
FERARI: A Prototype for Complex Event Processing over
Streaming Multi-cloud Platforms∗

Ioannis Flouris? Vasiliki Manikaki? Nikos Giatrakos? Antonios Deligiannakis?

Minos Garofalakis? Michael Mock� Sebastian Bothe� Inna Skarbovsky]

Fabiana Fournier] Marko Štajcer† Tomislav Križan† Jonathan Yom-Tov§

Taji Ćurin‡

?Technical University of Crete
{gflouris, manikaki, ngiatrakos, adeli, minos}@softnet.tuc.gr

]IBM Research - Haifa
{fabiana, inna}@il.ibm.com

�Fraunhofer IAIS
{michael.mock, sebastian.bothe}@iais.fraunhofer.de

§Technion, Israel Institute of Technology
jonyomtov@cs.technion.ac.il

†Poslovna Inteligencija
{marko.stajcer, tomislav.krizan}@inteligencija.com

‡T-Hrvatski Telekom
Taji.Curin@t.ht.hr

ABSTRACT
In this demo, we present FERARI, a prototype that enables real-
time Complex Event Processing (CEP) for large volume event data
streams over distributed topologies. Our prototype constitutes, to
our knowledge, the first complete, multi-cloud based end-to-end
CEP solution incorporating: a) a user-friendly, web-based query
authoring tool, (b) a powerful CEP engine implemented on top of a
streaming cloud platform, (c) a CEP optimizer that chooses the best
query execution plan with respect to low latency and/or reduced
inter-cloud communication burden, and (d) a query analytics dash-
board encompassing graph and map visualization tools to provide a
holistic picture with respect to the detected complex events to final
stakeholders. As a proof-of-concept, we apply FERARI to enable
mobile fraud detection over real, properly anonymized, telecom-
munication data from T-Hrvatski Telekom network in Croatia.

1. INTRODUCTION
Machine-to-Machine (M2M) synergies generate event data in

high frequency in every modern Big Data system, from network
health monitoring and mobile or sensor network deployments to
computer clusters and smart energy grids. Besides M2M interac-
tions, Internet-of-Things (IoT) platforms can offer advanced con-
nectivity of devices and services that cover a variety of domains
and applications, generating high volumes of event data streams
and patterns of interest subjected to further study.

∗This work was supported by the European Commission under
ICT-FP7- FERARI-619491 (Flexible Event pRocessing for big
dAta aRchItectures).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899395

Complex Event Processing (CEP) Engines [3, 5] aim at process-
ing such event data streams efficiently and immediately recogniz-
ing interesting situations in real-time. Primitive events are atomic
(i.e., non-decomposable) occurrences that stream into a CEP sys-
tem, while complex events (CEs) are derived by the CEP Engine
based on application-defined event patterns (rules) engaging other
primitive and/or CE combinations. For instance, consider a number
of telecommunication antennas in a simplified mobile fraud detec-
tion scenario. A mobile device exiting the realm of an antenna trig-
gers the report of a corresponding primitive event with the duration
of the ongoing call maintained by that particular cellular device as
an attribute. The CE of a potential fraud case apparition may in-
volve summing up the overall call duration for a certain cell phone
number across visited antennas and assessing whether it exceeds a
given threshold within a recent time window.

In large scale distributed CEP systems, centralizing all raw
events is not possible, as this would create a bottleneck at the
central site/cloud. Streaming event data arriving at multiple, po-
tentially geographically dispersed, cloud platforms should be effi-
ciently processed in situ (if possible) and then combined to provide
holistic answers to global application queries. Efficient inter-cloud
CEP is tightly coupled with the requirement for reduced commu-
nication since conventional communication links interconnect sites
with distinct cloud deployments. Towards that end, query plans
should be generated exploiting the potential for in-situ processing.

One step further, enabling CEP at vast scale involves scaling
the amount of local processing performed within each site/cloud.
With the emergence of streaming cloud platforms (such as Apache
Storm [1]), CEP systems need to be adapted and redesigned to ex-
ploit intra-cloud parallelization and elastic resource consumption.

