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ABSTRACT
The recently-proposed Geometric Monitoring (GM) method has
provided a general tool for the distributed monitoring of arbitrary
non-linear queries over streaming data observed by a collection
of remote sites, with numerous practical applications. Unfortu-
nately, GM-based techniques can suffer from serious scalability
issues with increasing numbers of remote sites. In this paper, we
propose novel techniques that effectively tackle the aforementioned
scalability problems by exploiting a carefully designed sample of
the remote sites for efficient approximate query tracking. Our novel
sampling-based scheme utilizes a sample of cardinality propor-
tional to

√
N (compared to N for the original GM), where N is the

number of sites in the network, to perform the monitoring process.
Our experimental evaluation over a variety of real-life data streams
demonstrates that our sampling-based techniques can significantly
reduce the communication cost during distributed monitoring with
controllable, predefined accuracy guarantees.

1. INTRODUCTION
Efficient data stream processing algorithms have become an in-

tegral part of real-time monitoring applications, from network traf-
fic monitoring to financial or stock data analysis and sensor data
querying. Streaming tuples are rapidly produced in a number of
geographically dispersed sites (routers, ATMs, sensor nodes etc)
and are continuously processed online to provide continuous up-to-
date query answers destined to support decision making procedures
such as DDoS attacks, fraudulent transactions, market trend predic-
tions, and tsunami wave detection, in a timely manner. In such dis-
tributed settings, it is imperative to design efficient algorithms that
reduce the communication burden during the continuous monitor-
ing process [4, 7], since either the available bandwidth is limited, or
data transmission is a crucial factor that reduces network lifetime
(e.g., for battery-powered sensor nodes [28]).

The problem of efficiently tracking the value of a function (of-
ten compared to some predefined threshold) over the union of local
∗This work was supported by the European Commission un-
der ICT-FP7-FERARI-619491 (Flexible Event pRocessing for big
dAta aRchItectures).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915225

streams in a large-scale distributed system, lies at the core of sev-
eral recent research efforts [9, 35, 7, 8, 10, 38]. Monitoring tasks
may involve functions that are simple linear aggregates, such as
checking whether the sum of a distributed set of variables exceeds a
predetermined threshold [12, 38], thresholded counts of items [23]
or frequently occurring items in a set of distributed streams [29].
More complicated function monitoring may involve holistic aggre-
gates [9, 38], self-join as well as stream-join operations [8, 15], or
general, non-linear function tracking [35].

The original work of Sharfman et al. [35] is the first to pro-
pose a generic, Geometric Monitoring (GM) method for monitor-
ing any non-linear function f over the global average of vectors
maintained at the distributed sites, with respect to some thresh-
old T , i.e., monitoring whether f (·) ≶ T . The GM method is a
very powerful technique that has already been exploited in a wide
range of applications, including: (i) outlier detection in sensor net-
works [1], where the monitored function is any of the Lp norms,
cosine similarity, Extended Jaccard Coefficient, or correlation co-
efficient; (ii) tracking range, norm-aggregate and join-aggregate
queries [15, 25] over distributed data streams; (iii) monitoring frag-
mented skyline queries [30]; (iv) detecting machines that are about
to become faulty in data centers [13]; and, (v) distributed online
prediction [22] by dynamically monitoring the accuracy of dis-
tributed local models. In a nutshell, the GM method can offer a
general solution to any useful monitoring task (expressed over the
data collected by distributed data sources), in which continuous
data communication to a central site is not feasible, due to either
bandwidth or energy constraints.

The basic concept utilized in [35], in order to monitor general
functions, is the identification and distributed monitoring of a sub-
set of the input domain of f where this average vector may lie
(rather than the function value itself). Each site maintains a lo-
cal measurements vector, produced based on the data of the site
and the monitored function. The local measurements vector helps
determine a monitoring zone, constructed as a proper hypersphere,
of the site. Each site then checks if the function at any point of
its monitoring zone exceeds/falls below the threshold T , in which
case it raises an alarm that is resolved by additional communica-
tion. Geometrically, the area of the input domain that needs to be
monitored is equivalent to the convex hull of the sites’ local mea-
surements vectors, which is guaranteed to contain the average vec-
tor. The union of these hyperspheres is proven to cover this convex
hull, which ensures that each point of the convex hull is monitored
by at least one site. Figure 1 schematically presents the above con-
cept, details will follow in Section 3. In terms of communication
efficiency, central data collection is constantly postponed until at
least one site finds that input points inside its local sphere may have
caused the function to cross T . In the latter case, local vectors are



collected in a central source, an up-to-date global average is com-
puted and f is checked to assess whether it truly crossed T or not.

In this work, we demonstrate that, despite the generic nature of
the GM method as a distributed tracking scheme, it faces signif-
icant scalability issues as the number of (distributed) remote sites
increases. First, we show that increasing the network scale (i.e., the
number of sites, N) increases the size of the monitored area (union
of balls), thus resulting in an excessive number of central data col-
lections, even when the tracked function has not actually crossed
the threshold. Such unnecessary centralization choices are referred
to as False Positives (FPs). Second, the communication cost of
central data collections increases proportionally to N and, thus, the
total bandwidth consumption throughout the tracking process in-
creases significantly for large values of N. Third, the above prob-
lems become even more pronounced when the monitoring query
is defined over the sum (rather than the average) of the local mea-
surements vector at the sites. This is often the case in practice, e.g.,
when tracking relational join aggregates over frequency distribu-
tion vectors fragmented across the sites [15].

Having identified the degree of distribution (N) as a key limi-
tation of the GM method, we introduce an algorithmic framework
that exploits a small sample (proportional to only O(

√
N)) of the

sites to perform the monitoring process, and we formally study the
properties of our sampling-based geometric scheme and how it ad-
dresses the scalability issues of GM. In a nutshell, our scalable ap-
proximate monitoring algorithm exploits Horvitz-Thompson sam-
pling estimators [5, 34] over a carefully built sample of the sites in
order to construct low-error approximations of the average vector;
furthermore, it employs multi-dimensional tail-probability bounds
and thorough geometric analysis to control the effect of these ap-
proximations on the accuracy of GM. Our approach can consider-
ably decrease the amount of false positive data centralizations and
the communication burden on the network at the cost of potentially
causing a few False Negatives (FNs), i.e., missing a true thresh-
old crossing of the monitored function. Note that if such missed
threshold violations are quickly corrected (by appropriate detec-
tion) in the immediate future, and controlled in number, then they
are generally acceptable in monitoring applications where GM is
employed. For example, detecting machines likely to fail in the
future in large data centers (in [13]), reporting when the size of a
self-join query exceeds a given threshold (in [15, 25]), or detecting
when distributed online learning models have become inaccurate
(in [22]) with a slight delay (e.g., over the next few data collec-
tions) has little impact on the importance and gains of distributed
GM function tracking, especially when the rate of such FNs is low
and can be explicitly controlled.

We provide an extensive theoretical analysis exhibiting that the
amount of such false negatives is controllable, given predefined ac-
curacy guarantees based on the desired level of communication ef-
ficiency (which is directly linked to the site-sample size). More-
over, in our experiments (Section 6.4, also see Appendix) we also
demonstrate that even if FNs occur (in a controlled manner), the
missed threshold crossings are detected soon afterwards, most of-
ten in the next centralization decision. We re-iterate that the com-
munication efficiency of our techniques is essential not only in ap-
plications collecting massive amounts of data (e.g., in IP-network
monitoring [11]), but also in applications characterized by power
and bandwidth restrictions, as in battery-powered wireless sensor
nodes, where communication is the key determinant of sensor bat-
tery life [28]. Our contributions are summarized as follows:
• We point out the limitations of the GM approach in highly dis-

tributed environments, that result in excessive false positive data
centralization decisions and prohibitive communication cost.
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Figure 1: Illustration of GM at a given time point t. The mon-
itored convex hull is depicted in gray, while the position of e
and the current v(t) are shown as well. Black spheres refer to
the local constraints constructed by sites. Since none of them
crosses the threshold surface, no synchronization is needed.

• Targeting the root of the above limitations, we introduce approx-
imate algorithms for tracking any non-linear function that use
only a carefully built sample of the network sites. Our tech-
niques provide the ability to tune the sample size, and thus the
anticipated communication cost according to application-defined
approximation accuracy requirements. We provide an extensive
theoretical analysis to formally quantify the accuracy vs. com-
munication cost trade-off of our sampling-based techniques.
• We develop a methodology according to which a proper site sam-

pling function is formed and parameterized. Our proposed sam-
pling function yields a sample size proportional to only O(

√
N)

of the total sites in the network, in contrast to O(N) sites in the
original GM method and its variants [16, 17].
• We conduct extensive experimentation on two real datasets, us-

ing a variety of different functions, threshold values and network
sizes. Our performance comparisons are against not only the
vanilla GM approach [35], but also against the balancing opti-
mization proposed in [35] and the recently proposed prediction-
based GM [16, 17]. Although these optimizations are orthogonal
to our proposed framework, we show that in highly distributed
environments our algorithms can ensure in most cases one and
up to two orders of magnitude less bandwidth consumption com-
pared to other methods, while also significantly reducing the per
site cost (transmitted messages), even without exploiting any of
these optimizations within our sampling-based scheme.

2. RELATED WORK
Abundant works have focused on efficiently performing monitor-

ing tasks in distributed data streams. Some of them were already
mentioned in Section 1, while [4] presents a recent survey on re-
lated techniques. Here, we concentrate on studies closely related to
the GM framework and site sampling techniques.
Monitoring General Threshold Functions. The basic operation
of the GM framework was introduced in [35]. Our work, after
pointing out the shortcomings that arise in highly distributed data
streams, proposes techniques to effectively confront existing scala-
bility issues of the GM framework. [35] also proposes a balancing
optimization to the basic scheme to further reduce the communica-
tion cost of their approach. However, the aforementioned balancing
technique is merely a heuristic for which we experimentally (Sec-
tion 6) show that is hardly adequate in highly distributed settings.

The GM framework has been enhanced in [36], where ellip-
soidal instead of spherical local constraints are considered. These



methods are orthogonal to the algorithms that we develop. How-
ever, [36] assumes that data follows a multivariate normal distri-
bution; furthermore, [36] also suffers from scalability issues, since
using ellipsoids instead of hyperspheres neither alters the fact that
the higher N is, the higher the amount of the monitored area nor
reduces the cost of a false positive central data collection.

