
Analytics over Probabilistic Unmerged Duplicates

Ekaterini Ioannou and Minos Garofalakis

Technical University of Crete, Chania, Greece
ioannou,minos@softnet.tuc.gr

Abstract. This paper introduces probabilistic databases with unmerged dupli-
cates (DBud), i.e., databases containing probabilistic information about instances
found to describe the same real-world objects. We discuss the need for efficiently
querying such databases and for supporting practical query scenarios that require
analytical or summarized information. We also sketch possible methodologies
and techniques that would allow performing efficient processing of queries over
such probabilistic databases, and especially without the need to materialize the
(potentially, huge) collection of all possible deduplication worlds.

Keywords: probabilistic databases, unmerged duplicates, query analytics.

1 Introduction

Entity Deduplication is the task of processing a data set in order to create entities by
merging the data set instances that describe the same real-world objects. Traditional
deduplication techniques [4] are based on an a-priori merging of instances: they first de-
tect the possible matches between instances, and then, given a threshold, decide which
instances to merge into entities. The entities resulting from the merges are then used
for replacing the coreference instances in the original data set. Query processing is per-
formed over the updated data set.

The newly introduced deduplication techniques, for example [1], [6] and [9], aim at
addressing the challenges appearing in modern applications (e.g., Web 2.0). These chal-
lenges primarily involve higher levels of heterogeneity and more frequent data modifi-
cations [11]. Instead of creating the entities using a-priori merging of instances, these
approaches maintain and use unmerged duplicates, indicating which instances describe
the same real-world entities. The unmerged duplicates are maintained alongside the
original data and are used during query processing for generating answers that reflect
the different possible real-world scenarios, i.e., deduplication decisions.

Existing techniques incorporate unmerged duplicates of different forms, such as
clusters of instances that describe the same real-world object [1, 9], and linkages be-
tween pairs of matching instances [6]. In some techniques, the unmerged duplicates are
accompanied by probabilities that encode the inherent uncertainty of the deduplication
process. These techniques [1, 6, 9] focus on processing simple (single-table) queries
over the unmerged duplicates.

Although answering simple queries over unmerged duplicates is important, it is still
just a first step towards a complete solution to in-database entity deduplication. The



Buyer
id name surname loc. gender year
r1 Marion Smith GR female 2009
r2 Marion Smith DE female 2010
r3 Mary Smith DE female 2011

Deduplication
id inst 1 inst 2 pr

lr1 ,r2 r1 r2 0.95
lr1 ,r3 r1 r3 0.55

Order
id buyer items amount
t1 r1 1 100
t2 r2 2 300
t3 r2 4 250
t4 r3 2 250

Fig. 1. A fragment of a probabilistic database with unmerged duplicates.

typical situation is that the unmerged duplicates are part of a large database that, of
course, contains other tables. Consequently, users would require retrieving information
related to all data, and not only the table with the unmerged duplicates. In addition,
queries returning all answers resulting from all possible deduplication scenarios can
easily overwhelm the user, as the number of these scenarios is huge [2]. In such situa-
tions, users typically do not even care about the exact information in individual entities;
rather, their main focus is on efficiently obtaining aggregate, statistical insights about
the collection of resulting entities, similar, in spirit, to online analytical processing.

In this paper, we introduce DBud: a database containing probabilistic information
about instances found to describe the same real-world objects. DBud adopts the most
expressive form of deduplication information (i.e., probabilistic linkages between in-
stances – also accounting for transitivity), and significantly extends its scope by con-
sidering the deduplication information as part of a database with other tables provid-
ing entity-related data. In the following sections, we first introduce analytical queries
for retrieving information of the entities in DBud (Section 2), and then sketch possible
methodologies and techniques for efficiently processing queries over such a probabilis-
tic database with unmerged duplicates (Section 3).

2 Modeling Data and Queries

A probabilistic database with unmerged duplicates DBud contains deterministic rela-
tional tables T 1, ..., T n as well as tables with duplicates R1, ..., Rk, i.e., some instances
of Ri describe the same real-world objects. The deduplication information for table Ri is
given in table Li. More specifically, Li contains probabilistic linkages over the instances
in Ri: lrα,rβ∈Li means that instances rα and rβ from Ri describe the same real-world
object with probability pl.

