Multi-dimensional Resour ce Scheduling for Parallel Queries

MinosN. Garofalakis
Computer Sciences Department
University of Wisconsin
Madison, W1 53706
minos@cs.wisc.edu

Abstract

Scheduling query execution plans is an important component of
query optimization in parallel database systems. The problem is
particularly complex in a shared-nothing execution environment,
where each system node represents a collection of time-shareable
resources (e.g., CPU(s), disk(s), etc.) and communicateswith other
nodes only by message-passing. Significant research effort has
concentrated on only a subset of the various forms of intra-query
parallelism so that scheduling and synchronization is simplified.
In addition, most previous work has focused its attention on
one-dimensional models of parallel query scheduling, effectively
ignoring the potential benefits of resource sharing. In this paper,
we develop an approach that is more general in both directions,
capturing all forms of intra-query parallelism and exploiting
sharing of multi-dimensional resourcenodesamong concurrent plan
operators. This allows scheduling a set of independent query tasks
(i.e., operator pipelines) to be seen as an instance of the multi-
dimensional bin-design problem. Using a novel quantification of
coarse grain paralelism, we present a list scheduling heuristic
algorithm that is provably near-optimal in the class of coarse
grain parallel executions (with a worst-case performance ratio that
depends on the number of resources per node and the granularity
parameter). We then extend this algorithm to handle the operator
precedence constraints in a bushy query plan by splitting the
execution of the plan into synchronized phases. Preliminary
performance results confirm the effectiveness of our scheduling
algorithm compared both to previous approaches and the optimal
solution. Finally, we present a technique that allows us to relax the
coarse granularity restriction and obtain a list scheduling method
that is provably near-optimal in the space of all possible parallel
schedules.

1 Introduction

Parallelism has been recognized as a powerful and cost-
effective means of handling the projected increases in data
size and query complexity in future database applications.
Among dl proposas, the shared-nothing multiprocessor

*Partially supported by the National Science Foundation under Grants
IRI-9113736and IRI-9157368 (PY | Award), and by grantsfrom IBM, DEC,
HPR, AT&T, Informix, and Oracle.

In Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, Mon-
treal, Canada, June 1996.

365

YannisE. loannidis*
Computer Sciences Department
University of Wisconsin
Madison, W1 53706
yannis@cs.wisc.edu

architecture has emerged as the most scalable to support
very large database management [DG92]. In this, each site
consists of its own set of local resources and communicates
with other sites only by message-passing. Despite the
popularity of this architecture, the development of effective
and efficient query processing and optimization techniques
to exploit itsfull potential still remains an issue of concern.

Earlier work on paralel query scheduling has typicaly
concentrated on two important problems:

1. compile-time optimization: minimizing the response
time of a single query through parallelization of an
execution plan, i.e, scheduling of the plan’'s operators
on the system’s sites (the plan is usualy the result
of an earlier phase of conventiona centralized query
optimization) [CHM95, GW93, HM 94, Hon92, HCY 94,
LCRY93]; and

run-time execution: achieving some system-wide per-
formance goas (e.g., maximizing query throughput) by
adaptive scheduling of the operators of multiple concur-
rent queries [MD93, MD95, RM95].

We address the first problem, i.e., paralleization of query
execution plans. We consider the full variety of bushy plans
and schedules that incorporate independent and pipelined
formsof inter-operationparallelism aswell asintra-operation
(i.e., partitioned) parallelism.

One of the main sources of complexity of query plan
scheduling is the multi-dimensionality of the resource needs
of database queries. That is, during their execution queries
alternate between multiple resources, most of which are
preemptable [GHK92], eg., the CPU and disk bandwidth.
This introduces arange of possibilitiesfor effectively time-
sharing system resources among concurrent query operators,
which can substantialy increase the utilization of these
resources and reduce the response time of the query.

Previous work on paralel query scheduling has typically
ignored the multi-dimensional nature of database queries. It
has simplified the all ocation of resourcesto amere alocation
of processors, hiding the multi-dimensionality of query
operators under a scalar cost metric like “work” or “time’
[CHM95, GW93, HM94, HCY 94, LCRY93]. This one-
dimensiona model of scheduling isinadequate for database
operations that impose a significant load on multiple system
resources.

In this paper, we present a framework for multi-
dimensiona resource scheduling in shared-nothing parallel

database systems. Building on the work of Ganguly et
al. [GHK92], we represent query operator costs as work
vectors with onedimension per resource. In order to account
for the communication overhead of parallelism, we initialy
restrict our attention to operator parallelizations that are
sufficiently coarse grain. We present a quantification of
the notion of coarse granularity based on the relative costs
of communication and computation and use it to derive the
degree of partitioned parallelism.

Based on this framework, the problem of resource
scheduling for acollection of concurrently executed operators
is reduced to an instance of the multi-dimensional bin-
design problem [CGJ84] for work vector packings. For
this, we develop a fast resource scheduling agorithm
caled OPERATORSCHEDULE that belongs to the class of
list scheduling algorithms [Gra66]. The response time
(or, makespan) of the paralle schedule produced by
OPERATORSCHEDULE is analytically shown to be
(@) within (24 4 1) of the optimal schedule length for given

degrees of partitioned parallelism, and
(b) within (2d(fd + 1) + 1) of the optimal coarse grain
schedule length,
where d is the dimensiondity of the work vectors and
f is a "smdl” parameter capturing the granularity of
the parallel execution. We then extend the agorithm
to handle the operator precedence constraints in a bushy
query plan by splitting the execution of the plan into
synchronized phases. The resulting agorithm, caled
TREESCHEDULE, uses OPERATORSCHEDULE as a subroutine
to determine the scheduling of operators within each phase.
Preliminary experimental results confirm the effectiveness
of these agorithms compared to previous one-dimensiona
approaches. In addition, our results show that the analytical
worst-case bounds are rather pessimistic compared to the
average performance, which is extremely close to optimal.
Finally, we consider the more general malleable problem
in which the solution is no longer constrained by a coarse
granularity condition. Instead, the scheduler is free to
determine the degrees of partitioned parallelism with the
objective of minimizing response time over all possible
parallel schedules. Building on the ideas of Turek et
al. [TWY92] we present a technique that allows our list
scheduling rule for independent operators to achieve a
suboptimaity bound of (2d + 1) for the malleable problem
at the additional cost of a preprocessing parallelization step.

2 Redated Work

The problem of scheduling complex query plans on paralle
machines has recently attracted a lot of attention from the
database research community. Hasan and Motwani [HM94]
study the tradeoff between pipelined parallelism and itscom-
muni cation overhead and devel op near-optimal heuristicsfor
scheduling a star or a path of pipelined relationa operators
on a multiprocessor architecture. Chekuri et al. [CHM95]
extend theseresultsto arbitrary pipelined operator trees. The

366

heuristics proposed in these papers ignore both independent
and partitioned parallelism. Ganguly and Wang [GW93] de-
scribe the design of a parallelizing scheduler for a tree of
coarse grain operators. Based on a one-dimensional model
of query operator costs, the authors show their scheduler to
be near-optimal for alimited space of query plans (i.e., left-
deep jointreeswith asingle materialization point in any right
subtree). Ganguly et a. [GGW95] abtain similar results for
the problem of partitioning independent pipelines without
the coarse granularity restriction. The benefits of resource
sharing and the multi-dimensionality of query operators are
not addressed in these papers. Furthermore, no experimental
results are reported. Lo et a. [LCRY 93] develop optimal
schemes for assigning processors to the stages of a pipeline
of hash-joinsin a shared-disk environment. Their schemes
are based on a two-phase minimax formulation of the prob-
lem that ignores communi cation costs and prevents processor
sharing among stages. Moreover, no methods are proposed
for handling multiplejoin pipelines (i.e., independent paral -
lelism).

