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Abstract
Several studies have demonstrated the effectiveness of Haar

wavelets in reducing large amounts of data down to compact wa-
velet synopses that can be used to obtain fast, accurate approx-
imate query answers. While Haar wavelets were originally de-
signed for minimizing the overall root-mean-squared (i.e.,

���
-

norm) error in the data approximation, the recently-proposed idea
of probabilistic wavelet synopses also enables their use in mini-
mizing other error metrics, such as the relative error in individual
data-value reconstruction, which is arguably the most important
for approximate query processing. Known construction algorithms
for probabilistic wavelet synopses employ probabilistic schemes
for coefficient thresholding that are based on optimal Dynamic-
Programming (DP) formulations over the error-tree structure for
Haar coefficients. Unfortunately, these (exact) schemes can scale
quite poorly for large data-domain and synopsis sizes. To address
this shortcoming, in this paper, we introduce a novel, fast approx-
imation scheme for building probabilistic wavelet synopses over
large data sets. Our algorithm’s running time is near-linear in the
size of the data-domain (even for very large synopsis sizes) and
proportional to ����� , where � is the desired approximation guar-
antee. The key technical idea in our approximation scheme is to
make exact DP formulations for probabilistic thresholding much
“sparser”, while ensuring a maximum relative degradation of � on
the quality of the approximate synopsis, i.e., the desired approxi-
mation error metric. Extensive experimental results over synthetic
and real-life data clearly demonstrate the benefits of our proposed
techniques.

1. Introduction
Approximate query processing over compact, pre-

computed data synopses has attracted a lot of interest
recently as a viable solution for dealing with com-
plex queries over massive amounts of data in interac-
tive decision-support and data-exploration environments.
For several of these application scenarios, exact answers
are not required, and users may in fact prefer fast, approx-
imate answers to their queries. Examples include the ini-
tial, exploratory drill-down queries in ad-hoc data mining
systems, where the goal is to quickly identify the “inter-
esting” regions of the underlying database; or, aggregation

queries in decision-support systems where the full preci-
sion of the exact answer is not needed and the first few
digits of precision suffice (e.g., the leading digits of a to-
tal in the millions or the nearest percentile of a percent-
age) [1, 2, 6, 12].

Background and Earlier Results. Haar wavelets are a
mathematical tool for the hierarchical decomposition of
functions with several successful applications in signal and
image processing [13, 18]. A number of recent studies has
also demonstrated the effectiveness of the Haar wavelet de-
composition as a data-reduction tool for database problems,
including selectivity estimation [14] and approximate query
processing over massive relational tables [2, 19] and data
streams [9, 15]. Briefly, the key idea is to apply the decom-
position process over an input data set along with a thresh-
olding procedure in order to obtain a compact data synopsis
comprising of a selected small set of Haar wavelet coeffi-
cients. The results of the recent research studies of Matias,
Vitter and Wang [14, 19], Chakrabarti et al. [2, 3], and oth-
ers [5, 17] have demonstrated that fast and accurate approx-
imate query processing engines can be designed to operate
solely over such compact wavelet synopses.

Until very recently, a major criticism of wavelet-based
approximate query processing techniques has been the fact
that unlike, e.g., random samples, conventional wavelet syn-
opses (such as those used in all the above-cited studies)
cannot provide useful guarantees on the quality of approx-
imate answers. The problem here is that coefficients for
such conventional synopses are typically chosen in a greedy
fashion in order to optimize the overall root-mean-squared
(i.e., �
	 -norm) error in the data approximation. However,
as pointed out by Garofalakis and Gibbons [7], conven-
tional, �
	 -optimized wavelet synopses can result in approx-
imate answers of widely-varying quality (even within the
same data set) and approximation errors that are heavily
biased towards certain regions of the underlying data do-
main. Their proposed solution, termed probabilistic wave-
let synopses [7], employs the idea of randomized coeffi-
cient rounding in conjunction with Dynamic-Programming-
based thresholding schemes specifically tuned for optimiz-



ing the maximum relative error in the approximate recon-
struction of individual data values. By optimizing for rela-
tive error (with a sanity bound), which is arguably the most
important metric for approximate query answers, proba-
bilistic wavelet synopses offer drastic reductions in the
approximation error over conventional deterministic tech-
niques and, furthermore, enable unbiased data reconstruc-
tion with meaningful, non-trivial error guarantees for re-
constructed values [7]. 1

Our Contributions. The Dynamic-Programming (DP) al-
gorithms of [7] for constructing probabilistic wavelet syn-
opses are based on an optimal, continuous DP formulation
over the error-tree structure for Haar coefficients, in con-
junction with the idea of quantizing the possible choices for
synopsis-space allocation using an integer parameter q ��
(in other words, fractional space is allotted to coefficients in
multiples of ��� q). Unfortunately, the problem with these ex-
act (modulo the quantization) DP techniques is that they can
scale poorly for large data-domain and synopsis sizes – with
a domain size of � and synopsis storage of � , the worst-
case running time of the optimized algorithm presented in
[7] (which uses binary-search to optimize the DP search)
is ����� q 	 ��������� q ����� , which becomes ��� � 	 q 	 �!�"��� � q �#�
for large synopsis sizes �%$'&(���)� . (Given that today’s per-
sonal computers and workstations typically come equipped
with Gigabytes of main memory, it is quite realistic to ex-
pect large synopsis sizes when dealing with massive data
sets.) Our own experience with the DP schemes in [7] has
demonstrated that the times required for building a proba-
bilistic wavelet synopsis can increase very rapidly for large
domain sizes � and synopsis sizes � ; this certainly raises
some concerns with respect to the applicability of proba-
bilistic wavelet techniques on massive, real-life data sets.
Note that large domain sizes in the range of �+*-, – �.*�/ are
not at all uncommon, e.g., for massive time-series data sets
where one or more readings/measurements are continuously
recorded on every time-tick.

