS).
In each case, the periodic nature of the EPPV service model raises a host of interesting resource
scheduling problems. For Clustering and FGS, we presented a knapsack formulation that al-
lowed us to obtain a provably near-optimal heuristic with low polynomial time complexity.
However, both these data layout schemes have serious drawbacks: Clustering can suffer from
severe storage and bandwidth fragmentation, and FGS incurs high disk latency overheads that
limit its scalability. CGS, on the other hand, avoids these problems but requires sophisticated
hard real-time scheduling methods to support periodic retrieval. Specifically, we showed the
EPPYV scheduling problem for CGS to be a generalization of the Periodic Maintenance Schedul-
ing Problem [WL83] and developed a number of novel concepts and algorithmic solutions to
address the issues involved. We also presented a preliminary set of experimental results that
verified our expectations about the average performance of the three schemes: Clustering can
lead to fragmentation and underutilization of resources and the performance of FGS does not
scale linearly in the number of disks due to increased latencies. Our tree-based algorithm for
CGS emerged as the clear winner under a variety of randomly generated workloads. Finally,
we demonstrated that the novel resource scheduling framework developed in this chapter is

powerful enough to handle a number of different multimedia-related scheduling problems.

143

Chapter 9

Conclusions and Future Research

9.1 Thesis Summary

Effective resource management support for parallelism and multimedia data is an important
mandate for next-generation database systems. In this thesis, we have addressed a number of
resource scheduling problems arising in the context of query processing and optimization in
parallel and multimedia database systems.

Our contributions to the area of parallel query processing and optimization can be sum-
marized as folows. We have proposed a framework and provably near-optimal scheduling algo-
rithms for multi-dimensional time-shared resource scheduling in hierarchical parallel systems.
Even though our original algorithms assume given degrees of parallelism as determined by a
coarse granularity condition, we have shown that they can also be extended to the more gen-
eral malleable scheduling problem in which the scheduler is free to select the parallelization of
operators without compromising the worst-case bound. We then go on to extend our prob-
lem formulation to address the co-existance of time-shared (e.g., CPU) and space-shared (e.g.,
memory) resources at the sites of a hierarchical parallel database system. We have shown that
the inclusion of both types of resources has given rise to interesting tradeoffs with respect to the
degree of partitioned parallelism, which are nicely exposed within our analytical models and
results, and for which we have provided some effective resolutions. We have provided efficient,
near-optimal heuristic algorithms for query scheduling in such parallel environments, paying
special attention to various constraints that arise from the existence of space-shared resources.
As a side-effect of our effort, we have identified an important parameter that captures one as-
pect of parallel query execution cost, which should play an important role in obtaining realistic
cost models for parallel query optimization. Finally, we have presented a set of experimental
results from the implementation of our scheduling algorithms on top of a detailed simulation
environment for hierarchical database systems based on the Gamma parallel database machine.
These results have verified the effectiveness of our scheduling algorithms in a realistic system
setting.

Moving to the area of query scheduling for multimedia database systems, our research

144

contributions have focused on three important problems for effective multimedia data manage-
ment. First, we have formulated the resource scheduling problems for composite multimedia
objects and we have developed novel efficient scheduling algorithms, drawing on a number of
techniques from pattern matching and multiprocessor scheduling. More specifically, we have
presented an algorithm based on Graham’s list scheduling method that is provably near-optimal
for monotonic object sequences and we have proposed a number of optimizations on the base list
scheduling scheme. We have also given experimental results with randomly generated compos-
ite objects confirm the effectiveness of our approach. Second, we have explored the implications
of the on-line nature of the admission control problem for multimedia databases which have, for
the most part, been ignored in the multimedia literature. We have proposed novel admission
control schemes based on the idea of bandwidth prepartitioning and we have employed com-
petitive analysis techniques to prove the near-optimality of our schemes in an on-line setting.
We have also proposed prepartitioning schemes that make use of request popularities to ensure
good average-case as well as robust worst-case performance, and experimentally verified their
effectiveness. Third, we have presented the first comprehensive study of the resource scheduling
problems associated with supporting periodic (i.e., “Pay-Per-View”-style) service for CM clips
with (possibly) different display rates, frequencies, and lengths. Given the intractability of the
problems, we have proposed novel heuristic solutions with polynomial-time complexity and we
have studied their performance both experimentally and analytically. In the process, we have
introduced a robust scheduling framework that, we believe, can provide solutions for a variety
of realistic “Pay-Per-View” resource scheduling scenarios, as well as any scheduling problem
involving regular, periodic use of a shared resource.

Table 13 is an expanded version of Table 1 summarizing the principal dimensions of the query
scheduling problem for parallel and multimedia databases together with our contributions to

the regions of the search space explored in this thesis.

9.2 Future Research

The search space classification in Table 13 provides a useful guide for identifying directions for
future research. In this closing section, we argue about the “research potential” of some of these
search space regions and offer some thoughts on possible extensions to the work presented in
this thesis.

We believe that our work on parallel query scheduling has addressed the issue of task multi-
dimensionality within a fairly general and complete framework. On the other hand, our work

on multimedia databases has only touched on the issue of multi-dimensionality (i.e., the sliding

145

| Parallel DB Systems

Multimedia DB Systems

Multi-dimensionality

e Near-optimal algorithms for parallel
query scheduling with multiple time-
and space-shared resources.

validation

e Experimental using

simulation

e Disk bandwidth and memory alloca-
tion for composite objects using sliding

Malleability

e Selecting the degrees of operator par-
allelism to tradeoff response time vs.
total work.

On-line scheduling

e Handling on-line arrivals of parallel
query tasks. Near-optimality results
can be extended using the results of

[SWW95).

e Competitive admission control with
on-line arrivals.

e Near-optimality results for mono-
tonic composite object sequences can
be extended to on-line arrivals using
the results of [SWW95].

Time-varying resource
demands

e Resource scheduling algorithms for
composite multimedia objects

Admission control

e Throughput-competitive admission
control algorithms based on bandwidth
prepartitioning.

Periodic service

e Strategies for scheduling periodic re-
trievals of CM clips under different lay-
outs, using Scheduling Trees and/or
knapsack-type heuristics.

Impact on Query Opti-
mization

e Identified a simple 3-dimensional
cost model for query optimization that
captures all the important parameters
of parallel query execution.

Table 13: Dimensions of the Query Scheduling Problem and Thesis Contributions

techniques of Chapter 6 for memory and bandwidth allocation). Note that, by its definition, a

CM stream requires certain portions of resources throughout its duration in order to ensure a

certain level of service. Thus, for such CM streams, essentially all system resources (including

disk and CPU bandwidth) are ss resources. The framework we have already developed for

parallel queries is clearly general enough to handle simple CM streams with multi-dimensional

needs. In fact, the problem can be mapped directly to the traditional resource constrained

scheduling model of Garey and Graham [GGT75, GI95]. However, the problem becomes much

more challenging when composite objects and synchronization constraints enter the picture.

(Essentially, the multi-dimensional version of our sequence packing problem in Chapter 6.)

Malleability is a problem dimension that introduces very interesting and hard problems in

146

both parallel and multimedia database systems. In parallel database systems, our work has only
addressed the issue of how the degree of operator parallelism should be selected to effectively
tradeoff the overhead of parallelism to response time (Chapter 3). That result, however, did not
consider the effect of SS resources. In the presence of ss resources, a different type of malleability
comes from the dependence of the operator’s work on its memory allotment. For example, the
number of pages reserved for a hash-join operator can be anywhere within a range of possible
allocations with smaller allocations typically implying more disk I/O. Scheduling multiple such
malleable operators is a very challenging and interesting problem. In multimedia database
systems, malleability typically arises from flexible Quality of Service (QoS) specifications for
user queries. For example, if some loss in video quality is acceptable, the server can use an on-
the-fly lossy compression scheme to reduce the consumption of transmission bandwidth while
increasing the demand on the CPU resource. Furthermore, even a specific level of QoS can
be satisfied by different presentation algorithms with largely different resource requirements.
For example, a lossless compression scheme can be used to tradeoff network bandwidth for
extra CPU cycles without reducing the quality of delivered video. Again, this is a challenging
malleable multi-resource scheduling problem, especially when stream synchronization is also
taken into account.

Issues of scheduling tasks with time-varying resource demands and periodic service require-
ments appear to be specific to multimedia database systems, since they are tightly coupled
to the temporal dimension of CM data. Although there has been some prior work on poli-
cies for dynamically modifying the resource allocation of standard query operators (e.g., the
memory-adaptive join algorithms of Pang et al. [PCL93]), such policies typically try to deal
with unexpected fluctuations in the system workload which cannot be predicted in advance.
Since these fluctuations are not known when a query is scheduled, it is not clear how clever
query scheduling algorithms can help in such scenarios.

Although the role of admission conrol in multimedia databases is to provide rate guarantees
for CM data, many similar issues arise for query processing over conventional data when the
input queries have specific ss (e.g., memory) requirements. In fact, the schedulability conditions
that we present for our level-based algorithm in Chapter 4 can be seen as a form of “admission
control” for parallel query plans. Similar problems have also been explored in recent work under
the guise of “controlling the MultiProgramming Level (MPL)” for multi-user database systems
(e.g., [Bro95, Dav95, DG95]). Even though this thesis did not explicitly address admission
policy issues for parallel database systems, it is a very interesting direction for future work.

Finally, as we already mentioned in Section 1.3.5, query optimization for multimedia database

systems is a widely open problem for which no concrete solutions exist. However, developing

147

appropriate optimization techniques is necessary in order to support high-level, declarative
queries over multimedia databases. The major issue here is that the querying environment
and therefore the resulting optimization questions differ in many ways from the traditional
SQL-style querying [Cha94]. An important difference comes from the fact that answers to mul-
timedia queries will be ranked and will not necessarily be exact matches. This problem was
addressed in a recent paper by Chaudhuri and Gravano that presents a “fuzzy” querying model
and techniques for optimizing selections over multimedia repositories [CG96]. Two additional
issues that arise in the optimization of multimedia queries are intra/inter-media synchroniza-
tion and QoS. Ignoring synchronization constraints during optimization can lead to excessive
buffer requirements and underutilization of resources at run-time or unacceptable flaws in the
presentation (e.g., glitches in the video, out-of-sync audio). QoS requirements are significant
for optimization since they impact the space of execution alternatives as well as the metric of
optimization. For example, a query generated by a fraud detection application needs to be
evaluated speedily with quality of video being of secondary importance. The QoS specification

in such a case could be:
{delay < 2sec, compression = 0K},

and the optimization metric could also be an ordered list of parameters, such as:
[reponse time, compression ratio].

To the best of our knowledge, these issues have not been addressed in the literature except for

the position paper by Chaudhuri that only suggests a very general methodology [Cha94].

148

Bibliography

[AA96]

[AAPY3]

[ABFR94]

[AF91]

[AG97]

[AGH95]

[A1183]

[APS97]

[AWY96a]

[AWY96b]

[BBO]

[BBY1]

Kevin C. Almeroth and Mostafa H. Ammar. “On the Use of Multicast Delivery
to Provide a Scalable and Interactive Video-on-Demand Service”. IEEE Journal
on Selected Areas in Communications, August 1996.

Baruch Awerbuch, Yossi Azar, and Serge Plotkin. “Throughput-Competitive On-
Line Routing”. In Proceedings of the 34th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 32—40, Palo Alto, California, November 1993.

Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. “Competitive Non-
Preemptive Call Control”. In Proceedings of the Fifth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 312-320, Arlington, Virginia, January 1994.

Amihood Amir and Martin Farach. “Efficient 2-dimensional Approximate Match-
ing of Non-rectangular Figures”. In Proceedings of the Second Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 212-223, San Francisco, California, Jan-
uary 1991.

Alberto Apostolico and Zvi Galil, editors. “Pattern Matching Algorithms”. Oxford
University Press, 1997.

Sudhanshu Aggarwal, Juan A. Garay, and Amir Herzberg. “Adaptive Video On
Demand”. In Proceedings of the 3rd Annual European Symposium on Algorithms
(ESA’95), Corfu, Greece, September 1995.

J.F. Allen. “Maintaining Knowledge About Temporal Intervals”. Communications
of the ACM, 26(11):832-843, November 1983.

Emmanuel L. Abram-Profeta and Kang G. Shin. “Scheduling Video Programs in
Near Video-on-Demand Systems”. In Proceedings of ACM Multimedia ’97, pages
359-369, Seattle, Washington, November 1997.

Charu C. Aggarwal, Joel L. Wolf, and Philip S. Yu. “On Optimal Batching Policies
for Video-on-Demand Storage Servers”. In Proceedings of the 1996 International
Conference on Multimedia Computing and Systems, pages 253-258, Hiroshima,
Japan, June 1996.

Charu C. Aggarwal, Joel L. Wolf, and Philip S. Yu. “The Maximum Factor Queue
Length Batching Scheme for Video-on-Demand Systems”. Technical Report RC
20621 (11/11/96), IBM Research Division, 1996.

Krishna P. Belkhale and Prithviraj Banerjee. “Approximate Algorithms for the
Partitionable Independent Task Scheduling Problem”. In Proceedings of the 1990
International Conference on Parallel Processing, pages 172-175, August 1990.