The recently introduced prediction-based GM [16, 17] consti-
tutes another technique that is orthogonal to the methods that we
present in our work. However, [16, 17] heavily depends on accurate
predictions of the local vectors maintained at each site. Nonethe-
less, accurately predicting several vector components over many
sites becomes increasingly harder with the increase of the network
scale. This is also demonstrated in our experimental evaluation.

A number of works design techniques that are geometric in na-
ture but, contrary to our approach, focus only on specific types
of functions. [32] considers functions with bounded deviation
and introduces a tentative bound algorithm to monitor threshold
queries in distributed databases (rather than distributed streams),
while [33] focuses on vectorial top-k aggregation queries over dis-
tributed databases. Moreover, the work in [15] couples sketch sum-
maries with the GM framework focusing on join aggregates, special
cases of L2-norms and range aggregates (e.g., quantiles, wavelets,
and heavy-hitters over the streams). The work in [1] utilizes GM
for outlier detection in sensor networks, reducing the problem to
multiple monitoring tasks, with each task involving only the pair
of nodes whose similarity is to be monitored. [24] proposes an
approach, for monitoring heterogeneous streams by defining con-
straints tailored to fit the specific data distributions of sites.
Site Sampling Techniques. The sampling component that we de-
velop as part of our tracking schemes allows the continuous moni-
toring on any generic function f : Rd →R. This is the main break-
through that distinguishes our contributions compared to individ-
ual site sampling techniques that can only handle linear functions
such as counts and frequencies [39, 19, 20] or second frequency
moments [27]. Besides this crucial distinction, our sampling com-
ponent possesses more generic characteristics compared to existing
site sampling approaches [39, 19, 20, 27]. These characteristics can
be summarized as follows: (a) our analysis, from approximation
quality issues to extracted estimators and expected communication
savings is multidimensional in nature. On the contrary, [39, 19,
20, 27] define sampling schemes operating on a single dimension,
(b) our techniques are destined to support continuous monitoring
procedures while [39, 19] focus on one-shot queries, (c) Our algo-
rithms do not incorporate any assumption about local input mono-
tonicity or boundedness and are capable of handling unbounded,
non-monotonic local inputs (updates). The techniques in [39, 19,
20, 27] assume bounded updates, while [39, 19, 20] are restricted
to positive inputs only. (d) [39, 19, 20, 27] are focused on ensuring
accuracy relative to the current global frequency or count which
can be known only after acquiring the sample. Our algorithms
abide by predetermined accuracy constraints, which is a necessary
feature in our setting. Due to the above limitations, [39, 19, 20, 27]
are not applicable in our setup.

3. PRELIMINARIES & MOTIVATION
In Section 3.1 we provide an overview of the Geometric Mon-

itoring (GM) framework. Section 3.2 motivates the need for our
approach, as it provides intuition on why the existing GM frame-
work may lead to increased communication overhead when either
the number of network sites increases, or when the monitored func-
tion is parameterized with the sum, rather than the global average,
of local measurements vectors.

3.1 Geometric Monitoring Basics
As in previous works [9, 35, 6, 8, 36], we assume a distributed,

two-tiered setting, where data arrives continuously at N geograph-
ically dispersed sites. At the top tier, a central coordinator exists
that is capable of communicating with every site, while pairwise
site communication is only allowed via the coordinating source.
Each site Si, i ∈ [1..N] participating at the bottom tier periodically
receives updates on its local stream and maintains a d-dimensional
local measurements vector vi(t), capturing the current state of its
local stream. The global measurements vector (i.e., stream) v(t) at
any given timestamp t, is computed as the average of vi(t) vectors,

v(t) = ∑
N
i=1 vi(t)

N . The coordinator aims to continuously monitor if
the value of a function f (v(t)), parameterized by the global aver-
age v(t), lies above/below a given threshold T . We term the area of
the input domain where f (v(t)) = T as the threshold surface.

Assume that at a previous time instant ts, the coordinator has col-
lected the local vi(ts) vectors. Using e(ts) to distinguish the global

average v(ts) at ts, the coordinator computes e(ts) =
∑

N
i=1 vi(ts)

N at
that time, subsequently broadcasting e(ts) to the sites in the bot-
tom tier. The previous process is referred to as a synchronization
step. Note that, until the next synchronization, the coordinator’s
view of the global vector stays constant at e(t) = e(ts). Follow-
ing [35], upon receiving e(t), sites keep up receiving updates of
their local streams and accordingly maintain their vi(t) vectors. At
any given timestamp, each site Si individually computes a devia-
tion vector ∆vi(t) = vi(t)−vi(ts), which depicts the change that the
local vector has undergone since ts. By attaching the deviation vec-
tor to e(t), sites compute their drift vectors as e(t)+∆vi(t). Since

v(t) =

N
∑

i=1
vi(t)

N = e(t)+

N
∑

i=1
(vi(t)−vi(ts))

N =

N
∑

i=1
(e(t)+∆vi(t))

N , v(t) consti-
tutes a convex combination of the drift vectors.

Consequently, v(t) will always lie in the convex hull formed by
the ∆vi(t) vectors translated by e(t), as depicted in Figure 1 for
d = 2, N = 5: v(t) ∈ Conv (e(t)+∆v1(t), . . . , e(t)+∆vN(t)). If
the convex hull does not intersect the inadmissible area of the input
domain (on the right of Figure 1), where the monitored inequality
is reversed (from f (v(t))> T to f (v(t))< T or vice versa), it is as-
sured that v(t) cannot lie in that area either. Hence, our monitoring
problem is transformed to how to decide in a distributed manner
whether the convex hull intersects the threshold surface.

It has been proven [35] that if sites locally construct hyper-
spheres B(e(t) + 1

2 ∆vi(t), 1
2‖∆vi(t)‖), centered at e(t) + 1

2 ∆vi(t)
with radius 1

2‖∆vi(t)‖, then:

Conv(e(t)+∆v1(t), . . . ,e(t)+∆vN(t))⊂
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖)

That is, the union of these hyperspheres is always guaranteed to
cover the convex hull of the translated local drifts (in any dimen-
sionality). Thus, having constructed B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖),

each site individually checks for an intersection of its local sphere
with the threshold surface. In case an intersection exists in at least
one Si, a local violation occurs at Si indicating that the convex hull
and, thus, v(t) may have crossed the threshold surface. Hence, a
synchronization takes place where the coordinator collects the vi(t)
vectors and assesses whether f (v(t)) truly switched sides (≶) with
T . It then computes the new e(t) and communicates it back to the
sites. From this point forward, the tracking process can proceed as
described above. If no local violation occurs (as in the example of
Figure 1), then no communication is necessary.

EXAMPLE 1. Consider a number of sensors in a server room
monitoring in real-time whether uniform relative Humidity (rH)
conditions exist for all the machines to operate normally. Too dry
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Conv(e+∆v1, . . . ,e+∆v5) Conv(e+∆v1, . . . ,e+∆v10) Conv(e+∆v1, . . . ,e+∆v100)

Figure 2: The effect of network scale on the monitored area
(d = 3). All ∆vi vectors are randomly chosen from the unit
cube, the front view of which is the box included in each fig-
ure. As the network scale increases, more ∆vi vectors grow on
the d−dimensional plane. Inevitably, the convex hull that needs
to be monitored is enlarged favoring FP decisions.

Table 1: Frequently Used Symbols
Symbol Description

N The number of sites of the bottom tier

d Dimensionality of the input domain

Si The i-th site, Si ∈ {S1, . . . ,SN}
ts Time-point of the last synchronization

vi(t) Local measurements vector at Si at time t

∆vi(t) Deviation vector at Si at time t (equals vi(t)− vi(ts))

v(t), v̂(t) Global average & its statistic estimator at time t

e(t) = v(ts) Global average vector computed after a synchronization

B(c,ρ) Hypersphere centered at c with ρ sized radius

(ε,δ) Approximation pair denoting that v̂(t) should lie within
ε distance from v(t) with probability as least 1−δ

gi Sampling function 0≤ gi ≤ 1 for site Si

εT Minimum distance of e(t) from the threshold surface

air will result in the build up of static electricity on the systems,
while high humidity slowly damages equipment. To ensure uni-
form rH, the application continuously checks Var(v(t))> T , where
Var denotes the variance function [13]. Each sensor maintains a
periodically updated local vector vi(t) = [c2

i (t),ci(t)], with ci(t)
being the recent rH measurement at Si. Variance is computed by

Var(v(t))= 1
N

N
∑

i=1
c2

i +( 1
N

N
∑

i=1
ci)

2 and thus v(t) =
[

1
N

N
∑

i=1
c2

i ,
1
N

N
∑

i=1
ci

]
.

If vi(ts) is the last rH value Si communicated to the coordinator,
∆vi(t) = [c2

i (t)− c2
i (ts), ci(t)− ci(ts)]. Given these, local spheres

are constructed and potential threshold crossings are assessed.

Communication savings are ensured by postponing a synchroniza-
tion until some site finds its local sphere intersecting the threshold
surface. Also note that the convex hull or its superset, the union
of local spheres, may cross the threshold surface, while the ac-
tual position of v(t) may not be in the intersecting part. As a re-
sult, the framework may cause synchronizations when f (v(t)) has
not crossed the threshold (false positives). Table 1 summarizes the
main notation used in this paper.

3.2 Existing Scalability Issues
We now explain why the GM framework may result in increased

communication in either highly distributed networks, or in cases
where the monitored function is parameterized with the sum of the
local measurements vectors.

High N values ⇒ proneness to FP synchronizations. As al-
ready described, the area that GM needs to track is the convex
hull Conv(e + ∆v1(t), . . . , e + ∆vN(t)). It is not difficult to see
that the more sites participate in the distributed monitoring pro-
cess (and, thus, contribute their e+∆vi(t) in the formation of this
convex hull), the larger the tracked area will be. Figure 2 schemat-
ically exhibits the effect of progressively increasing the network
scale from N = 5 sites to N = 10 and N = 100 in a 3-d space by
randomly picking additional ∆vis from the unit cube. Larger val-
ues of N yield a convex hull that tends to cover the entire unit cube
(boxed area in Fig. 2). Moreover, the hyperspheres maintained by
each site in order to include the expanded convex hull will cover
an even larger, compared to the expanded convex hull, area of the
input domain because Conv(e(t)+∆v1(t), . . . , e(t)+∆vN(t)) is a

subset of
N⋃

i=1
B(e(t)+ 1

2 ∆vi(t), 1
2‖∆vi(t)‖). This raises the potential

for a larger number of FP synchronization decisions as the number
of sites increases.

