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ABSTRACT
The rapid adoption of XML as the standard for data representation and ex-
change foreshadows a massive increase in the amounts of XML data col-
lected, maintained, and queried over the Internet or in large corporate data-
stores. Inevitably, this will result in the development of on-line decision
support systems, where users and analysts interactively explore large XML
data sets through a declarative query interface (e.g., XQuery or XSLT).
Given the importance of remaining interactive, such on-line systems can
employ approximate query answers as an effective mechanism for reduc-
ing response time and providing users with early feedback. This approach
has been successfully used in relational systems and it becomes even more
compelling in the XML world, where the evaluation of complex queries
over massive tree-structured data is inherently more expensive.

In this paper, we initiate a study of approximate query answering tech-
niques for large XML databases. Our approach is based on a novel, concep-
tually simple, yet very effective XML-summarization mechanism:
TREESKETCH synopses. We demonstrate that, unlike earlier techniques
focusing solely on selectivity estimation, our TREESKETCH synopses are
much more effective in capturing the complete tree structure of the underly-
ing XML database. We propose novel construction algorithms for building
TREESKETCH summaries of limited size, and describe schemes for pro-
cessing general XML twig queries over a concise TREESKETCH in order to
produce very fast, approximate tree-structured query answers. To quantify
the quality of such approximate answers, we propose a novel, intuitive error
metric that captures the quality of the approximation in terms of both the
overall structure of the XML tree and the distribution of document edges.
Experimental results on real-life and synthetic data sets verify the effective-
ness of our TREESKETCH synopses in producing fast, accurate approximate
answers and demonstrate their benefits over previously proposed techniques
that focus solely on selectivity estimation. In particular, TREESKETCHes
yield faster, more accurate approximate answers and selectivity estimates,
and are more efficient to construct. To the best of our knowledge, ours is
the first work to address the timely problem of producing fast, approximate
tree-structured answers for complex XML queries.

1. INTRODUCTION
Since its introduction six years ago, XML has evolved from a

mark-up language for web documents to an emerging standard for
data exchange and integration over the Internet. Being self-describing
and hierarchical in nature, the XML data model is suitable for rep-
resenting a diverse range of data sources and promises to enable
the next-generation of search applications that will allow users to
query effectively the information available on the Web.
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With the rapid growth of available XML data, one can expect
a proliferation of on-line decision support systems that enable the
interactive exploration of large-scale XML repositories. In a typi-
cal exploratory session, a domain expert poses successive queries
in a declarative language, such as XQuery [4] or XSLT [7], and
uses an appropriate visualization of the results in order to detect
interesting patterns in the stored data. Obviously, the successful
deployment of decision-support systems depends crucially on their
ability to provide timely feedback to users’ queries. This require-
ment, however, conflicts with the inherently expensive evaluation
of XML queries which involve complex traversals of the data hier-
archy, coupled with non-trivial predicates on the path structure and
the value content.

Generating approximate answers is a cost-effective solution for
offsetting the high evaluation cost of XML queries. In short, the
system processes the query over a concise synopsis of the XML
data and returns an approximation of the true result. Ideally, this
approximate answer is computed very fast and is accurate in the
sense that it preserves with low error the statistical traits of the true
result. The user can then examine this “preview”, assess the infor-
mation content of the true answer, and decide whether it needs to
be retrieved by executing the query over the base data. Overall, by
providing the user with fast and accurate feedback on the form of
the results, the system can reduce the number of queries that need
to be evaluated in order to support effectively the data exploration
task.

In a typical scenario, the result of an XML query is an XML
fragment that is constructed by appropriate projections on the orig-
inal data; an approximate answer, therefore, is an XML document
that resembles the true answer in terms of hierarchical structure
and value content. Clearly, the effectiveness of an approximate
answering system hinges upon the existence of accurate synopsis
structures that capture the key statistical characteristics of the base
XML data and can thus produce low-error approximate answers
to queries that project parts of it. Note that the problem of effi-
cient XML summarization also arises in the context of selectivity
estimation, where the synopsis is only used to estimate the size of
the result. Approximating the structure of the result, however, is
a strictly more complex problem since there are documents where
the same query produces results of equal size but with very differ-
ent structure. Summarizing, therefore, an XML document in order
to compute approximate answers is more involved than building
synopses for selectivity estimation, which in itself is known to be a
hard problem [18].