With the exception of the papers mentioned above, most
efforts are experimenta in nature and offer no theoretical
justificationfor the a gorithmsthat they propose. In addition,
many proposals have simplified the scheduling issues by
ignoring independent (bushy tree) parallelism; these include
the right-deep trees of Schneider [Sch90] and the segmented
right-deep trees of Chen et a. [CLY Y92]. Nevertheless, the
advantages offered by such parallelism, especially for large
gueries, have been demonstrated in prior research [CYW92].

Tan and Lu [TL93] and Niccum et a. [NSHL95] consider
thegenera problem of scheduling bushy join planson parallel
machines exploiting al forms of intra-query parallelism and
suggest heuristic methods of splitting the bushy plan into
non-overlapping shelves of concurrent joins. For the same
problem, Hsiao et al. [HCY 94] proposeaprocessor allocation
scheme based on the concept of synchronous execution time:
the set of processors alotted to a parent join pipeline are
recursively partitioned among its subtreesin such away that
those subtrees can be completed at approximately the same
time. For deep execution plans, there exists a point beyond
which further partitioningis detrimental or even impossible,
and serialization must be employed for better performance.
Wilschut et . [WFA95] present a comparative performance
evaluation of various multi-join execution strategies on the
PRISMA/DB parallel main-memory database system.

A common characteristic of all approaches described
above is that they consider a one-dimensional model of re-
source allocation based on ascalar cost metric (e.g., “work”™),
which ignoresany possibilitiesfor effective resource sharing
among concurrent operations. Perhaps the only exception is
Hong’s method for exploiting independent parallelismin the
XPRS shared-memory database system [Hon92]. He sug-
gests a scheduling algorithm that combines one 1/0-bound
and one CPU-bound operator pipeline through independent
parallelism to maximize the system resource utilizationsand

thus minimize the elapsed time. Hong's agorithm depends
on the dynamic (run-time) adjustment of intra-operator paral -
lelismto ensurethat the system always executesat its1O-CPU
balance point. However, thisapproach may fail inthe context
of ashared-nothingarchitecture sincethe substantial commu-
nication overhead invol vedinrelation declustering causes the
cost of dynamic load balancing to increase dramatically.

Moving away from the database field, thereisa significant
body of work on pardle task scheduling in the field of
deterministic scheduling theory. Since the problem is A'P-
hard in the strong sense [DL89], research efforts have
concentrated on providing fast heuristicswith provableworst
case bounds on the suboptimality of the solution. However,
scheduling query plans on shared-nothing architectures
requires a significantly richer model of paralleization than
what is assumed in the classica [Grat6, GLLRK79] or
even more recent [BB90, BB91, KM92, TWY 92, WC92]
efforts in that field. To the best of our knowledge, there
have been no theoretical resultsin the literature on parallel
task scheduling that consider multiple system resources
and explore resource sharing among concurrent tasks, or
study the implications of pipelined paralelism and data
communication costs. This is an area of growing interest,
however; in addition to our own effort, recently Shachnai
and Turek [ST94] have independently obtained some results
on multiresource parallel task scheduling. Their results
on makespan scheduling are similar to ours athough they
assume a very different model of resource usage.

3 Problem Formulation

3.1 Dé¢finitions

We consider shared-nothing systems with identical multi-
programmed resource sites connected by an interconnection
network. Each siteisacollection of d system resources that
are assumed to be time-diceabl e or preemptable, inthe sense
that they can be time-shared among different operations at
low overhead. Resources like the CPU(s), the disk(s), and
the network interface(s) or communication processor(s) are
preemptable, while memory is not.

An operator tree [GHK92, Hon92, Sch90] is created as a
“macro-expansion” of an execution plan tree by refining each
node into a subtree of physical operator nodes, e.g., scan,
probe, buil d (Figure1(ab)). Edges represent the flow
of data as well as two forms of timing constraints between
operators: pipelining (thinedges) and blocking (thick edges).
A query task is a maximal subgraph of the operator tree
containingonly pipdiningedges. A querytasktreeiscreated
from an operator tree by representing query tasks as single
nodes (Figure 1(c)).

The above trees clarify the definitions of the three forms
of intra-query paralleism:

o Partitioned parallelism: A single node of the operator
tree is executed on a set of sites by appropriately
partitioningitsinput data sets.

367

pROBE 10

> v
/ BUILD @
ROBE
R4 HASH IO
> SCANR4)
/ RRRRRRRRR T4/ BULD ... MERGH
R3 P> som
/ \ SCAN(R3) SORT: SORT

T3 SCAN(R2) SCAN(R1)

T2 Tl

@ (b) ©
Figure1: (a) An execution plan tree. (b) The corresponding
operator tree. (c) The corresponding query task tree. The
thick edgesin (b) indicate blocking constraints.

o Pipelined parallelism: The operators of a single node of
the task tree are executed on a set of sitesin a pipelined
manner.

Independent parallelism: Nodes of the task tree with
no path between them are executed on a set of sites
independent of each other. For example, in Figure 1,
tasks T1-T4 can be executed in paralel, whereas task T5
must await the completion of T1-T4.
The home of an operator is the set of sites alotted to its
execution. Each operator iseither rooted, if itshomeisfixed
by dataplacement constraints(e.g., scanning thematerialized
result of aprevioustask), or floating, if theresource schedul er
isfreeto determineits parallelization.

3.2 Overview

A paralle schedule consistsof (1) an operator treeand (2) an
allocation of system resources to operators. Given a query
execution plan, our goal isto find a paralel schedule with
minimal response time. To account for the communication
overhead of parallelism, we initially restrict our attention to
partitioned parallelism that is coarse grain [GW93, GY 93].
That is, we ignore operator paralelizations whose ratio
of computation costs to communication overhead is not
sufficiently high, as most of them are bound to be ineffective.

Based on the above restriction, we devise an agorithm
for scheduling bushy execution plan trees that consists of the
following steps:

1. Construct the corresponding operator and task trees,
and deterministically split the latter into synchronized
phases [TL93], where each phase contains tasks with no
(blocking) paths between them.

For each operator, determine its individual resource re-
quirements using hardware parameters, DBMS statis-
tics, and conventiona optimizer cost models (eg.,
[HCY 94, SACt79)).

For each floating operator, determinethe degree of coarse
grain parallelism based on the relative cost of computa
tion and communication (partitioned parallelism).

For each phase of the task tree, schedule all floating
operators on the set of available sites using a multi-
dimensiona list scheduling heuristic that is provably
near-optimal in the space of coarse grain paralé
executions (pipelined and independent parallelism).

We then propose a technique for selecting an operator
paralelization that alows us to relax the coarse granularity
restriction (Step 3). Combining this technique with our
list scheduling rule for independent operators results in an
algorithm that is provably near-optimal in the space of all
possible paralel executions.

