
Community Systems Research at Yahoo!

Community Systems Group
Yahoo! Research

Sunnyvale, CA 94089 and New York, NY 10018
{ramakris}@yahoo-inc.com

ABSTRACT
The web and its continued evolution present unprecedented
opportunities for database researchers and practitioners to
deliver unique user experiences that are not possible tra-
ditionally, e.g., mass collaborations through (automatically)
established online communities and exploration of large scale
structured information. Along with these opportunities, how-
ever, come significant challenges. The challenges are two-
fold: systems, the infrastructures that allow us to deliver in-
formation at scale; and community, the applications that de-
liver the next generation of web experiences centered around
people and social networks. In this paper, we describe the
ongoing research efforts within the Community Systems group
here at Yahoo! Research to address these challenges.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Systems and
Software

General Terms
Design, Management, Performance

Keywords
web-scale system, web community, web data management

1. INTRODUCTION AND OVERVIEW
In mid-2005, Yahoo! Inc. began an ambitious program to

create a world-class industrial research lab focusing on how
to deliver services over the web to a range of stakehold-
ers, including advertisers, site owners, content publishers,
and users. Yahoo! Research now has groups in the follow-
ing areas: Community Systems, Computational Advertis-
ing, Machine Learning, Media Experience and Design, Mi-
croeconomics, and Web Search. In this paper, we present
an overview of the Community Systems group, which
now includes Vipul Agarwal, Sihem Amer-Yahia, Philip Bo-
hannon, Brian Cooper, Nilesh Dalvi, Minos Garofalakis,
Arun Iyer, Vinay Kakade, Daniel Kifer, Raghu Ramakrish-
nan, Adam Silberstein, Utkarsh Srivastava, Ramana Yer-
neni, and Cong Yu. We also collaborate closely with others
from Yahoo! Research, including Marcus Fontoura, Vanja
Josifovski, Ravi Kumar, Cameron Marlow, Srujana Merugu,
Chris Olston, Bo Pang, Seung-Taek Park, Benjamin Reed,
Sathiya Keerthi Selvaraj, Jayavel Shanmugasundaram, An-
drew Tomkins, Sergei Vassilvitskii, and Erik Vee, and from
other parts of Yahoo!.

We believe that the web has introduced significant new
challenges and opportunities [14, 13] at many levels—how
we deliver applications to customers, how we monetize those

applications, how we build and support those applications,
and even the very nature of the applications that are made
possible by leveraging the information accessible through the
web. The goal of our group is to take on these challenges, in
particular those that are central to building, supporting, and
analyzing applications involving large user communities, and
to enable Yahoo! to capitalize on the opportunities presented
on the web. In this short paper, we present an overview
of some of the projects we are undertaking, organized into
sections that reflect the goals of the group.

2. WEB-SCALE INFRASTRUCTURE
In this section, we describe the two main systems we are

currently building for managing web-scale data: PNUTS
and Pig. We also briefly discuss AppForge, a system that
enables GUI-driven development of hosted web applications.

2.1 PNUTS
The PNUTS project1 is to build a massively scalable data

management service to provide back-end support for Ya-
hoo!’s web workloads. At Yahoo! scale, massive parallelism
and distribution are necessary to provide acceptable latency
and high throughput for web workloads. In particular, so-
cial and community applications significantly increase data
needs by injecting huge amounts of user generated content,
and by requiring complex relationships among a large num-
ber of users to be efficiently maintained and queried. PNUTS
partitions and replicates data over thousands or tens of thou-
sands of servers in order to handle data at this scale, while
providing clean abstractions that make it easier for applica-
tions to deal with this complexity.

Four guiding principles shape the design of PNUTS. First,
it provides high performance at large scale by using asyn-
chrony, weak consistency and loose coupling. Second, it
uses automated replication and failure recovery to ensure
high availability. Third, it is designed to be easy to use,
operate and scale. Ease of use means that the external ab-
stractions hide much of the complexity of the underlying
distributed, replicated system. Ease of operation implies
extensive self-management and self-tuning. Ease of scaling
means that adding capacity is as simple as plugging in new
machines and turning them on. Fourth, PNUTS provides
multiple rich access methods, including multiple types of
primary tables and secondary indexing.

PNUTS is both a research project and a key piece of
Yahoo!’s next generation platform architecture. The sys-
tem is being designed and built as a collaboration between
Yahoo! Research and Yahoo!’s Platform Engineering group,

1PNUTS is an acronym that reflects a jar of peanuts we were
snacking on during the project kickoff; the current expansion
is “Platform for Nimble Universal Table Storage.”

SIGMOD Record, September 2007 (Vol. 36, No. 3) 47

and some initial components of the system have already en-
tered production use.

System Architecture: PNUTS is a centrally hosted and
managed data service. Multiple applications concurrently
connect to the service to store and query data. This shared
service model addresses one of the main data problems faced
by Yahoo! today: applications often have to set up, main-
tain and scale their own data services, a significant drain on
business resources and an impediment to the development
of new features.

The physical data in a PNUTS table is horizontally par-
titioned over a large number of storage servers. The assign-
ment of data partitions to storage servers is flexible, and
partitions can be re-shuffled to balance load or recover from
storage server failures. PNUTS tables can be hash tables or
ordered tables; hash tables provide fast single record lookup
while ordered tables are optimized for fast range scans. Stor-
age servers are also responsible for evaluating queries, col-
lecting and delivering query results, ensuring updates are
applied consistently, updating secondary indexes, and so on.