Krishna P. Belkhale and Prithviraj Banerjee. “A Scheduling Algorithm for Par-
allelizable Dependent Tasks”. In Proceedings of the Fifth International Parallel
Processing Symposium, pages 500-506, 1991.

[BCRSO]

[BCSWS6]

[BFG95]

[BFV96]

[BGMJ94]

[BKM*91]

[BLRKS3]

[BNCK*95]

[BNGHA96]

[Bro94]

[Bro95]

[BRTV90]

[BS83]

149

Brenda S. Baker, E.G. Coffman, Jr., and Ronald L. Rivest. “Orthogonal Packings
in Two Dimensions”. SIAM Journal on Computing, 9(4):846-855, November 1980.

Jacek Blazewicz, Wojciech Cellary, Roman Slowinski, and Jan Weglarz. “Schedul-
ing under Resource Constraints - Deterministic Models”. Annals of Operations
Research, 7, 1986. (Book Edition).

C.K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padmanabhan, G.P.
Copeland, and W.G. Wilson. “DB2 Parallel Edition”. IBM Systems Journal,
34(2):292-322, 1995.

Luc Bouganim, Daniela Florescu, and Patrick Valduriez. “Dynamic Load Balanc-
ing in Hierarchical Parallel Database Systems”. In Proceedings of the 22nd Inter-
national Conference on Very Large Data Bases, pages 436-447, Mumbai(Bombay),
India, September 1996.

Steven Berson, Shahram Ghandeharizadeh, Richard Muntz, and Xiangyu Ju.
“Staggered Striping in Multimedia Information Systems”. In Proceedings of the
1994 ACM SIGMOD International Conference on Management of Data, pages
79-90, Minneapolis, Minnesota, May 1994.

S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang. “On the Competitiveness of On-Line Real-Time Task Scheduling”.
In Proceedings of the 12th IEEE Real-Time Systems Symposium, pages 106-115,
San Antonio, Texas, December 1991.

J. Blazewicz, J.K. Lenstra, and A.H.G. Rinnooy Kan. “Scheduling Subject to
Resource Constraints: Classification and Complexity”. Discrete Applied Mathe-
matics, 5:11-24, 1983.

Amotz Bar-Noy, Ran Canetti, Shay Kutten, Yishay Mansour, and Baruch
Schieber. “Bandwidth Allocation with Preemption”. In Proceedings of the 27th
Annual ACM Symposium on the Theory of Computing, pages 616-625, Las Vegas,
Nevada, May 1995.

Amotz Bar-Noy, Juan A. Garay, Amir Herzberg, and Sudhanshu Aggar-
wal. “Sharing Video on Demand”. Unpublished Manuscript (available from
http://www.eng.tau.ac.il/~ amotz/publications.html), 1996.

Kurt Brown. “PRPL: A Database Workload Specification Language (Version
1.4)”. Unpublished manuscript, March 1994.

Kurt Patrick Brown. “Goal-Oriented Memory Allocation in Database Management
Systems”. PhD thesis, University of Wisconsin-Madison, 1995.

Sanjoy Baruah, Louis Rosier, Igor Tulchinsky, and Donald Varvel. “The Complex-
ity of Periodic Maintenance”. In Proceedings of the 1990 International Computer
Symposium, pages 315-320, Taiwan, 1990.

Brenda S. Baker and Jerald S. Schwarz. “Shelf Algorithms for Two-Dimensional
Packing Problems”. SIAM Journal on Computing, 12(3):508-525, August 1983.

[CGY6]

[CGJ84]

[CGJ96]

[CGITS0]

[CGS95]

[Cha94]

[CHM95]

[CKY93]

[CLYY92]

[CMY6]

[Cof98]
[CPS96a]

150

Surajit Chaudhuri and Luis Gravano. “Optimizing Queries over Multimedia
Repositories”. In Proceedings of the 1996 ACM SIGMOD International Con-
ference on Management of Data, pages 91-102, Montreal, Canada, June 1996.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. “Approximation Algorithms
for Bin-Packing — An Updated Survey”. In “Algorithm Design for Computing
System Design”, pages 49-106. Springer-Verlag, New York, 1984.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. “Approximation Algorithms for
Bin-Packing: A Survey”. In “Approzimation Algorithms for NP-Hard Problems”,
D. Hochbaum (Ed.), pages 46-93. PWS Publishing, Boston, 1996.

E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, and R.E. Tarjan. “Performance
Bounds for Level-Oriented Two-Dimensional Packing Algorithms”. SIAM Journal
on Computing, 9(4):808-826, November 1980.

Surajit Chaudhuri, Shahram Ghandeharizadeh, and Cyrus Shahabi. “Avoiding
Retrieval Contention for Composite Multimedia Objects”. In Proceedings of the
21st International Conference on Very Large Data Bases, pages 287298, Zurich,
Switzerland, September 1995.

Surajit Chaudhuri. “On Optimization of Multimedia Queries”. In Proceedings of
the ACM Multimedia ’94 Conference Workshop on Multimedia Database Manage-
ment Systems, San Francisco, California, 1994.

Chandra Chekuri, Wagar Hasan, and Rajeev Motwani. “Scheduling Problems in
Parallel Query Optimization”. In Proceedings of the Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 255—265,
San Jose, California, May 1995.

Mon-Song Chen, Dilip D. Kandlur, and Philip S. Yu. “Optimization of the
Grouped Sweeping Scheduling (GSS) with Heterogeneous Multimedia Streams”.
In Proceedings of ACM Multimedia ’93, pages 235-242, Anaheim, California, Au-
gust 1993.

Ming-Syan Chen, Ming-Ling Lo, Philip S. Yu, and Honesty C. Young. “Using
Segmented Right-Deep Trees for the Execution of Pipelined Hash Joins”. In Pro-
ceedings of the FEighteenth International Conference on Very Large Data Bases,
pages 1526, Vancouver, Canada, August 1992.

Soumen Chakrabarti and S. Muthukrishnan. “Resource Scheduling for Parallel
Database and Scientific Applications”. In Proceedings of the Fighth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 329-335, Padua, Italy,
June 1996.

E.G. Coffman. Personal Communication, February 1998.

K. Selguk Candan, B. Prabhakaran, and V.S. Subrahmanian. “Retrieval Schedules
Based on Resource Availibility and Flexible Presentation Specifications”. Techni-
cal Report CS-TR-3616, University of Maryland, College Park, 1996.

[CPST96b]

[CYW92]

[Dav95]

[DGY2]

[DGY5]

[DGST90]

[DL8Y]

[DS95]

[DSS94]

[Far97]
[FGK96]

[FN95]

[Gaw95]

151

Soumen Chakrabarti, Cynthia A. Phillips, Andreas S. Schulz, David B. Shmoys,
Cliff Stein, and Joel Wein. “Improved Scheduling Algorithms for Minsum Cri-
teria”. In Proceedings of the 23rd International Colloguium on Automata, Lan-
guages, and Programming (ICALP’96), pages 646-657, Paderborn, Germany, July
1996.

Ming-Syan Chen, Philip S. Yu, and Kun-Lung Wu. “Scheduling and Processor
Allocation for Parallel Execution of Multi-Join Queries”. In Proceedings of the
Eighth International Conference on Data Engineering, pages 58—67, Phoenix, Ari-
zona, February 1992.

Diane Leslie Davison. “Dynamic Resource Allocation for Multi-User Query Eze-
cution”. PhD thesis, University of Colorado, 1995.

David J. DeWitt and Jim Gray. “Parallel Database Systems: The Future of
High Performance Database Database Systems”. Communications of the ACM,
35(6):85-98, June 1992.

Diane L. Davison and Goetz Graefe. “Dynamic Resource Brokering for Multi-
User Query Execution”. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 281-292, May 1995.

David J. DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider, Allan
Bricker, Hui-I Hsiao, and Rick Rasmussen. “The Gamma Database Machine
Project”. IEEE Transactions on Knowledge and Data Engineering, 2(1):44-62,
March 1990.

Jianzhong Du and Joseph Y-T. Leung. “Complexity of Scheduling Parallel Task
Systems”. SIAM Journal on Discrete Mathematics, 2(4):473-487, November 1989.

Asit Dan and Dinkar Sitaram. “An Online Video Placement Policy based on
Bandwidth to Space Ratio (BSR)”. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose, California, May 1995.

Asit Dan, Dinkar Sitaram, and Perwez Shahabuddin. “Scheduling Policies for an
On-Demand Video Server with Batching”. In Proceedings of ACM Multimedia
’94, pages 1523, San Francisco, California, October 1994.

Martin Farach. Personal Communication, December 1997.

U. Faigle, R. Garbe, and W. Kern. “Randomized Online Algorithms for Maximiz-
ing Busy Time Interval Scheduling”. Computing, 56:95-104, 1996.

Ulrich Faigle and Willem M. Nawijn. “Note on Scheduling Intervals On-line”.
Discrete Applied Mathematics, 58:13-17, 1995.

Rainer Gawlick. “Admission Control and Routing: Theory and Practice”. PhD
thesis, Laboratory for Computer Science, Massachusetts Institute of Technology,
June 1995. (Technical Report MIT/LCS/TR-679).

[GCY2]

[Gem95]
[GGT5]

[GGTYT6]

[GGK*97]

[GGS96]

[GGWY5]

[GHK92]

[GI95]

[GI96]

[G197]

[GI098]

152

Jim Gemmell and Stavros Christodoulakis. “Principles of Delay-Sensitive Mul-
timedia Data Storage and Retrieval”. ACM Transactions on Office Information
Systems, 10(1):51-90, January 1992.

D. James Gemmell. “Support for Continuous Media in File Servers”. PhD thesis,
Simon Fraser University, April 1995.

M.R. Garey and R.L. Graham. “Bounds for Multiprocessor Scheduling with Re-
source Constraints”. SIAM Journal on Computing, 4(2):187-200, June 1975.

M.R. Garey, R.L. Graham, D.S. Johnson, and Andrew Chi-Chih Yao. “Resource
Constrained Scheduling as Generalized Bin Packing”. Journal of Combinatorial
Theory (A), 21:257-298, 1976.

Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti Yung.
“Efficient On-Line Call Control Algorithms”. Journal of Algorithms, 23:180-194,
1997.

Sumit Ganguly, Akshay Goel, and Avi Silberschatz. “Efficient and Accurate
Cost Models for Parallel Query Optimization”. In Proceedings of the Fifteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, Montreal, Canada, June 1996.

Sumit Ganguly, Apostolos Gerasoulis, and Weining Wang. “Partitioning Pipelines
with Communication Costs”. In Proceedings of the 6th International Conference
on Information Systems and Data Management (CISMOD’95), pages 302-320,
Bombay, India, November 1995.

Sumit Ganguly, Waqgar Hasan, and Ravi Krishnamurthy. “Query Optimization
for Parallel Execution”. In Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, pages 9-18, San Diego, California, June 1992.

Minos N. Garofalakis and Yannis E. Ioannidis. “Scheduling Issues in Multimedia
Query Optimization”. ACM Computing Surveys, 27(4):590-592, December 1995.
(Symposium on Multimedia).

Minos N. Garofalakis and Yannis E. loannidis. “Multi-dimensional Resource
Scheduling for Parallel Queries”. In Proceedings of the 1996 ACM SIGMOD Inter-
national Conference on Management of Data, pages 365-376, Montreal, Canada,
June 1996.

Minos N. Garofalakis and Yannis E. Ioannidis. “Parallel Query Scheduling and
Optimization with Time- and Space-Shared Resources”. In Proceedings of the
23rd International Conference on Very Large Data Bases, pages 296-305, Athens,
Greece, August 1997.

Minos N. Garofalakis, Yannis E. Ioannidis, and Banu Ozden. “Resource Scheduling
for Composite Multimedia Objects”. In Proceedings of the 24th International
Conference on Very Large Data Bases, New York City, U.S.A., August 1998.

[GIOS98]

[GJ79]

[GLLRK79]

[GLM96]

[GMSY93]

[GOS97]

[GOS98]

[Gra66)
[Gra69]
[Gra93|

[GVK*95]

[GW93]

[GY93]

153

Minos N. Garofalakis, Yannis E. Ioannidis, Banu Ozden, and Avi Silberschatz.
“Throughput-Competitive Admission Control for Continuous Media Databases”.
In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 79-88, Seattle, Washington, June 1998.

M.R. Garey and D.S. Johnson. “Computers and Intractability: A Guide to the
Theory of NP-Completeness”. W.H. Freeman, 1979.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. “Optimiza-
tion and Approximation in Deterministic Sequencing and Scheduling: A Survey”.
Annals of Discrete Mathematics, 5:287-326, 1979.

Leana Golubchik, John C.S. Lui, and Richard R. Muntz. “Adaptive Piggybacking:
A Novel Technique for Data Sharing in Video-on-Demand Storage Servers”. ACM
Multimedia Systems, 4(3):140-155, 1996.

Shahram Ghandeharizadeh, Robert R. Meyer, Gary L. Schultz, and Jonathan
Yackel. “Optimal Balanced Assignments and a Parallel Database Application”.
ORSA Journal on Computing, 5(2):151-167, Spring 1993.