To process queries over DBud we must be able to support joins between the tables
with unmerged duplicates and the deterministic tables. For example, answering queries
over the DBud fragment shown in Figure 1 requires considering the join between ta-
ble Buyer with Order. Since table Buyer contains duplicates, we must first derive the
possible entities using the deduplication information provided in table Deduplication.
Each linkage from the Deduplication table can be either accepted or rejected, e.g., we
can accept lr1,r3 with probability 0.55 or reject it with probability (1-0.55). Rejecting the
linkage means that the database has two entities, one for each of the instances. Accept-
ing the linkage implies a new entity, with identifier e1,3, that replaces both r1 and r3.
Creating a single entity given these two instances maybe performed using different se-
mantics. For example, if we assume that we keep the instance with the highest value on



Linkages Prob. Entities (with summation over Order’s amount)
I1 lr1 ,r2 & lr1 ,r3 0.5225 〈e1,2,3, ..., 2009, DE, 900〉
I2 lr1 ,r2 & ¬lr1 ,r3 0.4275 〈e1,2, ..., 2010, DE, 650〉, 〈e3, ..., 2011, DE, 250〉
I3 ¬lr1 ,r2 & lr1 ,r3 0.0275 〈e1,3, ..., 2011, DE, 800〉, 〈e2, ..., 2010, DE, 550〉
I4 ¬lr1 ,r2 & ¬lr1 ,r3 0.0225 〈e1, ..., 2009, GR, 100〉, 〈e2, ..., 2010, DE, 550〉,

〈e3, ..., 2011, DE, 250〉
Table 1. The possible deduplication worlds with the entities created when requesting the join
between Order with Buyer and summation over the Order’s “amount” for each entity.

the year attribute, the tuple for the merge between instances r1 and r3 is 〈e1,3, “Mary”,
“Smith”, “DE”, “female”, “2011”〉.

For creating the possible entities of a table with unmerged duplicates Ri we need
to consider the acceptance and rejection of each linkage of Li. Deciding which link-
ages from Li (e.g., table Deduplication from Figure 1) to accept or reject leads to a
huge (exponentially-large) number of situations, termed possible deduplication worlds.
Generating all these situations is infeasible. In addition, the huge volume of results that
would arise when processing queries over all possible worlds would make it impossible
for users to derive any meaningful information.

To remedy this, we integrate various analytical operators and qualifiers, operating
at different levels of aggregation. The first aggregation level is within each possible
deduplication world, using conventional SQL aggregate semantics over the merged en-
tities. For example, consider again the data from Figure 1. Accepting both linkages of
table Buyer leads to entity e1,2,3, which would join with tuples t1, t2, t3 and t4 from table
Order. The summation over the Order’s “amount” is thus 900. Table 1 shows the four
deduplication worlds created when requesting the join between Order and Buyer with
summation over the Order’s “amount” for each entity.

Note that we also need to identify and ignore the deduplication worlds in which
the entities created by the accepted linkages are not satisfied by the rejected linkages.
For example, the deduplication world with entity eα,β,γ is invalid if it was created by
accepting the linkages lα,β and lα,γ and rejecting linkage lβ,γ.

Although the first aggregation level leads to a smaller number of records with ag-
gregated information, it is still of exponential size (i.e., linear in the number of possible
worlds), and, thus, difficult for users to analyze for reaching vital business decisions. We
therefore propose considering a second aggregation level, across all possible dedupli-
cation worlds, over all the records created by the first level and based on one (or more)
query attributes of interest. These probabilistic, second-level aggregation semantics,
can express and evaluate queries with different analytical operators over the collection
of possible worlds. We now describe two examples.