Note that the cost of a FP synchronization decision is equiva-
lent to N +1 messages, assuming the coordinator is equipped with
broadcast capabilities, or 2N otherwise, and that all sites are re-
quired to participate in this process. This not only increases the to-
tal communication cost per FP as the number of sites N increases,
but also increases the cost per site, since a site transmits messages
each time at least one site exhibits a local violation.
Problematic application on monitoring sum-parameterized
functions. Consider the case where the function that needs to be
monitored is parameterized with the sum rather than the global av-

erage, i.e., f (vsum(t)) ≶ T with vsum(t) = N · v(t) =
N
∑

i=1
vi(t). Such

functions, for instance, include L2 norms during approximate func-
tion monitoring queries [15, 17], or statistics like the Mutual Infor-
mation function in news monitoring applications [16].

Let this time esum(t) = vsum(ts). The above equation shows that
vsum(t) can be expressed as a convex combination of (e(t)+∆vi(t))
vectors scaled by N since N · (e(t)+∆vi(t)) = esum(t)+N ·∆vi(t).
As a consequence, vsum(t) lies inside the scaled convex hull
Conv(N· (e(t) +∆v1(t)), . . . ,N· (e(t) +∆vN(t))).

We can now perform the monitoring in a slightly modified way
from the original GM scheme of Section 3.1. The difference is
that the new local constraint in each site Si is scaled by N, i.e.,
B(N · e(t)+ N

2 ∆vi(t), N
2 ‖∆vi(t)‖) which is checked so as to assess

whether it invades the threshold surface. Consequently, in highly
distributed settings, the degree of distribution N has once again an
undesirable impact on the size of the local constraints, increasing
the proneness of the framework to FP synchronizations.

4. SCALABLE QUERY TRACKING
Having shown that the degree of distribution N is the factor

that renders GM practically inefficient, we now design a sampling-
based framework that overcomes these scalability issues. Sec-
tion 4.1 first formally presents a set of requirements that any can-
didate sampling-based scheme for GM monitoring should adhere
to, in order to both guarantee efficiency in terms of bandwidth
consumption and compliance with application-defined accuracy re-
quirements.

Then, in Section 4.2, we present our generic sampling-based GM
scheme in detail. The intuition behind our approach is that, instead
of monitoring the entire convex hull formed by the N sites, we
choose to track a narrower convex hull composed of a carefully-
crafted random sample of sites. The latter area constructs a subset
of Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN}) reducing the tracked space



and warding off FP synchronizations. For ease of exposition, we
henceforth omit the temporal reference t where appropriate.

4.1 Efficiency and Accuracy Requirements
In addition to choosing fewer sites to reduce the monitored area,

our sampling-based geometric scheme should be able to guarantee
improved communication efficiency by ensuring that its inscribed
local constraints are fully contained within the local constraints
N⋃

i=1
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) of the original GM method (Section 3.1).

This guarantees that the area tracked by the sampled sites does not
cross the threshold surface before the union of balls of the conven-
tional GM does and, thus, additional FP synchronizations cannot
be caused.

REQUIREMENT 1. [Efficiency] Let Sursample denote the area
monitored by a candidate sampling-based monitoring scheme. To
guarantee efficiency by reducing FP synchronizations, inclusion

Sursample ⊆
N⋃

i=1
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) should hold.

Since the monitoring process utilizes a small sample (subset) of
the sites available in the network, it will be approximate in na-
ture. At any given time t, our sampling-based geometric techniques
monitor an unbiased (i.e., E(v̂(t)) = v(t)) estimation v̂(t) of the true
global average v(t) originating from only a sample K ⊆ {S1, . . .SN}
of sites’ local vectors. We wish to keep the estimation error control-
lable and tunable based on a priori defined accuracy requirements.
To control the approximation error, we employ an (ε,δ) approxi-
mation scheme. More precisely, for a priori given 0 < δ≤ 1, ε > 0
we shall require v ∈ B(v̂,ε) with high probability, at least 1−δ.

REQUIREMENT 2. [Approximation Quality] At any given
time, the estimation v̂ monitored by the sampled sites should not
exceed ε− distance from the true v, with high probability 1− δ;
that is, for given 0 < δ≤ 1, ε > 0: P(v /∈ B(v̂,ε))≤ δ.

Due to the fact that v(t) is monitored in an approximate way
tuned according to (ε,δ), it is possible that a synchronization is
prevented while v(t) truly switched side with respect to the thresh-
old surface. Our sampling-based scheme should enable applica-
tions to explicitly tune the probability PFN of such False Negative
(FN) events. This requires an additional (application-defined) input
parameter apart from (ε,δ).

Nonetheless, specifying a triplet of parameters two of which
refer to the input domain rather than the function value may be
confusing from an application viewpoint. Application accuracy re-
quirements should be expressed in a simple way that abstracts the
actual details of the input domain of the tracking process. While
it is more natural for the end user to directly specify PFN , for ease
of presentation we assume that the parameter specified is the δ pa-
rameter of Requirement 2. We demonstrate in Section 5 that PFN
is directly linked to δ. Then, our scheme can accordingly tune not
only the probability of a FN, i.e., PFN , but also the approximation
quality in the (ε,δ) scheme. To do so, ε should be expressed as a
function of δ, i.e., ε = ε(δ).

REQUIREMENT 3. [Tunable Accuracy] At any given time, the
proposed sampling-based monitoring algorithm should possess the
ability to receive a sole tolerance value 0 < δ≤ 1 and self-tune its
Approximation Quality i.e., (ε,δ) and FN rate i.e., PFN .

Hence, we assume that the application expresses its monitoring
needs in the form: f (v(t)) ≷ T , δ : 0 < δ≤ 1. We then proceed in
describing the generic operation of our sampling-based framework.

4.2 Our Generic Sampling-Based Scheme
We now present our sampling-based GM algorithm and demon-

strate how it satisfies Requirements 1-3. A key idea in our scheme
is to independently sample each site Si with a different probability
gi that depends on various factors. Our discussion in this section
assumes that these sampling probabilities gi have been determined,
deferring the details and analysis of the gi computation to Section 5.

Algorithmic Sketch. Consider that at a previous time, a synchro-
nization has taken place, as described in Section 3.1, and that e
has been transmitted to all Si ∈ {S1, . . . , SN}. At any subsequent
timestamp, each Si keeps receiving updates of its local vector vi and
computes ∆vi. In our sampling scheme, Si constructs a local con-
straint in the form of a hypersphere only if it finds itself included in
the sample K of sites participating in the monitoring process, i.e.,
Si ∈ K. In order to determine if Si ∈ K, each site independently
flips a biased coin with success probability of gi, where gi ∈ [0,1]
is a sampling function independently computed by each site. Each
Si ∈K inscribes a sphere B(e+ 1

2 ∆vi,
1
2‖∆vi‖) which is checked for

threshold crossing. In case at least one Si ∈ K detects a threshold
crossing of its local constraint, it calls for a synchronization. Dur-
ing the synchronization, the coordinator initially broadcasts a mes-
sage requiring only the sampled sites to contribute their ∆vi vectors.
Using these vectors, it derives an unbiased estimate v̂ (using Esti-
mator 1 below) of v and checks (Requirement 2) whether B(v̂,ε)
crosses T . If it does not, then the coordinator deduces that this was
a FP alarm with probability 1−δ and the tracking continues unaf-
fected. Otherwise, a full synchronization takes place, where also
all Si /∈ K contribute their ∆vis for a new e vector to be computed
and communicated to the underlying sites. In the latter case, the
coordinator believes that a true threshold violation may have taken
place and probes the whole set of sites to compute the exact value
of e. This is required to avoid an additive error in the approximation
of v̂ (see Estimator 1) as the tracking process continues.

We now provide the details of our monitoring scheme, explain
our design choices (as described in the above algorithmic sketch),
and discuss the accuracy guarantees of our technique. In each of
these steps, we examine the satisfiability of Requirements 1-3 in
conjunction with our algorithmic sketch. For ease of exposition,
we start our discussion with Requirement 2.

Monitored Estimator and Approximation Quality Require-
ment. Consider a multivariate random variable ∆′vi =

∆vi
gi

with
probability gi, and zero otherwise. Notice that E[∆′vi] is a
d−dimensional vector and E[∆′vi] = [E[∆′vi1], · · · , E[∆′vid ]],
where ∆′vi j denotes the j-th component (dimension) of the vector
∆′vi. We demonstrate in Lemma 1 that, based on the drift vectors
e + ∆vi

gi
of the set K, an unbiased estimate v̂ of the global aver-

age v can be derived at any given time stamp t utilizing a Horvitz-
Thompson Estimator [5, 34]:

v̂ = e+
∑

N
i=1 ∆′vi

N
= e+

∑
Si∈K

∆vi
gi

N
(1)

Note that the global average is v = e+∆v, with ∆v =
N
∑

i=1
∆vi/N.

Hence, Estimator 1 estimates ∆v as ∆̂v = ∑
Si∈K

∆vi
gi
/N. The estimator

weighs each sampled site with 1/gi. The reason for this is fairly
intuitive: If site Si, which is sampled with probability gi, individu-
ally appears in the sample, then, on average, we expect to have 1/gi
sites with similar probabilities in the full population (since gi ·1/gi
= 1); thus, the single occurrence of Si in the sample is essentially a
”representative” of 1/gi sites in the full population [21, 34].



LEMMA 1. For Estimator 1 the following hold:
(a) Estimator 1 is an unbiased estimator of v when sampling
∀Si ∈ {S1, . . . , SN} with 0≤ gi ≤ 1.
(b) E[v̂] ∈Conv( e+∆v1, . . . , e+∆vN)

(c) v̂ ∈Conv({e+ ∆vi
gi
} : ∀Si ∈ K)

PROOF. See Appendix

Since Estimator 1 is unbiased, we can utilize standard tail in-
equalities [14] to satisfy Requirement 2. Note that we do not as-
sume independence of individual dimensions of either local, or
global vectors that we examine. Nonetheless, according to our al-
gorithmic sketch, Sis independently decide to include themselves in
K or not, based on gi. The Vector Bernstein’s Inequality [2] (pre-
sented below) will be particularly useful in our subsequent analysis.