Minos N. Garofalakis, Banu Ozden, and Avi Silberschatz. “Resource Scheduling
in Enhanced Pay-Per-View Continuous Media Databases”. In Proceedings of the
23rd International Conference on Very Large Data Bases, pages 516-525, Athens,
Greece, August 1997.

Minos N. Garofalakis, Banu Ozden, and Avi Silberschatz. “On Periodic Resource
Scheduling for Continuous Media Databases”. In Proceedings of the Fighth Inter-
national Workshop on Research Issues in Data Engineering — Continuous-Media
Databases and Applications (RIDE’98), pages 111-120, Orlando, Florida, Febru-
ary 1998.

R.L. Graham. “Bounds for Certain Multiprocessing Anomalies”. The Bell System
Technical Journal, 45:1563-1581, November 1966.

R.L. Graham. “Bounds on Multiprocessing Timing Anomalies”. SIAM Journal
on Computing, 17(2):416-429, March 1969.

Goetz Graefe. “Query Evaluation Techniques for Large Databases”. ACM Com-
puting Surveys, 25(2):73-170, June 1993.

D. James Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Rangan, and
Lawrence A. Rowe. “Multimedia Storage Servers: A Tutorial”. IEEE Computer,
28(5):40-49, May 1995.

Sumit Ganguly and Weining Wang. “Optimizing Queries for Coarse Grain Par-
allelism”. Technical Report LCSR-TR-218, Department of Computer Sciences,
Rutgers University, October 1993.

Apostolos Gerasoulis and Tao Yang. “On the Granularity and Clustering of Di-
rected Acyclic Task Graphs”. IEEE Transactions on Parallel and Distributed
Systems, 4(6):686-701, June 1993.

[HCL*90]

[HCY94]

[HEV96]

[HLvdV97]

[HMY94]

[Hon92]

[HS91]

[HSSW97]

[TK75]

[TPS93]

[KLMS84]

[KMT77]

[KM92]

154

Laura M. Haas, Walter Chang, Guy M. Lohman, John McPherson, Paul F. Wilms,
George Lapis, Bruce G. Lindsay, Hamid Pirahesh, Michael J. Carey, and Eugene J.
Shekita. “Starburst Mid-Flight: As the Dust Clears”. IEEE Transactions on
Knowledge and Data Engineering, 2(1):143-160, March 1990.

Hui-I Hsiao, Ming-Syan Chen, and Philip S. Yu. “On Parallel Execution of Mul-
tiple Pipelined Hash Joins”. In Proceedings of the 1994 ACM SIGMOD Inter-
national Conference on Management of Data, pages 185-196, Minneapolis, Min-
nesota, May 1994.

Wagar Hasan, Daniela Florescu, and Patrick Valduriez. “Open Issues in Parallel
Query Optimization”. ACM SIGMOD Record, 25(3):28-33, September 1996.

J.A. Hoogeveen, J.K. Lenstra, and S.L. van de Velde. “Sequencing and Scheduling:
An Annotated Bibliography”. Memorandum COSOR 97-02, Eindhoven University
of Technology, 1997.

Wagqar Hasan and Rajeev Motwani. “Optimization Algorithms for Exploiting the
Parallelism-Communication Tradeoff in Pipelined Parallelism”. In Proceedings
of the 20th International Conference on Very Large Data Bases, pages 3647,
Santiago, Chile, August 1994.

Wei Hong. “Exploiting Inter-Operation Parallelism in XPRS”. In Proceedings of
the 1992 ACM SIGMOD International Conference on Management of Data, pages
19-28, San Diego, California, June 1992.

Wei Hong and Michael Stonebraker. “Optimization of Parallel Query Execution
Plans in XPRS”. In Proceedings of the First International Conference on Parallel
and Distributed Information Systems, Miami Beach, Florida, December 1991.

Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. “Schedul-
ing to Minimize Average Completion Time: Off-line and On-line Approximation
Algorithms”. Mathematics of Operations Research, 22:513-544, 1997.

Oscar H. Ibarra and Chul E. Kim. “Fast Approximation Algorithms for the Knap-
sack and Sum of Subset Problems”. Journal of the ACM, 22(4):463-468, October
1975.

Anant Jhingran, Sriram Padmanabhan, and Ambuj Shatdal. “Join Query Opti-
mization in Parallel Database Systems”. In Proceedings of the IEEE Workshop
on Advances in Parallel and Distributed Systems, 1993.

Richard M. Karp, Michael Luby, and A. Marchetti-Spaccamela. “A Probabilistic
Analysis of Multidimensional Bin Packing Problems”. In Proceedings of the Annual
ACM Symposium on the Theory of Computing, pages 289-298, 1984.

L.T. Kou and G. Markowsky. “Multidimensional Bin Packing Algorithms”. IBM
Journal of Research and Development, pages 443-448, September 1977.

Ramesh Krishnamurti and Eva Ma. “An Approximation Algorithm for Scheduling
Tasks on Varying Partition Sizes in Partitionable Multiprocessor Systems”. IEEE
Transactions on Computers, 41(12):1572-1579, December 1992.

[KMP77]

[Knu81]

[KRT95]

[KS91]

[KSW97]

[Law79]

[LCRY93]

[LG90]

[LG93)]

[LL73]

[LLGY7]

[LT93]

[LT94]

155

Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. “Fast Pattern Match-
ing in Strings”. SIAM Journal on Computing, 6(2):323-350, June 1977.

Donald E. Knuth. “The Art of Computer Programming (Vol. 2 / Seminumerical
Algorithms)”. Reading, Mass. : Addison-Wesley Pub. Co., 1981.

Mohan Kamath, Krithi Ramamritham, and Don Towsley. “Continuous Media
Sharing in Multimedia Database Systems”. In Proceedings of the 4th International
Conference on Database Systems for Advanced Applications (DASFAA’95), pages
79-86, Singapore, April 1995.

Gilad Koren and Dennis Shasha. “An Optimal Scheduling Algorithm with a Com-
petitive Factor for Real-Time Systems”. Technical Report TR 572, Department
of Computer Science, New York University, July 1991.

David Karger, Cliff Stein, and Joel Wein. “Scheduling Algorithms”. In “Algo-
rithms and Theory of Computation Handbook”, M.J. Atallah (Ed.). CRC Press,
1997.

Eugene L. Lawler. “Fast Approximation Algorithms for Knapsack Problems”.
Mathematics of Operations Research, 4(4):339-356, November 1979.

Ming-Ling Lo, Ming-Syan Chen, C.V. Ravishankar, and Philip S. Yu. “On Optimal
Processor Allocation to Support Pipelined Hash Joins”. In Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, pages 69-78,
Washington, D.C., June 1993.

Thomas D.C. Little and Arif Ghafoor. “Sunchronization and Storage Models
for Multimedia Objects”. IEEE Journal on Selected Areas in Communications,
8(3):413-427, April 1990.

Thomas D.C. Little and Arif Ghafoor. “Interval-Based Conceptual Models for
Time-Dependent Multimedia Data”. IEEFE Transactions on Knowledge and Data
Engineering, 5(4):551-563, August 1993.

C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment”. Journal of the ACM, 20(1):46-61, January
1973.

Mary Y.Y. Leung, John C.S. Lui, and Leana Golubchik. “Buffer and I/O Resource
Pre-allocation for Implementing Batching and Buffering Techniques for Video-on-
Demand Systems”. In Proceedings of the Thirteenth International Conference on
Data Engineering, Birmingham, U.K., April 1997.

Darrell D.E. Long and Madhukar N. Thakur. “Scheduling Real-Time Disk Trans-
fers for Continuous Media Applications”. In Proceedings of the Twelfth IEEFE
Symposium on Mass Storage Systems, pages 227-232, 1993.

Richard J. Lipton and Andrew Tomkins. “Online Interval Scheduling”. In Proceed-
ings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
302-311, Arlington, Virginia, January 1994.

[Lud95]

[LV95]

[LVZ93]

[MD95]

[MD97]
[Meh94]

[MNOT96]

[MP94]

[MR95]

[Mut98]
[NKN91]

[NMW97]

[NSHL95]

[NTB96]

156

Walter T. Ludwig. “Algorithms for Scheduling Malleable and Nonmalleable Paral-
lel Tasks”. PhD thesis, University of Wisconsin-Madison, August 1995. (Computer
Sciences Technical Report #1279).

T.D.C. Little and D. Venkatesh. “Popularity-Based Assignment of Movies to Stor-
age Devices in a Video-on-Demand System”. ACM Multimedia Systems, 2:280—
287, 1995.

Rosana S.G. Lanzelotte, Patrick Valduriez, and Mohamed Zait. “On the Effec-
tiveness of Optimization Search Strategies for Parallel Execution Spaces”. In Pro-
ceedings of the Nineteenth International Conference on Very Large Data Bases,
pages 493-504, Dublin, Ireland, August 1993.

Manish Mehta and David J. DeWitt. “Managing Intra-operator Parallelism in
Parallel Database Systems”. In Proceedings of the 21st International Conference
on Very Large Data Bases, pages 382—-394, Zurich, Switzerland, September 1995.

Manish Mehta and David J. DeWitt. “Data Placement in Shared-Nothing Parallel
Database Systems”. The VLDB Journal, 6(1):53-72, January 1997.

Manish Mehta. “Resource Allocation for Parallel Shared-Nothing Database Sys-
tems”. PhD thesis, University of Wisconsin-Madison, 1994.

Cliff Martin, P.S. Narayanan, Banu Ozden, Rajeev Rastogi, and Avi Silberschatz.
“The Feliini Multimedia Storage Server”. In “Multimedia Information Storage and
Management”, S.M. Chung (Ed.). Kluwer Academic Publishers, 1996.

S. Muthukrishnan and K. Palem. “Non-standard Stringology: Algorithms and
Complexity”. In Proceedings of the 26th Annual ACM Symposium on the Theory
of Computing, pages 770-779, Montreal, Quebec, Canada, May 1994.

Rajeev Motwani and Prabhakar Raghavan. “Randomized Algorithms”. Cambridge
University Press, 1995.

S. Muthukrishnan. Personal Communication, January 1998.

Steven R. Newcomb, Neill A. Kipp, and Victoria T. Newcomb. “The HyTime

Hypermedia/Time-based Document Structuring Language”. Communications of
the ACM, 34(11), November 1991.

Guido Nerjes, Peter Muth, and Gerhard Weikum. “Stochastic Service Guarantees
for Continuous Media Data on Multi-Zone Disks”. In Proceedings of the Siz-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 154-160, Tucson, Arizona, May 1997.

Thomas M. Niccum, Jaideep Srivastava, Bhaskar Himatsingka, and Jianzhong Li.
“Query Optimization and Processing in Parallel Databases”. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 22:259-287, 1995.

Kingsley C. Nwosu, Bhavani Thuraisingham, and P. Bruce Berra, editors. “Mul-
timedia Database Systems: Design and Implementation Strategies”. Kluwer Aca-
demic Publishers, 1996.

[NZT96]

[OBRS94]

[OBRS95]

[ORS95a]

[ORS95b]

[ORS96a]

[ORS96D]

[ORS96c]

[ORS97]

[ORSMY5]

[PCL93]

[PGKSS]

157

Michael G. Norman, Thomas Zurek, and Peter Thanisch. “Much Ado About
Shared-Nothing”. ACM SIGMOD Record, 25(3):16-21, September 1996.

Banu Ozden, Alexandros Biliris, Rajeev Rastogi, and Avi Silberschatz. “A Low-
Cost Storage Server for Movie on Demand Databases”. In Proceedings of the 20th
International Conference on Very Large Data Bases, pages 594-605, Santiago,
Chile, September 1994.

Banu Ozden, Alexandros Biliris, Rajeev Rastogi, and Avi Silberschatz. “A Disk-
Based Storage Architecture for Movie on Demand Servers”. Information Systems,
20(6):465-482, 1995.

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “A Framework for the Storage
and Retrieval of Continuous Media Data”. In Proceedings of the 1995 Interna-
tional Conference on Multimedia Computing and Systems, pages 2—13, Washing-
ton, D.C., May 1995.

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “Disk Striping in Video
Server Environments”. IEEE Data Engineering Bulletin, 18(4):4-16, December
1995. (Special Issue on Multimedia Information Systems).

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “Disk Striping in Video
Server Environments”. In Proceedings of the 1996 International Conference on
Multimedia Computing and Systems, Hiroshima, Japan, June 1996.

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “On the Design of a Low-Cost
Video-on-Demand Storage System”. ACM Multimedia Systems, 4(1):40-54, 1996.

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “The Storage and Retrieval
of Continuous Media Data”. In “Multimedia Database Systems: Issues and Re-
search Directions”, V.S. Subrahmanian and Sushil Jajodia (Eds.), pages 237-261.
Springer-Verlag, 1996.

Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. “Periodic Retrieval of Videos
from Disk Arrays”. In Proceedings of the Thirteenth International Conference on
Data Engineering, Birmingham, U.K., April 1997.

Banu Ozden, Rajeev Rastogi, Avi Silberschatz, and Cliff Martin. “Demand Paging
for Movie-on-Demand Servers”. In Proceedings of the 1995 International Confer-
ence on Multimedia Computing and Systems, Washington, D.C., May 1995.