One basic statistical summary is the range of possible aggregated values over all
possible worlds. As an example, let us consider a manager that wants to retrieve the
range of possible total Order amounts per location, and thus poses the following query:

SELECT Buyer.location, range(entity amount), prob
FROM Order entity-join Buyer based on Deduplication

using sum(Order.amount) as entity amount
WHERE GROUP BY Buyer.location



Although not directly expressed in the query, the entity-join implies aggregation of
the records corresponding to each entity in the possible worlds by assuming an implicit
group-by operator over the entities (aggr. level 1). Evaluating the (explicit) group by
clause over the resulting records gives two locations: “GR” and “DE” (aggr. level 2).
Consider now all entities in the possible worlds, i.e., I1−4 of Table 1. The amount sum-
mation for location “GR” is 100, and for location “DE” it is between 250 and 900,
and thus the range is [250-900]. The probability for each location is the summation
of the possible worlds in which they participate. The location-range pairs along with
their probabilities that compose the answer set are: {〈“GR”, [100-100], 0.0225〉, 〈“DE”,
[250-900], 1〉}.

Another useful query type is iceberg that allows users to find the high-probability
deduplication scenarios satisfying specific selection predicates. As an example, con-
sider the following “iceberg” query:

SELECT top-2 entity amount, prob
FROM Order entity-join Buyer based on Deduplication

using sum(Order.amount) as entity amount
WHERE Buyer.year=2010

This query aims at computing the two most likely aggregate amounts spent by buy-
ers in 2010, along with their respective probabilities. The entities satisfying the where
conditions are e2 from possible worlds I3 and I4, e1,2 from I2. The probability of each
entity is summation of the probabilities of the worlds in which it participate, i.e., 0.05
for e2 and 0.4275 for e1,2. By default, the entities are ordered by probability, thus, the
answer for this query is {〈650, 0.4275〉, 〈550, 0.05〉}.

Our vision is to provide complex aggregation and iceberg queries that will allow
users to efficiently retrieve statistical information about the possible deduplicated enti-
ties. As shown in the above examples, a vital operator is a novel entity-join, which will
allow expressing joins between a table with unmerged duplicates Ri and deterministic
database table T j. Entities are created using summation, count, minimum, or maximum
aggregation over the T j tuples. The entity-join can be used for query analytics using
either aggregation operators (e.g., range, mean and variance1) or iceberg operators
(e.g., top-k). Instead of top-k, we could also consider simply specifying a lower bound
on the probability of the returned aggregate values.

Users might also be interested in retrieving results with more details, probably after
executing aggregation queries, which basically implies reversing parts of the performed
summarization. This can be performed with a “drill down” qualifier, similar to the
corresponding qualifier of online analytical processing.

Providing efficient operators for constructing entities given a set of instances is also
useful for query processing over DBud. The majority of the existing deduplication ap-
proaches either do not deal with this issue or simply return the most recent instance or
the union of all instances. To provide such operators, we could for example consider
the [12] approach from information extraction, which constructs entities by detecting a
canonical value for each attribute given the corresponding values from all the instances.

1 Mean can be used for retrieving the average value over the ranges of all possible merges and
variance for indicating the typical discrepancy of the expected value.



3 Possible Mechanisms for Efficient Query Processing

For providing analytics over DBud, we need to introduce new mechanisms and tech-
niques that exploit processing of aggregation and iceberg queries without the need to
materialize the possible worlds. Other important aspects that we must consider, include
the efficient computation of probabilities over the resulting answers, and the linkage
transitivity requirement that, among other things, implies the need for reasoning at
query time.

Aggregation queries. This type of queries has been so far studied only by very few
approaches. For example, processing aggregation queries is the main goal of [5]. It is
achieved by the structural decompositions of expressions into sub-expressions that are
independent and mutually exclusive. DBud needs to support a more expressive form of
aggregation, which captures two aggregation levels.

Another existing approach that targets aggregate operators is [9]. However, there ex-
ist crucial differences with the aggregate operators required for DBud. One difference is
that the model followed in [9] assumes that the algorithm is provided with fixed clusters
of instances, which allows focusing on basic query-time aggregation. In sharp contrast
to [9], DBud follows a more generic deduplication model that requires dealing also with
linkages between instances as well as linkage transitivity. In addition, DBud also con-
siders probabilistic linkages, in order to capture the relevant entity-linkage uncertainty.
Another difference is that DBud supports a more expressive query syntax in comparison
to [9], which includes two aggregation levels and additional aggregation functions.