Vector Bernstein’s Inequality [2]. Let y1, . . . ,yN be independent
random vectors with E[yi] = 0. Let B > 0 denote an upper bound
on ‖yi‖ (i.e., ‖yi‖ ≤ B), and let σ2 ≥ ∑

N
i=1 E[‖yi‖2]. Then, for all

0 < δ≤ 1 and 0≤ ε ≤ σ2/B such that ε = (1+
√

`n(1/δ)) ·σ:

P(‖
N

∑
i=1

yi‖ ≥ ε)≤ δ (2)

The inequality states that if we add N random vectors of bounded
length which move around zero, their sum will produce a vector
placed near (no farther than ε) to zero with probability at least 1−δ.
The proximity (ε) of the vector sum to zero depends on an upper
bound σ on the overall standard deviation 1 and the chosen proba-
bility bound δ. Note that the above bound does not depend on the
dimensionality d of the vectors. In our case, each yi corresponds to
∆′vi−∆vi

N . Moreover, B ≥ {‖∆vi
N ‖, ‖

∆vi
gi·N −

∆vi
N ‖} ∀Si ∈ {S1, . . . ,SN}

depending on whether Si ∈ K, or not. Additionally, simple cal-
culations show that σ2 ≥ ∑

N
i=1 E[‖yi‖2], as required by the Vector

Bernstein’s Inequality, yields σ2 ≥ ∑
N
i=1
‖∆vi‖2

N2·gi
−∑

N
i=1
‖∆vi‖2

N2 .
Using Inequality 2 we partially satisfy Requirement 2, since we

have not yet discussed how B, σ and, thus, ε can be set a priori. In
Section 5 we will choose a sampling function providing an ε that
is upper bounded by a constant value known to each Si before a
monitoring phase begins. Based on this, we can fully satisfy Re-
quirement 2.

Monitoring Scheme and Efficiency Requirement. Based on
Lemma 1, sampled sites need to monitor Conv({e+ ∆vi

gi
} : ∀Si ∈K)

where (i) the estimation v̂ of v lies, as Lemma 1(c) shows, and (ii)
the true global average v is expected to lie since E[v̂] = v. For ease
of exposition, we assume that v̂ = v and we will loosen this assump-
tion later in this section. In order to track Conv({e+ ∆vi

gi
} : ∀Si ∈K)

according to the existing GM framework, each Si ∈ K would need
to construct local hyperspheres of the form B(e+ 1

2
∆vi
gi
, 1

2‖
∆vi
gi
‖),

with the union of these local hyperspheres covering the convex hull
that encompasses v̂. However, these hyperspheres are larger (by a
factor of 1/gi) than the ones mentioned in our algorithmic sketch.
Let us now examine the reason for this important difference.

Compared to the basic GM method (Section 3.1), the above
scheme omits hyperspheres of sites that do not get sampled, thus
reducing the monitored area. On the other hand, since gi ≤ 1,
the hyperspheres B(e+ 1

2
∆vi
gi
, 1

2‖
∆vi
gi
‖) possess larger radii than the

B(e + 1
2 ∆vi,

1
2‖∆vi‖) used in basic GM, and the centers of the

spheres are also different. As an example, Figure 3(a) depicts the
1Note that σ2 ≥ ∑

N
i=1 E[‖yi‖2] ≥ ∑

N
i=1 E[‖yi‖2]− (E[‖yi‖])2 =

∑
N
i=1 Var[‖yi‖], therefore σ2 bounds the sum of individual length

variances.

area that needs to be monitored, which corresponds to the balls of
sites S2 and S3 covering the shaded part of Figure 3(a), according to
Lemma 1. Hence, the current scheme may on one hand reduce FP
decisions due to the fact that it uses fewer ∆vi vectors in its convex
hull, but on the other hand it may also cause more FP synchroniza-
tions because it constructs larger spherical constraints centered at
different positions as shown in Figure 3(a). In other words, it may
perform better than GM, but this is in no way guaranteed. Obvi-
ously, this violates Requirement 1. The following lemma builds on
Lemma 1, and demonstrates how our sampling-based monitoring
scheme can be validly modified to abide by Requirement 1.

LEMMA 2. Provided that v̂ = v,

v̂ ∈Conv({e+∆vi} : ∀Si ∈ K)

PROOF. See Appendix

Lemma 2 shows that for the sampled sites to monitor the posi-
tion of v̂ = v, they need to construct local constraints of the form
B(e + 1

2 ∆vi,
1
2‖∆vi‖) as we described in our algorithmic sketch.

These balls possess the same center and radius as those in the initial
GM scheme of Section 3.1 and we can choose gi such that |K|�N.

Hence,
⋃

Si∈K
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) ⊆

N⋃
i=1

B(e+ 1
2 ∆vi,

1
2‖∆vi‖). Fig-

ure 3(b) depicts the improvement that Lemma 2 yields in the con-
struction of local balls especially compared to the local constraints
induced by Lemma 1 in Figure 3(a). Hence, the new local con-
straints adhere to Requirement 1 and no additional FPs can be pro-
vided by the sampling based scheme. Therefore, Lemma 2 was
actually employed in our algorithmic sketch presented at the begin-
ning of this section.

We now focus on removing the v̂ = v assumption. Even if v̂ = v
does not hold, from Inequality 2, we know that with high proba-
bility, at least 1− δ, v ∈ B(v̂,ε). When v ∈ B(v̂,ε), the worst case
scenario during the monitoring process appears when v̂ is located
on the periphery of

⋃
Si∈K

B(e+ 1
2 ∆vi,

1
2‖∆vi‖). Then, the fact that v̂

lies on the edge of some GM sphere, combined with the fact that
v ∈ B(v̂,ε), guarantees that the largest distance v may travel out-
side the union of the spheres is ε. The first option to handle this
situation is to expand the radius of the balls inscribed by sites to
B(e+ 1

2 ∆vi,
1
2‖∆vi‖+ ε) so that with probability 1−δ they include

v ∈ B(v̂,ε). However, if we do that, Requirement 1 is no longer
satisfied. The second option is to allow such an error, which may,
however, lead to a FN decision. We opt for the second option and
focus on its effect on the FN rate.

Satisfying the Tunable Accuracy Requirement. According to
our algorithmic sketch and our analysis so far, a FN decision may
occur in the following mutually exclusive cases:
(a) During the distributed monitoring process, upon judging
potential threshold crossings of local hyperspheres that were
not expanded by an ε factor (as previously described). We
consider two sub-cases: In subcase (a1), the local constraint
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) of every site Si ∈ K has a minimum distance

from the threshold surface larger than ε. Subcase (a2) covers
the case when the above condition does not hold for at least one
Si ∈ K.
(b) During the synchronization process, where the coordinator
probes the sample and uses B(v̂,ε) to determine if a full synchro-
nization is necessary.

Note however, that these types of FNs cannot occur simultaneously
since case (b) can happen only when a threshold crossing is de-
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Figure 3: Sampling-based monitoring over distributed data streams. Shaded areas
belong to the convex hull that needs to be monitored according to Lemma 1 and
Lemma 2, respectively. The gray area corresponds to the convex hull that is formed
by the whole set of sites in the network (N=5).
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Figure 4: PFN wrt the distance from the
threshold surface. In the white (left)
area PFN ≤ δ since no ball approaches
the surface more than ε.

tected during the monitoring process. We set out our discussion
from case (a), which is more complicated.
Case (a1). If v ∈ B(v̂,ε), whenever every Si’s ∈ K local constraint
B(e+ 1

2 ∆vi,
1
2‖∆vi‖) has a minimum distance from the threshold

surface larger than ε as shown in Figure 4, our choice of not ex-
panding these spheres to B(e+ 1

2 ∆vi,
1
2‖∆vi‖+ ε) does not affect

the quality of the monitoring process. This is true because even if
v lies outside the monitored area, with high probability 1−δ it has
not changed side with respect to T because v ∈ B(v̂,ε). Therefore,
when the minimum distance of the union of balls of sampled sites
from the threshold surface is larger than ε (see Fig. 4), we cannot
have a FN decision unless v /∈ B(v̂,ε). The latter has a probability
of δ and PFN ≤ δ.
Case (a2). We now examine how the PFN probability is bounded
when there exists at least one site Si ∈ K with B(e+ 1

2 ∆vi,
1
2‖∆vi‖)

placed closer to the threshold surface than ε. Looking at Figure 4,
this corresponds to the zone around the threshold surface marked
with an ε and corresponding double arrows. If there exists Si ∈ K
with B(e + 1

2 ∆vi,
1
2‖∆vi‖) entering the ε-zone in Figure 4, this

means that v is likely to have crossed the threshold surface de-
spite v ∈ B(v̂,ε). Let εT (red, dotted line in Fig. 4) denote the
minimum distance of e from the threshold surface, computed once
during a full synchronization process and kept until the upcoming
one. Simple calculations show that if no site Si has a ‖∆vi‖ > εT ,
the global average cannot have switched side with respect to the
threshold surface and no FN decision can occur. Hence, for a FN
decision to occur we need at least one sampled site to enter the
ε-zone and there should exist a number (at least one) of sites in
the network that have drifted more that εT distance from e and are
not included in K. If at least one of the threshold crossing sites
is sampled then a local violation will be detected and no FN can
occur at this stage. Therefore, assuming that at a given time point
|C| sites cross the threshold, PFN ≤ ∏

Si∈C
(1− gi), since a FP will

occur when none of these |C| sites is included in the sample. For-
tunately, as we are going to show in the upcoming section, for a
properly constructed gi, even in case that for some sites their drift
vectors enter the ε-zone, PFN has an upper bound proportional to

δ

|C|√
N which decreases exponentially with the number of threshold

crossing sites. Moreover, as we show in Section 5, this bound on
PFN is pessimistic, as it is computed on the pathological case where
for all Si ∈C, ||∆vi|| = εT . What happens in practice, because v is
the average of the drift vectors, is that in order for v to cross the

threshold surface, the threshold surface is crossed by either several
moderate in length drift vectors (in which case |C| is large), or by
fewer but larger drift vectors. In the latter case, we show in Sec-
tion 5 that the sampling probability of such sites is larger, making
it less likely that they will all be omitted from the sample.
Case (b). Please recall that in our algorithmic sketch we mentioned
that during a synchronization the coordinator, in its effort to reduce
the cost of a potential FP decision, first attempts to save communi-
cation by broadcasting a message and requiring only the sampled
sites to contribute their ∆vi vectors in order to compute v̂. It then
checks B(v̂,ε) for threshold crossing before allowing a full syn-
chronization. In this phase, an erroneous FN decision may occur
only when v /∈ B(v̂,ε) which happens with probability at most δ

and thus PFN ≤ δ.