Each table is replicated to multiple geographic regions to
provide both disaster recovery and low-latency access for
international users. Replication between regions is asyn-
chronous, utilizing a topic-based pub/sub system. A query
routing layer isolates applications from having to know the
current location of a given table partition. Developers de-
clare the data types of table columns, ensuring that predi-
cates are typed properly and that data is sorted correctly (in
the case of ordered tables). New attributes can be cheaply
added to existing schemas; a catalog update is required but
existing stored data is not modified. PNUTS currently does
not support other kinds of schema constraints, such as for-
eign keys, because of the cost to enforce such constraints
over massive, partitioned data sets.

Ongoing Research: Hosted data management services
are a new and significant direction for database research. It
is the key technology behind the software-as-a-service (SaaS)
paradigm, which is rapidly gaining in popularity, since most
(if not all) hosted applications need to manage large-scale
application data. Developing hosted data services is fun-
damentally different from developing shrink-wrapped soft-
wares deployed by each customer organization; in effect, we
are designing systems that allow us to serve as “DBA to
the world,” and this raises a slew of challenges, including
scaling, robustness, support for applications designed to be
rented by multiple “tenants,” differential quality of service
guarantees to different tenants, flexible access controls, and
self-tuning for virtually every aspect of the system.

The basic architecture of the system has been designed
and many components have been implemented, but the PNUTS
project is still at an early stage, and there are several active,
ongoing research thrusts; we outline some of these below:

The first research thrust is to develop a stronger con-
sistency model. Existing mechanisms for providing ACID
transactions for distributed databases do not perform well
at our scale. Our basic consistency model guarantees all
readers see a consistent history for individual records, but
does not provide guarantees for reads or writes that span
multiple records. In our model, applications can read and
then write a record, specifying that the write succeeds only
if the record has not changed since the previous read. How-
ever, we are currently examining ways to use the consistency
primitives in this basic model to build more complex trans-

actions, where multiple records can be read or written in a
way that is serializable with respect to other transactions.

A second active area of research is maximizing the effi-
ciency of bulk operations. Although the system is designed
to provide high throughput for lots of parallel queries, a sud-
den burst of load caused by a bulk insert or bulk read can
still overwhelm the system, especially if it induces a hotspot.
To deal with these issues, we are developing mechanisms by
which the system accepts a bulk request, and then reshuffles
the individual requests to ensure efficient resource usage and
maximum parallelism. Thus, a bulk read of many records
will be reshuffled into a bunch of parallel reads that go to
different storage servers, while a bulk insert requires reshuf-
fling the inserted data to ensure maximum parallelism.

A third area of research involves guaranteeing quality of
service. Because PNUTS is a hosted, shared platform, many
applications will be using the system concurrently. The chal-
lenge is to ensure that every application receives a fair pro-
portion of the resources, while ensuring that load spikes can
be absorbed by otherwise idle capacity. Our approach is to
extend traditional ideas in admission control, rate limiting
and pre-emption (e.g., queries might get rejected, might get
processed at a deliberately slow pace, or might get inter-
rupted) to work in a large scale, distributed database.

2.2 Pig
The Pig project addresses the problem of ad-hoc analysis

of extremely large data sets, by users whose primary role is
software development. This scenario arises in internet com-
panies, where software services are routinely deployed and
refined based on analyzing the recorded behavior of users.
It differs from those for which SQL and traditional database
systems were designed, and hence dictate the need for a new
data analysis language and a new underlying system. The
key differentiating factors are:

Programmers as users: The data analysts are typically
experienced programmers who tend to think procedurally
and often find the declarative style of the SQL language to
be overly restrictive.

Custom processing: A large part of such data analysis
consists of custom, domain-specific processing that is diffi-
cult to express in SQL and requires extensive use of user-
defined functions.

Scale: The data scale is well beyond the capacity of
single-node databases, and parallel database solutions (e.g.,
Teradata) can be prohibitively expensive to purchase and
operate, due in part to specialized hardware. Ideally, a solu-
tion that can utilize cheap commodity hardware is desired.

These considerations have led us to design a new system
for data analysis called Pig, along with a new data analysis
language called Pig Latin. Pig Latin has a procedural fla-
vor like a programming language, and has extensive support
for user-defined functions. At the same time, Pig Latin re-
tains SQL-like high-level constructs such as filtering, joining,
aggregation, and grouping. The use of such high-level con-
structs allows for optimization and parallelization of queries,
which is in contrast to Map-Reduce [5] where all computation
must be structured as opaque map or reduce functions. This
not only makes simple operations such as projecting and fil-
tering cumbersome to write, but also impedes optimizations
such as filter re-ordering or multi-query sharing.

To give a flavor of Pig Latin, we present a simple exam-
ple. Consider two data sets associated with a search engine:

48 SIGMOD Record, September 2007 (Vol. 36, No. 3)

queryResults(queryString, url, rank), and urlInfo(url,

pageRank). The queryResults table records the results of
search engine queries (which URLs were displayed at what
rank positions); the urlInfo table gives the precomputed
PageRanks for each URL. Suppose a user wishes to iden-
tify search query strings for which the top PageRank page
did not occur among the top five results. The user writes a
simple sequential program called checkTop5 that, given the
set of results for a queryString, determines whether PageR-
ank played a dominant role. The following simple Pig Latin
program performs the overall analysis:

a = JOIN queryResults BY url, urlInfo BY url;

b = GROUP a BY queryString;

c = FILTER b BY checkTop5(*);

A Pig Latin program consists of a sequence of assignments
to table variables, (e.g., a, b, c). The right-hand side of
each assignment expresses a data transformation step such
as join or filter. The available data transformation primi-
tives roughly correspond to the relational algebra operators,
with extensions to accommodate aggregation (not discussed
here) and user-defined functions (discussed shortly). This
algebra-style querying resembles conventional programming
(e.g., Java or Python) more closely than does SQL, and for
that reason the programmers with whom we work at Ya-
hoo! tend to find it easier to use than SQL.