Processing aggregation queries over DBud could be efficiently achieved by limiting
the number of possible worlds to be materialized or by partially materializing possible
worlds. For instance, for minimum and maximum aggregates we do not need to use
all the records but rather only one record from Ti for each instance from Ri. As an
example, consider again the data of Order from Figure 1. When processing a query with
a maximum aggregate, we can safely ignore all tuples related to a specific ri except the
one with the highest amount, i.e., for r2 we keep only tuple t2 since this provides the
highest amount among all tuples related to r2.

Iceberg queries. In contrast to deterministic data, iceberg queries (i.e., top-k) for
uncertain data has different interpretations [10]: the top-k tuples from the possible world
with the highest probability, the set of k tuples that have the highest aggregated proba-
bility to appear together across all possible worlds [8, 10] (called “U-Topk”), and the k
tuples from any possible world as long as they have the highest probabilities [10] (called
“U-kRanks”). For DBud, this query type corresponds to retrieving the k single-item an-
swers with the highest probabilities (i.e., Topk from [8], k U-Top1 from [10]). Ré et
al. [8] process U-Topk through Monte-Carlo simulation. They maintain probability in-
tervals that are then tightened by generating random possible worlds. Soliman et al. [10]
introduced a framework that navigates the space of possible worlds in order to generate
the top-k tuples. More recent top-k related approaches are [7] and [3]. The approach
in [7] shares the probability computation of detected subqueries with several query an-
swer, and further extends for the computation of bounds. The goal of [3] is similar, but
here the authors achieve the computation of bounds without materialization.

One option for processing iceberg queries over DBud, is to create an indexing struc-
ture that detects and maintains the entities with the highest probabilities. Ideally, the



indexing structure would provide efficient access to the information encoded through
the linkages (i.e., potential merges) and allow easy construction of possible worlds (or
partial possible worlds), as well as the fast retrieval of their probabilities. Thus, DBud

would not need to perform a full on-the-fly materialization, but rather directly retrieve
query answers, or part of them, from the indexing structure.

4 Summary

In this paper we have presented probabilistic databases with unmerged duplicates, i.e.,
databases with duplicated instances and probabilistic linkages between duplicated in-
stances. We discussed the need for efficiently supporting practical query scenarios that
do not require retrieving the huge collection of all possible deduplication worlds, but
rather analytical or summarized information. This primarily involves query analytic, in-
cluding aggregation and iceberg queries. We have also sketch possible methodologies
and techniques that would allow the efficient processing of queries over such proba-
bilistic databases, and especially without the need to materialize the collection of all
possible deduplication worlds.

References

[1] P. Andritsos, A. Fuxman, and R. Miller. Clean answers over dirty databases: A probabilistic
approach. In ICDE, 2006.

[2] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB, 16(4),
2007.

[3] M. Dylla, I. Miliaraki, and M. Theobald. Top-k query processing in probabilistic databases
with non-materialized views. In ICDE, 2013.

[4] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record detection: A survey. TKDE,
19(1), 2007.

[5] R. Fink, L. Han, and D. Olteanu. Aggregation in probabilistic databases via knowledge
compilation. PVLDB, 5(5), 2012.

[6] E. Ioannou, W. Nejdl, C. Niederée, and Y. Velegrakis. On-the-fly entity-aware query pro-
cessing in the presence of linkage. PVLDB, 3(1), 2010.

[7] D. Olteanu and H. Wen. Ranking query answers in probabilistic databases: Complexity and
efficient algorithms. In ICDE, 2012.

[8] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In
ICDE, 2007.

[9] Y. Sismanis, L. Wang, A. Fuxman, P. Haas, and B. Reinwald. Resolution-aware query
answering for business intelligence. In ICDE, 2009.

[10] M. Soliman, I. Ilyas, and K. Chang. Top-k query processing in uncertain databases. In
ICDE, 2007.

[11] Y. Velegrakis. On the importance of updates in information integration and data exchange
systems. In DBISP2P, 2008.

[12] M. Wick, K. Rohanimanesh, K. Schultz, and A. McCallum. A unified approach for schema
matching, coreference and canonicalization. In KDD, 2008.