In this demo, we present FERARI, a prototype that enables real-
time CEP for large volume event data streams over distributed
topologies. The key characteristics that distinguish FERARI from
conventional competitors that operate over cloud platforms (such as
Esper [4]), is that FERARI takes advantage of both inter-cloud CEP
by distributing the load over a set of streaming cloud platforms and
parallelized, intra-cloud CEP where appropriate. However, FER-
ARI’s breakthrough is not limited to the above important charac-

FERARI Optimizer

Logical Plans

Event Stream

Analyzer

Physical Plans
Runtime Statistics

Cost

Inter-cloud Execution Plan

Intra-Cloud CEP

Intra-Cloud CEP

Intra-Cloud CEP

Intra-Cloud CEPIntra-Cloud CEP

FERARI

Authoring Tool
FERARI

DashboardPush Pull

Figure 1: FERARI Architecture - The Big Picture

Install Plan for Site i

Input
Spout

Pushed
 Events

Push/Pull Event
 Requests

Figure 2: Intra-cloud FERARI Topology

teristic. FERARI constitutes, to our knowledge, the first complete,
multi-cloud based, end-to-end CEP solution incorporating:
• a user-friendly, web-based query authoring tool,
• a powerful engine for efficient intra-cloud CEP, implemented

on top of a state-of-the-art streaming cloud platform, namely
Apache Storm [1],

• a CEP optimizer that orchestrates interactions among CEP En-
gines in different clouds, and chooses the best execution plan
balancing requirements for both low latency and reduced inter-
cloud communication,

• an analytics dashboard encompassing time series analysis, graph
and map visualization tools to provide a holistic picture with re-
spect to the detected CEs to final stakeholders.

As a proof-of-concept, we apply FERARI to enable mobile fraud
detection using real rules and over real, anonymized, telecommu-
nication data from T-Hrvatski Telekom network in Croatia.

2. FERARI ARCHITECTURE
The overall architecture of FERARI is illustrated is Figure 1,

while Figure 2 and Figure 4 present intra-cloud processing modules
in detail. Below, we present the main components of FERARI,
along with our contributions.
CE Query Authoring Tool: In FERARI queries are formed using
a web-based graphical user interface as shown in Figure 3. Our
event query modeling approach is inspired by the CEP concepts
discussed in [8, 9]. The query elements included in FERARI ’s
authoring tool involve [8, 9]:
• Event types - the events that are expected to be received as input

or to be generated as CEs. An event type definition includes the
event name and a list of its attributes.

• Producers - event sources and the way the CEP Engine gets
events from them.

• Consumers - event consumers and the way they get derived
events from the CEP Engine.

• Event Processing Agents (EPAs) - patterns of incoming events
with specific context (see below) that detect situations and gen-
erate derived events.

• Temporal contexts - time windows in which EPAs are active.
• Segmentation contexts - semantic groupings of events.
• Composite contexts - synthesis of different contexts.
• Complex Event Definitions - Definition of the above concepts

for CEs that are produced by EPAs.
An Event Processing Network (EPN), a conceptual query model
describing the event processing flow execution, is then created.

An EPN comprises a collection of EPAs, event producers and
consumers. The network describes the flow of events originating
at event producers and flowing through various event processing
agents to eventually reach event consumers. The created query
(EPN) is automatically transformed into a JSON file and is for-
warded to FERARI’s CEP optimizer upon query submission. It can
easily be observed that directly coding a proper JSON file tailoring
the above concepts to the desired query is a painful task. Therefore,
our web-based authoring tool facilitates and speeds up this process.
Query formulation using the authoring tool is oblivious to the de-
tails of the underlying multi-cloud setup. Users pose queries in a
way that abstracts the details of the network of sites running cloud
deployments. The EPN produced by the authoring tool may contain
annotations, which are hints provided to the query optimizer, such
as the optimization metric (i.e., minimize inter-site communication
(default metric), maximum detection latency, etc).
FERARI Query Optimizer & Inter-cloud CEP: In our multi-
cloud, distributed setup, different sites may observe only a subset
of the event types that participate in the posed query. Therefore,
the EPN received by the FERARI optimizer must be broken down
into pieces involving different portions of the query. These parts
of the EPN should be installed in, potentially overlapping, subsets
of sites where relevant event types arrive. Furthermore, in order to
enable the detection of CE pattern matches that encompass infor-
mation across various sites, primitive or complex events need to be
exchanged among the sites. For each EPA of the EPN that should
be installed in a subset of sites, a sole site must be picked as the spe-
cial one, responsible for synthesizing event information from other
sites in the same subset to determine matches of event patterns.