HweeHwa Pang, Michael J. Carey, and Miron Livny. “Partially Preemptible Hash
Joins”. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., June 1993.

David A. Patterson, Garth A. Gibson, and Randy H. Katz. “A Case for Redundant
Arrays of Inexpensive Disks (RAID)”. In Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, pages 109-116, Chicago, Illi-
nois, June 1988.

[P196]

[P1095]

[PMC*90]

[PRE]

[Pri93]

[PS82]

[RM95]

[RV91]

[RV93]

[SACH79]

[Sah75]

[Sch90a]

[Sch90b)

158

Viswanath Poosala and Yannis E. Ioannidis. “Estimation of Query-Result Dis-
tribution and its Application in Parallel-Join Load Balancing”. In Proceedings
of the 22nd International Conference on Very Large Data Bases, pages 448-459,
Mumbai(Bombay), India, September 1996.

Serge Plotkin. “Competitive Routing of Virtual Circuits in ATM Networks”.
IEEE Journal on Selected Areas in Communications, pages 1128-1136, August
1995. (Invited Paper).

Hamid Pirahesh, C. Mohan, Josephine Cheng, T.S. Liu, and Pat Selinger. “Par-
allelism in Relational Data Base Systems: Architectural Issues and Design Ap-
proaches”. In Proceedings of the Second International Symposium on Databases
in Parallel and Distributed Systems, pages 4-29, Dublin, Ireland, July 1990.

PRECEPT Software, Inc. IP/TV Datasheets.
(http://www.precept.com/datasheets/html/iptvdsl.htm).

R. Price. “MHEG: An Introduction to the Future International Standard for
Hypermedia Object Interchange”. In Proceedings of ACM Multimedia 93, pages
121-128, Anaheim, California, August 1993.

Christos Papadimitriou and Kenneth Steiglitz. “Combinatorial Optimization: Al-
gorithms and Complexity”. Prentice Hall, Inc., Englewood Cliffs, New Jersey
07632, 1982.

Erhard Rahm and Robert Marek. “Dynamic Multi-Resource Load Balancing in
Parallel Database Systems”. In Proceedings of the 21st International Conference
on Very Large Data Bases, pages 395406, Zurich, Switzerland, September 1995.

P. Venkat Rangan and Harrick M. Vin. “Designing File Systems for Digital Video
and Audio”. In Proceedings of the Thirteenth ACM Symposium on Operating
Systems Principles, pages 81-94, Monterey, California, October 1991.

P. Venkat Rangan and Harrick M. Vin. “Efficient Storage Techniques for Digital
Continuous Multimedia”. IEEE Transactions on Knowledge and Data Engineer-
ing, 5(4):564-573, August 1993.

P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. “Ac-
cess Path Selection in a Relational Database Management System”. In Proceedings
of the 1979 ACM SIGMOD International Conference on Management of Data,
pages 23-34, Boston, Massachusetts, June 1979.

Sartaj Sahni. “Approximate Algorithms for the 0/1 Knapsack Problem”. Journal
of the ACM, 22(1):115-124, January 1975.

Donovan A. Schneider. “Complex Query Processing in Multiprocessor Database
Machines”. PhD thesis, University of Wisconsin-Madison, September 1990.

Herb Schwetman. “CSIM User’s Guide”. Technical Report ACT-126-90, MCC,
Austin, Texas, March 1990.

[SE93]

[Sel8s]

[SG94]

[SG95]

[SG97]

[SGYS]

[SGCY5)

[Sha86]

[SR93]

[ST85]

[ST94]

[Sto87]

[SWW95]

[SY95]

[Tho96]

159

Jaideep Srivastava and Gary Elsesser. “Optimizing Multi-Join Queries in Parallel
Relational Databases”. In Proceedings of the Second International Conference on
Parallel and Distributed Information Systems, pages 84-92, San Diego, California,
January 1993.

Timos K. Sellis. “Multiple-Query Optimization”. ACM Transactions on Database
Systems, 13(1):23-52, March 1988.

Abraham Silberschatz and Peter Galvin. “Operating System Concepts”. Addison-
Wesley Publishing Company, 1994.

Cyrus Shahabi and Shahram Ghandeharizadeh. “Continuous Display of Presen-
tations Sharing Clips”. ACM Multimedia Systems, 3(2), May 1995.

Weifeng Shi and Shahram Ghandeharizadeh. “Buffer Sharing in Video-On-
Demand Servers”. ACM SIGMETRICS Bulletin, 25(2):13-20, September 1997.

Abraham Silberschatz and Peter Galvin. “Operating System Concepts”. Addison-
Wesley Publishing Company, 1998. (Fifth Edition).

Cyrus Shahabi, Shahram Ghandeharizadeh, and Surajit Chaudhuri. “On Schedul-
ing Atomic and Composite Multimedia Objects”. Technical Report USC-CS-95-
622, University of Southern California, 1995. (To appear in IEEE Transactions
on Knowledge and Data Engineering.).

Leonard D. Shapiro. “Join Processing in Database Systems with Large Main
Memories”. ACM Transactions on Database Systems, 11(3):239-264, September
1986.

John A. Stankovic and Krithi Ramamritham, editors. “Advances in Real-Time
Systems”. IEEE Computer Society Press, Los Alamitos, California, 1993.

Daniel D. Sleator and Robert E. Tarjan. “Amortized Efficiency of List Update
and Paging Rules”. Communications of the ACM, 28(2):202-208, February 1985.

Hadas Shachnai and John J. Turek. “Multiresource Malleable Task Scheduling”.
Unpublished Manuscript, July 1994.

Harold S. Stone. “High-performance Computer Architecture”. Reading, Mass. :
Addison-Wesley Pub. Co., 1987.

David B. Shmoys, Joel Wein, and David P. Williamson. “Scheduling Parallel
Machines On-line”. SIAM Journal on Computing, 24(6):1313-1331, December
1995.

Hadas Shachnai and Philip S. Yu. “The Role of Wait Tolerance in Effective
Batching: A Paradigm for Multimedia Scheduling Schemes”. Technical Report
RC 20038 (88607), IBM Research Division, April 1995.

Mikkel Thorup. “On RAM Priority Queues”. In Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 59—67, Atlanta, Georgia,
January 1996.

[TK96]

[TL93]

[TLW194]

[TWPY92]

[TWY92]

[Val93]

[VGGGY]

[WC92]

[WFA92]

[WFA95]

[WL83]

[WLDHY6]

160

Heiko Thimm and Wolfgang Klas. “d-Sets for Optimized Reactive Adaptive Play-
out Management in Distributed Multimedia Database Systems”. In Proceedings of
the Twelfth International Conference on Data Engineering, pages 584-592, New
Orleans, Louisiana, February 1996.

Kian-Lee Tan and Hongjun Lu. “On Resource Scheduling of Multi-join Queries
in Parallel Database Systems”. Information Processing Letters, 48:189-195, 1993.

John Turek, Walter Ludwig, Joel L. Wolf, Lisa Fleischer, Prasoon Tiwari, Jason
Glasgow, Uwe Schwiegelshohn, and Philip S. Yu. “Scheduling Parallelizable Tasks
to Minimize Average Response Time”. In Proceedings of the Sizth Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 200-209, Cape May,
New Jersey, June 1994.

John Turek, Joel L. Wolf, Krishna R. Pattipati, and Philip S. Yu. “Scheduling
Parallelizable Tasks: Putting it All on the Shelf”. In Proceedings of the 1992 ACM
SIGMETRICS Conference on Measurement & Modeling of Computer Systems,
pages 225-236, Newport, Rhode Island, June 1992.

John Turek, Joel L. Wolf, and Philip S. Yu. “Approximate Algorithms for Schedul-
ing Parallelizable Tasks”. In Proceedings of the Fourth Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 323-332, San Diego, California,
June 1992.

Patrick Valduriez. “Parallel Database Systems: Open Problems and New Issues”.
Distributed and Parallel Databases, 1:137-165, 1993.

Harrick M. Vin, Pawan Goyal, Alok Goyal, and Anshuman Goyal. “A Statistical
Admission Control Algorithm for Multimedia Servers”. In Proceedings of ACM
Multimedia 94, pages 33—40, San Francisco, California, October 1994.

Qingzhou Wang and Kam Hoi Cheng. “A Heuristic of Scheduling Parallel Tasks
and its Analysis”. SIAM Journal on Computing, 21(2):281-294, April 1992.

Annita N. Wilschut, Jan Flokstra, and Peter M.G. Apers. “Parallelism in a Main-
Memory DBMS: The Performance of PRISMA/DB”. In Proceedings of the Figh-
teenth International Conference on Very Large Data Bases, pages 521-532, Van-
couver, Canada, August 1992.

Annita N. Wilschut, Jan Flokstra, and Peter M.G. Apers. “Parallel Evaluation
of Multi-join Queries”. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 115-126, San Jose, California, May
1995.

W.D. Wei and C.L. Liu. “On a Periodic Maintenance Problem”. Operations
Research Letters, 2(2):90-93, June 1983.

Yuewei Wang, Jonathan C.L. Liu, David H.C. Du, and Jenwei Hsieh. “Video File
Allocation over Disk Arrays for Video-on-Demand”. In Proceedings of the 1996
International Conference on Multimedia Computing and Systems, pages 160-163,
Hiroshima, Japan, June 1996.

[Woe94]

[WTCY94]

[WYS95]

[YSB*89)

[Zip49)]

161

Gerhard J. Woeginger. “On-line Scheduling of Jobs with Fixed Start and End
Times”. Theoretical Computer Science, 130:5-16, 1994.

Joel L. Wolf, John Turek, Ming-Syan Chen, and Philip S. Yu. “Scheduling Mul-
tiple Queries on a Parallel Machine”. In Proceedings of the 1994 ACM SIGMET-
RICS Conference on Measurement & Modeling of Computer Systems, pages 4555,
Nashville, Tennessee, May 1994.

Joel L. Wolf, Philip S. Yu, and Hadas Shachnai. “DASD Dancing: A Disk Load
Balancing Optimization Scheme for Video-on-Demand Computer Systems”. In
Proceedings of the 1995 ACM SIGMETRICS Conference on Measurement & Mod-
eling of Computer Systems, Ottawa, Canada, May 1995.

Clement Yu, Wei Sun, Dina Bitton, Qi Yang, Richard Bruno, and John Tullis.
“Efficient Placement of Audio Data on Optical Disks for Real-Time Applications”.
Communications of the ACM, 32(7):862-871, July 1989.

George Kingsley Zipf. “Human Behavior and the Principle of Least Effort — An
Introduction to Human Ecology”. Addison-Wesley Press, Inc., Cambridge 42, Mas-
sachusetts, 1949.

162

Appendix A

Proofs of Theoretical Results

A.1 Proofs for Chapter 3

PROOF OF THEOREM 3.3.1 We start by presenting two ancillary lemmas that are

used in the proof. Lemma A.1.1 establishes an important property of the length function. In

Lemma A.1.2 we derive a lower bound on the optimal bin capacity for vector-packing.

Lemma A.1.1 Let S be a set of d-dimensional vectors, and let 1 = {Si,...,Sk} be any
partition of S. Then,

ElS)) < yus)

Proof: The inequality [(S) < ¥, 1(S;) is obvious by the definition of /(). For the other side
of the inequality, let U; = > g, W for each 4 = 1,...,k. Also, define the function m(w) =
min; <j<q{j : [(w) = w[j]}, for each d-dimensional vector w.

Rearranging the sum "%, 1(S;), we obtain

I
B
Qo
"
——
S
ﬁ
+

_ 1<5<d al Z gafd{vz bl

v;:m(v;)=d

Observe that, by the definition of m(), the) and max functions can be legally interchanged

in each of the above d terms. Therefore,

k
M) = gl ¥ wlibet sl 5 i)
i=1 2= =1 v;:m(T;)=d

< df??é‘d{; i} = dlrg]agd{zlwi[j]} = dI(S)

k .
Which, of course, implies [(S) > M

163

Lemma A.1.2 Let OPT(S, P] denote the optimal (i.e., minimum) common bin capacity among
all possible packings of a set of vectors S = {W1,...,Wx} into P bins. Then,

OPTI[S, P] > max{ %Z(S) : lgliz;@{l(Wi)} }

Proof: Obviously, OPT|[S, P] > max;{l/(W;)} since each W; must be placed in a bin. Observe
that an optimal packing of S into P bins is essentially a partition of S into P sets {S1,...,Sp},
and OPT[S, P] = maxi<j<p{l(S;)}. Applying Lemma A.1.1 gives

1(S) < il(Sj) < P OPTI[S, P]
j=1

which completes the proof. 0
We now proceed with the proof of Theorem 3.3.1. Let R, F' denote the set of all rooted
and floating operators, respectively. Let SCHED denote the schedule produced by OPERA-
TORSCHED and let OPT; be the optimal execution schedule for the operators in RU F' for the
given degree of intra-operator parallelism (N; for each op; € RU F). We say that a schedule is
R-valid if it respects the placement constraints for rooted operators. We use Sg = {71,...,7p}
to describe the collection of vectors describing the total work placed at each resource site by the
set of rooted operators. Note that since both SCHED and OPT; are R-valid schedules, they
have identical parallelizations for the operators in R. Finally, let Sp = {wi,...,wx}, where
N = Eopie N;, denote the collection of work vectors for all the floating operator clones, and
define S = Sp U Sp.
By Lemma A.1.2 and the fact that each individual operator must execute on its alloted number
of sites, we have the following inequality

1
T (OPT,, P) > max{ _max (T"*(op;, N)} . H1(S)) (11)

Note that we dropped the term maxges{l(w)} from Lemma A.1.2, since it is clearly less than
maxopieRup{Tm‘w(opi, N;)}.