Based on Inequality 2, we set ε = (1+
√
`n(1/δ)) ·σ. In the

next section we provide a sampling function that upper bounds σ

by a constant value and tune ε according to the application defined
δ. Having bound σ, we showed in this section that PFN can be
also bounded by δ. Thus, Requirement 3 is satisfied as well. In
the next section we further exhibit that based on the constructed gi,
δ also successfully tunes the sample cardinality |K| and, thus the
anticipated savings of the sampling-based scheme in terms of FP
reduction and bandwidth preservation.

5. SETTING THE SAMPLING FUNCTION
In sampling-based geometric monitoring, each Si individually

decides whether to include itself in K or not, using a sampling func-
tion 0≤ gi ≤ 1. Our sampling-based scheme can accommodate any
gi that samples the d−dimensional local vectors of sites. However,
not all functions yield desired properties for our scheme. We next
present in a step-by-step fashion the elements of a suitable gi and
reason about our choices based on the properties that these ele-
ments attribute to our scheme. We eventually derive a proper gi
that simultaneously (a) ensures a sample of O(`n(1/δ)

√
N) size,

(b) upper bounds σ and, thus, ε by an a priori (before acquiring
the sample) constant value controlled by δ. In that, gi allows the
sampling-based scheme to comply with Requirement 2, (c) given
the previous upper bound that determines the size of the ε−zone
(Fig. 4), gi tunes the probability of false negatives (Requirement 3).
• ‖∆vi‖ should be included in the nominator of gi. According to
our algorithmic sketch in Section 4.2, upon a local violation the co-
ordinator probes only sites Si ∈ K and checks B(v̂,ε) for threshold



crossing in order to call for a full synchronization, or not. To in-
scribe B(v̂,ε), the radius ε should obtain (be bounded by) a constant
value. In order to come up with a constant value for ε, according to
Inequality 2, we need to bound σ. In Section 4.2, we showed that
σ2 ≥ ∑

N
i=1
‖∆vi‖2

N2·gi
−∑

N
i=1
‖∆vi‖2

N2 . Apart from gi, the only variable
term included in the latter inequality is the size of the drift ‖∆vi‖.
To eliminate this variable term, ‖∆vi‖ should be included in the
nominator of gi (calculations follow in the upcoming Inequality 3).
• `n(1/δ) needs to be included in the nominator of gi. As men-
tioned in Requirement 3, ε should be tunable by (a function of) δ,
i.e., ε = ε(δ), so as to allow the size of the ε− zone to be con-
trolled by the application. Hence, `n(1/δ) needs to be included in
the nominator of gi. Due to the presence of (1+

√
`n(1/δ)) · σ

(= ε) in Inequality 2, we will later show in Equation 4 that placing
`n(1/δ) in the nominator of the function allows the application to
express the size of the ε−zone as a fraction (< 1) of the bound of
the approximation error between v̂ and v.
• A term Nx, x > 0 is needed in the denominator of gi. To en-
sure communication savings and reduced monitored area, we need
|K| � N. The expected sample cardinality of our scheme is given
by ∑

N
i=1 gi. Since this sum iterates over all the N terms, to ensure

|K| � N, we need a term Nx in the denominator of gi in order to
obtain an expected communication cost of O(N1−x). What is then
required is to compute a proper value for x > 0.
• A constant U such that U > h · ‖∆vi‖, h > 1 is necessary in
the denominator of gi. Having required that ‖∆vi‖ lies in the
nominator of gi, to achieve O(N1−x) cardinality, the presence
of a constant U such that U > h · ‖∆vi‖ for some h > 1 in the
denominator of gi is necessary as well. For example, in a setup
where sites receive ±1 updates per dimension [39, 19, 20] over a
sliding window of w size, the maximum ‖∆vi‖ that may occur is
equal to U =

√
d ·w. In case of unbounded inputs, a generalization

of the bound used in [19] would suffice. In particular, [19] focuses
on linear functions and assumes that an estimation of the global
count (in one dimension) is available beforehand. It thus sets
U equal to that total count estimation. The equivalent in our
multidimensional scenario is to utilize e, i.e., the last known global
average estimation, and express U as a function of its norm ‖e‖.

Summarizing, all our previous remarks are satisfied upon setting

gi =
`n(1/δ) · ‖∆vi‖

U ·Nx

The expected communication cost is a tunable (using δ) fraction of
N, proportional only to ∑

N
i=1 gi = O(`n(1/δ) ·N1−x). We then seek

for a proper value for x> 0. Recalling Vector Bernstein’s Inequality
(Inequality 2) and using the above gi, for σ we receive:

∑
N
i=1 E[‖yi‖2] =

N
∑

i=1

‖∆vi‖2

N2· ‖∆vi‖·`n(1/δ)
U ·Nx

−
N
∑

i=1

‖∆vi‖2

N2 =

N
∑

i=1

‖∆vi‖
N·
√

N
U ·Nx

√
N·`n(1/δ)

−
N
∑

i=1

‖∆vi‖2

N2 ·
N
∑

i=1

(
1√
N

)2 Cauchy−Schwarz
≤

Inequality [3,37]
N

2 ∑
i=1

‖∆vi‖
N·
√

N
U ·Nx

2·`n(1/δ)
√

N
−
(

N
∑

i=1

‖∆vi‖
N·
√

N

)2

=

−
(

N
∑

i=1

‖∆vi‖
N·
√

N

)2

+
N

2 ∑
i=1

‖∆vi‖
N·
√

N
U ·Nx

2·`n(1/δ)
√

N
±
(

U ·Nx

2·`n(1/δ)
√

N

)2 identity
=

−
(

N
∑

i=1

‖∆vi‖
N·
√

N
− U ·Nx

2·`n(1/δ)
√

N

)2

+
(

U ·Nx

2·`n(1/δ)
√

N

)2
⇔

N

∑
i=1

E[‖yi‖2]≤
(

U ·Nx

2 · `n(1/δ)
√

N

)2
= σ

2 (3)

In our analysis we made use of the Cauchy-Schwarz Inequal-
ity [3, 37], which states that if a1, . . . ,aN and b1, . . . ,bN are two

sequences of real numbers, then
(

N
∑

i=1
ai ·bi

)2

≤
N
∑

i=1
a2

i ·
N
∑

i=1
b2

i .

The equality holds if and only if the sequences are proportional.
In order to express ε as a fraction of U and as a function of δ,
while at the same time avoiding an undesirable dependence on the
network scale N, we pick x = 1/2. Then, ε = (1+

√
`n(1/δ)) ·σ

= (
1+
√

`n(1/δ)
2·`n(1/δ)

) ·U , while B can be set to B =
‖∆vi‖
N·gi

= U
`n(1/δ)·

√
N

.

Notice that the choice of `n(1/δ) in the nominator of gi is the
lowest value that we could use in order to obtain a tunable by δ

increase in the expected communication cost, while at the same
time being able to express ε as a percentage of U . The latter claim

is true due to the fact that ( 1+
√

`n(1/δ)
2·`n(1/δ)

)< 1, ∀δ < 1/e (i.e., a range
that contains the typical values for δ).

The Sampling Function. Pointing out the characteristics of
our sampling-based GM scheme, for given δ ∈ (0,1/e):


gi =

‖∆vi‖`n(1/δ)

U ·
√

N
Sampling Function

ε = (
1+
√

`n(1/δ)
2·`n(1/δ)

) ·U v̂ Estimation Error
N
∑

i=1
gi = O(`n(1/δ)

√
N) Expected Sample Size

(4)

Notice that gi < 1 and ε≤ σ2/B practically holds, as required by
the Vector Bernstein’s Inequality. In addition, ε is controllable us-
ing the δ parameter. Furthermore, note that when δ decreases, then
ε also decreases, while the expected sample size increases logarith-
mically. This is a trade-off between bandwidth consumption and
accuracy that our sampling-based scheme achieves by a single, ap-
plication defined parameter δ.

Notice that the proposed gi does not explicitly impose a lower
bound on sample size. For example, if all sites have very small
∆vi vectors, then their sampling probabilities will be small. How-
ever, even if none of them gets sampled (such a case becomes less
likely as the number of sites increases), our algorithm will estimate
- according to Estimator 1 - that v̂ = e. That is, the current posi-
tion of v coincides with the estimate vector e (the last known, due
to synchronization, global average vector), leading to the conclu-
sion that the function has not crossed the threshold. In any such
case, according to our analysis using the Vector Bernstein Inequal-
ity, our estimation is accurate within ε from the true average with
(controllably) high probability. On the other hand, our framework
needs to ensure that it samples enough sites when the global vector
v does cross the threshold surface, so as to avoid FNs. In our work
(see Lemma 3 below), we bound PFN based on both the number of
threshold crossing sites and the distance of the spheres from the ε−
zone (and, thus, from the threshold surface).

EXAMPLE 2. Recalling Example 1, we note that common
relative humidity values in a server room range between 0.4
and 0.6 (i.e, 40% and 60%) rH. In such cases, the maximum
‖∆vi‖ may occur when the reading of a sensor gradually shifts
from 0.4 to 0.6 (or vice versa), yielding a maximum ‖∆vi‖ =√
(0.62−0.42)2 +(0.6−0.4)2 ≈ 0.28. Thus, U = 0.28. The fol-

lowing table computes, for N = 100 and N = 961, the values of ε,
the range of gi values in this example, and `n(1/δ)

√
N (an upper



bound on
N
∑

i=1
gi) for δ values of 0.1 and 0.05. We note that this upper

bound becomes smaller compared to N as N increases. Moreover,
note that smaller δ values result in smaller ε and larger gi values,
as smaller δ values point to a requirement for fewer FNs.

δ N
√

N Range of gi ε `n(1/δ)
√

N

0.1 100 10 [0,0.23] 0.15 24

0.1 961 31 [0,0.08] 0.15 72

0.05 100 10 [0,0.3] 0.13 30

0.05 961 31 [0,0.097] 0.13 93

Completing the puzzle for PFN bounds. In Section 4.2, we men-
tioned that when some of the sampled sites enter the ε-zone, PFN ≤
∏

Si∈C
(1− gi), where C the set of threshold crossing sites. Under

the light of the chosen gi we receive PFN ≤ ∏
Si∈C

(1− ‖∆vi‖`n(1/δ)

U ·
√

N
).