Another aspect of Pig Latin that adds significant appeal
and power for our programmer user base is the ability to
incorporate user-defined functions easily into essentially any
operation, including filter (as illustrated in the above ex-
ample), group-by, join and (of course) aggregate. Typically
these user-defined functions process small amounts of data
at a time, so there is no need to parallelize a single invoca-
tion. Hence the opaqueness of user-defined functions does
not present a performance problem. (For functions that are
invoked over large data segments, we offer an API for en-
coding them as distributive or algebraic functions that are
amenable to parallelization.) Basic large-scale operations
such as grouping are exposed through high-level primitives,
permitting parallel evaluation.

The full details of Pig Latin can be found on our web-
site [2]. Pig Latin is fully implemented (currently, by com-
pilation into Hadoop [1], an open-source implementation of
Map-Reduce) and is being used within Yahoo! for data anal-
ysis. There are two research directions that we are currently
pursuing:

Pig Body (A native query processing engine for
Pig): As stated above, our initial implementation of Pig
compiles Pig Latin programs into Map-Reduce jobs. We are
working on a next-generation implementation whose query
processing engine more closely resembles traditional paral-
lel DBMSs such as Gamma [7], although on a much larger
scale. Once our native query processing engine is in place,
we intend to explore opportunities for aggressive sharing of
work across independently submitted queries. The potential
advantage of sharing work is large, because queries tend to
run for hours or days, and often exhibit significant overlap in
the data they access and the processing they perform. For
example, Yahoo! programmers circulate via email a com-
mand sequence for scanning the web crawl while filtering
out spam and foreign-language pages, which is issued regu-
larly as a prefix to various custom data analysis tasks. To
exploit such cross-query commonalities, we will implement

view materialization and multiquery execution techniques,
and optimization algorithms to govern these techniques. Ex-
tensive use of user-defined functions, along with the chaotic
nature of our cluster computing environment, make conven-
tional model-based approaches to the associated optimiza-
tion problems dubious, so we intend to explore adaptive ap-
proaches instead.

iPig (Incremental evaluation in Pig): Often, users
want to run queries over continuously updated data such
as query logs or web crawls. Currently, the query has to
be reissued when the data has changed, and results in a
recomputation from scratch. The iPig effort seeks to solve
this problem by allowing users to register continuous queries
whose answers will be incrementally updated as and when
data updates arrive. One of the main goals of iPig is to be
fully compatible with Pig, so that Pig programs (and user-
defined functions) can be written while being fully agnostic
to the incremental recomputation. Providing such a simple
programming model, while still maintaining efficiency is one
of the main challenges. Another main challenge is managing
the state associated with incremental computation of user-
defined functions in an efficient and fault-tolerant manner
on top of a cluster of failure-prone machines.

2.3 AppForge: Graphical Development of
Hosted Web Applications

AppForge is a graphical application development tool for
“power-users” or developers who wish to develop community
applications, but who do not have any prior programming
expertise or database knowledge. Based on the WYSWYG
(What You See is What You Get) paradigm, it allows power-
users to create an entire application, including the underly-
ing database and application logic, simply by creating the
application screens that will be seen by end-users. Equally
important, AppForge also hosts the application, thereby re-
lieving the power-user of the burden of deploying and main-
taining applications.

One possible application of AppForge is in the context of
online communities such as Yahoo! Groups. As an illustra-
tion, consider a Yahoo! Group that is devoted to bicycle club
fans. The Yahoo! group provides them with a message board
for sharing messages. However, it does not provide any ad-
vanced functionality that is specific to a particular group.
(Since Yahoo! Groups has a wide variety of groups, rang-
ing from book clubs to bicycle clubs to child care groups,
supporting all group-specific functionalities is beyond its ca-
pacity.) The bicycle club members may wish to create an
application that allows members to car-pool for bicycle rides
based on how many bicycle racks are available on a given car,
the location where people live, etc. Today, they can only de-
velop this application by explicitly programming and hosting
it, which is usually beyond the skill and knowledge of the
club members. With AppForge, the group moderator can
graphically create an application tailored to the particular
group, without having to know anything about program-
ming, database management, or application deployment.

There are three technical components of AppForge. The
first component is the Schema and Application Logic Infer-
ence Module, which infers the underlying relational schema
and application logic based on a set of WYS-WYG graphical
primitives that are exposed to the user. The second com-
ponent is a Schema Navigation Module, which enables users
to navigate entities and relationships using menus, without

SIGMOD Record, September 2007 (Vol. 36, No. 3) 49

having to understand the formal Entity-Relational model.
The third component is the Hosted Application Module that
deals with issues related to application hosting.

Recently, database usability [10] has received significant
attention within the database community, we believe App-
Forge addresses many of the similar usability challenges aris-
ing from dealing with complex databases.

3. DISCOVERING STRUCTURE
In this section, we describe two main research projects,

Purple SOX and Guests, that aim at discovering and ex-
ploring structured information on the web.