To address these concerns, we propose a novel, fast ap-
proximation scheme for building probabilistic wavelet syn-
opses over large data sets. Given a quantization parameter q
and a desired approximation factor 0 , our algorithm can be
used to build a probabilistic synopsis of any size �213� in
worst-case time of ����� q ����� q 4�5�687+�����9�:�!�"�9;<�=0+>?� q @��
(where ; is roughly proportional to the maximum absolute
Haar-coefficient value in the decomposition), while guaran-
teeing that the quality of the final solution is within a fac-
tor of �A��BC0D� of that obtained by the (exact) techniques
of Garofalakis and Gibbons [7] for the same problem in-

1 In more recent work, Garofalakis and Kumar [8] have proposed opti-
mal deterministic wavelet-thresholding schemes for relative error met-
rics; still, their optimal algorithms are significantly more expensive
computationally than the probabilistic schemes in [7], and do not di-
rectly extend to multi-dimensional data.

stance. (Note that the running time of our algorithm actu-
ally represents an improvement over the techniques in [7]
even when computing the exact, optimal solution.) In a nut-
shell, the key technical idea in our proposed approxima-
tion scheme is to make the original DP formulations in [7]
much “sparser”, while ensuring a maximum relative degra-
dation of �A�EBF0D� on the quality of the approximate solu-
tion, i.e., the desired maximum error metric. This is accom-
plished by restricting the DP search to a carefully-chosen,
logarithmically-small subset of “breakpoints” that cover
the entire range of possible space allotments within the re-
quired error guarantee. Our results clearly validate our ap-
proach, demonstrating that our algorithm (1) exhibits sig-
nificantly smaller running times, often by more than one or
even two orders of magnitude, than the exact DP solution;
and (2) typically produces significantly tighter approxima-
tions than the specified �A�
B'0D� (worst-case) guarantee.

Roadmap. The remainder of this paper is organized as fol-
lows. Section 2 gives background material on wavelets, as
well as conventional and probabilistic wavelet synopses. In
Section 3, we discuss our approximation scheme for con-
structing probabilistic wavelet synopses in detail. Section 4
describes the results of our empirical study and, finally, Sec-
tion 5 gives some concluding remarks.

2. Preliminaries
The Haar Wavelet Transform. Wavelets are a useful math-
ematical tool for hierarchically decomposing functions in
ways that are both efficient and theoretically sound. Broadly
speaking, the wavelet decomposition of a function consists
of a coarse overall approximation along with detail coeffi-
cients that influence the function at various scales [18]. Sup-
pose that we are given the one-dimensional data vector G
containing the �H$JI data values GF$%K LM>?LN>?*M>DLN>#OP>?QM>�RP>#RTS .
The Haar wavelet transform of G can be computed as fol-
lows. We first average the values together pairwise to get a
new “lower-resolution” representation of the data with the
following average values K LM>��">#RP>#RTS . In other words, the av-
erage of the first two values (that is, L and L ) is L , that of
the next two values (that is, * and L ) is � , and so on. Obvi-
ously, some information has been lost in this averaging pro-
cess. To be able to restore the original values of the data ar-
ray, we need to store some detail coefficients, that capture
the missing information. In Haar wavelets, these detail coef-
ficients are simply the differences of the (second of the) av-
eraged values from the computed pairwise average. Thus,
in our simple example, for the first pair of averaged val-
ues, the detail coefficient is * since LEU'LV$W* , for the sec-
ond we need to store UE� since �XUYLZ$HUE� . Note that no
information has been lost in this process – it is fairly sim-
ple to reconstruct the eight values of the original data ar-
ray from the lower-resolution array containing the four av-



erages and the four detail coefficients. Recursively apply-
ing the above pairwise averaging and differencing process
on the lower-resolution array containing the averages, we
get the following full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform (also known as the wavelet de-
composition) of G is the single coefficient representing the
overall average of the data values followed by the detail co-
efficients in the order of increasing resolution. Thus, the
one-dimensional Haar wavelet transform of G is given by[]\ $3K^������R_>.U`Q-��R_>.�=�TLN>a*P>D*P>=UE�">�UE�">a*TS . Each entry in

[`\
is called a wavelet coefficient. The main advantage of using[]\

instead of the original data vector G is that for vectors
containing similar values most of the detail coefficients tend
to have very small values. Thus, eliminating such small co-
efficients from the wavelet transform (i.e., treating them as
zeros) introduces only small errors when reconstructing the
original data, resulting in a very effective form of lossy data
compression [18]. Furthermore, the Haar wavelet decom-
position can also be extended to multi-dimensional data ar-
rays through natural generalizations of the one-dimensional
decomposition process described above. Multi-dimensional
Haar wavelets have been used in a wide variety of appli-
cations, including approximate query answering over com-
plex decision-support data sets [2, 19].

Error Tree and Conventional Wavelet Synopses. A help-
ful tool for exploring the properties of the Haar wavelet de-
composition is the error tree structure [14]. The error tree
is a hierarchical structure built based on the wavelet trans-
form process. Figure 1 depicts the error tree for our exam-
ple data vector G . Each internal node b.c ( d�$e*M>�f.f�f�>ag ) is
associated with a wavelet coefficient value, and each leafh c ( di$j*M>�f.f�f�>ag ) is associated with a value in the origi-
nal data array; in both cases, the index d denotes the posi-
tions in the data array or error tree. For example, b�k corre-
sponds to the overall average of G . The resolution levels l
for the coefficients (corresponding to levels in the tree) are
also depicted. We use the terms “node” and “coefficient” in-
terchangeably in what follows.

Given a node m in an error tree n , let path � mo� denote
the set of all proper ancestors of m in n (i.e., the nodes
on the path from m to the root of n , including the root
but not m ) with non-zero coefficients. A key property of
the Haar wavelet decomposition is that the reconstruction
of any data value

h c depends only on the values of co-
efficients on path � h cp� ; more specifically, we have

h cq$rsutav
path w!xDy{z}| c�~E�"b?~ , where | c�~i$eB�� if

h c is in the left
child subtree of bD~ or �Z$�* , and | c�~�$�UE� otherwise. For
example, in Figure 1,

h-� $Cbak�U�b.��Bb��)$ �?�� U��AU ,� �#B�AUE�+��$�O .
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Figure 1. Error tree for example array � ( �%��� ).