However, we also noted that for a site Si ∈ C, ‖∆vi‖ > εT , since
otherwise Si cannot have crossed the threshold surface. Therefore,
since gi < 1, substituting above:

PFN ≤ (1− `n(1/δ) · εT

U ·
√

N
)|C| ≤ e−

|C|·`n(1/δ)·εT
U ·
√

N = δ

|C|·εT
U ·
√

N

As mentioned in Section 4.2, this bound on PFN is a worst-case
bound that is derived from a pathological case, in which for all
Si ∈ C, ||∆vi|| = εT . However, what happens in practice, because
v is the average of the drift vectors, is that in order for v to cross
the threshold surface, the threshold surface is crossed (i) by either
several moderate in length drift vectors, in which case |C| is large
and PFN is small, since it decreases exponentially with the number
of threshold crossing sites, or (ii) by fewer but larger drift vectors
that, thus, have larger sampling probabilities. In the latter case, it is
less likely that they are all omitted from the sample.

Thus, apart from ensuring PFN ≤ δ when no local constraint en-
ters the ε-zone as discussed in Section 4.2, we also bounded the
complementary case, and note that PFN may become even lower
than δ when |C| is sufficiently larger than

√
N. We emphasize that

the minimum distance of e from the threshold surface, i.e., εT (see
Fig 4), is computed during a synchronization and is, thus, a known
parameter until the next central data collection. In any case, the
size of the ε−zone can be tuned to the desirable extend using δ as
discussed above. Based on the above discussion and our analysis
in Section 4.2 the following lemma comes naturally.

LEMMA 3. The Sampling-Based GM Scheme being set accord-
ing to Equation 4 yields:

• PFN ≤ δ if ∀Si ∈ K,B(e+ ∆vi
2 ,
‖∆vi‖

2 )
⋂

ε− zone = /0

• PFN = O(δ
|C|√

N ) otherwise

where C denotes the set of threshold crossing sites. Thus, one can
properly tune δ to obtain the desired FN probability.

6. EXPERIMENTS
We develop a simulation environment in Java in order to evaluate

the performance of our techniques. We compare the communica-
tion cost (number of messages) as well as the number of FP and FN
synchronization decisions of our sampling-based scheme, hence-
forth referred to as SGM, against other GM related techniques that
have been proposed in the literature. More precisely:
• The Geometric Monitoring framework of Section 3.1 introduced

in [35], termed GM.

• The GM framework enhanced with the balancing optimization
presented in [35], termed BGM. In BGM, the coordinator tries to
probe a subset of ∆vis that may partially cancel out the crossing
ones due to their different direction. If such a subset exists, it
knows that v(t) has not crossed the threshold without requiring a
full synchronization. Please refer to [35] for more details.
• The Prediction-Based Geometric Monitoring Framework, and in

particular the CAA technique proposed in [16, 17], henceforth
referred to as PGM. We adopt a Velocity-Acceleration predictor
and present the best performance PGM shows upon varying the
window according to which predictions are formed from 3 to 10
measurements (roughly the amount of stories received hourly).
We emphasize that the BGM and the PGM approaches are or-

thogonal to our sampling-based GM framework. Despite this fact,
to better perceive the benefits of our novel SGM approach and ex-
pose its features, in our experimentation we form a worst case sce-
nario for SGM by not applying any orthogonal approach on top of
it. Moreover, note that BGM and PGM are not orthogonal to each
other, since the CAA approach [16, 17] switches among monitoring
models instead of balancing their drift vectors.
Data Sets. We utilize two real world datasets. The first dataset
is the Reuters Corpus (RCV1-v2) [26] data, termed Reuters, also
used in related work [35, 36, 16]. It is composed of 804414 records
of news stories which have been categorized and have been tagged
with a list of terms (features). As previous works [35, 36, 16],
we focus on tracking the terms Febru, Ipo, Bosnia and their co-
occurrences with the Corporate/Industrial category. We monitor the
relevance between a (term, category) pair using two different func-
tions: the Mutual Information (MI) function and the χ2 function
(please refer to [16, 17] for more details). We use a sliding window
of 200 documents for this dataset which is roughly the amount of
news stories received daily [16, 17]. Since, the number of records
in the data is limited, we use the Reuters data to evaluate our algo-
rithms in mediocre distributed settings of size N = 50 to N = 100
and provide some initial comparisons with related work [35, 16,
17] where no more than 100 sites are considered.

The second dataset, termed Jester [18], contains 4.1 million rat-
ings between −10 and 10 on 100 jokes from 73421 users. We use
this dataset to approximately monitor the sum in buckets of equi-
width histograms of the above rating range, based on L∞ distance
as well as the Jeffrey Divergence (JD) [31]. More precisely, we
use these functions to measure the distance (cost) of encoding the
current global histogram at each time instance, to the one commu-
nicated during the last central data collection. In addition to L∞

and JD, the third function we experiment on (in the Appendix), is
the tracking of the Self-Join (SJ) size [17, 15, 8] (essentially the
L2 Norm) of the vector hosting the expected counts in the afore-
mentioned histogram buckets. Since users provide ratings for 100
distinct cases, we utilize a sliding window of 100 observations for
this dataset. Regarding the degree of distribution, we vary N be-
tween 100 and 1000.
Metrics and Parameter Settings. Throughout our study, for each
(dataset, function) pair we initially measure the number of commu-
nicated messages varying the value of the threshold, i.e., T , keeping
the number of sites to a fixed value that lies in the middle (N = 75
for Reuters and N = 500 for Jester) of the aforementioned distribu-
tion ranges. This helps demonstrate the performance of the candi-
date schemes upon altering the placement of the threshold surface.

Then, for the middle threshold case we investigate the commu-
nication cost for increasing network scales. In the Jester dataset
where larger network sizes can be tested, we also investigate the
cost of messages per site (instead of just the total number of mes-
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(a) MI Monitoring: Comm. Cost vs Threshold
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(c) MI Monitoring: Sensitivity to δ

Figure 5: Reuters Data Set: Performance of our Techniques on MI Monitoring

sages), as this gives an indication on how the cost of each site scales
when the number of sites increases. For large numbers of sites and
for constrained applications such as sensor networks, where an in-
creased number of transmitted messages results in reduced network
lifetime, this per site cost should ideally remain steady (or increase
at a small rate) as we scale to larger networks.

For SGM, we also vary the posed tolerance constraint i.e., the
application defined probability δ, between 0.05 and 0.3 with a de-
fault value of 0.1 and perform a sensitivity analysis on the number
of false (FP, FN) synchronization decisions in comparison with the
FPs produced by the best (at each case) of the competitors.
Main Findings. Our experimental analysis demonstrates that our
sampling-based SGM method significantly reduces the number of
transmitted messages and the number of false positives, with the
benefits becoming more profound when the number of sites in-
creases. Please note that, since in GM each false positive results
in communication from all sites and the coordinator, significantly
reducing the number of false positives translates into a correspond-
ing bandwidth reduction (or energy consumption reduction, in case
of applications with sensor sites) on each site. This is validated by
the scalability experiment performed on the (larger) Jester dataset,
where the corresponding benefits per site, compared to GM, in-
crease in larger network setups. Finally, the false negatives of SGM
are in all cases lower than the specified tolerance parameter δ.

6.1 Reuters Dataset Monitoring
We first focus on the Reuters dataset. Figure 5(a) and Figure 5(b)

present the communication cost of GM, BGM, PGM and SGM
varying the value of the posed threshold and the scale of the dis-
tributed network for the default value of δ = 0.1 when monitoring
the Mutual Information function. We present results for the Febru
term, as the trends are similar for the other two (Bosnia, Ipo) terms.

In both figures, the lines corresponding to GM, BGM almost
coincide, showing that in this data set the balancing optimization
does not reduce the communication cost. The reason is that, when
many sites cross the threshold surface moving towards similar di-
rections, an additive effect on their ∆vis naturally exists. Therefore,
the coordinator probes almost all of the non-crossing sites so as to
balance the added drift. On the other hand, the prediction-based
mechanism of PGM reduces the communication cost by more than
an order of magnitude compared to GM and BGM for different
threshold values when N = 75. Still, our proposed sampling-based
scheme SGM (star-marked line approaching the x axis in the fig-
ure) performs from 6 times (for T = 0) to two orders of magnitude
(for T = −1) better than PGM across various thresholds, with at
least an order of magnitude improvement for the rest of the tested
threshold values. Despite its good performance, PGM performs

worse than GM and BGM for T =−1. This is because, contrary to
our sampling-based scheme, the prediction-based mechanism PGM
can practically achieve (as shown in [16, 17]), but does not guaran-
tee communication savings over the baseline solution of GM.

Moreover, in Figure 5(b) our SGM approach performs from 5 to
almost an order of magnitude times better than PGM, which in turn
outperforms GM and BGM for the fixed T = 0, across the various
network scales. The benefits of SGM increase with the number of
sites as, not only does it reduce the number of FPs (also depicted
in Figure 5(c)), but also in each FP it requires transmission from
O(
√

N) sites, in comparison to O(N) sites for the other techniques.
Figure 5(c) presents a sensitivity analysis on the effect of δ to

the number of FP, FN decisions. Recall that FPs are responsible
for the unnecessary portion of communicated messages. As a re-
sult, our sensitivity analysis also exposes the trade-off among band-
width consumption caused by FPs and accuracy in terms of FNs
for SGM. The horizontal bars depict the number of FP decisions of
PGM (which, as we just showed, outperforms GM and BGM) com-
pared to the FP and FN decisions of SGM, under different δ values
ranging between 0.05 and 0.3. FPs and FNs for each given δ are
drawn in stacked bars as explained by the corresponding legends,
while the overall length of the bars represents the total number of
false decisions. As shown by the figure, the communication reduc-
tion that was observed in Figure 5(a) and Figure 5(b) for T = 0 is
translated to a corresponding ratio (of about 6) of the FP decisions
of PGM over those of SGM with δ = 0.1. Moreover, we can ob-
serve that the number of FP decisions of SGM remains stable across
different δ values, while the SGM framework in practice produces
no FNs for this (function, dataset) pair.