3.1 Purple SOX
Existing information extraction systems, as a rule, require

careful design and tuning by engineers before achieving ac-
ceptable quality on a particular domain such as shopping,
product reviews, or bibliographies. The design phase typi-
cally involves analyzing the extraction domain and formu-
lating an approach in the form of an “extraction pipeline,”
which is then populated with tools for tasks such as page
classification, word sequence labeling, etc. The performance
of these tools needs to be evaluated and extensively tuned
via programming, feature selection, retraining, etc. The
whole process is time-consuming and expensive, and the re-
sult is generally a good quality, but highly domain-specific
system. This domain specificity is in stark contrast to the
ultimate goal of domain scalability, i.e., the ability to ap-
ply information extraction to a wide variety of domains at
reasonable cost.

In response, the Purple SOX project seeks to substantially
decrease the cost of developing information extraction sys-
tems with acceptable quality for a large number of domains.
The project proceeds along two key directions: (a) the cre-
ation of an Extraction Management System (EMS), and (b)
the development of flexible and transferable Extraction Op-
erator Library (EOL). Purple SOX has grown out of the in-
formation extraction component of Cimple [6], a joint com-
munity information management project with the University
of Wisconsin, and is closely integrated with the Vertex in-
formation extraction platform, an existing internal platform
at Yahoo!. Purple SOX is also influenced by information-
extraction platforms such as Avatar [11], although it differs
in its architecture and web-facing emphasis from Avatar.

Extraction Management: The design of the Purple
SOX EMS is motivated by the need for a system that is
extensible, explainable, autonomous and social. We briefly
describe each of these principles and then outline the archi-
tecture of the system. First and foremost, an information
extraction system that seeks to apply to a large number of
domains cannot limit itself to a small number of extraction
components or operators. In order to be extensible to a wide
variety of extraction technologies, it should be possible to
add new extraction operators to the system in a straightfor-
ward, declarative manner. If one accepts the loose analogy of
information extraction as a “query” over the extraction cor-
pus, it might seem straightforward to model each extraction
technique as an “external function” of a traditional query
processing or information gathering model. While following
this approach at a high level, we find that a number of sub-
tle challenges arise due to issues such as uncertainty and the
role of training and feature selection.

The second principle is that extraction should be explain-

able; that is, the results of extraction efforts must be avail-
able in a form that supports browsing and analysis—what is
working, and what is not? This in turn requires that partial
extraction results be recorded in a data management sys-
tem in which the history of events can be traced through
a lineage tracking mechanism. Since the extraction results
are uncertain, this uncertainty must also be tracked to avoid
showing low quality data to users.

The third principle, autonomy, requires that extraction
tasks be carried out and improved with minimal active man-
agement. For example, the system must be able to evolve
pipelines by substituting different applicable technologies in
an effort to improve quality. To support planning, the sys-
tem must understand the operator capabilities in a seman-
tic as well as syntactic way. Further, the quality of each
extracted datum must be automatically estimated based on
available evidence across a variety of sources, extraction al-
gorithms, and human input.

Finally, we do not believe that freedom from human input
is possible, and instead a clear goal is to replace expert tun-
ing with extensive social input, including positive examples,
occasional markup, and a variety of feedback on the quality
of extraction results.

The architecture of the Purple SOX EMS is actively evolv-
ing to meet the above design requirements, and current
high level components include: 1) a probabilistic data model
supporting highly flexible typing, easy extension with new
types, and tracking of confidence and lineage on a per-attribute
basis, 2) a declarative operator framework for information ex-
traction components including specification of lineage and
optional confidence on extraction outputs, 3) a reconciler
charged with aggregating a variety of opinions concerning
information in the data model to determine a “system con-
fidence,” and 4) a planner to select among alternative ap-
proaches for a given extraction task. Numerous research
challenges arise in the design and validation of these com-
ponents including modeling and estimation of uncertainty
across wrapped operators, new challenges in extraction plan-
ning, the need to extend simple models of external functions
to handle trainable operators, factoring work out of repeated
extraction, etc. An equal number of system challenges in-
volving performance (especially of lineage data) and paral-
lelization are expected to arise.

Extraction Techniques: Purple SOX EOL is a suite of
machine learning and rule-based techniques necessary for
building structured community portals. There are multi-
ple objectives in creating this operator library. The first
and foremost one is to accumulate and create tools that can
support key extraction tasks such as entity discovery and
disambiguation, record extraction and general relationship
discovery. An important distinguishing feature of the Pur-
ple SOX EOL is the fact that each of these extraction op-
erators is accompanied by a description of its input/output
and the associated dependencies in terms of the semantics
of the data model, which in turn induces a natural hierar-
chy over the operators. A secondary objective is to test the
expandability features of Purple SOX EMS by wrapping ex-
isting machine learning tool boxes such as Weka, Elefant.
Designing an infrastructure that allows specification of pre-
processing (e.g., feature extraction/learning rules) and eval-
uation steps in a declarative fashion is another important
aspect. Last, but not the least, a key goal of Purple SOX is
to develop new learning methodologies for structured predic-

50 SIGMOD Record, September 2007 (Vol. 36, No. 3)

tion that address challenges arising in domain adaptation,
learning from partial user feedback/constraints, and utility
based learning.

3.2 GUESTS
An ever-growing number of users participate in social con-

tent sites such as Flickr, del.icio.us, and YouTube, making
friends and sharing content. Users come to these sites to find
out about general trends (e.g., the most popular tags or the
most recently tagged URLs), as well as look for more specific
information (e.g., the recent posts of their friends). The abil-
ity to help users sift through the large amount of content on
social sites is a challenging question which requires combin-
ing techniques from databases, information retrieval and ma-
chine learning [3]. Leveraging the users’ social behavior to
recommend new content is a key technical challenge in social
content sites. While explicitly declared social ties (friends
and family) are known to users, implicit ones induced by
common social behaviors (e.g., tagging in del.icio.us) are a
greater indicator of shared interest and should be leveraged
in recommending new content [12].