3.3 Assumptions
Our approach is based on the following set of assumptions:

Al. No Memory Limitations. An operator is aways
allotted sufficient memory buffersto alow the execution
of an operator pipeineto proceed in asingle phase. For
example, when executing apipelineof pr obe operators,
the hash tables built on the inner relations are assumed
to be memory-resident. To the best of our knowledge,
devel oping an accurate memory usage model for parallel
guery optimization isan open problem.

A2. No Time-Sharing Overhead. Following Ganguly et
al. [GHK92], dicing a preemptable resource among
multiple operators introduces no additiona resource
costs.

A3. Uniform Resource Usage. Following Ganguly et
al. [GHK92], usage of a preemptable resource by an
operator is uniformly spread over the execution of the
operator.

A4. Non-increasing Operator Execution Times. For
the range of coarse grain paraleism considered, an
operator’s execution time is a non-increasing function of
its degree of paraleism, i.e., alotting more sites cannot
increase its responsetime.

AS5. Dynamically Repartitioned Pipelined Outputs. The
output of an operator in apipeineisawaysrepartitioned
to serve as input to the next one. Thisis amost always
accurate, e.g., when thejoin attributes of pipelined joins
are different, the degrees of partitioned parallelism differ,
or different declustering schemes must be used for load
balancing.

4 Coarse Grain Parallelization of Operators

4.1 A Resource Usage Modd

Our treatment of resource usage is based on the model of
preemptabl e resources proposed by Ganguly et a. [GHK92],
whichwebriefly describehere. Theusageof asingleresource
by an operator is modeled by two parameters, 7" and W,
where 7' isthe elapsed time after which the resourceis freed
(i.e, the response time of the operator) and W is the work
mesasured as the effective time for which the resource isused
by the operator. Intuitively, the resource is kept busy by the
operator only W/T of the time. Although this abstraction
can model the true utilization of a system resource, it does
not allow us to predict exactly when the busy periods are.
Thus, we make assumption A3 which, in conjunction with
assumption A2, leadsto straightforward quantification of the
effects of resource sharing [GHK92].

368

TIME

seq

T

(W) = max { Wil }

Sed, x;

W)

=Ziwm

RESOURCES RESOURCES

@

(b)
Figure2: Extremesin usage of d-dimensional resource sites:
(a) perfect overlap and (b) zero overlap.

We extend the model of Ganguly et a. [GHK92] and
describetheusage by anisolated operator of asitecomprising
of d preemptableresources by thepair (74, W). Parameter
T*¢4 isthe (sequential) execution time of the operator, while
W isad-dimensiona work vector whose components denote
the work done on individual resources. Our model assumes
a fixed numbering of system resources for al sites; for
example, dimensions 1, 2, 3, and 4 may correspond to
CPU, disk-1, disk-2, and network interface, respectively.
TimeT#¢? is actualy afunction of the operator’sindividual
resource requirements, i.e., its work vector W (sometimes
emphasized by using 7°¢(W) instead of 7%¢?), and the
amount of overlap that can be achieved between processing
at different resources. This overlap is a system parameter
that depends on the hardware and software architecture of
the resource sites (e.g., buffering architecture for disk 1/0)
as well as the agorithm implementing the operator. An
important constraint for 7'*¢¢, however, is that it can never
be less than the amount of work done on any single resource
and it can never exceed the total work performed. As shown
in Figure 2, thisis more formally expressed as

d
(W) < T9() < Wi

4.2 Quantifying Coarse Grain Parallelism

Asiswell known, increasing the paralelism of an operator
reduces its execution time until a saturation point is reached,
beyond which additional parallelism causes a speed-down,
due to excessive communication startup and coordination
overhead over too many sites [DGSt90]. To avoid
operating beyond that point, we need to ensure that the
granules of the paralld execution are sufficienty coarse.
In particular, in the spirit of Stone [Sto87], we define the
granularity of a d-dimensional parallel operator op as the

ratio W, (op)/W.(op, N), where
e WW,(op) denotes the total amount of work performed
during the execution of op on asingle site, when dl its
operands are localy resident (i.e., zero communication
cost); it corresponds to the processing area [GW93] of
op and isconstant for al possible executions of op; and

IFigure 2 is actually a little misleading since, by assumption A3, the
work performed on any resource should be uniformly spread over 7"$¢4.

e W.(op, N) denotes the total communication overhead
incurred when the execution of op is distributed across
N dites; it corresponds to the communication area of
a pardlel execution of op on N sites and is a non-
decreasing function of N.
Using the above notions, we extend earlier quantifications of
coarse grain paralelism [GW93] to our multi-dimensiona
operator model as follows:

Definition 4.1 A paralldl execution of an operator op on N
resource sitesiscoarse grainwith parameter f (referred to as
aCG; execution) if the communication area of the execution
is no more than f times the processing area of op, that is,
We(op,N) < f W,(0op).

4.3 Degree of Partitioned Parallelism

Assuming zero communication costs, the resource require-
ments of the operator are described by a d-dimensiona work
vector W whose components can be derived from system
parameters and traditional optimizer cost models. By defini-
tion, the processing area of the operator 1/, (op) is simply
the sum of 7's components, i.e., W, (op) = S, W[i.
Let D denote the total size (in bytes) of the operator’s
input and output data set(s) that are transferred over the
interconnect. We useasimplemodel of communication costs
in which the total communication overhead for the parallel
execution of an operator on N sitesis estimated as:

We.(op,N)=a N+ 3D,

where «, 5 are architecture-specific parameters specified as
follows:
e « isthestartup cost for each participating site, and
e 3 is the time spent a the network interface and/or
communication processor per unit of data transferred.

Thismodel of operator communication costsis substantiated
by the experimental results of DeWitt et a. on the Gamma
shared-nothing database machine [DGS*90], and simpler
forms of thismodel have been adopted in previous studies of
shared-nothing systems [GM SY 93, WFA92].

Note that the startup cost cannot, in general, be distributed
among the participating sites. Rather, it isinherently serial
and isincurred at asingle site (the designated “ coordinator”
for the parallel execution). This implies that there ways
exists some degree of parallelism beyond which the startup
overhead at the coordinator dominates the actual processing
time,

The following proposition is an immediate consequence
of Definition 4.1 and our communication cost model.

Proposition 4.1 The maximum alowable degree of intra
operator parallelism for a CG; execution of operator op is
denoted by Np,qz (0P, f) and is determined by the formula

f Wy (op) _ﬁDJ 1

@

N0, f) = max

5 The Scheduling Algorithm

5.1 Notation

Table 1 summarizes the notation used in this section with
a brief description of its semantics. Detailed definitions
of some of these parameters are given below. Additional
notation will be introduced when necessary. Vector Wop,

I Parameter | Semantics

P | Number of system sites
d | Sitedimensionality (no. of resources per site)
s; | Systemsite(y =1,...,P)
Operator clones sharing site s
Execution time for all operator clones at site s;

M | Number of concurrent operators
op; | Operator,e.g.,scan,build (z=1,...,M)
N; | Degreeof partitioned parallelism (number of
clones) for op;
Work vector for op; (including communication
costsfor NV; sites)
Time of parallel execution of op; on N; sites
while alonein system
Time of sequential execution of operator with
resource requirements W (Section 4.1)
Length of awork vector W or set of work
vectors.S

Wop,
TP‘”(opi, IVL‘)

“<a(77)

~

HW), U(S)

Table 1: Notation

describes the tota (i.e, processing and communication)
resource reguirements of op;, given itsdegree of parallelism
N;. Using the notionsof communication and processing area
defined in Section 4, the above is expressed as

d
> Wop, [k] = W, (0p;) + We(op;, N;).
k=1

The individua components of Wop, are computed using
architectural parameters, database statistics, and our model
for communication costs’.