Turning our interest to the χ2 case, the main difference in Fig-
ure 6(a) and Figure 6(b) is that PGM performs only slightly (<0.2
times) better than BGM and GM. Monitoring χ2 results in a moni-
toring process at a higher dimensional space (which in turns means
trying to accurately predict more components of local and predicted
global vectors). This affects the quality of the predictions and the
size of the monitored convex hulls in PGM, therefore its limited
improvements. Apart from the above remark, SGM reduces the
bandwidth consumption from 3.8 times for T = 0, to more than an
order of magnitude compared to the other candidates for the rest
of threshold values (Fig. 6(a)). In addition, SGM needs more than
one order of magnitude (between 13 and 16 times) fewer messages
than its competitors across different network scales (Fig. 6(b)).

We now focus on Figure 6(c) and the amount of FPs, FNs de-
picted there. SGM ensures more than an order of magnitude re-
duction on the amount of false decisions (represented by the total
length of the stacked bar of FP, FN counts) compared to the second
best alternative of PGM. Figure 6(c) demonstrates that increasing
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Figure 6: Reuters Data Set: Performance of our Techniques on χ2 Monitoring
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(a) L∞ Monitoring: Comm. Cost vs Threshold
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(c) L∞ Monitoring: Sensitivity to δ

Figure 7: Jester Data Set: Performance of our Techniques on L∞ Monitoring

δ causes FP decisions to be reduced by more than 15% in each bar
of the histogram. FNs slightly increase with increased δ values,
but are very rare in all cases. The reduction in FP with increased δ

values is easily understood, since the expected sample size is pro-
portional to `n(1/δ)

√
N. Thus, increasing δ decreases the sample

size and, thus, the monitored space responsible for FPs. Regarding
FNs, they are rare in all cases. For instance, for SGM and δ = 0.05,
∼8000 updates arrive per site (see the size of the Reuters data set
and N ≤ 100) and the number of FNs is just 61, which corresponds
to a ratio lower than 0.01. SGM typically provides fewer FNs (in
this experiment, always by at least a factor of 5) than the posed δ

according to which the tolerance to FNs is tuned.

6.2 Jester Dataset Monitoring
We now focus on the Jester dataset which, due to its larger size,

allows us to also perform tests in larger topologies. The default
number of sites used in this dataset is 500. Two general observa-
tions coming out of Figure 7 and Figure 8 we mention that:

• In this larger scale dataset, the performance of the PGM ap-
proach is equivalent to the baseline GM. This validates our claim
in Section 2 where we noted that PGM may perform well in small
to medium sized network distributions, but increasing the net-
work scale makes the existence of inaccurate predictors in some
sites more probable and, thus, PGM becomes more prone to FPs.

• Figure 7 shows that balancing may help reduce the bandwidth
consumption in that particular (function, dataset) pair. Nonethe-
less, in Figure 8 where only the function and the threshold
value (surface) is altered, BGM provides no improvements. This
comes as no surprise, as BGM adopts a simple heuristic hoping
to probe sites with drift vectors of opposite direction compared
to the threshold crossing ones. Hence, contrary to SGM, BGM

does not guarantee communication reduction. Furthermore, con-
trary to our proposed SGM approach, none of the BGM or PGM
mechanisms provide a way to tune the expected bandwidth con-
sumption according to posed accuracy standards.

Focusing on specific figures, in Figure 7(a) we point out that the
bandwidth consumption achieved by our SGM (star-marked line
approaching the x axis in the figure) approach is from 25 to 64
times lower than the best alternative (BGM). Moreover, upon vary-
ing the network scale between 100 and 1000 sites in Figure 7(b), the
communication cost reduction by SGM reaches a factor of 64 for
N = 900, while constantly being at least 20 times lower compared
to BGM, for different degrees of network distribution. Comparing
the cost of SGM against PGM or GM, for instance when N = 1000
SGM results in 206 times fewer messages, with at least 20 times
fewer messages for any other network scale.

Concluding our discussion on L∞, the sensitivity analysis in Fig-
ure 7(c) shows the trade-off among unnecessary bandwidth con-
sumption due to FP and accuracy in terms of FN decisions for dif-
ferent δs. SGM is compared to the FPs in GM, as BGM causes full
synchronization only progressively, thus FPs cannot be counted in
a distinct manner. As this figure shows, the number of FP decisions
tends to be reduced upon increasing δ, while the number of FNs
tends to increase, both of which are the expected behavior. Given
that about 4850 updates arrive in every site of the network using the
Jester dataset, the 148 FNs for δ = 0.3 correspond to a ratio of just
3% false negatives, while the corresponding ratio for the∼110-120
FNs and for the rest of the examined δ values never exceeds 2.3%.
Hence, once again the amount of FNs is less than the posed δ.

In Figure 8 we focus on the Jeffrey Divergence monitoring func-
tion. In Figure 8(a) and Figure 8(b), all three competitive tech-
niques (GM, BGM and PGM) exhibit comparable performances.
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Figure 8: Jester Data Set: Performance of our Techniques on Jeffrey Divergence Monitoring
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Figure 9: Average Number of Messages Transmitted by each
Site per Data Update

Our SGM framework reduces the consumed bandwidth up to a fac-
tor of 56 across different thresholds for N = 500 and the commu-
nication gains progressively approach two orders of magnitude by
increasing the network scale to N = 1000 sites (Fig. 8(b)). Regard-
ing the number of false synchronization decisions and the sensitiv-
ity on the chosen δ, Figure 8(c) exposes the absence of FNs and the
reduction of FPs by about 20% as we increase δ above 0.1.

Due to space constraints, the case of Self-Join size monitoring is
summarized in Section 6.4 and then described in the Appendix.

6.3 Messages Per Site in Large Networks
In order to validate our claim regarding scalability to larger net-

work distributions and to resource constrained environments, apart
from measuring the total communication cost (number of mes-
sages) transmitted in the network, we further study the average
number of messages transmitted by each site. That is, we mea-
sure the average number of messages a site transmitted per each
update of its data. An average value close to 1 indicates that each
site in the network transmitted a message after each data update,
which is equivalent to a synchronization process.

Figure 9 presents the average number of transmissions per site
and data update for the GM and SGM schemes in L∞ and in Jef-
frey Divergence monitoring when varying the size of the network
scale. Figure 9 shows that increasing the scale in GM (and the other
alternatives that have similar performance to GM in Fig. 7(b) and
Fig. 8(b)) results in a continuous increase in the number of trans-
mitted messages per site. This is more evident in L∞ monitoring
where, starting at 800 sites, GM behaves as the naive choice of con-
tinuous central data collection, since at least one site exhibits a local
violation, which results in communication by all other sites as well.
In Jeffrey Divergence monitoring this effect is less pronounced un-

til N = 500, but still each site transmits a message in over half of its
data updates for larger network sizes. On the contrary, the SGM ap-
proach is very slightly affected by the increase in network distribu-
tion, since the number of sampled sites increases with the logarithm
of the network size. Thus, the benefits of SGM not only increase
with larger network topologies, but it is also more appropriate for
resource constrained environments, such as battery-powered sensor
networks, where it is desirable to reduce the amount of communi-
cation per site in order to prolong the network lifetime.

6.4 Additional Results
In the Appendix we provide the following additional results: (a)

we provide statistics on the duration of FNs, showing that even if
FNs occur (in a controllable manner), the missed threshold cross-
ings are detected soon afterwards in the future, most often in the
next synchronization decision; (b) we include the analysis of Self
Join size monitoring for which SGM provides more than an order
of magnitude fewer transmissions compared to GM, PGM. BGM
can fall short compared to our SGM up to 8 times, but typically
provides between 2-3 times worse communication cost in terms of
the number of transmitted messages; (c) we compare our SGM ap-
proach using the proposed gi (Section 5) with a variant that uses the
SGM framework but naively samples sites with equal probability,
i.e., performs Bernoulli sampling. What we show is that SGM out-
performs the Bernoulli sampling variant across different network
scales with gains reaching a factor of 50.

7. CONCLUSIONS
In this work we rendered the GM framework of [35] capable to

operate in highly distributed settings. We initially exhibited the
culprits that cause the GM approach to become impractical due to
severe scalability issues. To encounter these issues, we introduced
a novel sampling-based geometric monitoring technique capable of
performing the tracking process utilizing only a sample of the avail-
able sites. The sample size entailed by our methods is proportional
to
√

N and also dependent on application’s accuracy requirements.
Our experimental evaluation shows that our sampling-based tech-
niques can significantly reduce the communication cost throughout
the monitoring process with controllable accuracy guarantees, out-
performing other competitors proposed in the literature.
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APPENDIX
A. PROOFS OF LEMMA 1 AND LEMMA 2

LEMMA 1. For Estimator 1 the following hold:
(a) Estimator 1 is an unbiased estimator of v when sampling
∀Si ∈ {S1, . . . , SN} with 0≤ gi ≤ 1.
(b) E[v̂] ∈Conv( e+∆v1, . . . , e+∆vN)

(c) v̂ ∈Conv({e+ ∆vi
gi
} : ∀Si ∈ K)

PROOF.
(a) To prove that the estimator is unbiased we need to show that

E[v̂] = v. Recall from Equation 1 that ∑
Si∈K

∆vi

gi
=

N

∑
i=1

∆
′vi and that

E[∆′vi] = gi · ∆vi
gi

+(1−gi) ·0 = ∆vi. By applying the properties of
the expected value we get:

E[v̂] = E[e+ ∑
N
i=1 ∆′vi

N ] = e+ ∑
N
i=1 E[∆′vi]

N = e+

N
∑

i=1
∆vi

N = v
(b) Obvious, since E[v̂] = v and v ∈Conv( e+∆v1, . . . , e+∆vN).
(c) v̂ is a convex combination of the e+∆′vi vectors and, there-
fore, lies in their convex hull. Since ∆′vi = 0 for all sites not in-
cluded in the sample, the convex hulls Conv({e+ ∆vi

gi
} : ∀Si ∈ K)

and Conv({e+∆′vi} : ∀i ∈ [1,N]) coincide.

LEMMA 2. Provided that v̂ = v,

v̂ ∈Conv({e+∆vi} : ∀Si ∈ K)

PROOF. Lemma 1(c) we shows v̂ ∈ Conv({e+ ∆vi
gi
} : ∀Si ∈ K),

and we already know that v ∈Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN}).
But, since v̂ = v, also v̂ ∈ Conv({e+ ∆vi} : ∀Si ∈ {S1, . . . ,SN})
should hold. Combining the above:

v̂ ∈Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN})
∩Conv({e+ ∆vi

gi
} : ∀Si ∈ K).