Challenges. Guests (Groups of UsErs going Social in
web Two.0 Search) aims to leverage explicit and implicit
social ties to guide users in the personalized discovery of new
content and involve them in the process. Using del.icio.us as
an example, the key challenges are:

Network discovery: In order to help users discover new
social ties that are relevant, we need to define techniques for
deriving social networks from common interests. Moreover,
the ability to explain derived social networks is crucial to
guide users in their discovery process. We propose to asso-
ciate an interest topic to each derived network (e.g., the user
can see the network of people who share common interest
with him in Cooking or the network of people who share his
interest in French Poetry). We also propose to explain each
social tie in a network by a list of tags which are common
to the two users forming the tie. Users should also be able
to select social ties for further processing (e.g., add a person
to my active network).

Vocabulary discovery: Users should have the ability to
request a network-specific vocabulary as a set of topics of in-
terest to members of that network. For example, the most
popular tags unique to a given network will reveal more spe-
cific information. More precisely, a social network may be
using the term “menu” to mean “restaurant menu” while an-
other one to mean “software menu”. A user can belong to
both networks. Vocabularies are used as a mean to explain
the social network.

Content discovery: The ability to recommend and explain
new content using social networks and their associated vo-
cabularies is at the core of the system. Users want to se-
lect a social network and view recommended content which
are identified based on their popularity among members of
the selected network. The ability to issue a search query
and see query-relevant items which are most relevant to-
ward specific networks is another important task. Finally,
the system should explain recommended items (e.g., this is
a health and nutrition site and is popular among members
of your Cooking network).

We now discuss how the above challenges are implemented
in Guests. Our implementation uses del.icio.us datasets
(bookmarked URLs are referred to as items).

Tag Analysis. We implemented a tag analysis tool which

is based on co-occurrence of tags (akin to frequent itemset
mining) in order to synthesize tags into topics. This analysis
can be done over any set of tag pairs (e.g., those used by
members of a selected social network). We use the technique
described in [15], where we look for pairs of tags where one
is subsumed by the other based on co-occurrence. For a tag
t, we denote by I(t) the set of all items that were tagged
with t. Given tags t1 and t2, we denote t2 as the topic of
t1, i.e., t1 ⇒ t2 iff |I(t1) ∩ I(t2)|/|I(t1)| ≥ threshold and
|I(t1) ∩ I(t2)|/|I(t2)| < threshold.

The analysis may detect that whenever the tag “j2ee” is
used, the tag “java” is also used (with a given confidence
threshold), but not vice versa, and will therefore denote
“java” as a topic. When both tags subsume each other, we
consider them synonyms and part of the same topic. Other
interesting connections include “chowhound” (a restaurant
critic site) being associated with “food”, and “fundraising”
being associated with “politics” in one social network and
with “leukemia” in another.

Social Networks Derivation. In addition to the explic-
itly stated friendship network, we extract common interest
networks/topic based on tagging patterns. If Joe likes “Pink
Floyd” and Jane likes “Madonna”, they may both use the
tag “music”, but will apply it to different items. Therefore,
considering the vocabulary is not enough here to determine
overlapping interest. Given two users and a topic, a social
tie is derived between them if the sets of items they tag with
that topic overlap. The added novelty is to use that over-
lap as a social weight between two users and leverage that
information in search and recommendation.

More formally, given a tag t and a user u, we denote by
I(u, t) the set of URLs that u tagged with t. Given a topic
T and a user u, we denote by I(u, T) the set of resources
u tagged with tags ti ∈ T : I(u, T) = ∪ti∈T I(u, ti). Given
two users u1 and u2 and a topic T , we say that u2 is a peer
of u1 for T iff: |I(u1, T) ∩ I(u2, T)|/|I(u1, T)| > threshold.
Users are peers for a topic if the resources they tag for that
topic overlap with a certain confidence. This relationship,
like friendship, is directional.

Content Recommendation and Search. In order to
enable search and recommendation, we developed instance-
optimal algorithms for efficient top-k processing of network-
aware content discovery. The“personalized”nature of search
introduces the challenge of dynamically computing item scores
based on their popularity among members of a social net-
work and the social weights.

Recommender systems are based on looking at correla-
tions between items considered by different users. The added
novelty in recommending content in Guests comes from the
additional tagging information. In Guests, recommenda-
tions consider both item and interest correlations to focus
the recommendation to items derived from the user’s social
network. For example, a user may tag a site describing the
city of New York with “vacation” and share that interest
with a colleague. That same user may also tag imdb.com
with “movie critic” while the colleague tags it with “actors
gossips”. Therefore, that colleague’s opinion should be con-
sidered when recommending other vacation sites to the user
and should not matter when recommending a “movie” site.

4. LEVERAGING STRUCTURE
The following projects present research efforts aimed at

leveraging existing structure on the web to provide a better

SIGMOD Record, September 2007 (Vol. 36, No. 3) 51

user-experience in various online activities, such as shopping
and job search.

4.1 Querying Structured Web Listings
Online shopping has become very popular due to the large

inventory of item listings available on the Web. Users can
issue a query as a combination of structured and keyword
predicates, and the most relevant items are returned in a
certain order (e.g., price). We examine two complementary
problems when evaluating such queries on listings.