Given a limited amount of storage for building a wave-
let synopsis of the input data array G , a thresholding pro-
cedure retains a certain number ��� � of the coeffi-
cients as a highly-compressed approximate representation
of the original data (the remaining coefficients are implic-
itly set to * ). Conventional coefficient thresholding is a de-
terministic process that seeks to minimize the overall root-
mean-squared error ( � 	 error norm) of the data approxima-
tion [18] by retaining the � largest wavelet coefficients in
absolute normalized value [18]. � 	 coefficient thresholding
has also been the method of choice for the bulk of existing
work on Haar-wavelets applications in the data-reduction
and approximate query processing domains [2, 14, 15, 19].

Probabilistic Wavelet Synopses. Unfortunately, wavelet
synopses optimized for overall ��	 error using the above-
described process may not always be the best choice for ap-
proximate query processing systems. As observed in a re-
cent study by Garofalakis and Gibbons [7], such conven-
tional wavelet synopses suffer from several important prob-
lems, including the introduction of severe bias in the data
reconstruction and wide variance in the quality of the data
approximation, as well as the lack of non-trivial guarantees
for individual approximate answers. To address these short-
comings, their work introduces probabilistic wavelet syn-
opses, a novel approach for constructing data summaries
from wavelet-transform arrays. In a nutshell, their key idea
is to apply a probabilistic thresholding process based on
randomized rounding [16], that randomly rounds coeffi-
cients either up to a larger rounding value or down to zero,
so that the value of each coefficient is correct on expecta-
tion. More formally, each non-zero wavelet coefficient b c is
associated with a rounding value ��c and a corresponding re-
tention probability ��c�$ s y� y such that *)�W�"c�12� , and the
value of coefficient b�c in the synopsis becomes a random
variable ��c���7+*M>D�PcA@ , where,�
c�$ � �Pc with probability ��c* with probability ��U���c�f
In other words, a probabilistic wavelet synopsis essen-
tially “rounds” each non-zero wavelet coefficient b c inde-
pendently to either � c or zero by flipping a biased coin with
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(1)

success probability �-c . Note that the above rounding pro-
cess is unbiased; that is, the expected value of each rounded
coefficient is E K �Öc{S×$��Pco�a�"cpB�*`�=����U)�"c��Ø$�b�c , i.e., the ac-
tual coefficient value, while its variance is

Var �{dD>#�"c��Ø$ Var ����cp�9$W�u�PcÙUÚb�cu���+b�cÏ$ ��UÚ� c� c �.b 	c (2)

and the expected size of the synopsis is simply
E K!Û synopsis Û S%$ r cuÜ s y#Ð¦ k � c $ r cuÜ s y#Ð¦ k s y� y . Thus, since
each data value can be reconstructed as a simple lin-
ear combination of wavelet coefficients, and by linearity
of expectation, it is easy to see that probabilistic wa-
velet synopses guarantee unbiased approximations of
individual data values as well as range-aggregate query an-
swers [7].

Garofalakis and Gibbons [7] propose several different al-
gorithms for building probabilistic wavelet synopses. The
key, of course, is to select the coefficient rounding values7�� c @ such that some desired error metric for the data ap-
proximation is minimized while not exceeding a prescribed
space limit � for the synopsis (i.e., E KÝÛ synopsis Û Si1Þ� ).
Their winning strategies are based on formulating appropri-
ate Dynamic-Programming (DP) recurrences over the Haar
error-tree that explicitly minimize either (a) the maximum
normalized standard error (MinRelVar), or (b) the maximum
normalized bias (MinRelBias), for each reconstructed value
in the data domain. As explained in [7], the rationale for
these probabilistic error metrics is that they are directly re-
lated to the maximum relative error (with an appropriate
sanity bound S)2 in the approximation of individual data
values based on the synopsis; that is, both the MinRelVar
and MinRelBias schemes try to (probabilistically) control
the quantity 4Vß=à c 7 Ü#áx y É8x y Ü«�Â#Ã Ò Ü xDy Ü £ S Ó @ , where âh c denotes the data
value reconstructed based on the wavelet synopsis. Note,
of course, that âh c is again a random variable, defined as theã � summation of all (independent) coefficient random vari-
ables on path � h c � . Bounding the maximum relative error in
the approximation also allows for meaningful error guaran-
tees to be provided on reconstructed data values [7].

As an example, Equation (1) depicts the DP recurrence in
[7] for minimizing the maximum squared Normalized Stan-

2 The role of the sanity bound is to ensure that relative-error numbers
are not unduly dominated by small data values [11, 19].

dard Error (NSE
	 ) in the data reconstruction, defined as4�ßTàc NSE

	 � âh c �)$Þ4Vß=àc Var ��âh c �4�ßTà_7 h 	c > S 	 @ >
where Var ��âh c ��$ r s t v

path w!x y z Var ����>�� ~ � . äCå=K dD>�æ c S here
denotes the minimum value of the maximum squared NSE
(i.e., NSE

	 ) among all data values in the subtree of the error-
tree rooted at coefficient b�c assuming a space budget of æoc ,
and Norm � dA�Ú$24�ßTào7 h min �{dA� 	 > S 	 @ , where

h
min � dA� is the

minimum absolute data value under b.c ’s subtree, is a nor-
malization term for that subtree. (Indices LTd and L=d�BC� in
the recurrence correspond to the left and right child (re-
spectively) of b c in the error-tree structure (Figure 1).) In-
tuitively, the DP recurrence in Equation (1) states that, for
a given space budget æ c at b c , the optimal fractional-storage
allotments 7+� c @ and the corresponding maximum NSE

	 are
fixed by minimizing the larger of the costs for paths via b c ’s
two child subtrees (including the root in all paths), where
the cost for a path via a subtree is the sum of: (1) the vari-
ance penalty incurred at b�c itself, assuming a setting of �-c ,
divided by the normalization term for that subtree, and (2)
the optimal cost for the subtree, assuming the given space
budget. This minimization, of course, is over all possible
values of ��c and, given a setting of �-c , over all possible al-
lotments of the remaining æ c U�� c space “units” amongst the
two child subtrees of b c . Of course, if b c $:* then no space
budget needs to be allocated to node d , which results in the
simpler recurrence in the second clause of Equation (1). Fi-
nally, data-value nodes (characterized by indices dZçè� ,
see Figure 1) cost no space and incur no cost, and the “oth-
erwise” clause handles the case where we have a non-zero
coefficient but zero budget ( b c�é$�* and æ c $* ).