The length of a d-dimensional vector W is its maximum
component. Thelengthof aset S of d-dimensional vectorsis
the maximum component in the vector sum of al the vectors
inS. Moreformally,

(W) = max (WIk]}

[(S) = max { > Wk}
- T Wes

5.2 Modeing Paralldl Execution and Resource Sharing

In this section, we present a set of extensions to the (one-
dimensiona) cost model of a traditional DBMS based on
the multi-dimensional resource usage formul ation described
in Section 4.1. Our extensions account for all forms of
paralelism and quantify the effects of resource sharing on
the response time of a parallel execution.

2The actual distribution of costs among the vector's components is
immaterial asfar as our model is concerned.

5.2.1 Partitioned Paralldism

In partitioned parallelism, the work vector of an operator
is partitioned among a set of operator clones [GHK92].
Each clone executes on a single site and works on a portion
of the operator's data. Consider an operator op; that is
distributed across N; sites and runs in isolation, without
experiencing resource contention. Partitioning Wop, into
the work vectors for the operator clones is determined
based on statistical information kept in the DBMS catal ogs.
Given such a partitioning < Wy, Wo, ..., Wx, >, where
SN Wy = Wop,, the parallel execution time for op; can
be expressed as the maximum of the sequential execution
times of the V; clones; that is,

TP% (0op;, Ni) = max

seq (TA7
13k§N1{T (W) }.

D

5.2.2 Pipdined and Independent Parallelism

Definition 5.1 Given a collection of M operators to be ex-
ecuted concurrently {op;,i = 1...M} and their respec-
tive degrees of partitioned paraleism {N;,i = 1...M},a
schedule isamapping of the Zf‘i 1 Vi operator clonesto the
set of available sites such that no two clones of the same
operator are mapped to the same site.

The constraint on the mapping of operator clones to sites
ensures that N; is the true degree of parallelism for op; so
that Equation (1) is &till valid.

The effects of time-sharing a site among many operators
can be quantified as follows. Let work(s;) denote the set
of al operator clones (or, equivaently, all work vectors)
mapped to site s; under a particular schedule. Since all
resources are preemptable, the execution time for al the
operator clones scheduled &t s; is determined by the ability
to overlap the processing of resource requests by different
operators. Specifically, under our model of preemptable
resources described in Section 4.1, the execution time for
al the operator clones scheduled ét s; is defined as

{T**1(W)}, U(work(s;)) }.
@)

For example, consider two 2-dimensional operator clones
with resource usage pairs (774, W) = (22,[10,15]) and
(T5°?, W) =(10,[10,5]) placed at s;. Inthiscase, W1 +W
= [20,20], which means that the total requirements of the
two clones ({({W1, W,}) = 20) can be “squeezed” into the
responsetimeof thefirstclone (75 %Y = 22),i.e, T°"¢(s;)
22. Ontheother hand, consider (77 °¢, W) placed at s; with
(T5°?, W3) = (10,[5,10]). Inthiscase, W + W5 =[15,25],
and the second resource gets congested, i.e., 7%°(s;)
[({W1,W3}) = 25, whilemax{7}°?, T5°?} = 22.

Let SCHED be a schedule for the parallel execution of
{op;,t = 1...M} on a set of resource sites {s;,j =
1...P}. Clearly, theresponsetimeof SCHED isdetermined
by the most heavily loaded site. Thus, we can combine

T*"¢(s;) = max{ _ max
Wework(s;)

370

Equations(2) and (1) to estimatetheresponsetimeasfollows:

TP (SCHED, P) max { T°%¢(s;) }

1<5<P
par . .

max{ max {17 (0p;, Ni)},

(max {l(work(s;))} }.(3)
Equation (3) defines the optimization metric for our schedul-
ing agorithm, described in the next section. Intuitively the
formula states that the response time of a parallel execution
schedule is determined by either the slowest executing oper-

ator, or theload at themost heavily congested resourcein the
system, whichever is greater.

5.3 A Near-Optimal Heuristic for Independent Query
Tasks

The performance ratio of a scheduling algorithm is defined
as the ratio of the response time of the schedule it
generates over that of the optimal schedule. In this section,
we develop a heuristic for scheduling independent query
tasks that is provably near-optimal, i.e, with a constant
bound on the performance ratio. In Section 5.4, we
address the general query task tree scheduling problem.
A collection of independent query tasks (pipeines) is
essentidly a collection of operators that can be executed
concurrently. Operators within each task form producer-
consumer pairsthat communicate across the interconnection
network, whereas operatorsin different tasks are completely
independent. More specificaly, let R, F' denote the set
of al rooted and floating operators respectively, that is
RUF ={op;,i=1...M}.LetN = M N;,wherethe
degree of paralelism N; isdetermined by Proposition4.1 for
op; € F and by the existing data placement constraints for
op; € R.

Theparale executiontimeof anindividual rooted operator
is fixed by its paralldization. By assumption A4 and the
calculation of N;, theparallel execution timeof anindividual
floating operator is optimal in the space of CG; executions.
Hence, depending on the operator type, the left input of
max in (3),i.e, TP (op;, N;), iseither fixed or minimized.
Consequently, minimization of response time (equation (3))
trand ates to determining a mapping of the N work vectors
obtained through the cloning of operatorsin R U F' to the P
d-dimensiona sites, such that

(A) no two vectors from the same operator are mapped to
the same site,

(B) data placement constraints for rooted operators are
satisfied, and

(C) the maximum resource usage among al system re-
sources, i.e., the right input of max in (3), is minimized.

This is essentially an instance of the d-dimensional bin-
design problem (thedual of the d-dimensiona vector-packing
problem) [CGJ34]. In vector-packing terminology, our
scheduling problem may be stated as follows:

Given a collection of positive d-dimensional vectors
(thework vectors) and a set of P d-dimensional bins
(the system sites), determine a packing of the vectors
in the bins that obeys constraints (A) and (B) and
minimizes the required common bin capacity (the
maximum resource usagein the system).

This problem is clearly AP-hard since it reduces to
traditional multiprocessor schedulingford = 1, R =), and
N; = 1 for all i. Given theintractability of the problem, we
devel op an approximation a gorithm, OPERATORSCHEDULE ,
that runsin polynomial time and guarantees aconstant bound
on the performance ratio. OPERATORSCHEDULE belongs to
the class of list scheduling algorithms originally proposed
by Graham [Gra66]. The agorithm begins by placing
the work vectors of al rooted operators at their respective
sites and computing the degree of coarse grain paralelism
for all floating operators. It then proceeds to schedule
floating operators according to the following list scheduling
rule: Consider the list of work vectors resulting from the
cloning of al floating operators in non-increasing order of
thelr maximum component; a each step, pack the next
vector in the least filled allowable bin/site (that is, pack
the vector in the site s; such that [(work(s;)) is minimal
among al binsnot containing other vectors of that operator).
OPERATORSCHEDULE isdepicted in Figure 3.