Efficient Evaluation of Top-K Queries over Func-
tions. Very often, online retailers offer price discounts based
on promotional rules, e.g., “Stay 3 nights, get a 15% discount
on double-bed rooms,” or “Buy 2 Motorola Razr cell-phones,
get $50 off.” Thus, the score for ranking (i.e., the price) is
not fixed, but is a function of a parameter in the query, such
as the quantity of items being purchased, or the number
of nights stayed. We address the problem of efficiently ac-
counting for promotional rules in order to compute dynamic
item prices when evaluating queries in online shopping and
returning items ranked by price.

We are given a set of items I, a set of parameter values
V, and a function fi : V → R associated with each item
i ∈ I. For a query Q = (Pred, v, k), where Pred is a selection
condition on items, v ∈ V, and k is the desired number of
results, we wish to compute a result set R that contains the
k lowest-score items that satisfy Pred, where the score of an
item i is defined to be fi(v)2. Consider a query Q, Pred can
be a selection condition on products (e.g., “Make = Canon”
and “Color = Blue”), v be the desired quantity of a given
product, and k be the number of products that can be shown
on the result page.

A naive solution to this problem is to select all the items
that satisfy the query predicate, compute the score (fi(v))
for each selected item i, and return the items with the lowest
score. Clearly, this approach does not scale to a large num-
ber of items and/or unselective predicates. Another simple
solution is to precompute and store the score for every (item,
value) pair. Queries can then be answered efficiently by
simply looking up the top-scored selected items for a given
query value. However, the typically large number of items
taken in conjunction with many possible parameter values
requires space overhead that is particularly bad for large on-
line applications, where all the data and indices are stored
in main-memory for efficiency.

To address these limitations, we propose a novel approach
where instead of storing the score for every (item, value)
pair, we store a compressed representation of this data. We
do so by exploiting the fact that the query parameter val-
ues are drawn from (or can be mapped to) an underlying
ordered domain (e.g., quantity). The key idea is to split
the parameter values associated with an item into one or
more intervals, and then store only the minimum score for
each (item, interval) pair. The total number of intervals is
such that they fit within a specified space budget. We then
perform top-k query processing by adapting threshold-based
pruning [9, 8] to prune a large number of intervals (and the
corresponding items) that cannot possibly make it to the
top few results.

For instance, the function “Buy at least 2 items, get 10%
off” can naturally be split into two intervals I1 and I2. I1

captures value range v = 1 (i.e., 1 ≤ v ≤ 1) (assume that

2lower score ⇒ higher rank

the minimum score of f in that range is 150); I2 captures
the value range v ≥ 2 and the minimum score of f in that
range is 0.90 × 150. Thus, in this example, just by storing
two intervals for the item, we obtain a representation that
does not lose any information about the function.

The effectiveness of our approach depends on how well the
intervals are chosen. One of our main technical contribution
is an algorithm that takes as input a given set of items, the
corresponding functions, and a space budget, and then uses
query workload information to produce a set of intervals that
are provably close to optimal for that workload. The algo-
rithm scales linearly with the number of items, and makes
few assumptions about the nature of the functions. Specifi-
cally, the algorithm only assumes that we can efficiently find
the minimum value of fi (or a relatively tight lower bound
of the minimum value of fi) for a given parameter range,
which is true for most rule-based score computations.

Our solution has been tested extensively on large Ya-
hoo! Shopping datasets and shown to be very efficient.

Evaluation of Diverse Query Results. An important
but lesser-known concern in online shopping is the ability to
return a diverse set of results which best reflects the inven-
tory of available listings. For example, a customer in Ya-
hoo! Autos may be interested in finding 5 used 2007 Honda
cars. In order to offer the customer the best experience, the
system would rather show 5 different Honda models (e.g.,
Honda Civic, Honda Accord, Honda Odyssey, Honda Ridge-
line and Honda S2000) than cars from just one or two mod-
els. Similarly, if the user searches for 2007 Honda Civic cars,
it would rather show 2007 Honda Civic cars in different col-
ors instead of showing cars of the same color.

The problem of returning a diverse set of query results
has been addressed previously. The simplest method is com-
monly used in search engines: in order to show k results to
the user, first retrieve f × k results (for some f > 1) and
then pick a diverse subset from these results [4, 16, 17]. Usu-
ally, f × k is much less than the total number of results, so
it is more efficient than the previous method. While this
method works well in web search, where there are few dupli-
cate or near-duplicate documents, it does not work as well
for structured listings because there are many more dupli-
cates. For instance, it is not uncommon to have hundreds of
cars of a given model in a regional dealership, or thousands
of cameras of a given model in a large online store.

To address the above limitations, we initiate a formal
study of the diversity problem in search of methods that are
scalable, efficient and guaranteed to produce diverse results.
Towards this goal, we first propose a formal definition of
diversity, including both unscored and scored variants, that
can be used to evaluate the correctness of various methods.
We then prove that we cannot use any assignment of static
or query-dependent scores to items to implement diversity
in an off-the-shelf IR engine (although there is an open con-
jecture as to whether we can implement diversity using a
combination of static and query-dependent scores).