Related Work1. Previous studies on approximate query answer-
ing [3, 10] have focused on the relational model, where the result
1Due to space constraints, a more detailed overview of related work
can be found in the full version of this paper [17]



of a query is typically a multi-set of values. The key idea is to
process a query over an appropriate relational synopsis (such as,
histograms, wavelets, or sample-based summaries) and compute an
approximation of the true value set. The proposed techniques and
summarization methods, however, are suitable for flat relational
data and are not easily extended to the case of general XML hi-
erarchies.

As noted earlier, approximate XML query answering is closely
tied to the problem of building effective XML synopses. Recent
studies have looked at the related problem of summarizing XML
data for estimating the selectivity of single XPath expressions [1,
12, 15, 16, 21, 22], or the number of binding tuples for
twig queries [6, 9, 18]. Even though a selectivity estimate is essen-
tially an approximate answer to an aggregate query (COUNT), the
proposed summarization techniques do not store detailed enough
information in order to approximate the structure of the query re-
sult.

Buneman et al. [2] have recently introduced a query-able com-
pression scheme for tree-structured XML data. The proposed tech-
nique compresses the XML tree by using an appropriate bisimula-
tion relation and evaluates an XPath query directly over the com-
pressed instance. The goal, therefore, is to compute an exact an-
swer to a path query, whereas our focus is on computing an ap-
proximate answer to a twig query, which typically involves the joint
evaluation of multiple path expressions.

Our Contributions. In this paper, we initiate the study of approx-
imate query answering for XML queries. In order to gain intu-
ition on the complexity of the problem, this initial study focuses
on approximate answers for twig queries with branching path ex-
pressions, i.e., we consider the structural part of the problem and
ignore for now the value content of the document. As we show in
this paper, even this constrained version is quite complex and re-
quires non-trivial solutions. Our approach is based on a novel type
of structural XML synopses, termed TREESKETCHes, that capture,
in limited space, the key properties of the underlying path distri-
bution and enable low-error approximate answers for a large class
of interesting XML queries. We develop a systematic query evalu-
ation framework for generating approximate answers over concise
TREESKETCH synopses and describe an efficient construction al-
gorithm for building an accurate TREESKETCH summary within
the constraints of a limited space budget. Finally, we present exper-
imental results on real-life and synthetic data sets that demonstrate
the effectiveness of our approach and its benefits over previously
proposed techniques, not only for generating approximate answers,
but also for enabling accurate selectivity estimation. To the best of
our knowledge, ours is the first study to look into the problem of
computing approximate answers for complex XML queries. More
concretely, the key contributions of our work can be summarized
as follows:� TREESKETCH Summarization Model and Query Evaluation
Framework. Our TREESKETCH summarization model is based
on the novel concept of count-stability which captures very effec-
tively the intrinsic similarity of sub-structures in an XML doc-
ument. Briefly, a TREESKETCH summary represents a cluster-
ing of document elements, where each cluster represents elements
with similarly structured sub-trees. We develop an efficient evalua-
tion algorithm that processes a query over a concise TREESKETCH
and produces another TREESKETCH synopsis that summarizes the
structure of the result. Futhermore, we discuss how the same al-
gorithm can be used to estimate the result size of a complex twig
query.� Efficient TREESKETCH Construction Algorithm. We describe

an efficient heuristic algorithm that starts from a detailed summary
and incrementally merges element clusters that are “close” in terms
of element sub-structure. To make our algorithm applicable on
large data sets, we devise an effective heuristic that limits the num-
ber of possible merges in every step, without compromising the
quality of the resulting synopsis.� New Distance Metric for XML Documents. We argue that tra-
ditional graph-theoretic distance metrics, such as tree-edit distance,
are not suitable for evaluating the quality of an approximate answer
relative to the true result. To overcome this difficulty, we introduce
a novel distance metric that quantifies the differences between two
trees in terms of both the overall path structure and the distribution
of document edges.� Experimental Study Verifying the Effectiveness of
TREESKETCHes. We validate our approach experimentally with
an extensive study on real-life and synthetic data sets. Our re-
sults demonstrate that TREESKETCHes perform consistently better
than previously proposed summarization techniques: they enable
more accurate approximate answers and selectivity estimates, and
at the same time are more efficient to construct. Moreover, our
scaling experiments with large data sets show that even small-size
TREESKETCHes are extremely effective in enabling low error se-
lectivity estimates to complex twig queries (e.g., less than 5% es-
timation error for a 10KB summary of a 100MB input document).
Combined with the affordable construction times of TREESKETCH
summaries, these results indicate that TREESKETCHes constitute
an effective and viable in practice solution for the structural sum-
marization of large XML data sets.