As demonstrated in [7], the DP recurrence in Equa-
tion (1) characterizes the optimal solution to the maxi-
mum NSE

	 minimization problem for the case of continu-
ous fractional-storage allotments � c �ê��*M>.��S (modulo cer-
tain technical conditions that may require small “perturba-
tions” of zero coefficients [7]). A similar DP recurrence
can also be given for the maximum normalized bias met-
ric. Their MinRelVar and MinRelBias algorithms then pro-
ceed by quantizing the solution space; that is, they as-
sume the storage allotment variables �-c and ë�ì in Equa-
tion (1) to take values from a discrete set of choices cor-
responding to integer multiples of ��� q, where q �í� is
an input integer parameter to the algorithms. (For instance,� c �î7�*M> �

q > 	
q >�f.f�f�>.�T@ – larger values of q imply results



closer to the optimal, continuous solution.) Furthermore,
both MinRelVar and MinRelBias cap the variance of a co-
efficient b at b 	 , thus allowing for zero-space allotments to
unimportant coefficients (this also implies that non-zero al-
lotments of size 1 �	 are useless, as they result in larger vari-
ance (Equation (2)) while utilizing more space).The running
time of their (quantized) MinRelVar and MinRelBias algo-
rithms is ����� q 	 ���!�"��� q ���#� with an overall space require-
ment of ����� q ��� (and an in-memory working-set size of��� q ���!�"�9��� ); furthermore, their techniques also naturally
extend to multi-dimensional data and wavelets, with a rea-
sonable increase in time and space complexity [7]. Exper-
imental results over synthetic and real-life data in [7] have
demonstrated the superiority of MinRelVar and MinRelBias
probabilistic synopses as an approximate query answering
tool over conventional wavelet synopses. In our discussion,
we use ä åq K dD>�æ�cïS to denote the result of the quantized (ex-
act) algorithms of [7] (e.g., maximum NSE

	 for MinRel-
Var) for the error subtree rooted at coefficient b.c assuming a
space budget of æ c .
3. Our Approximation Scheme

In this section, we present our efficient approximation
scheme, termed � -ApproxRV, for constructing probabilistic
wavelet synopses over large data sets. Our � -ApproxRV is
a guaranteed �A�]BY0a� approximation algorithm for the Min-
RelVar scheme of Garofalakis and Gibbons [7]; that is, it
focuses on minimizing the maximum NSE

	 in the data re-
construction. Our techniques can easily be extended to han-
dle other error metrics, such as the maximum normalized
bias employed by MinRelBias [7]. Our presentation here fo-
cuses primarily on the case of one-dimensional Haar wave-
lets – the details of the extension to multiple dimensions can
be found in the full paper[4].

3.1. The One-Dimensional ð -ApproxRV Algorithm
Consider the error-tree structure for a one-dimensional

Haar wavelet decomposition, and let ; denote the maximum
absolute normalized value of any coefficient in the tree, de-
fined as ;ñ$Þ4Vß=àc Û b�c?Û4VßTà�7 h min � d°��> S @ >
where, as previously,

h
min �{dA� denotes the minimum abso-

lute data value in the subtree of node d . (Typically, e.g., for
frequency-count vectors, the denominator in the above ex-
pression is �%� , which implies that ; is in the order of the
maximum absolute coefficient value.) Our � -ApproxRV al-
gorithm runs in ��� � q �!�"� q 4�5!687�ò ó#ô Î ò ó?ôMõö >#� q @�� time
and computes an approximate solution for any synop-
sis space budget ��1÷� . Note that, for large synopsis
sizes ( � $ &(���)� ), the corresponding time complex-
ity of the exact MinRelVar algorithm is significantly higher:��� � 	 q 	 ��������� q ��� [7]. Of course, our � -ApproxRV algo-

rithm is actually faster than the MinRelVar algorithm even
for very small synopsis sizes ( �ø$jùN�{�!�"�9�)� ) and when
the optimal solution is sought. Again, the key idea in our� -ApproxRV algorithm is to speed up the DP search by mak-
ing it much “sparser”3 – in a nutshell, our approximate
“sparse” DP algorithm will only search over a few pos-
sible space allotments for each error subtree, which are
carefully chosen to guarantee a maximum deviation of�A�<BF0a� from the optimal solution. Our � -ApproxRV algo-
rithm proceeds in a bottom-up fashion over the input error
tree – to simplify the exposition in this section, we as-
sume that levels in the error tree are numbered bottom-up,
with leaf-node coefficients at level * and the root (over-
all average) at level �!�"�
��U�� .

The Sparse DP Approximation Scheme. Fix a quantiza-
tion parameter q, and let ä q K ú�>?ë?S denote the approximate
maximum squared NSE (NSE

	 ) computed by � -ApproxRV
for any data value in the error subtree rooted at node ú . As
earlier, ä åq K ú�>?ë?S is the corresponding optimal NSE

	 value
computed by MinRelVar. Note that, for any node ú , theä åq K ú�>?ë?S values are clearly monotonically decreasing in ë ;
that is, ä åq K ú_>#ûMSÏ1�ä åq K ú�>��-S for ûZ�'� [7].