Let XN denote the above intersection of the convex hulls when the
N sites perform sampling trials. To prove the lemma it suffices to
show that XN is equivalent to Conv({e+∆vi} : ∀Si ∈ K).

Before we begin, we emphasize that in case a site gets sampled,
gi > 0 must hold, otherwise it cannot be included in the sample. Let
[y;w] denote the set of all convex combinations among y,w ∈ Rd ,
i.e., [y,w] = {∀q ∈ Rd : q = λ · y+(1− λ) ·w ,0 ≤ λ ≤ 1}. The
proof will be derived inductively, in each of the steps abusively
specifying KN to denote a sample obtained out of N sites. Note
beforehand that any intersection of convex sets is convex.

At the base case, N = 1 site exists, Conv(e+∆v1) = [e;e+∆v1].
If S1 ∈ K1, Conv(e+ ∆v1

g1
) = [e;e+ ∆v1

g1
]. Multidimensional points

e+∆v1, e+ ∆v1
g1

possess the same starting point e and differ only

in the scale among ∆v1, ∆v1
g1

. Therefore, e, e+∆v1, e+ ∆v1
g1

are

collinear and since g1 ≤ 1, [e;e+∆v1] ∩ [e;e+ ∆v1
g1

] = [e;e+∆v1]

⇒ X1 = [e;e+∆v1] = Conv({e+∆vi} : ∀Si ∈ K1). On the other
hand, if S1 /∈ K1, X1 = e. So, the lemma holds for N = 1.

We assume that the lemma holds for N−1 sites, i.e.,

XN−1 =Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN−1})
∩Conv({e+ ∆vi

gi
} : ∀Si ∈ KN−1) =Conv({e+∆vi} : ∀Si ∈ KN−1)

and examine the addition of SN .
By adding e+∆vN to Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN−1})

we not only added the convex combinations [e;e+∆vN ] as in the
case where N = 1, but also all other possible convex combinations

from any y ∈Conv({e+∆vi} : ∀Si ∈ {S1, . . . ,SN−1}) to the newly
introduced points [e;e+∆vN ] i.e., [y; [e;e+∆vN ]]. The same holds
for Conv({e+ ∆vi

gi
} : ∀Si ∈ KN−1). Having said that, the candidate

points for addition in XN−1 to form XN are included in the inter-
section of the newly introduced convex combinations. That is, the
set of points that XN will add (compared to XN−1) belong to the
intersection of all possible convex combinations from every point
included in XN−1 to the new [e;e+∆vN ], [e;e+∆′vi]: ∀z ∈ XN−1
[z; [e;e+∆vN ]] ∩ [z; [e;e+∆′vi]]. If SN /∈ KN , [z; [e;e+∆vN ]] ∩
[z;e] = [z;e]⇒ XN−1 = XN = Conv({e+∆vi} : ∀Si ∈ KN). On the
other hand, when SN ∈ KN , taking into consideration the collinear-
ity among e, e+ ∆vN

gN
and e+∆vN , [z; [e;e+∆vN ]] ∩ [z; [e;e+ ∆vN

gN
]]

= [z; [e;e + ∆vN ]]. Eventually, XN=XN−1 ∪ [z; [e;e + ∆vN ]] =
Conv({e+∆vi} : ∀Si ∈ KN), which completes the proof.

B. JESTER DATASET - SJ MONITORING
In the Jester dataset we approximately monitor the sum in buck-

ets of equi-width histograms, based on L∞ distance as well as the
Jeffrey Divergence (JD) [31]. In addition to L∞ and JD, here we
also experiment with a third function tracking the Self-Join (SJ)
size [17, 15, 8] (essentially the L2 Norm), of the vector hosting
the expected counts in histogram buckets. Figure 10 presents the
bandwidth consumption achieved by SGM compared to the rest of
the candidates across different thresholds, network scales and val-
ues of δ. According to Figure 10(a) and Figure 10(b), SGM may
require more than an order of magnitude fewer message transmis-
sions compared to (GM, PGM) across different thresholds and net-
work scales. SGM performs from 2 (for T = 210) to 8 (for T = 180)
times better than BGM upon varying the threshold. Additionally,
for network scales up to 400 sites, SGM reduces the transmitted
messages up to a factor of 7 compared to BGM, while for higher
amounts of distribution SGM mostly halves the number of mes-
sages BGM requires.

On the other hand, the sensitivity analysis of Figure 10(c) shows
and the amount of FPs is reduced by more than an order of magni-
tude compared to GM for the tested tolerance δ values (recall that
BGM progressively probes sites, thus FPs cannot be counted in a
distinct manner). The same figure shows that increasing δ causes
FP decisions to be reduced by more than 10% when switching from
δ = 0.05 to δ = 0.1 and by almost 20% from δ = 0.1 to δ = 0.2.
At the same time, FNs marginally increase with increased δ. Once
again, the reduction in FPs with increased δ values is explained by
the fact that the expected sample size is proportional to `n(1/δ)

√
N.

Thus, increasing δ decreases the sample size and the tracked area.
Regarding FNs, their percentage lies below the corresponding δ

value in each experiment of Figure 10(c).
Eventually, Figure 11 presents the average number of messages

transmitted per site and data update for the GM and SGM schemes.
It is not difficult to see that even for mediocre network scales of
100 sites, more than half of the updates caused a synchronization
in GM, while this percentage exceeds 80% for topologies with 800
or more sites.

C. DURATION OF FNS
A discriminating fact among FP and FN synchronization deci-

sions lies on the nature of their effect. FP decisions have an instant
effect as the coordinator becomes aware of a FP, and the certain
overhead on the consumed bandwidth it caused, by the end of a syn-
chronization. Contrary to FPs, a FN decision has both the instant
effect of saving bandwidth while it should not, as well as a persis-
tent effect. In particular, upon a FN occurrence and for a number



Threshold
0,5 1 1,5

#Sites Mode Mdn Mode Mdn Mode Mdn
60 1 3 1 3 1 2

70 1 4 1 3 1 2

80 1 3 1 3 1 3

90 2 3 1 4 1 2

100 2 3 1 2 1 1

Table 2: FN Duration - χ2 Monitoring

Threshold
190 200 210

#Sites Mode Mdn Mode Mdn Mode Mdn
600 2 2 1 1 1 1

700 1 1 1 1 1 1

800 1 1 1 1 2 1

900 1 1 1 1 1 1

1000 1 1 1 3 1 1

Table 3: FN Duration - SJ Monitoring
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Figure 10: Jester Data Set: Performance of our Techniques on Sel f − Join size Monitoring

of time units, the application continuous to consider that the mon-
itored function lies on one side of T , while f (v(t)) has switched
side. This misconception is held by the coordinator until either a
synchronization (FP or not), or v(t) again switches to its initial side
with respect to T . Consequently, we enhance our study by concen-
trating on the anticipated duration of a FN decision, indicatively
providing results for χ2 and SJ monitoring. In our study we report
holistic aggregates and in particular the Mode and Median (denoted
by Mdn) statistics for FN duration.

As both Table 2 and Table 3 demonstrate, the most frequent sit-
uation is the one where our proposed SGM approach compensates
the coordinator for a FN decision immediately after its occurrence,
i.e., the corresponding duration is 1 time unit. This is expressed by
the Mode=1 value in the vast majority of the cases cited in the cor-
responding tables. On the other hand, interpreting the cited median
values, we can observe that most of the times SGM needs no more
than 3 time units to compensate for a FN apparition for χ2 (Table 2),
while needing 1 time unit (i.e., Mode=Mdn) for SJ (Table 3).

Overall, we can safely conclude that even when SGM does pro-
duce FN decisions (recall that JD and MI were practically FN free)
it possesses the ability to immediately compensate the tracking pro-
cess for them. This is due to the fact that for low δ values, the prob-
ability of missing the event of a threshold crossing in consecutive
time units decreases with the number of time units.

D. COMPARISON WITH A BERNOULLI
SAMPLING VARIANT

As we described in Section 2, the limitations (see points (a)-
(d) in the last paragraph of Section 2) incorporated in [39, 19,
20, 27] do not allow them to become valid gi choices for SGM.
The question that naturally arises is what if we reside to a sim-
pler gi, instead of the one proposed in Section 5, which uses the
SGM framework but naively samples sites with equal probability,

i.e., performs Bernoulli sampling. For a fair comparison with our
techniques, in case of this Bernoulli sampling variant each site’s
gi is set to `n(1/δ)/

√
N yielding analogous expected sample size

(O(`n(1/δ)
√

N)) as the function that we proposed in Section 5.
Please note that the Bernoulli sampling variant still utilizes opti-
mizations that we proposed in this paper, such as the observation
that sampled sites do not need to scale their ∆vi vectors by 1/gi.

We compare SGM incorporating the gi of Section 5 (as in all
previous evaluations), with the Bernoulli sampling variant in terms
of the number of transmitted messages for different network scales.
Figure 12 presents the respective comparison pairs for each mon-
itored function (L∞, JD, SJ) in the Jester dataset. Pairwise com-
parisons shown in the figure include SGM’s performance marked
with the respective function abbreviation (e.g. L∞-SGM), against
the respective variant (e.g., L∞-Bernoulli).

According to Figure 12 we observe the following: (a) in SJ mon-
itoring, SJ-Bernoulli performs 2-3 times worse than our proposed
SJ-SGM across the examined network scales, (b) in Jeffrey Di-
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vergence monitoring, JD-Bernoulli falls short from 6 to 36 times
compared to our JD-SGM and (c) L∞−Bernoulli provides from 5
to 50 times more transmitted messages than our L∞−SGM pro-
posal. These ratios exhibit the ability of our proposed gi to decrease
communication burden compared to other, straightforward, sam-
pling function choices. The differences in the performance with
the Bernoulli sampling variant are mainly attributed to the fact that,
contrary to the gi we proposed in this work (Section 5), Bernoulli
sampling does not take into consideration the size of the local devi-
ation vector ‖∆vi‖. Thus, sites with small deviations that less affect
the global average but lie near the threshold surface, are equally
probable to be included in the sample as peers with large ‖∆vi‖ that
push the global average away from it. A plausible characteristic
is that such a behavior is not allowed by our proposed sampling
function which incorporates ‖∆vi‖ in its calculation formula.
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Figure 12: Comparison of SGM vs Bernoulli Sampling Variant