Now, let S; denote the set of floating operator work vectors placed at site « by SCHED (i =
1,...,P). Using equation (3), we have

TP (SCHED, P) = max{ OPI%a}%EF{TmM(opZ-, N}, lgliz?%{l(si u{ri}) }+} (12)

The following proposition establishes a property of any R-valid packing of S into P d-dimensional

bins.

164
Proposition A.1.1 There ezists an indez j € {1,..., P} such that

(s;ufrh<s Y 1w < 4P

EES]‘U{FJ‘}

Proof: The first inequality holds for all j and follows by direct application of Lemma A.1.1.

For the second inequality, let us assume that, to the contrary, we have

E l(m)>w,forallj:1,...,P.
_ _ P
’wESjU{Tj}

Summing over all j, this gives

which contradicts Lemma A.1.1. 0
Consider the work vector packing produced by SCHED, where, without loss of generality, we
assume that the sites have been renumbered in non-increasing order of bin capacity; that is,
I(S1U{T1}) > U(SaU{Te}) > ... > I(Sp U {Tp}) (Figure (52)).

di(S) /P

Figure 52: A packing of S’s work vectors in P sites.

We distinguish the following two cases.
(a) U(S1u{m}) < 42

In this case, combining Equations (11) and (12) gives
TP (SCHED, P) < d T™*(OPT}, P)

and the theorem obviously holds.

165
(b) U(Sy U {T1}) > %

Let w;, be the first work vector to “push” the bin capacity of site 1 over @. Also let
V = {wi, ..., wi,, }, m > 0, be the set of vectors packed at site 1 after that moment (including

Wi,). By Proposition A.1.1, we know that in the packing produced by SCHED there exists a
site j such that I(S; U{7;}) < KPS). The only reason that OPERATORSCHED could not pack the
vectors w;,, k = 1,...,m at site j is that site j already contained a work vector from the same
floating operator. Since the work vectors for each operator are considered in non-increasing
order of [(), this means that for each vector w;,, k = 1,...,m, there exists a vector W packed

at site j such that [(w) > I((w;,). Thus, we have

dl -
(siutmh) - A < aw) < m) + 1wy,
k=1
< max{i@)}+ > (W)
weS;
_ dl(S) . :
< @gg{{l(w)} + 5 (by Proposition A.1.1 and the choice of Sj)
w
This inequality implies
1S, U 7)) = (s;ufF)) < 2d°) (@
1U{n}) = max {1(S;U{ri}) } < 2d=5" + max{i(w)}

< (2d+1) max{ @) %12?{1(@)}}

Combining Equations (11) and (12), we obtain
TP (SCHED, P) < (2d + 1) TP*"(OPTy, P)

This completes the proof of the first part of Theorem 3.3.1.
For the second part of the theorem, let OPTy be the optimal CG schedule for R U F' and let
S% denote the collection of work vectors for all floating operators ezcluding all communication

cost components. That is, we have
d
Y D wlil= Y Wylop)
wesh j=1 OpeF

where W) (op) is the processing area of operator op (section 3.2).
Since the processing area of any operator is fixed and independent of its parallelism, we can

use Lemma A.1.2 to show that the response time of any parallel execution schedule for RU F

166

will be at least M%SR)

. Furthermore, by the estimation of N; in OPERATORSCHED we know
that it represents the maximum allowable degree of intra-operator parallelism for a CG; exe-
cution (assuming a fixed system size P). Therefore, by assumption (A4) we have the following
inequality

1
T (OPTy, P) > max{ _maxe {T"*(op;, Ny)} . H1(ShU Sx) } (13)

By the definition of the length function and our coarse granularity criterion we have

I(S) < USFUSR)+ > Welop;, N;)
Op,eF

(SpUSR)+f D Wpylop))
op,EF

AN

Obviously,

> Wp(op;) < di(S}) < dI(S} U S)
op,€F

Thus combining the two inequalities we have
1(S) < (fd+1)1(S% U Sg) (14)
In the first part of the proof we showed that

l(S) max
-5 T OPIZ-%%F{T (op;, Vi) }

Combining this with (13) and (14), we obtain

TP* (SCHED, P) < 2d

T?e"(SCHED, P) < [2d(fd + 1) + 1] TP (OPTy, P)

This completes the proof of Theorem 3.3.1. 0
PROOF OF LEMMA 3.5.1 (Sketch) The proof follows immediately from the inequali-

ties:

T?%" (SCHED, P, N) (2d + 1) LB(N)
LB(N*) < TP (OPT,P,N*)

AN

([l
PROOF OF LEMMA 3.5.2 (Sketch) Note that the second property is clearly satisfied

at the beginning of the algorithm. The first time an operator is alloted IV; sites such that

o Tmaz(opiaNi) < h(ﬂ*)a and
* Wop,(N;i) <4 Wop, (N}),

it will not be alloted more sites by the algorithm until all other operators have been alloted a
number of sites obeying the same conditions. The lemma follows trivially from these observa-

tions. -

167
A.2 Proofs for Chapter 4

PROOF OF LEMMA 4.3.1 We only need to establish the result concerning the new term

in the max function (see Lemma A.1.2). Let T;;, W;;, and V;; denote, respectively, the stand-
alone time, work vector, and demand vector of the j-th clone of op, (j = 1,...,N;). Note
that the j-th clone of op; will require resource fractions V;; for at least T;; time. (It may be
longer if the clone experiences contention on some preemptable resource(s).) Thus, for any
schedule SCHED, the total resource-time product for the parallel execution must exceed these
requirements for all non-preemptable resources. That is, the parallel execution time of SCHED

on P sites should satisfy the following (componentwise) inequality:

TP (SCHED, P) P1 >, > T;;Vy;,
(v
where 1 denotes an s-dimensional vector of 1’s. Taking this inequality for the maximum com-

ponent of the right hand side gives the desired result. 0

PROOF OF THEOREM 4.3.1 Let n; denote the number of compatible clone subsets in

site B; and let S;; be the j-th such subset. Define Sz‘;, SZ‘;V, SZT;V, and T™%(S;;) in the usual

manner (see Sections 3.3.1 and 4.3.1). Consider any two consecutive compatible subsets S;; and

Sij+1 in site B;. Let ¢y = (T, W, Vi) be the first clone placed in S; j11. By the operation
of the algorithm we know that [(SZ‘J/) +1(V) > 1. Further, by the order of clone placement we
know that for all clones ¢, placed in S;; we will have T}, > T,, = T™**(S; j4+1). So, considering

the total volume packed on the two shelves we have:
SHY) + 18T) > T (Si) - 1(S) + T (S j41) - UV i) > T (Si 1)

Thus, taking the sum of T™%’s over all compatible subsets in B; we have:

ng ng
ZTmaz(Sij) <Tmaz(si,1)+z z] 1 +Zl STV Tmaz +2 zl STV .
Consider the placement of the final clone cy = (T, Wx, V). Without loss of generality,
assume that the clone is placed in B;. By the operation of our list scheduling heuristic we know
that all the other bins must be of height larger than or equal to the height of B;. Thus, using

the notation of Section 4.3.2, we have

P-T%(B;) < Y T(Sy) Zmax{Tm‘”() }<ZT"“1z i) + Zl
1,J i,

168
And using our previous inequality, we have:
P-T5(B) < P-T™® 4+ 2.5 SLV 43" 1(S)).
i,J 1,J
We can now use the fundamental property of /() (Lemma A.1.1) to get:

USTY) | 4. U5Y),

Tsite(Bl) < Tmaac(s) + % -

Finally, note that the makespan of the schedule SCHED obtained by our heuristic will certainly
satisfy TP (SCHED, P) < T%%(B;) + Ty < T%%(B;) + T™%(S). Combining this with the
above inequality for T%/¢(B;) gives the result. 0

PROOF OF LEMMA 4.3.2 Assume the claim is false. This implies that there exists at

VY.
least one Ss vector 7 in SV that cannot fit in any of the l(ls_ ;s

I(T) < A, this means that the ss “length” I(B}) of all these bins B; will be I[(B)) > 1 — .

sites used thus far. Since

Summing over all bins this gives:

SUBY) > (1)) 1(15%3 =1(SY)-s

Since °;I(B)) < s-1(SY — {v}) (by the fundamental property of /()), the above inequality
gives: [(SV — {w}) > I1(SY), which is impossible. This completes the proof. 0

PROOF OF THEOREM 4.3.2 First, note that by Lemma 4.3.2 PIPESCHED will be able

to pack C in Pg. Tt is easy to demonstrate the following proposition based on the fundamental

property of /() (Lemma A.1.1).

Proposition A.2.1 There exists an index j € {1,..., Pc} such that

— 1(S™)
Z l(w) <d- P

=W
wEBj

Consider the work vector packing produced by PIPESCHED, where, without loss of generality,
we assume that the sites have been renumbered in non-increasing order of total work; that is,
I(BYY) > U(By) >... > (BE,) (Figure (52)).

If (BYY) < d- %, the theorem obviously holds. Assume [(B}V) > d - % Let wj,
be the first work vector to “push” the total work of site By over d - %. Also let W, =<
Wiy, - - -, Wiy, >, m > 0, be the time-ordered list of vectors packed at site B; after that moment

(including w;,).

169

By Proposition A.2.1, we know that in the packing produced by PIPESCHED there exists

a site B; such that Y g cpw (W) < d- %. By the logic of PIPESCHED we know that site
J
Bj was not allowed to pack any of the vectors w;,, k = 1,..., M only because of ss resource

constraints. This implies that when the packing of w;, was taking place we had:

Sl = UB/)>1- A\

veBY
Also, by the order of packing we know that at the time of packing w;, we had:

weBY l(w)

veBY (@)’

l(mh)
l(ﬁh)

<

which by the above inequality and Proposition A.2.1 gives:

l(@i1)< d'l(SW))
(W) — Pc-(1—M)
WD) o W) 5 M) fpich in turn

Again, by the order of packing we know that o) 2 16
21 12

T @iy)?

implies that:

) | SAL Uwi,)
— el M — -
l(vil) Zk:l Z(U’Lk)
Combining the last two inequalities and using the fact that S0, 1(7;,) < s-I(XM,7;,) < s

(since all these ss vectors “fit” in one site), we have:

S) __d-1(S™)

s Po-(1-X)’
or,
M w
d-s 1(SW)
o) < .
2 1) < 7 Pc

Thus, the makespan of PIPESCHED can be bounded as follows (see Figure(52)):

1(s") U s . 1S
<d -2/ Wa W) < d - . Tmaz
Ty <d 2 +kE:11(wzk)+l(w,0) <d-(1+ 1_)\) o +
This completes the proof. 0

PROOF OF THEOREM 4.3.3 Let S}V = Ucer,; 8¢ for all j = 1,....k, with S}, STV

defined similarly. Also, define T"** = maxcer; T¢"**. Finally, let H; denote the parallel

execution time of the j layer (i.e., the clones in L;) as determined by PIPESCHED. From

170

(SW)

Theorem 4.3.2 we know that H; < d(1+ %) - —5—= + 1/, for all j = 1,...,k. Thus, for

the overall execution time we have:

k s k l(SW
Ty=3 Hj <dl+7=—)> 3 +ZT’”‘“. (15)
j=1 j=1

By the ordering of the pipelines in L. we know that the total volume packed in layer j is
I(STV) > Tfa® - 1(S)) for all j = 1,...,k — 1. Furthermore, by the condition used in the

layering of the pipes (Step 2 of LEVELSCHED), we have:

max max P]-_)\
WSTY) +USTYH) > Tas - [1(S)) + 1(Se, > T PA=2)

forall j =1,...,k — 1. Summing over all 5 this gives
i TV = TV P(l — A) d max
2-3°USTY) > YOSV +USTN)] > ——=2) T
1 1 2
Combining this with Inequality 15 we get:

! SW) STV)

2s k l(]
+ 1—/\'21

Note that by the ordering of L, T{"** = T™ (the overall maximum). Using the fundamental

+ Ty

TH<d(DY Z

Jj=1

propery of [() for the two summations in the above inequality we have:

s 1(SW) n 252 _l(STV) + maz

2 .
Ty < d(1+7—3) —5 1-x P

A.3 Proofs for Chapter 6

PROOF OF THEOREM 6.2.1 Our proof is based on the following claim.
Claim: Let s denote the start time of object Cy determined by our LS algorithm. For every

slot j € {0,1,...,sr — 1}, the resource utilization (i.e., the percentage of resource bandwidth
used) during time slot j is larger than 1 — A.