Input: A set of rooted and floating operators R U F, a set of P
sites{s1,..., sp}, and agranularity parameter f

Output: A schedule ({work(s;),5 = 1,..., P}) for the CG;
execution of R U F satisfying (A)-(B)

foreach op; € R do
place the work vectors of op; at their respective sites
end-for
for each op; € F do
set the degree of intra-operator parallelism
N; = Inin{Nm(w(Opi7 f), P}
let L; =< w1,...,wn,; > be the list of work
vectors for op,’s clones
end-for
let L =< wy,...,wy > be the list of all floating work
vectors in non-increasing order of {(w;)
fork=1to N do
let op,; be the operator whose cloning produced wy
let s be a site with work(s) N L; = § such that
l(work(s)) = minsj:work(sj)nLF@{l(work(s])}
set work(s) = work(s) U {w}
end-for

Figure 3: The OPERATORSCHEDULE agorithm

Thefollowing theorem boundsthe worst-case performance
ratio of our algorithm. As with all theoretical results
presented here, the theorem is stated without proof due to
space congtraints. The details can befoundinthefull version
of this paper [GI96].

Theorem 5.1 The parallel execution time of the schedule
returned by OPERATORSCHEDULE is

371

(@) within(2d+ 1) of thelength of the optimal schedule that
uses the same degrees of intra-operator parallelismfor all
floating operators, and

(b) within (2d(fd + 1) + 1) of the optimal CG; schedule
length.

We also provide an upper bound on the asymptotic time
complexity of OPERATORSCHEDULE.

Proposition 5.1 OPERATORSCHEDULE runs in time
O(MP(M + log P)), where M is the number of concur-
rent operators and P isthe number of system sites.

5.4 Handling Data Dependencies

Scheduling arbitrary query task trees must ensure that the
bl ocking constraints specified by thetree' sedgesare satisfied.
For this, we split a query task tree into synchronized
phases or “shelves’ [NSHL95, TL93]. Each phase contains
independent tasks that are to be executed concurrently, after
the completion of al tasks in the previous phase. The
number of phases is equa to the height of the task tree and
each task is scheduled in the phase closest to the root that
does not violate the precedence constraints. For example,
the plan in Figure 1 is executed in two distinct phases
containing tasks T1-T4 and task T5, respectively. This
correspondsto the M inShel f policy of Tan and Lu [TL93].
Resource scheduling within each phase is performed by
the OPERATORSCHEDULE dgorithm. The full agorithm,
TREESCHEDULE isdepicted in Figure 4.

Input: A querytasktreeT = (V, E), asetof P sites{s1, . ..
and a granularity parameter f
Output: A schedulefor the CG; execution of T'

for i = height(T) downto 0 do
oP=90
foreach node v € V' such that level(v) =1 do
OP = OP U {operators in task v}
end-for
call OPERATORSCHEDULE(OP, {s1, ..
end-for

8P},

'75P}1f)

Figure4: The TREESCHEDULE agorithm

Observe that for any query execution plan the number of
nodes in the operator tree is bounded by a small constant
times the number of joins in the query, eg., expanding a
hash-join gives at most four operator nodes. Combining
this observation with Proposition 5.1 gives the following
complexity bound for TREESCHEDULE .

Proposition 5.2 TREESCHEDULE runs in time
O(JP(J + log P)), where J is the number of nodesin the
guery execution plan and P isthe number of system sites.

55 Commentson the Effectiveness of the Heuristics

Theorem 5.1 derives an upper bound on the worst-case
performance ratio of the OPERATORSCHEDULE agorithm for
scheduling a collection of CG; concurrent operators. In
general, the expected output quality of our heuristic should

be much better than the worst-case bounds, especialy for a
set of operatorswith agood “mix” of resource requirements.
This conjecture is supported by theoretica results on
the expected performance of vector packing [KLMS84].
The big advantage of OPERATORSCHEDULE compared to
previous approachesisits ability to explore resource sharing
possibilitiesand balance the resourceworkloadsat individual
sSites.

Deriving performance bounds for the schedule produced
by the TREESCHEDULE agorithm is a much more difficult
problem. Theorem 5.1 ensures that scheduling within each
phase is near-optimal given its data placement constraints.
When scheduling a query task tree, the scheduling decisions
madeat earlier phases may impose datapl acement constraints
on the phases that follow. For example, the bui |l d and
pr obe operatorsof ahash join bel ong to two adjacent phases
because of their sequential dependency (the hash table has
to be complete before probing can begin). Furthermore, the
pr obe operator has to be executed at the set of sites that
hold the hash table, that is, the home of the bui | d. Such
interdependencies between phases complicate any proof of
suboptimality bounds for the TREESCHEDULE agorithm. At
this point, we have not been able to obtain theoretical
results on the quality of the schedule produced for the
entire query task tree. However, given the load balancing
capabilities of the OPERATORSCHEDULE algorithm, we feel
confident that TREESCHEDULE will outperform previous
approaches. Our conjectures for both OPERATORSCHEDULE
and TREESCHEDULE are supported by the results of a
preliminary experimental evaluation presented in the next
section.

6 Experimental Performance Evaluation

In thissection, we describe theresults of several experiments
we have conducted comparing the average performance of
our multi-dimensional scheduling algorithm with a one-
dimensiona *“synchronous execution time” agorithm that
we developed based on previous work [HCY 94, LCRY 93].
Another point of interest isexamining how closetheresponse
time of the generated scheduleisto that of the optimal coarse
grain schedule on the average. We start by presenting our
experimenta testbed and methodol ogy.

6.1 Experimental Testbed
We have experimented with the following algorithms:

e SYNCHRONOUS : Combination of the synchronous
execution time method of Hsiao et a. [HCY94] for
processor alocation for independent parallelism with the
two-phase minimax technique of Lo et a. [LCRY93]
for optimally distributing processors across the stages
of a hash-join pipdine. Although these strategies
were originally proposed for shared-disk systems, they
were appropriately extended to account for the data
redistribution costs in a shared-nothing environment.

e TREESCHEDULE : Multi-dimensional list scheduling in
synchronized phases.

e OPTBOUND : Hypothetical algorithm achieving a lower
bound on the optimal response time.

We selected SYNCHRONOUS as a one-dimensional adversary
since it isthe “state-of-the-art” method for exploiting bushy
tree parallelismin parallel query execution3 [WFA95]. Prior
research has demonstrated the advantages offered by such
paralelism, especiadly for large queries [CYW92]. To the
best of our knowledge, optimal processor distributionwithin
general join pipelinesremai nsan open problem. Wetherefore
decided to restrict our experiments to bushy hash-join query
plans so that the optima technique of Lo et a. could be
used in SYNCHRONOUS. We should stress, however, that
TREESCHEDULE isagenera query scheduling algorithm that
can be applied to any bushy plan.

Some additional assumptions were made to obtain a
specific experimental model from the general pardlé
execution model described in Sections 4 and 5:

EA1. No Execution Skew: With the exception of startup
cost, thework vector of an operator isdistributed perfectly
among all sites participating in its execution. Startup is
added to only one of these sites, the “coordinator site”
for the parallel execution, and isequally divided between
the coordinator’s CPU and its network interface.

EA2. Uniform Resource Overlapping: The amount of
overlap achieved between processing a different re-
sources at a site can be characterized by a single system-
wide parameter ¢ € [0, 1] for al query operators. This
parameter allows us to express the response time of a
work vector as a convex combination of the maximum
and the sum of the vector components (see Section 4.1),
i.e, T(W) = emaxi<i<a{W[i]})+(1—¢) Zle W1i].
Small values of ¢ imply limited overlap, whereas values
closer to 1 imply alarger degree of overlap. In the ex-
treme cases, ¢ = 1 gives T(W) = maxi<i<a{W/[i]}
(perfect overlap), and ¢ = 0 gives T(W) = S°_, W[i]
(zero overlap).