We thus devise evaluation algorithms which implement di-
versity inside the database/IR engine. Our algorithms use
an inverted list index that contains item ids encoded using
Dewey identifiers. The Dewey encoding captures the notion
of distinct values from which we need a representative subset
in the final query result. We first develop a one-pass algo-
rithm that produces k diverse answers with a single scan
over the inverted lists and uses B+-trees to skip over redun-

52 SIGMOD Record, September 2007 (Vol. 36, No. 3)

Geo Taxonomy

Movie

Action

Western

Drama

Sci−fi

Bay Area

South Bay East Bay

Sunnyvale San Jose

Genre Taxonomy

Figure 1: Genre and geo taxonomies.

dant items. We also develop an improved algorithm that is
allowed to probe the set of answers within the same distinct
value iteratively. The algorithm uses just a small number of
probes—at most 2k. Some of the interesting aspects of our
algorithms are that they are provable correct, they can sup-
port both non-scored and scored versions of diversity, and
they can also support query relaxation (where there may
not be enough items satisfying all the query predicates, and
hence we relax predicates). Our experiments on large Ya-
hoo! Autos datasets, show that the proposed algorithms are
scalable and efficient.

4.2 Search with Taxonomies
The traditional notion of text search deals with a corpus

of documents and a query. By building an inverted index
for the documents, search can be performed efficiently and
documents that “match” the query can be returned to the
user. A ranking function is used to quantify the extent of
this match and dictate the order of matching documents
presented to the user. While this paradigm has been very
successful in the field of information retrieval, in many web
applications, the above set up is wanting. To illustrate this,
consider the following example.

Alice, a resident of Sunnyvale, California, wishes to watch
a western action movie in a nearby theater. She queries for
such a movie using a search engine capable of supporting lo-
cal search. The local search engine might take into account
the following factors: (1) Alice’s query, which is “western ac-
tion movie”; (2) documents known to the engine, which may
be tagged with movie genre such as action or more specifi-
cally western action, and a geo location such as Sunnyvale;
and (3) Alice’s location in Sunnyvale, which is part of South
Bay, which is part of the Bay area.

In the above example, item (1) encapsulates the tradi-
tional textual query. Items (2) and (3) present a set of de-
sired characteristics of the results to Alice’s query; these
can be represented as leaves of a genre taxonomy and a geo
taxonomy shown in Figure 4.2. Now, imagine the case when
there is no movie theater in Sunnyvale that is playing a west-
ern action movie, i.e., there are no results to Alice’s query
that have the genre tag “western action” and the geo tag
Sunnyvale. In this case, perhaps, Alice might be desperate
enough to drive anywhere in South Bay or even the whole of
Bay area to watch a western action movie; this would consti-
tute to generalizing in the geo taxonomy. Alternately, Alice
may be content with watching a generic (and not necessarily
western) action movie but unwilling to drive outside Sunny-
vale; this would constitute to finding results by generalizing
in the genre taxonomy. Alice might attach different weights
on each of these generalizations.

In our work on search with taxonomies, we precisely cap-
ture the above scenario. Formally, we are given a collection

of taxonomies T1, . . . , Tm, where a node in a taxonomy is
called a topic and edges can have weights to capture the
cost of generalization. Each document in the corpus is as-
sociated with exactly one topic in each Ti. The query has
two components: a text component (keyword) and a list of
m topics, one from each Ti. The answer to a query con-
sists of top k results, ranked in increasing order of the score
that is a combination of the text-based relevance score of
the document with respect to the query keywords and a to-
tal relaxation cost for a document with respect to the query
topics. The total relaxation cost is the sum over relaxation
costs for an individual taxonomy, which is some distance
measure between the query topic and the document topic.

In this enhanced retrieval model, we develop new algo-
rithms for indexing and query processing. For indexing, we
show how to efficiently encode taxonomy information in an
inverted index. For query processing, we decompose the
problem into two sub-problems: (i) determining the right
level of relaxation for producing the top k results and given
the right level (ii) efficiently retrieving documents whose re-
laxation cost is below the threshold. We provide a complete
algorithmic picture of the query processing at fixed relax-
ation: this problem is solvable for m = 2 and NP-hard for
m ≥ 3 but admits efficient approximation algorithms.

4.3 HotJobs
Yahoo! HotJobs is Yahoo!’s online job search tool, bring-

ing together millions of job seekers and job recruiters in an
online marketplace with the goal of offering the best possi-
ble job seeking/recruiting experience. A collaborative effort
between Yahoo! Research and the HotJobs engineering team
was initiated a few months back, and was aimed at devel-
oping new, state-of-the-art data-analysis tools to further en-
hance the user experience. In this section, we highlight some
of the key issues tackled and progress made during this col-
laboration, and briefly discuss some of the main outstanding
problems for the future. We start with a short description
of the current HotJobs environment (circa August 2007).

The HotJobs site offers job seekers the ability to search for
relevant job postings using category and/or location, as well
as keywords (that are matched against the stored job descrip-
tion). Results are ranked based on relevance, and returned
to the user in batches of thirty jobs per result page. The set
of categories provided distinguish across jobs at the indus-
try level (e.g., Healthcare, Internet), but not at finer levels
(e.g., different job functions within an industry). In addi-
tion, a large fraction of job-search queries are quite vague
(e.g., based solely on category and/or location), resulting in
a huge number of results, many of which may not match the
user’s true intention. In addition, categories can be domi-
nated by postings from a large employer or for a given type
of job function (e.g., nurse jobs under Healthcare), which of-
ten means that the (most important) first-few search result
pages cannot give users a sense of the diverse set of results
for their query. HotJobs also employs novel Collaborative-
Filtering (CF) technology based on the user-job application
graph to proactively recommend job postings to registered
users who apply for a job. The HotJobs CF-based recom-
mender gives very accurate, focused recommendations (re-
sulting in high user-clickthrough rates); however, it only cov-
ers a relatively small fraction of the HotJobs users, that is,
registered users who have applied to at least one job. Thus,
the user-job application graph is typically sparse, and users