We prove this claim using induction on the number of objects packed. The claim is vacuously
true for the first object scheduled that is assigned to slot 0 by our algorithm. Assume that
it is true after packing objects Ci,...,Cx_1. We will show that that it remains true after
packing object Cj. Let s,, denote the mazimum start time among all objects C1,...,Cy_1. We
distinguish two cases for the start time s of Cj.

(1) If s, > sk, then the claim obviously holds by the inductive hypothesis.

171

(2) If s, < Sk, then by the inductive hypothesis all slots in [0, s,,, — 1] have utilization larger
than 1 — A. Assume that there exists some slot j in [s;,, sy — 1] with utilization less than or
equal to 1 — \. Since all objects are non-increasing and (by our choice of s,,;) no new objects
can start in [s,, + 1, sy — 1], this means that every slot n € [j, sy — 1] must have utilization less
than or equal to 1 — A. This, however, means that LS could have placed object C} to start
at slot j < sg, which contradicts the operation of our algorithm. Thus, all slots in [sy,, sy — 1]
must also have utilization greater than 1 — A. This completes the proof of the claim.

Let C; be the last composite object to complete in the schedule determined by LS (i.e., the
object determining the makespan Trs(L)), and let s; denote its assigned start time. If we let V;
denote the total volume “packed” in slots [0, s;—1] then, by our claim, V(L) > V; > (1 —X) - s;

or , equivalently, s; < Y(TL)\) Thus:

Tgs(L) = 8; + Z(CZ') < V— + lmaz (L) < (1 + —) -TOPT(L).

A.4 Proofs for Chapter 7

PROOF OF THEOREM 7.2.1 Let V)¢(@) and Vopr(@) denote the total throughput

achieved over a sequence of requests @ by the Work-Conserving policy and the optimal off-line

scheduler, respectively. Let Ayyc denote the set of requests in & that are accepted by WC.
Observe that by the operation of the WC policy, a request (t;,1;) € Ay can cause a later
request (t;,/;) to be rejected only if the time interval [t;,¢; +1;) contains the starting point of /;
(i.e., tj). (This condition is not sufficient since there may be a free channel to accommodate the
later request.) This implies that the maximum possible total length that was rejected because
of the selection of (¢;,1;) € Awc i8 l; + ez (that is, when scheduling (I;,t;) causes the rejection
(li —€,t; + §) and (lmaz,ti +1; — §), € > 0). This is obviously an upper bound, since scheduling
such a total length could conflict with other scheduled intervals. Thus, an upper bound on the
maximum total scheduled length for any (off-line) algorithm that does not violate the server’s

bandwidth constraint is given by the expression:
Z (lz + lmacc) = Z l; + |AWC| “lmag-
(ti,li)Ech (ti ,li)EAWC
So, we have:

Vorr(T) _ 2(tii)eawe bi T 1Awel * lmax [Awe| * lmaz

< < =1+ A.
Vwe (U) E(ti li)EAwe li

|AWC|) lmin

172

We now describe a problem instance to show that this (1 + A) competitive factor is tight
for WC. Consider a single-channel system (i.e., ¢ = 1) and assume the sequence of requests:
(0, limin + €), (5, lmin), and (lmin + §, lmaz)- It is then easy to see that the competitive ratio of

WC for this instance will be:
lmin + lmam _)5_>0 1+ A.
lmin +e€

This completes the proof. O

PROOF OF THEOREM 7.2.2 Consider a sequence of requests oi,...,0x5 arriving at

the server, where o; = (t;,l;,7;) for each i. (¢; is the time of arrival of o;.) We visualize the
actions of the WC policy using a bipartite rejection graph G = (V, E), V = AU R where A(R)
is the set of requests accepted (rejected) by WC, and the edge set E is defined by connecting
each rejected request o; to the set of accepted requests that caused o; to be rejected (i.e., the
requests executing at time ;).

For each o; € R let A(o;) denote the set of (accepted) neighbor nodes of ;. Define the
acceptance region of R; C R as A(R;) = Uy, cp, A(oi). Our proof considers two different cases
for such regions.

o Fully-Overlapped Acceptance Regions. In this case we assume that a set of arriving requests

R; is rejected by a set of running requests A (or, a subset of A) with no new request(s) accepted

between rejections. This situation is depicted in Figure 53(a).

Figure 53: (a) Fully-Overlapped Case. (b) Partially-Overlapped Case.

Let t1 and t; denote the arrival times of the (chronologically) first and last request in R;,
respectively. Also let A’ C A be the subset of requests in A executing at time ¢;. By the
operation of WC we know that > 4 r; > max{B — Tz, Tmin t (otherwise WC would have
scheduled the request arriving at ¢;. Furthermore, our assumptions imply that all requests in

A’ start before t; and complete after ¢5. Thus, ¢t — t; < ming {l;}. Consequently, the benefit

173
obtained by WC from A is:

Vwe = Zlﬂ"i > Zlﬂ”z’ > 111141111{11.} -max{B — rmaz; Tmin }-
A A

Whereas the loss incurred because of the rejections is:

Lye < (tk — tl) . min{rm,m, B — roin }+ B -l
~ ~- ~ N——
Loss in [t1, ti] Loss due to rejections at t,

< Ir}‘i,n{li} - min{rmaz, B — "min } + B - lmaz-

Thus, if Vopr is the benefit obtained by the optimal off-line scheduler, then:

Vopr < Ve + Lyyc < 14+ min {l;} - min{rpaz, B — min } + B - lnas

Ve Vwe ming/{l;} - max{B — Tmaz, Tmin }
1 min{Tmaza B — T'min } B- lmam
< 1+ .
maX{B — Tmazx> Tmin } maX{B — T"maz, Tmin } lmin
. . . . _ . V lmacc B
And, using the identity max{a, b}+min{—a, —b} = 0, we obtain 2T < (14 pmez) FTTTR Er—r—

o Partially- Overlapped Acceptance Regions. In this case we assume that the acceptance region

for a set of rejections can be broken into a collection of n > 2 consecutive acceptance sub-regions
A(Ry),...,A(R,) where each sub-region rejects some requests with no intermediate arrivals,
but requests scheduled in a sub-region can also extend to future sub-region(s). That is, we are
allowing new requests to be accepted between the last rejection in R; and the first rejection
of R;+1, and requests in A(R;) can also “participate” in A(R;ix), k > 1 (i.e., the acceptance
regions are allowed to partially overlap). This situation is depicted in Figure 53(b). Note
that if no such overlapping occurs then we would have multiple independent instances of the
Fully-Overlapped case.

We will first prove the competitiveness bound for the case n = 2 and then extend our
proof to cover larger n. Let X C A(R;) denote the requests in A; that extend into A(R2).
Let Ix = miny{l;} (the length of the shortest request in X) and let rx = Y x r; (the total
bandwidth requirement of X). Note that the length covered by all requests in X is at most [x
and the benefit of X is at least Ix - rx. Also, lymin < Ix < ljaz and 7x > Tmin. Finally, let
Y1, Y2 be the length of X’s overlap with A(R;) and A(Rz), respectively. (See Figure 53(b).)

Using Figure 53(b) it is easy to see that the benefit obtained by WC is:

Vwe > (lmm - yl) . maX{B — Tmaz —TX, 'rmz'n} + (lmm - yl) ' maX{B —Tmazx — TX, Tmin} +
(yl + y2) ' maX{B — Tmax, 'rmin} + (lX — Yy — y?) ‘X,
or, after some arithmetic:

Vwe > 2'lmin'maX{B_rma$_rXa Tmin}+lX‘TX > 2'lmin'maX{B_'rmama 2rmin}+(lX_2lmin)'TX-
(16)

174

Similarly, the loss incurred by the rejections of WC is:

LWC < yl ' min{"”mamab_ T'min — TX} + Yo - min{rmaz,B — Tmin — TX}J"*'\UX — Y1 — y2) : (B - TX)J""

Loss during y1, y2 Loss between y; and y-
B- lmaz - (lmm - y2) . ma'X{B — Tmaz — TX, 'rmz'n}
———’ N ~

Loss after y2 Min. benefit of requests in A(Rs) — X outside y

which after some arithmetic manipulation gives:

Lwe < B- (lX + lmam) —Ix-rx —lnin - maX{B — Tmaz — TXarmin}

< B-: (lX + lmaz) - (ZX - lmzn) “rx — lmin - maX{B — Tmaz, 2"1min}- (17)
We now consider the following two cases for [x:

1. Ix > 2 lpyin. In this case, Inequalities 16 and 17 give:

Vwe > 2+ Lin - maX{B — Tmazx 27"min} and Lwc < 2+ Blygg-

Thus: Y22L <1+ B . lmaz and the bound clearly holds.

maX{B—Tmam;Z"'min} lmin

2. 2-lpin 2 Ix > lmin- In this case, let [x = a - ljin, where a € [1,2]. Using Inequality 16

we have:

Ywe > a- lmin - maX{B —Tmaz — TX, Tmin} +a-lpin-Tx + (2 - a) ' maX{B —Tmaz —TX, Tmin}

> - lmz’n . maX{B — Trmazx, 2Tmzn}

And, combining this with Inequality 17:

Vopr <1+ B B lyas — (04 - 1)lmm *Tmin — lmin * maX{B — Tmax, 27‘min}
VWC max{B — Tmax 2"ﬂmm} N (O lmm ' maX{B — Tmax, 27'm'm} P
f(a)

Differentiating f(«), it is easy to see that dfd(;l) < 0. Thus, f(«a) is monotonically decreas-
ing in « € [1,2], which implies that:

Vopr B

Vwe maX{B — Tmaz; 2Tmin} f()

B B l
= 1+ + . imaz 4
maX{B — Tmazx 2Tmin} maX{B — "mazx 2Tmin} Lin,
B l
(1 + max).

maX{B — T"mazx, 'rmz'n} - Imin

175

This completes the proof for the case of n = 2 Partially-Overlapped accepting regions. Now
consider the case n > 2. Let X; denote the overlap of A(R;) and A(Rj41), fori=1,...,n—1.
Similar to our previous notation, let rx, = > x. 7; and lx, = miny;{l;} = &; - lpin, Where

a; > 1. It is not hard to see that Inequality 16 can be extended as follows:

n—1 n—1
We > lmin- Z maX{B_"'maw —TX;, Tmin}+lmin : Z Q;TX,; +lmin 'maX{B_"'mam —TX,_15 Tmin};
=1 =1

where the last term in the sum captures the (minimum possible) contribution of the last sub-
region. After some manipulation the above inequality gives:

n—1

Wwe > n - lmin maX{B — Tmazx; 2Tmin} + lmin - Z(az - 1) TXx; — Lmin + TX,_1- (18)
=1

And, using a method similar to that used for the case n = 2 we can derive the following
inequality for the loss incurred by WC (extension of Inequality 17):

n—1 n—1
LWC < Blmam+BlmznZ ai_rmin'lmin'Z(Qi_l)_(n_l)'lmin maX{B_Tmaaca 2Tmin}- (19)
i=1 i=1

Again, we consider two cases depending on the value of a,,—; (i.e., the length Ix, ,).

1. ap_1 > 2. Then, Inequalities 18 and 19 give:

Vwe > n - lpin - max{B — "magz, 2rmin} and Lye < n - Blpgg.

Thus: % <1+ max{B_rﬁ“,ZTmm} . ll:zl::’ and the bound clearly holds.

2. 2> a1 > 1. Then, Inequality 18 gives:

n—1

Vwe > (7’L - 1) “lmin, - maX{B — "mazx 2Tmin} + Lnin * Tmin - Z(az - 1)-
i=1
Combining this with Inequality 19 gives:
VOPT B. lmam +B- lmm) ?;11 Q;
Ve (n—1) - Lpin, - max{B — rmagz, 2Tmin } + IMin - ryip, - Z?:_ll(ai —-1)
(’)’), - 1) * B - ljpaz + an—1 -+ Blyin
o (n - 1) “lmin - maX{B — T"mazx; 2Tmin}
or, equivalently:
VOPT B . lmam B . Qp—1
Vwe maX{B — Tmazx 2'rmin} Lnin maX{B — Tmax> 27"min} n—1
B l
. (1 + max)'

maX{B — "mazx, Tmin} lmin

Sincen—1> 2 > qp_1 for each n > 2.

176

This completes the proof for the case of multiple Partially-Overlapped acceptance regions.

For the general bound, observe that the behavior of WC over any incoming sequence of
requests can be seen as a sequence of independent (i.e., non-overlapping) execution segments,
where each such segment consists of either Fully-Overlapped or Partially-Overlapped acceptance
regions. Thus, for each such execution segment s we have shown that the ratio of the maximum

S
possible loss to the benefit obtained by WC is ff‘f‘g’c < B (1+ llm‘?’”) — 1. Thus,
wce min

maX{B_Tmam 77"min})

for the entire sequence of segments the ratio of loss to benefit is:

L Ly, L3, B l
WCSES V‘;}C gmax{ V,;’}C}< -(1_|_ maw)_l'
Wye Zs VWC $ VWC maX{B — T"mazx, 'rmin} Lnin
The result follows directly from this last inequality. This completes the proof. 0

PROOF OF THEOREM 7.2.3

(1) Deterministic Lower Bound. Let A be any (deterministic) scheduling algorithm and

let z denote the competitive ratio of A. We will prove that z > O(log A) using an adversary
argument. The basic idea in the proof is that the adversary presents A with a sequence of
requests that forces A to fill up its channels with “low profit” (i.e., small duration) requests in
order to maintain its competitive ratio.