Finally, specia precautions were taken to ensure that
assumption A4 is not violated for any given value of the
granularity parameter f. For each query operator, thereexists
an optimal degree of partitioned parallelism that minimizes
the response time [WFA92], and beyond which startup costs
will cause a speed-down. Our implementation makes sure
that this optimal degree of parallelism is never exceeded for
any operator.

We experimented withtreequeriesof 10, 20, 30, 40, and 50
joins. For each query size, twenty query graphs (trees) were
randomly generated and for each graph a bushy execution
plan was randomly selected. We assumed simple key join
operations in which the size of the result relation is always
equa to the size of the largest of the two join operands. The

3The Fully Parallel Execution Method [WFA95] applies only to main-
memory parallel database systems.

comparison metric was the average response times of the
schedules produced by the algorithms over al queries of the
same size. Experiments were conducted with the resource
overlap parameter ¢ varying between 10% and 70% and the
granularity parameter f varying between 0.3 and 0.9. (The
results presented in the next section are indicative of the
results obtained for all values of ¢ and f.)

In al experiments, we assumed a system consisting of
3-dimensional sites with one CPU, one disk unit, and one
network interface. The work vector componentsfor the CPU
and the disk were estimated using the cost model equations
given by Hsiao et a. [HCY94]. The communication costs
were calculated using the model described in Section 4.2.
The values of the cost model parameters were obtained from
the literature[GW93, HCY 94, WFA92] and are summarized
in Table 2.

| Configuration/Catalog Parameters | Value ||
Number of Sites 10- 140
CPU Speed 1 MIPS
Effective Disk Service Time per page 20 msec
Startup Cost per site («) 15 msec
Network Transfer Cost per byte (3) 0.6 psec
Tuple Size 128 bytes
Page Size 40 tuples
Relation Size 107 - 10° tuples

| CPU Cost Parameters | No.ofInstr.]|
Read Page from Disk 5000
Write Page to Disk 5000
Extract Tuple 300
Hash Tuple 100
Probe Hash Table 200

Table 2: Experiment Parameter Settings

6.2 Experimental Results

The first set of experiments studied the effect of different
values of the granularity parameter f on the performance of
TREESCHEDULE compared to that of SYNCHRONOUS (which
is, of course, not affected by different values of f). The
results for queries of 40 joins and a resource overlap of
30% (i.e,, ¢ = 0.3) are depicted in Figure 5(8). Clearly,
for small values of f the coarse granularity condition is
too restrictive, not alowing the execution system to fully
exploit theavailable paralelism. Asthevalueof f increases,
the average plan response time drops substantially until the
bound on operator paralelism isreached. As expected, the
advantages of resource sharing are most evident for resource-
limited situations(i.e., small parallel systems). Nevertheless,
for sufficiently largevalues of f, our agorithm outperformed
its one-dimensional adversary in the entire range of system
and query sizes.

The second set of experiments studied the effect of the
resource overlap parameter ¢ on the performance of the

4The CPU speed and disk service rate were chosen so that the system is
relatively balanced (i.e., not heavily CPU or 10 bound).

373

two agorithms, while the granularity parameter was kept
congtant. The performance results shown in Figure 5(b)
(for queries of 40 joins) demonstrate that TREESCHEDULE
consistently outperformed the SyNCHRONOUS a gorithm for
various vaues of f. Clearly, the benefits of multi-
dimensiona scheduling are more significant for smaller
values of the overlap parameter. The reason is that lower
overlap results in longer idle periods for the individua
resources which our agorithm can exploit through time-
sharing with other operations.

The average performance of thetwo scheduling al gorithms
for different query sizes is depicted in Figure 6(a) for two
different system sizes (20 and 80 sites) and overlap e = 0.5.
For TREESCHEDULE we assume f to be fixed at 0.7. Note
that, for a given system size, the relative improvement
obtai ned with TREESCHEDULE increases monotonically with
the query size.

We should aso mention that the asymptotic time com-
plexity of SYNCHRONOUS is O(J P log(JP)), where J is
the number of joins in the query and P is the number of
sites[LCRY 93]. Thus, TREESCHEDULE appearsto bedightly
more expensive than SYNCHRONOUS, being quadratic in the
size of the query (Proposition 5.2). We believe that thisisa
small price to pay compared to the significant performance
improvement offered by resource sharing, especially for large
gueries and/or resource-limited situations.

For our final set of experiments, we examined the average
performance of TREESCHEDULE compared to a lower bound
on the response time of the optimal CG; execution for a
constant value of f. This lower bound, OPTBOUND, was
estimated using the formula

[(S)

OPTBOUND = max{
P

, T(CP) },

where

o S istheset of work vectorsfor all operatorsin the query
execution plan assuming zero communication costs for
each operator, and

e T(CP) isthetota responsetime of the critical (i.e., most
time-consuming) path in the plan assuming the maximum
allowable degree of coarse grain parallelism for each
operator.

By assumption A4, OPTBOUND is indeed a lower bound
on the length of the optima CG; execution [GI96]. The
results for queries of 20 and 40 joins are shown in
Figure 6(b) for f = 0.7 and overlap ¢ = 0.5. These
curves verified our expectations, showing that the average
performance of TREESCHEDULE is much closer to optimal
than what we would expect from the worst-case bound
derived in Theorem 5.1 for each plan phase. These results
are in accordance with the theoretical results of Karp et
al. [KLMS84] who used a probabilistic modd to prove that
even very simple vector-packing heuristics can be expected
to produce packingsin which very littleof the capacity of the
binsiswasted.

40 Joins, 30% overlap 40 Joins, f=0.7
800 T T T T 800 — T T T T
SYNC —— xt SYNC (10% overlap) ——
700 TREESCHED (f=0.3) -+ 4 700 SYNC (30% overlap) -+ -
' TREESCHED (f=0.5) = SYNC (50% overlap) -&--
. eo0l TREESCHED (f=0.7) < | . so0 SYNC (70% overlap) - |
g N TREESCHED (f=0.9) --- g TREESCHED (10% overlap) -+--
2 ® K2 1 TREESCHED (30% overlap) -*-
© 500 % Y © 500 r % TREESCHED (50% overlap) ~¢--
_E | E TREESCHED (70% overlap) -+
> 400 > 400
%) %]
c c
S 300 | S 300 |
7] 7]
[0 0]
& 200t & 200t
100 f 100 f
0 L L L L L L 0 L L L L L L
20 40 60 80 100 120 140 20 40 60 80 100 120 140
No of sites No of sites
Figure5: (a) Effect of the granularity parameter (f). (b) Effect of the resource overlap parameter (¢).
50% overlap, f=0.7 50% overlap, f=0.7
700 T T T T T 600 T T T T
SYNC (20 sites) —— TREESCHED (40 joins) ——
600 | TREESCHED (20 sites) -+ | OPTBOUND (40 joins) -+--
SYNC (80 sites) o 500 | TREESCHED (20 joins) &
= TREESCHED (80 sites) - = OPTBOUND (20 joins) -
g 500 f 1 9
K2 K2 400 1
£ 00} 1 £
[= L |
> > 300
2 300 1 2 9
g g
S]:w) 200 | B S]:w) 200]
T Q *\‘w
100 ¢ " b 100 ¢ S U S s s .
0 L L L L L L L 0 L L L L L L
10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140
No of joins No of sites

Figure 6: () Effect of query size. (b) Average Performance of TREESCHEDULE vs. Optimal.