SIGMOD Record, September 2007 (Vol. 36, No. 3) 53

or jobs with no application history cannot benefit from CF
recommendations. Based on the above observations, our
initial, short-term combined efforts with the HotJobs team
have concentrated on two distinct subprojects:

Enhanced CF-based Recommendation Engine. Our
key idea here is to broaden the coverage of the HotJobs CF
tools by drawing user-job affinities based on more than just
“apply” edges. More specifically, we propose to enhance the
connectivity of the CF graph using the view history of users
as well as content-matching tools. While this is guaranteed
to increase the degree of connectivity (and, thus, the cover-
age) of the HotJobs CF recommender, one potential concern
is that it could also decrease the quality of recommenda-
tions. Interestingly, initial results with offline testing data
show that recommendation quality does not suffer, and, in
fact, often improves with the added CF connectivity.

Enhanced Job Classification and Diversity Search.
We have refined the coarse, industry-level HotJobs catego-
rization of job postings through the use of a hierarchical,
content-based document classifier that uses a finer-grained
job categorization (e.g., Healthcare(Nursing(NurseStaff,
RegisteredNurse, Phlebotomist, ...) ...)). This refined job
classification hierarchy obviously enables job seekers to con-
duct more focused category searches; furthermore, it also al-
lows us to effectively drive diversity search algorithms that
guarantee the delivery of diversified subsets of results in
the first few result pages. Efficiently implementing diver-
sity search using the HotJobs indexing backend posed some
interesting research challenges that led us to a novel notion
of approximate diversity that can be implemented with min-
imal additional load on a traditional index structure.

One of the key challenges for the future lies in under-
standing how we can effectively leverage user-behavior to
further improve the quality and relevance of the machine-
learning tools that support the HotJobs environment. For
instance, content-based job classification is a difficult prob-
lem, as most of the pertinent information is typically entered
as freetext and can often be cluttered by additional text that
is not particularly relevent to the job itself (e.g., company
profile data). As a result, job descriptions can often be mis-
classified or placed under several potential categories with
low confidence. For such “difficult” jobs, the observed aggre-
gate user-browsing behavior is probably a very useful indi-
cator for deciding the appropriate category, and potentially
improving the classification engine itself (through a feedback
loop). The design and implementation of such adaptive,
self-tuning machine-learning tools that effectively combine
content-based features with aggregate user-behavior indica-
tors is a very challenging problem on our research agenda.

5. CONCLUSIONS
The web of tomorrow will likely be significantly different

from what it is today. We believe the systems aspect of
dealing with data at web scale and the community aspect of
building people-centric applications are keys to the future.
This paper describes various ongoing research projects that
we are actively pursuing in the Community Systems group
within Yahoo! Research based on these convictions.

6. ACKNOWLEDGMENTS
We wish to thank our many collaborators at Yahoo!: Mike

Bigby, Bryan Call, Andy Feng, Dan Weaver, and the en-

tire Yahoo! Platform Engineering group; Mani Abrol, K.
P. Chitpura, Arun Ramanujapuram, and Srinivasan H Sen-
gamedu of Yahoo! R&D Bangalore; Raj Baskaran, Chris
Chen, Adam Hyder, Chris Motes, Geoff Perez, J.P. Saman-
tarai, Abhishek Srivastava, Joe Ting, and Yuan Zhuge at
the Yahoo! HotJobs Engineering group; and Lin Guo from
Yahoo! Strategic Data Solutions.

We also wish to thank the many academic collaborators:
Parag Agrawal from Stanford (PNUTS and Pig); Tyson
Condie from UC Berkeley (Pig); Chavdar Botev, Nitin Gupta,
and Fan Yang from Cornell (AppForge); Michael Benedikt
from Oxford University, Anhai Doan, Pedro DeRose, and
Warrent Shen from University of Wisconsin, and Ashwin
Machanavajjhala from Cornell (Purple SOX); Julia Stoyanovich
from Columbia and Alban Galland from Ecole Polytech-
nique (GUESTS).

7. REFERENCES
[1] Hadoop. http://lucene.apache.org/hadoop.
[2] Pig Project. http://research.yahoo.com/project/pig.
[3] S. Amer-Yahia, M. Benedikt, and P. Bohannon. Challenges

in searching online communities. IEEE Data Eng. Bull.,
30(2):23–31, 2007.

[4] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In SOSP, 2004.

[6] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web community
portals: A top-down, compositional, and incremental
approach. In VLDB, 2007.

[7] D. J. Dewitt et al. The gamma database machine project.
IEEE Transactions on Knowledge and Data Engineering,
2(1):44–62, 1990.

[8] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, 1996.

[9] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[10] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD, 2007.

[11] T. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Engineering Bulletin,
29(1):40–48, 2006.

[12] J. A. Konstan. Introduction to recommender systems. In
SIGIR, 2007.

[13] R. Ramakrishnan and A. Tomkins. Towards a PeopleWeb.
IEEE Computer, 40(8):63–72, 2007.

[14] R. Ramakrishnan, A. Tomkins, and R. Kumar. Content,
metadata, and behavioral information: Directions for
yahoo! research. IEEE Data Engineering Bulletin,
29(4):10–18, 2006.

[15] Sandereson and B. Croft. Deriving concept hierarchies from
text. In SIGIR, 1999.

[16] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting
redundancy-aware top-k patterns. In KDD, 2006.

[17] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, 2005.

54 SIGMOD Record, September 2007 (Vol. 36, No. 3)