For the base case, consider a leaf-node coefficient ú (at
level * ) – clearly, in this caseä åq K ú_>Dë?So$ Var ��b�ü}>#4(5!687-�">?ë�@��4�5!6×7 Norm �uL=úN�a> Norm ��LTúXB�+�a@
i.e., the maximum normalized variance of the correspond-
ing random variable with a success probability of ë ( ë��7+*P> �

q > 	
q >�f.f�f.>��T@ – any ëËçW� obviously results in zero nor-

malized variance). It is easy to see that all possible val-
ues for ä åq K ú�>?ë?S , for any value of ë , can be computed in
time ��� q � , where q is the designated quantization param-
eter. Out of these ��� q � variance values and possible allot-
ments to b�ü , our � -ApproxRV algorithm picks a subset of al-
lotments ë � ��f�f�f`�îë�ý such that: (1) for each allotmentû��3K ë�cA>?ë�c É � � we have ä åq K ú�>?ë�c{S�1F���ÖBY0a��ä åq K ú_>#ûMS ; and,
(2) ë � through ë�ý cover the entire possible range of space al-
lotments to b ü , i.e., ë.��$�� and ë ý $:* . This can obviously
be done in ��� q � time by simply going over all ä åq val-
ues and selecting ë c Æ � as the first allotment 1%ë c such thatä åq K ú�>?ë c Æ �aS9�:�A�]B�0D�#ä åq K ú�>?ë c S . Since the maximum nor-
malized variance for a coefficient value b ü is at most (see
Section 2)

s Åþ«�¬  Ò Norm w 	 ü z £ Norm w 	 ü Æ � z�Ó 1F; 	 , is easy to see
that the number ÿ of allotment “breakpoints” selected in this
fashion is at most ��� ����� � Æ ö ; 	 �Ø$ ���Jò ó?ôPõò ó?ô w � Æ ö z � � ����ò ó?ôPõö �
(for small values of 0 ��� ). The approximate error values

3 Guha et al. [10] also discuss sparse DP algorithms in an entirely differ-
ent context, namely building approximate � -optimal histograms over
linear, time-series data; in contrast, our solution focuses on Haar wa-
velets and works over the hierarchical error-tree structure of the wave-
let decomposition.



determined by our � -ApproxRV algorithm for coefficient b ü
are defined only by these ÿ breakpoints ë+��>.f�f�f�>?ë ý – specifi-
cally, ä q K ú�>?ë c S $ä åq K ú_>Dë c S�$ Var w s þ £ Ç y z«�¬  Ò Norm w 	 ü z £ Norm w 	 ü Æ � z�Ó
for dF$ ��>�f.f�f�>Dÿ , and for any other possible allotmentûF��K ë c >Dë c É ��� , we define ä q K ú�>�ûPSX$ ä q K ú_>Dë c S . Thus, it
is easy to see that, by construction, the approximation er-
ror of our � -ApproxRV algorithm is bounded by a factor of�A��B�0D� at leaf coefficients (at level * ); in other words, all
dropped allotments are “covered” by a logarithmic number
of breakpoints to within a (1 + 0 ) factor.

Now, proceeding inductively, consider an internal error-
tree node ú at level � , with children m and � (at level�<U3� ), and assume that the subtree rooted at m ( � ) has de-
termined a collection of l�� (resp., l�� ) error-function break-
points �M��� f.f�f����
	�� (resp., ë.���èf�f�f�� ë	�� ), and
corresponding approximate NSE

	 values ä q K S , that cover
the range of allotments to each subtree and such that, for
each û �JK �}c�>��}c É � � ( d`$�LM>�f�f.f�>#l � ), we have ä q K m�>��}c{SÖ1�A�ÏB)0D� ~ ä åq K m�>�ûMS (and similarly for � ). Our � -ApproxRV al-
gorithm computes the allotment breakpoints and approxi-
mate error values ä q K S at the parent node ú by iterating
over all possible space allotments to node ú and the break-
points determined by the m and � subtrees (rather than all
possible allotments to child subtrees), and retaining the min-
imum ä q values for each total allotment. The following
lemma shows that, for each fixed space allotment to the co-
efficient at node ú , it actually suffices to look at only l�� B l��
combinations ��� c >?ë��T� for the subtree allotments rather than
all possible l��<��l�� combinations.

Lemma 1: When minimizing the maximum (approximate)
NSE

	 error at node ú , for any fixed space allotment to nodeú , it suffices to consider only l��`B�l�� combinations of allot-
ments ��� c >Dë��=� to the child subtrees rooted at m , � .

Proof: Assume a fixed space allotment to the coefficient at
node ú , and let l�� ����� ��� ( ��d��Nÿ ��� �
� ) denote the variance
of node ú (for the given allotment) divided by the normal-
ization factor of its left (resp., right) subtree. Let � � de-
note the sorted list of approximate NSE

	 values ä! q K m�>�� c So$ä q K m�>�� c SPB l�� ����� �
� , i.e., ä q K mÏ>"�N�DSMB l�� ����� �
���Jf�f.f��ä q K m�>��
	��"S�Bêl�� ����� �
� , with �#� defined similarly using
the ��d��Nÿ ��� �
� quantity and the ä q K �<>Dë��+S entries. Let �3$
merge ���#��>?�#� � , i.e., ä$ q K �-�DS]1:f�f�f�1�ä! q K �%	�� Æ 	&�oS , where� c � 7-�{m�>��'�=�)(�*V$C�">.f�f�f�>#l��P@,+�7-����>?ë��=�-(
*�$W�">.f�f�f.>#l��9@ .
Now assume that � c space is allocated to the m -subtree ofú . Then, it is easy to see that, when considering the allot-
ment to the � -subtree, out of all the ë -values that lie to the
left of �}c in � we really only need to consider the right-
most ë -value, say ë � – the reason of course is that lower
values of ä$ q K ��>?ë?S (i.e., allotments ë ��ë � ) result in con-
figurations that use more total space without improving the
error at ú (since that is dominated by the m -subtree). These
configurations are clearly useless in our error-minimization

procedure. For the ë -values to the right of � c in � , a sim-
ilar argument again applies: when a value ë.� is assumed,
only the closest � -value to its left in � needs to be consid-
ered.