More specifically, the adversary presents A with a sequence of A “request batches” By, ..., Ba.
(To simplify the presentation we assume that A is an integer.) Batch B; consists of ¢ (= number
of channels) requests of length 3 -1,,,;, arriving at time (i —1)-€, where € is some arbitrarily small
interval of time. Note that, since all these requests are pairwise overlapping, only ¢ requests
can be scheduled. Clearly the optimal (off-line) strategy is to schedule the requests in Ba,
accumulating a total profit of ¢- A - ljin = ¢ - lmaz-

Consider the on-line operation of A. Let n; denote the number of requests in B; scheduled
by A. In order to maintain its competitive ratio of x, A must schedule at least requests from
B;. (Otherwise, the adversary could stop the request sequence after By and force A to have a
competitive ratio worse than x.) Thus n; > £. Similarly, in order to maintain a competitiveness

of = after By, the following inequality must be satisfied:
.’L‘(’I’Ll lmzn+n22lmm) ZC2lmm

It is easy to see that for A to satisfy the above equation (subject to the constraint n; > %)
and, at the same time, minimize the total number of channels used 71 + ns (thus allowing more
profit from future larger requests), n; has to take its minimum value, i.e., ny = 7. Substituting
gives:

C-loin +T-n2-2liin > ¢+ 2 Ly,

177

or, equivalently: ng > 5=. A simple inductive argument along the same lines can show the
following claim.

Claim: In order to maintain a competitive ratio of T and mazimize its total profit, algorithm A
must schedule n; = ;= requests from batch B; for eachi=1,..., A.

A can then use its remaining channels to schedule requests from the final (and, most prof-
itable) batch. Let H, =1+ % +...+ 1 (the n'*-Harmonic number). Note that if, at any point
during this “game”, A exhausts its channels then V4 < ZZ 1724 lmin = % - A+ lmin, and thus:

Vorr _ ¢ A lmin _
Va - A - lin ’

<
T

which is impossible since A has a competitive ratio of . Thus, we must have:
|

Z - <¢,, or,equivalently, z > Hx =InA + O(1) = O(log A).
—

This completes the proof for the deterministic lower bound.

(2) (Oblivious) Randomized Lower Bound. Our proof is based on the application of
Yao’s result to competitive analysis [MR95, Gaw95]. Briefly, this result states that the lower
bound on the oblivious competitive ratio for a given problem is greater than the lower bound
on the competitive ratio of deterministic on-line algorithms, when the request sequences for the
problem are restricted to a distribution.

Our methodology is as follows. We construct a probability distribution Dz over the request

sequences ¢, and based on that randomized input sequence we provide:

1. A lower bound (L) for Ep_[Vopr ()], the expected benefit accepted by the optimal off-line

algorithm; and,

2. An upper bound (U) for Ep_[V4(7)], the expected benefit accrued by any deterministic

on-line algorithm for the problem.

If k° denotes the oblivious competitive ratio of any randomized algorithm, then, by Yao’s
result [MR95, Gaw95]: £° > £.

First, we define the probability distribution Dz over request sequences. Let ¢ denote the
number of playback channels at the server and, without loss of generality, assume log A is
integer. We assume that requests arrive in log A + 1 batches of ¢ requests By, ..., Bjog o With
the time separating the arrivals being a very small ¢ > 0. Furthermore, all requests in batch

B; have length equal to 2 - [,,,;, and batches arrive according to the following probabilities:

P[By arrives| = 1 and P[B; arrives|B;_; arrives] = —

178
Thus, for i € {0,...,log A}, the probability of the arrival sequence By -+ B; is 27

Next, we provide a lower bound (L) for Ep_[Vopr()]. Consider an off-line strategy that

always accepts the requests in the last arriving batch. The expected benefit of that strategy is:

log A)
> P[By-+-Bi] ¢+ 2 lyin = ¢+ lyin - (log A+ 1).
=0

Thus Ep_[Vopr(F)] > ¢+ lmin - log A+ 1) = L.

Finally, we provide an upper bound (U) for Ep_[V4(7)] for all deterministic on-line algo-
rithms A. Let B(i,k) denote the mazimum expected benefit from batches B, ..., Bjog A, where
the maximization is taken over all possible ways to accept requests from By,..., B;_1 so that
at most k < ¢ channels are free. We can bound B(i, k) with the following recurrence relation,
where the first term in the max{}, represents the benefit from requests in B; (with [denoting
the number of requests accepted from batch B;) and the second term represents the maxi-
mum expected benefit from requests in batches B;;1,..., Bioga, given that k — [channels are
available:

. ;1
B(i,k) < r{lsakx{l.lmin-f, §B(z+1,k—l)},

with the initial condition: B(logA,k) < k-2°82 . . =k l,... Note that the factor % in
front of the second max{} term comes from the fact that the probability of B; ;1 arriving given
that B; has arrived is %

A simple induction on j = log A — i shows that for each i € {0,...,logA}, B(i,k) <

k-2 lin. Thus, for any deterministic algorithm A:
Ep_[Va(@)] < B(0,¢) < ¢ lpin =U.
Consequently, by Yao’s result, the oblivious competitive ratio of any randomized on-line

algorithm is x > % = log A + 1. This completes the proof for the randomized lower bound.

PROOF OF THEOREM 7.2.4

(1) Deterministic Lower Bound. Case (a) can be shown by a simple construction. For

Case (b), assume that % >p> 1#1 where k > 2 is an integer. The adversary constructs
the sequence of requests in a manner that is very similar to the proof of the deterministic
lower bound in Theorem 7.2.3, but it also exploits the bandwidth variability to ensure that the
on-line algorithm will end up using only a fraction ﬁ ~ 1 — p of the available bandwidth
B, where § > 0 is arbitrarily small. Similar to the one-dimensional case, we can show that

the on-line algorithm must have a competitive ratio of at least Ha within that portion of the

179

server’s bandwidth, i.e.,

partial

But the optimal off-line scheduler can avoid this bandwidth fragmentation and schedule the

entire bandwidth B, thus Vopr > k+T1+‘5, and the competitive factor must be at least Ha -

k+146 o logA
kK = 1-—p-

(2) (Oblivious) Randomized Lower Bound. We follow the same methodology as in the
proof of the randomized lower bound for Theorem 7.2.3 but taking into account the worst-case
bandwidth fragmentation due to variable bandwidth requests. We assume that the bandwidth
B of the server is B = k - (rypqz — 0), where 6 > 0 is an arbitrarily small positive constant, and
we consider the following request batches, which (as in the proof of Theorem 7.2.3) arrive with

very small separation in time:

e For i € {0,...,log A}, batch B; consists of k — 1 requests with bandwidth requirement

Tmaz and length 2° - [,,;.; and,

e Batch Bjoz a1 consists of k requests with bandwidth requirement 7,4, — ¢ and length

log A _
20082 . lmm - lmaw-

Also, as in the proof of Theorem 7.2.3: P[By arrives| = 1 and P|[B; arrives|B;_; arrives| = %
Thus, for i € {0,...,log A + 1}, the probability of the arrival sequence By - - - B; is 27°.

For the lower bound (L) on Ep_[Vopr ()], observe that the off-line strategy that always
accepts the last batch will have an expected benefit:

log A
> P[By-+-Bi] - (k—1) Tmaz lmin 2" + k- (Tmag — 0) - 27108871 [y, - 20084
=0

1
= (k—l)-lmm-rmam-(logA+1)+§-k-(rmaz—5)-lmmEL.

We now provide an upper bound (U) on Ep_[V4(7)] for all deterministic on-line algorithms
A. As in the proof of Theorem 7.2.3, let B(i,m) denote the mazimum ezpected benefit from
batches B;, ..., Biog a+1 Where m now denotes the number of “channels” of bandwidth 7,4,
that are left in the server after batches By, ..., B; 1. Note that m < k — 1 by our definitions.

We can then bound B(i,m) using the recurrence:

maXj<m {l * Trmag * lmin - 2¢ + %B(’L +1,m— l)} , ifi<logA
B(i,m) < m-(rmax—é)-lmin-ZlogA , ifi=logA+1landm<k—1
k- (Tmaz — 0) * lin - 21982 , ifi=logA+landm=k—1

Note that the last two clauses in the above expression follow from the observation that once a

single request with bandwidth requirement 7,4, is scheduled, the total number of requests that

180

can be scheduled is at most k — 1 (whereas the entire last batch of k requests can be scheduled
otherwise).

Using induction on j = log A 4+ 1 — 1, it is easy to show that B(i,m) < m - Tmaz - lmin - 2° for
alli € {0,...,log A+1}. Thus, for any deterministic algorithm A, Ep_[Va(7)] < B(0,k—1) <
(k—1) - rmaz - lmin = U.

By Yao’s result, the oblivious competitive ratio of any randomized on-line algorithm is
L _ (k=1) rme-(logA+1)+ 3B
U (k—1) - rmaz '

By our assumption B > 2 - 74, - log A, so the above inequality gives:

/§b2

k
b
A

since k ~ % by our choice of parameters. This completes the proof. 0

PROOF OF THEOREM 7.2.5

(1) Identical Bandwidth Case. We first give a definition of strong competitiveness as

defined by Bar-Noy et al. BNCK*95]. Given an input @ = 01,09, ...,0x5 where o; = (;,1;,7;),
it is easy to see that the bandwidth required by @ at time t is Bz(t) = 5, 4c[t; ti11,) Ti- We say

that @ is feasible if Bz(t) < B for all times ¢t. We define the cover of a sequence 7 as
V(g) = / min{ By (t), Bdt.
t

Note that if 7 is feasible then V(@) is exactly the total throughput (i.e., length-rate product)

in . We say that an on-line algorithm A is strongly k-competitive if

V(o)
FVa@) sk

Clearly, any strongly k-competitive algorithm is also k-competitive (Section 7.1).

Observe that the analysis in the proof of Theorem 7.2.1 actually establishes that WC is

strongly (1+ A)-competitive. Consider an input sequence . Fix a particular group of channels
C; (|IC;| = ﬁ) and let 7; denote the subsequence of & with lengths in the range 2' 1+l <
l; < 2% -lpip, for any i € {1,..., [log Al}. Since the operation of SBP on 7; is identical to WC
using only the channels in C; we have:

(1+ (lm)) Veap(@i) > [min{By, (1) B
7 t [log A

lmin

Observe that for all requests in @; we have (llmi)_ < 2. Thus the above inequality gives:
g

min

3. [log A] - Vasp(ai) > /t min{ By, (t), B} dt.

181

It is easy to see that the left-hand side of the above inequality is an upper bound on the
benefit that any scheduler can obtain from the requests in 7; (even when using all available
bandwidth). Thus, we have shown that 3 - [log A| - Vsgp(d;) > Vopr(d;), where OPT is the
optimal clairvoyant scheduler using the entire server. Clearly, Vsgp(a) = >, Vspp(d;) and
Vorr(@) < X, Vopr(@i). Thus, 3-[log A]-Vspp(a) > Vopr(d) for any sequence &. The result

follows.

(2) Variable Bandwidth Case. Again, the proof for the case of variable bandwidth requests
is based on the observation that the proof procedure for Theorem 7.2.2 actually establishes
that WC is strongly 7 1+A -competitive, where p = "¢z The proof then proceeds along the same

lines as the proof for the identical bandwidth case. 0

PROOF OF THEOREM 7.2.6
(1) Identical Bandwidth Case. We partition the schedule derived by DBP along the time

axis into consecutive intervals I, ..., Ips of length l,,4, (or, more accurately 2llog Al “lmin) €ach.
Let A; denote the set of requests accepted by DBP inside interval I; (i.e., accepted requests
whose starting point is in I;), and let R; be the set of requests rejected by DBP and accepted
by the optimal scheduler in I;. We use s; to denote the saturation level of I;: the largest i
such that for some point in time ¢ € I; all the channels in C; U...C; are busy at time ¢. Note
that by the operation of DBP, only requests of length less than 2% - ,,;, will be rejected in I;.
Finally, let V(S) denote the total benefit (i.e., rate-length product) of a set of requests S.

Fix a specific interval I; and let k& = [log A]. Partition the set R; into le- U...U R;j ,
where R; is the set of requests in R; with lengths in the range 2071 - Liny 2° -). Fix a
specific i € {1,...,s;} and slice the interval I; into 2¥~* sub-intervals of length 2¢ - ,,,;, each.
Consider the requests in R;- rejected in such a sub-interval. Clearly, the maximum benefit that
any scheduler could obtain from these requests is ¢:2° - I,,in, by allowing a “batch” of ¢ requests
of maximum length (2'-1,,;,). But, by the operation of DBP, since these requests were rejected

DBP must have already accepted a benefit of

9j—1 .:L. 1)
logA Z bmin [log AT (2" = 1) - bmin-

Furthermore, by the operation of the algorithm, this benefit will be distinct for each “batch” of
rejections within different sub-intervals. Thus, the mazimum loss-to-benefit ratio within each

such sub-interval is:

i

2
= [log A] - 55—

c-2t- Lnin

ﬂoch 2= 1) loin 1 <2-[logAl, independent of i.