In this context, our optimization approach uses the push/pull
paradigm discussed in [6], but significantly extends these concepts
by allowing the potential for EPAs to be installed at different clouds
and by loosening the restricting assumption of having all sites in the
network observe exactly the same event types. The main optimiza-
tion goal is to produce Pareto optimal plans with respect to com-
munication and latency. An optimal plan appropriately balances
reduced communication, achieved by postponing push/pull activ-
ity regarding higher frequency events participating in a CE pattern
until the occurrence of lower frequency ones, and event detection
latency due to these postponed transmissions.

As shown in the middle top of Figure 1, the optimizer initially
produces a set of logical plans. During logical plan generation,
query rewriting procedures are applied on the posed query and sub-
sets of sites where portions of the posed query need to be installed

Figure 3: FERARI ’s Authoring Tool

are determined. Furthermore, topological orderings of event types
are created to later represent all possible sequences of push/pull
activity during pattern matching checks. Based on the gathered
statistics, physical plans are generated which include the best, in
terms of Pareto optimality, EPA placement choice and the best or-
der by which event tuples will be pulled from sites for each query
portion and site subset. As soon as our optimizer comes up with
the best possible plan, respective information is disseminated and
properly transformed portions of the EPN are installed in each site
running respective cloud platform deployments. To our knowledge,
the FERARI optimizer is the only one incorporating the above ad-
vanced features for efficient plans in inter-cloud CEP processes.
FERARI Intra-cloud CEP: FERARI ’s intra-cloud processing is
built on top of a state-of-the-art streaming cloud platform, namely
Apache Storm [1]. In other words, each site is assumed to run a
Storm installation on which FERARI intra-cloud topology is cre-
ated. A site’s Storm topology, shown in Figure 2, is comprised of
the following components [7]:
• Input Spout: A Storm spout where streaming tuples arrive or

pushed events from other sites are fed into the CEP Engine.
• CEP Engine: Receives the input events from the Input Spout and

having processed them according to the locally installed EPAs,
emits derived events towards the Time Machine component. De-
tails of our CEP Engine follow shortly.

• Time Machine: A Storm Bolt that buffers derived events from
the CEP Engine.

• Gatekeeper: A Storm Bolt responsible for advanced calculations
and distributed CE resolution procedures.

• Communicator: A Storm Bolt responsible for the push/pull
based communication to/from sites in the same subsets, accord-
ing to the parts of the query plan that are processed.
The CEP Engine module of our prototype, namely ProtonOn-

Storm [3], was built by IBM Research - Haifa within the scope of
the FERARI project [2] and is an open source CEP Engine that
extends the IBM Proactive Technology Online (Proton) standalone
platform [3]. ProtonOnStorm’s architecture is distributed across
a number of Storm bolts (see Fig. 4) which allows for different
degrees of parallelization in different modules. In that, ProtonOn-
Storm is a more elastic intra-cloud processing solution maximizing
the potential for efficient intra-cloud CEP. Upon the reception of
an incoming event, multiple independent parallel instances of the
routing bolt of ProtonOnStorm, determine the metadata that should
be assigned to the received event, the EPA name and the context
name, which are added to the event tuple. ProtonOnStorm uses

Figure 4: Intra-cloud FERARI - The CEP Engine

the STORM field grouping option on the metadata routing fields -
the agent name and the context name- to route the information to
the context processing bolt (see Fig. 4). After queuing the event
instance in order to solve issues of out of order reception and paral-
lelize processing of the same instance where possible by different
EPAs, the event tuple is processed by the context service and the
relevant context partition id is added to it. At this point, ProtonOn-
Storm uses the field grouping on context partition and agent name
fields to route the event to specific instances of the relevant EPA,
this way performing data segmentation. If a CE is detected that
needs to be transmitted to a remote cloud, it will be routed to the
Time Machine component (Fig. 2) and it will be pushed to the site
responsible for synthesizing events from other sites in the same
subset upon request, according to the inter-cloud execution plan.
FERARI Dashboard: The web-based dashboard of our prototype
is generic enough to produce a wide variety of reports and analytic
results that are useful from an application viewpoint, irrespectively
of the actual details of the CEs, context or EPAs. It simply needs
to be defined as an event consumer using a RESTful API [3]. FER-
ARI Analytics come both in numerical, tabular format and graph-
ical representations, while map visualization combines aggregate
event statistics with their spatial reference, i.e., regarding the site
of the multi-cloud platform where interesting situations occur.