Thus, our approximate error-minimization procedure atú only needs to consider, for each fixed space allotment/ $e*P>×��� q >Ïf�f.f�>×� to node ú , l���B�l�� breakpoint combi-
nations ��� c >Dë��=� for the m and � subtrees, which can be de-
termined easily in ��� l���Bl���� time based on the proof of
Lemma 1. Let 0Ë� / � denote the list of the obtained l���BYl����� c >?ë��=� combinations for each space allotment / to nodeú . The sorted list of approximate error values at node ú
can be computed in ��� q � l � B�l � �N����� q � time by merg-
ing these lists using a heap structure or, alternatively, pair-
wise merging them in �!�"� q steps. Thus, an initial list of��� q ��l � BYl � ��� breakpoints for the ú subtree is determined
based on the “useful” space-allocation configurations found
through the above lemma – clearly, configurations that give
the same (or, larger) NSE

	 values for the same (or, larger)
amount of total space are useless and should be discarded.
In other words, we define the initial set of space-allotment
breakpoints for the ú subtree as 1F$27+bi$2� c BJë��<B / (ä q K ú�>�� c Bqë��ØB / SÙ1Yä q K ú�>���BÚëÙB � S for all �]BÚë×B � 1� c B<ë��-B / @ . (Useless configurations and configurations with
space larger than � can easily be discarded in the merging
pass for the ��� q � sub-lists described above.) It is easy to
verify that, based on our inductive assumption, this set of
breakpoints 1 covers the entire range of possible allotments
for the ú subtree; furthermore, the following lemma shows
that it also preserves the approximation properties guaran-
teed by the individual subtrees.

Lemma 2: Let / �J��f.f�f�� / ý denote the sorted list of
space-allotment breakpoints 1 for the ú subtree, computed
as described above, and let û��K / c > / c É ��� for any d . Then,ä q K ú�> / c SÙ1�A��Bq0a� ~ ä åq K ú�>�ûPS , where � denotes the level of
node ú .

Proof: Assume that the optimal error value ä åq K ú�>�ûMS is ob-
tained through the allotment configuration � �
�_>��3�
> / � , that
is: ä åq K ú_>#ûMS8$4Vß=à §© ª Var w s þ £ 4 z

Norm w � z B'ä åq K mÏ>#�3�"S
Var w s þ £ 4 z
Norm w � z B ä åq K �<>��3�ÏS

where, of course, ûjç ���ZB��3��B / . Since the break-
points for the m and � subtrees cover all possible allot-
ments, let � � �YK �}c�>"�}c É � � and � � �3K ë � >?ë � É � � . By our in-
ductive hypothesis, it is easy to see that the configuration���}c#>?ë � > / � (which is obviously examined by the � -ApproxRV
algorithm) will give ä q K ú�>��}cTBië � B / SÙ1Y�A�8B 0D� ~ ä åq K ú�>�ûPS
and, clearly, � c BWë���B / 1 / c 1 û . Since ä q K ú�> / c S 1ä q K ú�>�� c B ë���B / S , the result follows.



A potential problem with our approximation scheme, as
described so far, is that the list of space-allotment break-
points 1 would appear to grow exponentially as the DP
moves up the error-tree levels. (So, starting with � break-
points at the leaf nodes, we get ��� q ~ L ~ �=� breakpoints at
level � of the tree.) However, not all / c ’s in 1 are neces-
sary – we can actually “trim” 1 to a small number of break-
points, while incurring an additional ���ÙB 0a� worst-case fac-
tor degradation on our approximation error. We perform this
trimming process at every node of the error tree (except for
the final, root node). More specifically, assume a chain of
computed breakpoints / c É �F� / c É � Æ �� f�f.f�� / c such
that, for each l<$îd�U5*o>�f.f�f�>#d9U:� we have ä q K ú_> / c S�1�A�`B30a��ä q K ú�> / 	ÝS . Then, clearly, ä q K ú_> / c S can “cover” all
the points that are covered by / c É �N>.f�f.f�> / c É � at an addi-
tional �A�MB�0a� degradation, since, for any l×$d=U6*o>�f.f�fa>#d=U�� :ä q K ú_> / c S÷1 �A�
B'0a��ä q K ú�> / 	ïS1 �A�
B'0a� ~ Æ � ä åq K ú�>�ûPS87�û �qK / 	 > / 	 É � �af
Thus, in this situation, the allotment points / c É �}>�f.f�f�> / c É �
can be eliminated and / c can cover their ranges to within a�A��BÚ0a� ~ Æ � factor. Now, note that the maximum value of the
overall NSE

	 value at level � (and, thus, the range of values
for the ä q K S array) is certainly upper-bounded by ���MB(���A; 	 .
This means that the total number of breakpoints obtained in
the manner described above is at most �!�"� � Æ ö �#����B ���A; 	 � ���� ò ó#ô w ~ Æ � z Æ ò ó?ôPõö � , which is an upper bound for the size of
our breakpoint-list constructed at level � of the error tree.
Thus, with an overall computational effort of:9 :<;3=?>�@A B CEDGF)H

IJ B�K @ q LNMO q H LNMO HNPRQTS�U�Q LNMOWV UX UY F-H
I
q LNMO q LNMOZVX 9 :<;�=?>�@AB CED SJ

B"K @ U
Q[F)H
I
q LNMO qX 9 :<;�=?>\@A B C]D P^Q_SJ B�K @ U` F-H

I
q LNMO q LNMOZVX Uba

we get a (collection of) approximate solutions at the root
node of the error tree that are guaranteed to cover the op-
timal MinRelVar solutions to within a �A� B 0a� ò ó?ô Î fac-
tor. Then, it is easy to see that, setting 0� $è0����!�"�Ø� ,
we get a guaranteed �A� Bj0a� approximation in time��� Î q ò ó#ô q ò ó#ô Î ò ó?ôMõö � . Note that, to find the approxi-
mate solution for any specific choice of the allotment
space � , we simply start out at the root and re-trace
the steps of the algorithm for the largest root break-
point / c that is 1W� ; to do that, we just need to keep track
of the ��� c >Dë��-> / � configuration that generated each of the
breakpoints at each error tree node and proceed recur-
sively down the tree. It is easy to verify that the overall
space required by the � -ApproxRV algorithm isò ó?ô Î É �A~ ¦ k ��� �L ~ Æ � �!�"�����XB3���×B��!�"�9;0  �Ø$J��� �:�!�"�9�:�!�"�
;0 ��>