182

Thus, if we let L; denote the loss that the DBP scheme incurs within the interval I;, then:
L;

V(AJ) + V(Aj—l) > max{ mins W}a

[log A] @v 1)

where the first term in the max{} follows from the definition of the saturation level of I;. Also,
it is easy to see that:

V(Rj) < Lj+ ¢ 2% - lpn,
where the second term captures the maximum possible loss due to rejections at the end of I;.

Combining the last two inequalities, we have:

¢ | L 1 ¢ 2% b+ L; . V(R
: : > = 9% . J > . mn > I
2; V(R)

Thus, summing over all intervals I; we have Vpgp(G) > STogal
Observe that for the optimal clairvoyant scheduler A*, Va«(7) < Vppp(3) + 32, V(R;), o
using the above inequality, Va«(7) < Vpgp - (1 + 8 - [log A]). This completes the proof for the

identical bandwidth case.

(2) Variable Bandwidth Requests. The proof proceeds along the same lines as for the
identical bandwidth case. We now define the saturation level s; of interval I; as the largest 4
such that for some point in time ¢ € I; the total available bandwidth in partitions B1 U... B; is
less than 7,,,,- Note that by the operation of DBP, only requests of length less than 2% - [,
can be rejected in I;.

Fix a specific interval I; and let k¥ = [log A]. Partition the set R; into le- U...u R;j ,
where R’ is the set of requests in R; with lengths in the range [2°7" - l;min, 2" - lmin). Fix a
specific 7 € {1,...,s;} and slice the interval I; into 2k=% sub-intervals of length 2° - [,,;, each.
Consider the requests in R;- rejected in such a sub-interval. Clearly, the maximum benefit that
any scheduler could obtain from these requests is B - 2° - [,;,. ut, by the operation of DBP,

since these requests were rejected DBP must have already accepted a benefit of at least

_ B - c , .
I—log A-| Z 271 “Umin + |- gA-| Tma:v) 20t lmin = m : (2Z - 1) “lmin — Tmaz " (2Z 1) Umin.
Furthermore, by the operation of the algorithm, this benefit will be distinct for each “batch” of
rejections within different sub-intervals. Thus, the mazimum loss-to-benefit ratio within each
such sub-interval is:
B2l 2!
. . = [logA]-— —
ﬁ ' (21 - 1)) lmin — T'mazx - (2171) . lmm (2Z - 1) —p- 2e L. []Og A-|
2
1—p-[logA]’

< [logAl - independent of i.

183

Thus, if we let L; denote the loss that the DBP scheme incurs within the interval I;, then:

Lj'(l—p-flogM)}
2 [log AT ’

B , o
V(AJ) + V(Aj_l) Z ma.x{m . (ZSJ —].) . lmm — Tmazx * (2 J 1) . lmzn ,

where the first term in the max{} follows from the definition of the saturation level of I;. Also:
V(Rj) < Lj+ B -2% - lmn,

where the second term captures the maximum possible loss due to rejections at the end of I;.

Combining the last two inequalities, we have:

B-(1-p-NogA) ., Lj-(—p-[logA))
2 - [log A] e 2 - [log A
1—p-[logA] B-2% lyim + L;

- 2 - [log A] - 2

V(R;)-(1—p-[logAl)

4- [log A] '

V(4;) +V(4-1) > max{ }

1—p-[log A])-) . V(R;
And, summing over all intervals I; we have Vppp(7) > S [o; [k]; E” (]).
Observe that for the optimal clairvoyant scheduler OPT, Vopr(G) < Vpsp(d) + 3, V(R;),

or, using the above inequality, Vopr(T) < Vpgp - (1 + %. This completes the proof

for the variable bandwidth case. 0

A.5 Proofs for Chapter 8

PROOF OF THEOREM 8.2.1 First observe that, by the specific form of clip values and

sizes, the inequality p; > p; is equivalent to value(C;) > value(C)), and it is also equivalent
to size(C;) > size(C)).

Consider the heuristic H; that always selects the first ng;s, bins from the First-Fit packing
described in PACKCLIPS. Obviously, PAckCrLips will always do at least as good as Hy; that
is Vi > Vp,. Consider the clips in order of decreasing value density (which is also decreasing
size) and let C,, be the first clip placed in the ng;sx + 1th bin by H;. At that point in time,

the following observations can be made:
1. Each of the first ng;s; bins is at least half-full (by virtue of First-Fit and decreasing clip
sizes).

2. The bin capacity filled up to now by H; was filled at a value density that is greater than
or equal to the density that the optimal algorithm would use to fill the corresponding
part of the bin(s) (by the order of clip placement).

184

Let Vi, (m) denote the total value of the first m — 1 clips in the list (already packed in the
first ng;sx bins). By observations (1) and (2) it is clear that the remaining capacity at that
point cannot contribute more than Vy, (m) to the optimal solution. From this and observation

(2) we conclude that:

Vorr < Vg, (m) 4+ Vi, (m)<2-Vg, <2-Vy

PROOF OF THEOREM 8.2.2 Following the notation of Chapter 3, we extend the length

function /() (defined in Section 8.2.2) to sets of d-dimensional vectors S as follows: Let w =

Yoves V, then I(S) = maxi<j<q{w[i]} (i.e., the maximum component of the vector sum of all
elements of 5).

Consider the items in order of decreasing value density and let C,,, be the first item that is
placed in the ng;s; + 1th bin by PACKCLIPS. Let Bj, S; denote the fraction of bandwidth and
storage capacity (respectively) of the j-th disk (1 < j < ng;s,) that is used by clips mapped
onto that disk. We also use d; to describe the vector with components B; and Sj.

The First-Fit rule used by our heuristic ensures that when C, is pushed to the extra disk
we have:

max{B; + sp,[1],S; +sn[2]} > 1

for every disk 7 =1,...,ngsk-
Since decreasing value density implies decreasing values for s;[1] and s;[2] < 3, the above

condition implies that:

1 1
or, equivalently: {(d;) > % for every disk j = 1,...,ngisk-

Let Sy denote the sets of clips packed in the first ng;s; bins by our heuristic. Let Sopr
be the set of clips scheduled by an optimal policy. Consider the partitions of these two sets
Sy, SEE* and Shprp, ..., SGk produced by our heuristic and the optimal policy, respec-
tively. We also use these symbols to represent the corresponding collection of size vectors (i.e.,
S%I is also the collection of size vectors packed in the j-th disk). Using Lemma A.1.1 and the

analysis outlined in the previous paragraph it is easy to see that:

Ndisk
; 1
Ndisk Z Z Z(S]OPT) Z - Z l(SZ‘), and
Jj=1 Ci€SopT
Ndisk

R USH) < X Us)

j=1 C;eSg

185

which implies:

I

Sools) > D (s

C;€SH CieSopT
Thus, if we consider the optimal solution as a “bin” with total capacity of >>¢.cg, 0 [(Si)
the above inequality guarantees that the PACKCLIPS heuristic will fill up more than 1/4-th of
that capacity (before placing a clip in disk n4;s,+1). Further, by the order of clip placement, we
know that that 1/4-th was filled at the mazimum possible density for the given set of clips. Thus,
the total “capacity” of the optimal solution cannot possibly contribute more than 4 - value(Sg)

to the total value. This obviously implies the result.

PROOF OF LEMMA 8.4.1 Assume that the retrieval of C; from a particular disk is
initiated at time slot ¢;. Then, the slots (partially) occupied by the retrieval of C; from that

disk are given by the equation t =1%; + k- n; + j - ngisk, where k > 0 and 0 < j < [G -|

Ndisk

Thus, given t;, the slots for clip C; are characterized by a set of > 1 moduli: u;; = ¢t mod n; =

(t; + jngisk) mod n; for 0 < j < [- -| The Chinese Remainder Theorem can now be directly

Ndisk

used to obtain the result.

PROOF OF LEMMA 8.4.2 Our proof uses the following ancillary result, which is a direct

consequence of the Generalized Chinese Remainder Theorem [Knu81]. It provides necessary and
sufficient conditions under which collisions will occur in a fixed schedule of periodic clip retrieval

tasks.

Lemma A.5.1 Consider a specific disk and let ¢; denote the start time for the retrieval of
C; and n = lem(nq,...,ny) (i.e., the least common multiple of ni,...,ny). Also, let u;; =
(t; + 7 - ngisk) mod m; for 0 < j < [n;ﬁ-‘ Then, in any interval of length n (after all retrievals
are initiated) there exists exactly one time slot where all retrievals collide if and only if for all
1<i<k<N,uj=uk (mod ged(ni,ng)) for some combination of 0 < j < [ndcﬁ-l and
0<i< [n;—kJ O

Observe that, by its definition, ¢; is exactly the number of distinct moduli (mod ged(ny,ng))
that are “occupied” by the retrieval of clip C;. To see this, assume that the retrieval of C; is ini-
tiated at some time slot . Then the pattern of the time slots occupied by C; (mod ged(ny,n2))
will start repeating itself as soon as the condition z + k- ngisp =z (mod ged(ni,ng)) is satis-

fied, or equivalently & - ng;sr = multiple(ged(ng,ng)). This equality will be satisfied for the first

186

time when the right hand side equals lem(ng;sk, ged(n1, n2)), i.e., the least common multiple

of ngisk and ged(ni,n2). Thus, the number of distinct moduli (mod ged(n1,m2)) occupied by

(using the identity lem(z,y) = %) or

.. lem(ng;gp,ged(ni,ne)) ged(ni,ng)
C; is either k = - — ged(ning naisk)

[n:?' k-|, whichever is smaller. Also observe that by the form of the retrieval patterns, these q;

moduli occupied by C; are regularly spaced (ng;s;(mod ged(ni,ne)) time slots apart).

Thus it is easy to see that if the condition a1 + s < ged(ni,ne2) is satisfied then it is
always possible to “shift” one of the patterns so that no collisions occur. On the other hand,
if a1 + ag > ged(ny, n2) then a simple pigeonhole argument shows that the moduli equality in
Lemma A.5.1 will always be satisfied (for some combination of [and j). Hence, the retrievals

of C1 and Cs will collide. This completes the proof.

PROOF OF LEMMA 8.4.3 The proof proceeds in a manner exactly similar to the proof
of Lemma 8.4.2 (using the observation that gcd(n;,n;) = k for all ¢ # j).

PROOF OF CORRECTNESS OF ALGORITHM BUILDEQUIDTREE The correctness

of BUILDEQUIDTREE relies on the following claim. Given a set of tasks, there is a collision-free

schedule, if the tasks can be partitioned into nggs, partitions such that the following conditions
hold:

1. For each partition, there is an integer d, which is a multiple of ng;s, that divides the

periods of all the tasks in that partition.
2. Each partition can be further partitioned into subpartitions such that the following hold:

2.1 The first subtasks of any pair of tasks C; and C; in each subpartition can be scheduled

collision-free in time slots u; and u; such that «; mod —"— = u; mod holds.

d
Ndisk

Ndisk
d

-1 .
2.2 3745 Shen < ﬁ, where s/, . is the maximum of the number of subtasks of any

task in the subpartition.

We will now prove that if tasks can be partitioned such that if Conditions 1 and 2 hold,
one can generate a collision-free schedule by modifying each u; in each partition j, 0 < 5 <
Ndisks DY U = J + u; - ngisk. Obviously, the subtasks of tasks within subpartitions of different

partitions cannot collide. This is because for any pair of subtasks C; and C) in a partition,

I.

! i
u; mod Ngisk = u;

mod ng;s, holds, where v and u; are the time slots in which subtasks C;

187

and C; are scheduled, respectively. Since the distance between two consecutive subtasks of
a task is ng;sk, all the subtasks of a task will be in the same partition (i.e., u] mod ngsx =
(uf + 7 - ngisk) mod ngisk, 0 < j < 8;). Due to Condition 2.1, the first subtasks within the same

subpartition do not collide. Furthermore, Condition 2.1 implies that for any pair of tasks C; and
w, mod d—u! mod ng;e, _ ; mod d—uj mod ngisk
Ndisk -

C; in a subpartition, T holds. Let us enumerate the
u} mod d—u} mod ng;s
Ndisk
the first subtask of a task C; in that subpartition is scheduled. Since
(uj+ndisk) mod d—(u;+ndisk)

Ndisk

where u; the time slot in which
v} mod d—u! mod ngis
Ndisk

subpartitions of a partition by the value of

and

mod Rdisk ey only by one, in such a schedule, the subtasks of a task

will be in consecutive subpartitions of a partition. Once the first subtask of a task C; is scheduled
in a subpartition, due to Condition 2.2, we can ensure that in the next s; — 1 subpartitions
none of the tasks’ first subtask is scheduled, we ensure that none of the subtasks of the tasks
scheduled within a subpartition will collide with any of the subtasks scheduled within a different
subpartition of the same partition. Furthermore, it is straightforward to prove that if the first
subtasks of two tasks are scheduled within the same subpartition 7 without collision, none of
their subtasks will collide provided that none of the tasks’ first subtask is scheduled in the next
— 1 subpartitions.

J
Sma;c