7 Extensonsfor Malleable Operators

In this section, we extend our list scheduling technique to
handl e the more general malleable scheduling problem. The
degree of paralelism for the floating query operatorsis no
longer determined through a coarse granularity condition.
Instead, floating operators are malleable, in the sense that
the scheduler is free to determine their parallelization so
that the execution time is minimized over al possible
paralel schedules. Since rooted operators have no effect
on the quality of the generated schedule (their scheduling
is determined by data placement constraints) we will only
consider floating operatorsin this section.

Let N = (Ny,...,Npy) denote a paraldization (i.e,
the degrees of paraldism) of a given set of independent
operators, and let S(V) = (Wop, (N1), ..., Wop,, (Nu))
be the set of (total) work vectorsfor the operators (including
the communication costs for the given paraléelization).
Finally, define h(N) = maxi<i<pm {77 (0p;, N;)}, i.e,
theparallel execution time of the slowest operator. In proving
the (2d + 1) suboptimality bound for OPERATORSCHEDULE
[G196] we actualy show that the makespan of the schedule
produced by our list scheduling rule for any given operator
pardlelization N satisfies the following inequality:

374

TP (SCHED, P, N) < (2d+ 1) max{ @ , h(N) },

where LB(N) = max{ % , h(N) } isalower bound

on the optimal response time for the given parallelization.
Our goal isto determine a particular operator paraleiza-
tion N suchthat when NV isused asinput to our list scheduling
technique the resulting schedule is guaranteed to be within
(2d+1) of the optimal schedule (over all possibleparalleliza-
tions). The following lemma formalizes our expectations.

Lemma7.l Let N* denotetheparall€elizationof operatorsin
the optimal execution schedule. Let N be another (possibly
identical) parallelization such that LB(N) < LB(N™).
Then, applying our list scheduling ruleto N will return an
execution schedule whose length is within (24 + 1) of the
optimal schedule length.

Wenow present agreedy selection al gorithmfor generating
afamily of pardlelizations. The algorithm is an adaptation
of the GF method presented by Turek et al. [TWY 92] based
on the observation that in our work vector model, for any
operator op, if n < m then Wop(n) <4 Wop(m)® :

5< 4 stands for componentwiseless-than, i.e,, w; <g we iff wy[i] <
walf]fori=1,...,d.

1. The first candidate paralelization is the minimum tota
work pardldization N' = (1,1,...,1).

The k" candidate paralldization is determined by the
(k — 1)** paralélization by first finding the operator
whoseexecution timeisequal toh(N*~1) andincreasing
its degree of paralelism by one.

. The agorithm terminates when no more sites can be
allotted to the largest operator.

Lemma7.2 Let N* denote the parall€elization of operators
in the optima execution schedule. The above agorithm
producesat |east oneparallelization N suchthat thefollowing
two properties hold:

1. TP (op;, N;) < h(N™) foradl 4, and

2. WOD,(NZ') <4 Wopl(Ni*) for dl 1.

2.

From Lemma 7.2 and thedefinition of thelower bound L B(),
at least one of the operator parallédizations produced by the
algorithm will satisfy the conditionsof Lemma 7.1.

Theorem 7.1 Let A bethefamily of parallelizations gener-
atedandlet N € Asuchthat LB(N) = mingea{LB(K)}.
Then, the schedule generated by our list scheduling rule for
theparallelization N iswithin (2d+ 1) of theoptimal parallel
schedule length.

The number of paralldlizationsgenerated by our agorithmis
bounded by 1+ M (P — 1) and so the compl exity of selecting
an operator paralldization is O(M PlogM). Thus, this
preprocessing step does not affect the asymptotic complexity
of our scheduler. Alsonotethat Theorem 7.1 doesnot depend
on the non-increasing execution times assumption (A4) or
any particular model for communication costs. The only
assumption required is that of non-decreasing work vectors.

8 Conclusions

In this paper, we have addressed the open problem of multi-
dimensiona resource scheduling for complex queries in
paralel database systems. Our approach is based on (1) a
mode! of resource usage that alowsthe scheduler to explore
the possibilities for resource sharing among concurrent
operations and quantify the effects of this sharing on the
paralel execution time, and (2) a quantification of the notion
of coarse grain parallelism for query plan operators. Using
these tool swe devel oped a vector-packing formul ation of the
resource scheduling problem for independent query tasks,
and proposed OPERATORSCHEDULE, a fast list scheduling
heurigtic that is provably near-optima in the class of
coarse grain executions. We then extended our approach
to handle the blocking constraints in a bushy query plan
by splitting its execution into synchronized phases. The
resulting algorithm, TREESCHEDULE, exploits all forms of
intra-query paralelism and allows effective resource sharing
among operators executing concurrently. We also verified
the effectiveness of our scheduling methods compared to
both previous (one-dimensional) approaches and the optimal
solution through a series of experimental results. Finaly,

375

we proposed a technique that allows us to relax the coarse
granularity restriction and obtain aprovably near-optimal list
scheduling method for the malleable independent operator
scheduling problem. In practice, the coarse granularity
condition provides a fast way of determining an efficient
pardlelization based on system parameters. The more
sophisticated greedy selection technique can be used when
the additional scheduling overhead isjustified.

The multi-dimensional model of query parallelization and
resource scheduling proposed in this paper suggests severd
directionsfor future research. First, the framework is useful
only for resources that are preemptable. Incorporating non-
preemptable resources such as memory requires an even
richer model of paralléization and thus remains an open
guestion. Memory, in particular, introduces an additiona
level of complexity sincetheamount of work performed by an
operator often depends on the amount of available memory.
Second, the assumption of zero time-sharing overhead (A2)
may not be accurate for certain types of resources. For
example, disks do not time share as gracefully as processors
or network interfaces; dicing a disk among many tasks
can reduce the disk’s effective bandwidth. Extending
our model and algorithms to consider different degrees of
“preemptability” for system resourcesisachalenging issue.
Finally, given the generality of our scheduling framework,
it would be interesting to investigate its applicability to
other “ multi-dimensiona processing” situations(e.g., request
scheduling in multimedia storage servers). These questions
form the basis of our current and future research.

References

[BBAO] K. P. Belkhale and P. Banerjee. “Approximate
Algorithms for the Partitionable Independent Task
Scheduling Problem”. In Proc. of the 1990 Intl.
Conferenceon Parallel Processing, August 1990.

K. P. Belkhale and P. Banerjee. “A Scheduling
Algorithm for Parallelizable Dependent Tasks’. In
Proc. of the 5th Intl. Parallel Processing Symposium,
1991.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson.
“Approximation Algorithms for Bin-Packing — An
Updated Survey”. In “ Algorithm Design for Com-
puting System Design” . Springer-Verlag, New York,
1984,

C. Chekuri, W. Hasan, and R. Motwani. “ Scheduling
Problemsin Parallel Query Optimization”. In Proc. of
the 14th ACM Symposiumon Principles of Database
Systems, San Jose, California, May 1995.