while the working set size (maximum amount of
memory-resident data) is only ��� q w ò ó?ôNò ó#ô Î Æ ò ó?ôMõ zö�c �
= ��� q ò ó?ô Î w ò ó#ôNò ó?ô Î Æ ò ó?ôPõ zö � . To see this, note that� -ApproxRV works in a bottom-up fashion and, when com-
puting the breakpoint-list for a given node ú , we only
need access to: (1) the l��ZB�l�� breakpoints of its child
nodes in the error tree; and, (2) the ��� q � l � B%l � �#� ini-
tial breakpoints for node ú that are computed just before the
trimming process. Thus, the maximum working set will oc-
cur in the top-level of the error tree (level �!�"�
� -1), wherel � B%l � $ ����ò ó?ôPõ Æ ò ó?ôMò ó#ô Îö�c � . Finally, note that, given a
space budget � , we cannot have more than q � differ-
ent breakpoints at any error-tree node; in other words,
the size of the breakpoint list at any level-� node is
at most ��� 4�5�6Ù7 ò ó?ô w ~ Æ � z Æ ò ó?ôPõö > q �V@�� . This easily im-
plies that the overall space required by our � -ApproxRV
algorithm can never exceed the space requirements of Min-
RelVar (i.e., ��� � q �(� ). Similarly, the list of (at most
q � ) breakpoints at each node can be computed in time��� q d � q ���}�!�"� q �#$X����� q 	 �!�"� q � ; thus, the over-
all running time complexity is also upper-bounded by��� �Z� q 	 �!�"� q � , giving an improvement over MinRel-
Var, even for very small values of � . The following the-
orem summarizes the results of our analysis for the
one-dimensional � -ApproxRV algorithm.

Theorem 3: The � -ApproxRV algorithm correctly computes
a list of breakpoints at the root node such that, for any space
budget �Þ1�� and approximation factor 0 , the estimated
maximum NSE

	 value is within a factor of �A��B'0a� from the
optimal MinRelVar solution. The overall � -ApproxRV com-
putation requires ��� � q ����� q 4�5�6Ù7�ò ó#ô Î ò ó?ôPõö >#� q @�� time
and ��� �:4�5!6×7�ò ó#ô Î ò ó#ô_õö > q �V@=� space, with a working set
size of ��� q 4�5�6×7.�!�"�9�ò ó?ôNò ó#ô Î Æ ò ó?ôMõö >#��@�� .

It is important to note that the above (worst-case)
running-time and space complexities of our � -ApproxRV al-
gorithm are based on a pathological case where all the pro-
duced coefficients have an absolute normalized value
of ; . However, in most real-life data sets the wave-
let decomposition process produces few coefficients of
large magnitude, while the remaining coefficient val-
ues are significantly smaller. This, in turn, implies that,
for most error-tree nodes, the maximum value of the over-
all NSE

	 value at level � will be significantly smaller than����B:�+�A; 	 . This results not only in reduced space require-
ments for � -ApproxRV (smaller breakpoint-lists stored at
each node), but also in reduced running times (smaller
breakpoint-lists scanned and merged). Our experimen-
tal results in Section 4 clearly validate our claims, with� -ApproxRV demonstrating consistent and very signifi-
cant gains over the exact MinRelVar scheme for a wide



range of input parameters and data sets.

Optimizations and Extensions. For very large data sets,
it is possible that the breakpoint-lists produced by our � -
ApproxRV algorithm may not fit in main memory, result-
ing in substantial I/O during the algorithm’s execution.
In the full paper[4], we propose a simple optimization
to address this concern. Briefly, the key idea is to com-
pute the breakpoint-lists for error-tree nodes in one pass
using a postorder traversal, with a working set size of���{4�5�6Ù7 w ò ó?ô Î z Å w ò ó?ôMõ Æ ò ó#ôNò ó?ô Î zö > q ���!�"�
�q@�� .

The full paper[4] also discusses in detail the ex-
tension of our � -ApproxRV algorithm for multi-
dimensional data sets. For the case of e -dimensional
data, the running time of � -ApproxRV becomes���{4�5�6Ù7 Î^f q �g ò ó?ô  ihkj�l w ò ó#ô q Ækm zpw mØÆ ò ó?ôMõ Æ ò ó?ôNò ó?ô  ihkj�l zö >�on q L m d]� q �JBpe L m �D@=� , where �6n denotes the number of
nodes in the error tree that contain at least one non-zero co-
efficient, and ärqtsu is the maximum domain size among
all dimensions. The corresponding space requirements are���{4�5�6Ù7 �g Î f ò ó?ô   hkj�l w mØÆ ò ó?ôMõ Æ ò ó#ôPò ó?ô   hkj�l zö > q � n ��@�� .
Note, of course, that in most real-life scenarios employ-
ing wavelet-based data reduction, the number of dimen-
sions e is typically a small constant (e.g., L – Q ) [2, 6, 7].

4. Experimental Study
In this section, we present an extensive experimental

study of our proposed � -ApproxRV algorithm for construct-
ing probabilistic wavelet synopses over large data sets. The
objective of this study is to evaluate both the scalability and
the obtained accuracy of our proposed � -ApproxRV algo-
rithm when compared to the dynamic programming algo-
rithm MinRelVar of [7] for a large variety of real-life and
synthetic data sets. For the later DP solution, we used the
significantly faster version of the algorithm that was very
recently proposed in [7]. The main findings of our study for
the � -ApproxRV algorithm include:v Near Optimal Results. The � -ApproxRV algorithm con-
sistently provides near-optimal solutions. Moreover, the ac-
tual deviation of the � -ApproxRV solution from the optimal
one is typically significantly smaller (usually by a factor
larger than 5) than the specified 0 value.v Significantly Faster Solution. Our � -ApproxRV algorithm
provides a fast and scalable solution for constructing proba-
bilistic synopses over large data sets. Compared to the Min-
RelVar algorithm of [7], the running time of the � -ApproxRV
algorithm is often more than an order of magnitude (and
in some times more than two orders of magnitude) smaller,
while at the same time providing highly-accurate answers.
In fact, the � -ApproxRV algorithm is significantly faster even
for cases when the optimal solution is required ( 0 = 0).

