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1. INTRODUCTION
Today, a majority of data is fundamentally distributed

in nature. Data for almost any task is collected over a
broad area, and streams in at a much greater rate than
ever before. In particular, advances in sensor technology
and miniaturization have led to the concept of the sensor
network: a (typically wireless) collection of sensing devices
collecting detailed data about their surroundings. A fun-
damental question arises: how to query and monitor this
rich new source of data? A similar scenario emerges within
more traditional, wired networks: if data is collected over
remote sites, either about observed external conditions or
about the network itself (e.g. in IP network monitoring),
how to process this data in order to answer certain queries?
Additionally, other emerging models of distributed compu-
tation, such as peer-to-peer (P2P) networks and grid-based
computing face the same problems of managing and inter-
rogating data streams observed by distributed participants.

The prevailing paradigm in database systems has been un-
derstanding management of centralized data: how to orga-
nize, index, access, and query data that is held centrally on a
single machine or a small number of closely linked machines.
In these distributed scenarios, the axiom is overturned: now,
data typically streams into remote sites at high rates. Here,
it is not feasible to collect the data in one place: the volume
of data collection is too high, and the capacity for data com-
munication relatively low. For example, in battery-powered
wireless sensor networks, the main drain on battery life is
communication, which is orders of magnitude more expen-
sive than computation or sensing. This establishes a funda-
mental concept for distributed stream monitoring: if we can
perform more computational work within the network to re-
duce the communication needed, then we can significantly
improve the value of our network, by increasing its useful

Copyright is held by the author/owner(s).
SIGMOD’07, June 12–14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

life and extending the range of computation possible over
the network.

We consider two broad classes of approaches to such in-
network query processing, by analogy to types of queries in
traditional DBMSs. In the one shot model, a query is issued
by a user at some site, and must be answered based on the
current state of data in the network. We identify several pos-
sible approaches to this problem. For simple queries, partial
computation of the result over a spanning tree can reduce
the data transferred significantly. For ‘holistic’ queries, such
as medians, count distinct and so on, simple combination of
partial results is insufficient, and instead clever composable
summaries give a compact way to accurately approximate
query answers. Lastly, careful modeling of correlations be-
tween measurements and other trends in the data can fur-
ther reduce the number of sensors probed.

In the continuous model, a query is placed by a user which
requires the answer to be available continuously. This yields
yet further challenges, since even using tree computation,
summarization and modeling, we cannot afford to commu-
nicate every time new data is received by one of the remote
sites. Instead, the result of work on this problem has been
a new tradeoff of reduced accuracy in the query answer for
reduced communication cost. This has led to a variety of
techniques for different query types to apportion the avail-
able “uncertainty” in the query answer between different
sites, and to model the evolution of measured values to an-
ticipate future values and so reduce communication further.

There are many open problems relating to distributed
data stream monitoring still to be studied, and systems ad-
dressing these issues are just starting to appear. There is
great potential for work in this area to have impact on the
next generation of data management systems in a world that
is inherently distributed and constantly changing. Our ob-
jective in this tutorial is to discuss the algorithmic foun-
dations of this new world, illustrate some of the powerful
techniques that have been developed to address these chal-
lenges, and outline interesting directions for future work in
the area. This tutorial complements and builds on some of
the first attempts at collecting work in this area [18] and
tutorials which have emphasized the hardware and systems
aspects [29]. The aim is to inspire attendees to contribute
to this exciting, growing area of research.

1178



2. TUTORIAL OUTLINE

2.1 Introduction and Motivation
Large-scale event-monitoring systems require fast or con-

tinuous query answering in a world where the data is stream-
ing and inherently distributed. The key challenge is to min-
imize both communication and processing burden while en-
suring accuracy and timeliness of answers. We discuss exam-
ple application domains, including sensor networks, network
monitoring, and P2P networks. We also cover basic (cen-
tralized) data-streaming models and results, and outline the
key dimensions of distributed data-streaming problems:
(1) Querying Model: One-shot vs. continuous, exact vs. ap-
proximate, deterministic vs. randomized;
(2) Communication Model: Single-level, hierarchical, or fully-
distributed (e.g., DHT-based P2P systems), other commu-
nication constraints (e.g., network loss, intermittent connec-
tivity); and,
(3) Class of Queries: Holistic vs. non-holistic aggregates,
duplicate sensitive vs. insensitive aggregates, more complex
queries (e.g., inference models, set-valued results).