M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C.
Young. “Using Segmented Right-Deep Trees for
the Execution of Pipelined Hash Joins’. In Proc. of
the 18th Intl. Conference on Very Large Data Bases,
Vancouver, Canada, August 1992.

M.-S. Chen, P. S. Yu, and K .-L. Wu. “ Scheduling and
Processor Allocation for Parallel Execution of Multi-
Join Queries’. In Proc. of the 8th Intl. Conferenceon
Data Engineering, Phoenix, Arizona, February 1992.

[BBO1]

[CGJ84]

[CHMO5]

[CLYY92]

[CYW92]

[DG92]

[DGS*90]

[DL89]

[GGWO5]

[GHK92]

[GI96]

[GLLRK79]

[GMSY 93]

[Gra66]

[GWO3]

[GY93]

[HCY94]

[HM94]

[Hon92]

[KLMS84]

D. J. DeWitt and J. Gray. “ Parallel Database Systems:
The Future of High Performance Database Database
Systems”. Communications of the ACM, 35(6), June
1992.

D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-l Hsiao, and R. Rasmussen. “The
Gamma Database Machine Project”. |EEE Trans-
actions on Knowledge and Data Engineering, 2(1),
March 1990.

J. Duand J. Y-T. Leung. “Complexity of Scheduling
Parallel Task Systems’. SAM Journal on Discrete
Mathematics, 2(4), November 1989.

S. Ganguly, A. Gerasoulis, and W. Wang. “Partition-
ing Pipelines with Communication Costs’. In Proc.
of the 6th Intl. Conference on Information Systems
and Data Management (CISMOD’95), Bombay, In-
dia, November 1995.

S. Ganguly, W. Hasan, and R. Krishnamurthy. “ Query
Optimization for Parallel Execution”. In Proc.
of the 1992 ACM SIGMOD Intl. Conference on
Management of Data, San Diego, California, June
1992.

M. N. Garofalakis and Y. E. loannidis. “Multi-
dimensional Resource Scheduling for Parallel
Queries’. Unpublished manuscript, March 1996.
R.L. Graham, E.L. Lawler, JK. Lenstra, and A.H.G.
Rinnooy Kan. “Optimization and Approximation
in Deterministic Sequencing and Scheduling: A
Survey”. Annals of Discrete Mathematics, 5, 1979.
S. Ghandeharizadeh, R. R. Meyer, G. L. Schultz, and
J. Yackel. “Optimal Balanced Assignments and a
Parallel Database Application”. ORSA Journal on
Computing, 5(2), Spring 1993.

R.L. Graham. “Bounds for Certain Multiprocessing
Anomalies’. The Bell System Technical Journal, 45,
November 1966.

S. Ganguly and W. Wang. “Optimizing Queries
for Coarse Grain Paralelism”. Technical Report
LCSR-TR-218, Dept. of Computer Sciences, Rutgers
University, October 1993.

A. Gerasoulisand T. Yang. “On the Granularity and
Clustering of Directed Acyclic Task Graphs’. |EEE
Transactions on Parallel and Distributed Systems,
4(6), June 1993.

H.-I Hsiao, M.-S. Chen, and P. S. Yu. “On Parallel
Execution of Multiple Pipelined Hash Joins’. In
Proc. of the 1994 ACM SGMOD Intl. Conferenceon
Management of Data, Minneapolis, Minnesota, May
1994,

W. Hasanand R. Motwani. “ Optimization Algorithms
for Exploiting the Parallelism-Communication Trade-
off in Pipelined Parallelism”. In Proc. of the 20th
Intl. Conferenceon Very LargeData Bases, Santiago,
Chile, August 1994.

W. Hong. “Exploiting Inter-Operation Parallelism
in XPRS". In Proc. of the 1992 ACM S GMOD
Intl. Conferenceon Management of Data, San Diego,
California, June 1992.

R. M. Karp, M. Luby, and A. Marchetti-Spaccamela.
“A Probabilistic Analysis of Multidimensional Bin
Packing Problems’. In Proc. of the Annual ACM
Symposiumon the Theory of Computing, 1984.

376

[KM92]

[LCRY93]

[MD93]

[MD95]

[NSHL 95]

[RM95]

[SACT79]

[Schoo]

[ST94]

[Sto87]

[TL93]

[TWY92]

[WC92]

[WFA92]

[WFAQ5]

R. Krishnamurti and E. Ma. “An Approximation
Algorithm for Scheduling Taskson Varying Partition
Sizesin Partitionable Multiprocessor Systems”. |IEEE
Transactionson Computers, 41(12), December 1992.
M.-L. Lo, M.-S. Chen, C.V. Ravishankar, and P. S.
Yu. “On Optimal Processor Allocation to Support
Pipelined Hash Joins’. In Proc. of the 1993 ACM
SIGMOD Intl. Conference on Management of Data,
Washington, D.C., June 1993.

M. Mehta and D. J. DeWitt. “Dynamic Memory
Allocation for Multiple-Query Workloads”. In Proc.
of the 19th Intl. Conferenceon Very LargeData Bases,
Dublin, Ireland, 1993.

M. Mehtaand D. J. DeWitt. “Managing I ntra-operator
Parallelismin Parallel Database Systems”. In Proc. of
the 21st Intl. Conference on Very Large Data Bases,
Zurich, Switzerland, September 1995.

T. M. Niccum, J. Srivastava, B. Himatsingka, and
J. Li. “Query Optimization and Processingin Parallel
Databases’. DIMACS Seriesin Discrete Mathematics
and Theoretical Computer Science, 22, 1995.

E. Rahm and R. Marek. “Dynamic Multi-Resource
Load Balancing in Parallel Database Systems’. In
Proc. of the 21st Intl. Conferenceon Very Large Data
Bases, Zurich, Switzerland, September 1995.

P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A.
Lorie, and T.G. Price. “Access Path Selection in
a Relational Database Management System”. In
Proc. of the 1979 ACM SSGMOD Intl. Conferenceon
Management of Data, Boston, Massachusetts, June
1979.

D. A. Schneider. “ Complex Query Processing in
Multiprocessor Database Machines’. PhD thesis,
University of Wisconsin-Madison, September 1990.
H. Shachnai, and J. J. Turek. “Multiresource Mal-
leable Task Scheduling”. Submitted for publication,
July 1994.

H. S. Stone. “ High-performance Computer Architec-
ture”. Reading, Mass. : Addison-Wesley Pub. Co.,
1987.

K.-L. Tan and H. Lu. “On Resource Scheduling of
Multi-join Queries in Parallel Database Systems’.
Information Processing Letters, 48, 1993.

J. Turek, J. L. Wolf, and P. S. Yu. “Approximate
Algorithms for Scheduling Parallelizable Tasks’. In
Proc. of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, San Diego, California,
June 1992.

Q.WangandK. H. Cheng. “A Heuristic of Scheduling
Parallel Tasks and its Analysis’. SIAM Journal on
Computing, 21(2), April 1992.

A. N. Wilschut, J. Flokstra, and P. M.G. Apers. “Par-
alelisminaMain-Memory DBMS: The Performance
of PRISMA/DB”. In Proc. of the 18th Intl. Confer-
ence on Very Large Data Bases, Vancouver, Canada,
August 1992.

A. N. Wilschut, J. Flokstra, and P. M.G. Apers.
“Parallel Evaluation of Multi-join Queries’. In Proc.
of the 1995 ACM SIGMOD Intl. Conference on
Management of Data, San Jose, California, May 1995.