4.1. Testbed and Methodology
Techniques and Parameter Settings. Our experimental
study compares the � -ApproxRV and MinRelVar algorithms
for constructing probabilistic wavelet synopses. Both algo-
rithms utilize the quantization parameter w , which is as-
signed a value of 10, as suggested in [7], in our exper-
iments. Larger values of this quantization parameter im-
proved the running time performance of the � -ApproxRV al-
gorithm when compared to the MinRelVar algorithm, as ex-
pected by the running time complexities of the two algo-
rithms. Finally, the sanity bound of each data set is set to itsQ %-quantile data value.

Data Sets. We experiment with several one-dimensional
synthetic and real-life data set. Due to space con-
straints we only present here the results for the real-life
data sets (the performance of the algorithms in the syn-
thetic data sets is qualitatively similar). The Weather
data set contains meteorological measurements obtained
by a station at the university of Washington (www-k12.-
atmos.washington.edu/k12/grayskies). This is a
one-dimensional data set for which we extracted the fol-
lowing 6 measured quantities: wind speed, wind peak, solar
irradiance, relative humidity, air temperature and dew-
point temperature, and present here the results for the
wind speed (AirSpeed) and the air temperature (AirTemp),
which represent a noisy and a smooth signal, correspond-
ingly. The Phone data set includes the total number
of long distance calls per minute originating from sev-
eral states in USA. We here present the results for the
states of New York (NY) and Indiana (IN), with NY hav-
ing large numbers of calls per minute and IN being a
state with significantly fewer calls. The presented re-
sults for each real-life data set are also indicative of the re-
sults for the other measured quantities in these data
sets.

Approximation Error Metrics. To compare the accuracy
of the studied algorithms we focus on the maximum rela-
tive error of the approximation, since it can provide guar-
anteed error-bounds for the reconstruction of any individ-
ual data value. Since the objective function that both stud-
ied algorithms try to minimize is the maximum NSE

	 of any
data value, for a more direct and clear comparison we pre-
sent the results for this metric and for both algorithms. The
results for the maximum relative error are qualitatively sim-
ilar to the presented ones.

4.2. Experimental Results
Sensitivity to 0 . We now evaluate the accuracy and running
time of the � -ApproxRV algorithm in comparison to the Min-
RelVar algorithm, using the real-life data sets. In Figures 2
and 3 we plot the running times for the two algorithms and
for the two data sets, correspondingly, as we vary the value



of 0 from * to *Mf O . We set the domain size for all data sets to
65536, and the synopsis space to 5% of the input size. The� -ApproxRV algorithm is consistently faster than the MinRel-
Var algorithm in both real-life data sets, often by more than
an order of magnitude, and is considerably faster even when
the optimal solution is required ( 0 = 0). Unlike the MinRel-
Var algorithm which may perform multiple lookups of each
computed entry,4 the � -ApproxRV algorithm processes all
node entries in a single pass, therefore resulting in signifi-
cantly faster running times. We also observe in these figures
that, with the increase of 0 , the running time of � -ApproxRV
decreases, as the algorithm effectively prunes a larger num-
ber of breakpoints.

The corresponding NSE
	 values for both algorithms are

presented in Figures 4 and 5. In order for the reader to be
able to observe the difference in the accuracy of the two
algorithms, in each figure we plot the ratio of the maxi-
mum NSE

	 values produced by the � -ApproxRV algorithm to
the corresponding results of the MinRelVar algorithm. The� -ApproxRV algorithm, as expected, always provides solu-
tions that are within the specified error factor 0 from the
optimal solution. It is interesting to note though that in all
cases the produced solution is significantly closer to the op-
timal one (by more than a factor of 5), than the specified 0
value. This is not surprising, as 0 represents a worst-case er-
ror bound.

Sensitivity to the Domain Size. We now evaluate the accu-
racy and running time of the � -ApproxRV algorithm in com-
parison to the MinRelVar algorithm, using the real-life data
sets, when we vary the domain size of the data sets from
128 to 65536, and plot the resulting running times for the
two algorithms in Figures 6 and 7. The synopsis space is
set to 5% of the input size, while the value of 0 is set to
0.10. Again, the � -ApproxRV algorithm significantly outper-
forms the MinRelVar algorithm, with the savings in running
time increasing rapidly as the domain size increases. For
large domain sizes, the � -ApproxRV algorithm is up to 23.8
times faster than the MinRelVar algorithm.

In Figures 8 and 9 we plot the corresponding ratios of
the maximum NSE

	 values obtained by the two algorithms.
Again, the � -ApproxRV algorithm always produced solu-
tions that are significantly closer to the optimal solution
(less than 1.7% and 1.4% difference, correspondingly, for
the two data sets), than the specified error factor 0 .
Sensitivity to the Synopsis Space. In Figures 10 and 11
we present the running times for both algorithms and for
the real-life data sets, as the synopsis space is varied from
1% to 30% of the size of the input. The domain size is set to
65536, while the value of 0 is set to 0.10. The running time

4 In the MinRelVar algorithm, the optimal solution of allocating spacex
to any node y may be probed for any space allotment z x to y ’s

parent node in the error tree.

of the MinRelVar algorithm increases rapidly with the in-
crease in the used synopsis space, while the corresponding
running time of the � -ApproxRV algorithm remains practi-
cally unaffected. For large synopsis spaces, the � -ApproxRV
algorithm is more than two orders of magnitude faster than
the MinRelVar algorithm. However, the solutions obtained
from the � -ApproxRV algorithm are again very close to the
optimal ones (less than 1.7% and 1.5% difference for the
two data sets), as we can see in Figures 12 and 13.

5. Conclusions
We have proposed a novel, fast approximation scheme

for constructing probabilistic wavelet synopses over
large data sets. Our proposed techniques employ a much
“sparser” version of previously proposed Dynamic-
Programming (DP) solutions, which restricts its search to a
carefully chosen, logarithmically-small subset of “break-
points” that cover the entire range of possible space allot-
ments, while always ensuring a maximum relative degra-
dation of �A��BW0a� in the quality of the obtained solution.
Our experimental evaluation has demonstrated that our ap-
proximation algorithm typically provides significantly
tighter solutions than the maximum ���iBî0a� error fac-
tor, while at the same time providing running times that
are up to two orders of magnitude smaller than known ex-
act DP solutions.
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