3. DEMO SPECIFICATIONS
For the purposes of the demonstration, we will use a real,

anonymized, dataset of call data coming from HT’s network. HT
data include around 2 TB of Call Detail Records (CDR), 600 GB
of Postpaid usage and more than 1.5 TB of Prepaid CDR. In a
simulated multi-cloud deployment, each site will be fed with a
distinct local stream that comprises a set of calls recorded by a
group of HT’s telecommunication antennas, where groups are non-
overlapping i.e., they share no antennas. During the demo, users
will be able to interact with all the components of FERARI archi-
tecture in a real use case scenario involving mobile fraud detection.
CE Query Formation: we target at enabling both quick ex-
ploratory interaction with FERARI, as well as provide the poten-
tial for allowing users dig further into our prototype’s querying and
CEP capabilities. To achieve that, we use real (properly masked to
comply with company policies) fraud detection rules from HT to a
priori build a set of EPAs. In the pre-built scenario (see Fig. 3) users
will be able to express their queries by combining the already avail-
able EPAs, defining event producers and consumers and visualizing
the created EPN in FERARI ’s authoring tool. Event patterns ex-
pressing masked HT’s rules for mobile fraud detection involve:
• LongCallAtNight: Report long calls (defined as longer than X

minutes) to premium locations during night hours (limited by a
pair of timestamps).

Figure 5: Screenshots of FERARI Dashboard

• FrequentLongCallsAtNight: Raise alarm upon the occurrence of
at least Y calls made to premium locations during night hours,
lasting longer than X minutes per calling number.

• FrequentLongCalls: Notify when at least Z calls made to a pre-
mium location sum up to at least X minutes duration in a day.

• FrequentEachLongCall: Notify when at least Z long, at least X
minutes each, calls are made to a premium location in a day.

• ExpensiveCall: Every X minutes provide notifications in case
calls dialed to premium locations sum up to more than a pre-
defined cost per calling number.

Using the pre-built EPAs as a guide, users will also be able via the
authoring tool to build their own, fraud detection related, queries
modifying existing or define from scratch CEs, Contexts (tempo-
ral, segmentation or composite), EPAs and finalize their queries by
graphically exploring the EPN that will be submitted to FERARI.
Assessing Inter- and Intra-cloud Internals: In order to fully as-
sess the details of FERARI’s deployment and the function of indi-
vidual components beyond the application’s viewpoint, interested
users will be able to have access to logging information presented
in a user-friendly way, which includes:
• FERARI optimizer’s steps in choosing the best query plan as

well as logical (including query rewriting in terms of the pro-
duced JSON file), physical plans and corresponding execution
costs of other alternatives,

• real-time logs of inter-cloud push/pull communication according
to the plan that has been prescribed by FERARI ’s optimizer,

• real-time logs of intra-cloud activity via ProtonOnStorm’s rout-
ing and EPA Manager bolts (Fig. 4).

CE Analytics: Real-time CE notifications will be provided via
FERARI ’s analytics platform. Nonetheless, the functionality of
our prototype’s dashboard includes much more than mere notifi-

cations of fraud event reports with detailed feature descriptions.
Users will be able to access reports of numerical and graphical re-
sults about detected mobile fraud CEs as shown in Figure 5. More
precisely, aggregate statistics of suspicious calls and user records
will be provided at different temporal granularities in an online
fashion (Fig 5). Furthermore, map visualization tools will account
for the spatial dimension of the analysis, regarding the position of
HT ’s telecommunication antennas where fraud incidents occur or
sets of antennas where suspicious users span as they commute.

4. REFERENCES
[1] Apache Storm project homepage. http://storm.apache.org/.
[2] Flexible event pRocessing for big dAta aRchItectures. the

FERARI project. http://www.ferari-project.eu/.
[3] IBM Proactive Technology Online on STORM.

https://github.com/ishkin/Proton.
[4] Storm-Esper. https://github.com/tomdz/storm-esper.
[5] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient pattern matching over event streams. In SIGMOD,
June 2008.

[6] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex
event detection across distributed sources. In PVLDB, 2008.

[7] S. Bothe, V. Manikaki, A. Deligiannakis, and M. Mock.
Towards flexible event processing in distributed data streams.
In Proc. of the Workshops of the EDBT/ICDT, 2015.

[8] O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Company, 2010.

[9] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. Iyer,
H. Lalanne, M. Monze, M. Peters, Y. Rabinovich, G. Sharon,
and K. Stewart. A Conceptual Model for Event Processing
Systems. IBM Redguide publication, 2010.