2.2 One-Shot Distributed-Stream Querying
The one shot approach requires a query to be distributed

to relevant sites in the network, and the answer computed
and relayed back to the user. We discuss various approaches
to aggregate computation:

• Tree-based Aggregation. Computing simple, non-
holistic aggregates (e.g., MIN, MAX, SUM, AVG) over
a hierarchical architecture using ‘in-network’ aggrega-
tion of fixed-size partial aggregates (e.g., TAG [30]).
For holistic aggregates, we discuss techniques for avoid-
ing linear communication costs through effective ap-
proximation using composable data synopses for count
distinct, quantiles, heavy hitters, join size, and so on
[17, 3, 2, 11, 19, 33].

• Robustness/Loss Issues. Robustness is a key con-
cern for hierarchical aggregation schemes, as a single
loss near the root can dramatically affect accuracy.
We cover possible remedies for both holistic and non-
holistic aggregates, including gossip-based techniques [26,
25, 24], duplicate-insensitive aggregation schemes [7,
34, 21, 12], and hybrid schemes combining elements of
both approaches [32].

• Probabilistic Approximation. Cover recent work
on using probabilistic models of site values and their
correlations to reduce communication overheads for
approximate answers. [16, 6].

2.3 Continuous Distributed-Stream Tracking
The continuous, distributed setting puts a much more

stringent demand on the system: a continuous query is dis-
tributed to the participating sites, and they must collabo-
rate to ensure that the answer to the query is continuously
provided to the user that is accurate (e.g., within specified
error bounds) compared to the exact current state. We
cover various fundamental ideas that are applicable in this
setting:

• Adaptive Slack Allocation. A first cut is to take
the allowable “slack” in answering the query within

allowable bounds, and distribute it between different
participants for different query types, e.g., top-k (most
frequent) items [4], item values [35], set expressions [15],
and duplicate resilient aggregates [13]. In such set-
tings, communication is necessary to adjust the slacks,
plus some global communication is needed when a large
rebalancing of slacks takes place.

• Predictive Models of Site Behavior. We discuss
recent work that extends the idea of local-slack alloca-
tion by incorporating simple models of the data evo-
lution to “predict” site behavior. Combined with in-
telligent summarization techniques, these approaches
only require concise communication exchanges when
prediction models are no longer accurate [10, 9, 8]

• Distributed Triggering. An important common fea-
ture of many distributed continuous monitoring prob-
lems is evaluating a condition over distributed data
and triggering when it is met. We will show recent
work that has provided several solutions to this prob-
lem based on a variety of techniques, both determinis-
tic and randomized (where the probability of trigger-
ing increases with the amount by which a threshold is
exceeded) [27, 38, 22].

2.4 Distributed Data-Stream Systems
We look at different design choices, algorithms, and as-

sumptions in state-of-the-art systems and research proto-
types, including Borealis/Medusa [39, 1], Telegraph/TelegraphCQ
and TinyDB/TAG [5, 30, 31]. Other relevant systems in-
clude the Gigascope streaming database (actually deployed
for monitoring AT&T’s ISP network [14]), and the P2 par-
allel dataflow engine [28].

2.5 Future Research Directions
and Open Problems

We discuss several challenging directions for future work
in the distributed data-streaming arena, including:

• Extensions to other application areas and more com-
plex communication models, e.g., monitoring P2P ser-
vices over shared infrastructure (OpenDHT [36] over
PlanetLab), and dealing with constrained communica-
tion models (e.g., intermittent-connectivity and delay-
tolerant networks (DTNs) [23]).

• Richer classes of distributed queries, e.g., set-valued
query answers, machine-learning inference models [20].

• Developing a theoretical/algorithmic foundation of dis-
tributed data-streaming models: what are fundamen-
tal lower bounds, how to apply/extend information
theory, communication complexity, and distributed cod-
ing?

• Richer prediction models for stream tracking: can mod-
els effectively capture site correlations rather than just
local site behavior? More generally, understand the
model complexity/expressiveness tradeoff, and come
up with principled techniques for capturing it in prac-
tice (e.g., using the MDL principle [37]).

• Stream computations over an untrusted distributed in-
frastructure: coping with privacy and authentication
issues in a communication/computation-efficient man-
ner.
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3. INTENDED AUDIENCE
This target audience for this tutorial comprises SIGMOD

attendees who are interested in understanding the rapidly
growing area of distributed data-stream management and
in-network query processing. We will not assume any back-
ground in the area, but will attempt to give broad coverage
of many of the key ideas, making it appropriate for graduate
students seeking new areas to study and researchers active
in the field alike.
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