2. BACKGROUND
XML Data Model. Following common practice, we model an
XML document as a large, node-labeled tree

�����
	���
. Each node��� � corresponds to an XML element and is characterized by

a unique object identifier (oid) and a label (or, tag) assigned from
some alphabet of string literals, that captures the element’s seman-
tics. Edges

������	����� � � are used to capture the containment of
(sub)element

� �
under

� �
in the database. (We use label

��� � 
,

children
������

to denote the label and set of child nodes for el-
ement node

� � � � .) As an example, Figure 1 depicts a sample
XML data tree containing bibliographical data. The document con-
sists of author elements, each comprising a name, and several
paper and book sub-elements. Each paper contains a title,
a year of publication and one or more keywords, whereas a
book just gives its title. Note that element nodes in the tree are
named with the first letter of the element’s tag plus a unique iden-
tifier. Leaf elements in

�
typically contain values, but our primary

focus in this work is on approximately capturing and querying the
label structure of an XML data tree, rather than the relevant value
distributions.
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Figure 1: Example XML Document.



XML Query Model. We focus on XML twig queries, which rep-
resent the basic building block of declarative query languages for
XML (including the XQuery [4] and XSLT [7] standards). Briefly,
a twig query describes a complex traversal of the XML data tree
and returns a tree-structured XML result constructed through the
intertwined evaluation (i.e., structural join) of multiple path expres-
sions (expressed in XPath [8]). Figure 2(a) depicts an example twig
query over the document of Figure 1, where the 3 � ’s denote variable
names that are bound to specific data elements during query evalu-
ation. We model a twig query 4 as a node-labeled query tree

�65
,

where (1) each node of
� 5

is labeled with a variable name 3 � in 4
(with 3�7 being a distinguished root node always bound to the XML
document root); and, (2) each edge

� 3 � 	 3 �  of
�85

is annotated with
an XPath expression 9;:=<?> � 3 � 	 3 �  that describes the specific struc-
tural constraints specified in 4 between the data elements bound
to 3 � and 3 � during evaluation. For instance, the query tree corre-
sponding to our example twig query above is shown in Figure 2(b).
Following the generalized tree pattern notation [5], we use dashed
edges to separate paths that are specified in the twig’s return clause
and can thus have empty results without nullifying the result of the
query.

for @�A�B in //a[//b]
for @�A�C in @�A�B //p

return@�A�B //n,
for @�A�D in @�A C //k
return @�A�D
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Figure 2: (a) Twig Query, (b) Query Tree, (c) Nesting Tree.

We consider twig queries using XPath expressions involving only
the child and descendant-or-self axes (i.e., “/” and “//” operators)
and may include existential branching predicates of the form “ WYXl Z ”,
where Xl is, in general, a label path whose existence is required un-
der a given parent node in the XPath expression. As an example, the
“//a[//b]” predicate in Figure 2 specifies author tree nodes
that are located at any depth under the current binding of variable 3 7
(the document root) and have at least one book descendant. Intu-
itively, the evaluation of a twig query 4 proceeds by jointly evalu-
ating all XPath expressions in 4 over the XML tree, and generating
the full set of binding element tuples for 4 ’s variables. Each such
binding tuple essentially specifies an assignment of element nodes
to all the 3 � query variables such that all structural constraints spec-
ified in the query’s

� 3 �[	 3 �? edges are met. We will represent the
binding tuples of a query 4 with a nesting tree \�] � 4  , which con-
tains all the elements of

�
that appear in the bindings of different

variables and in addition preserves their ancestor/descendant rela-
tionships as specified by the query paths. Figure 2(c) shows the
nesting tree for the example query of Figure 2(b). Obviously, the
nesting tree can be used to reproduce the binding tuples of a query
and ultimately its result.

3. TREESKETCH SYNOPSIS MODEL

3.1 General Graph-Synopsis Model
Abstractly, our general graph-synopsis model for an XML data

tree
�����
	��^

is defined by a partitioning of the element nodes in

�
(or, equivalently, by an equivalence relation _a` �cbd�

) that
respects element labels; that is, if

������	����= � _ then label
������fe

label
��� � 

. The graph synopsis defined for
�

by such an equiva-
lence relation _ , denoted by gih �(�j , can be represented as a graph,
where: (1) each node k in g h �(�j corresponds to an equivalence
class of _ , i.e., a subset of (identically-labeled) data elements in�

(termed the extent of k and denoted by extent
� k  ); and, (2)

an edge
� � 	 k  exists in g h �(�l if and only if some element node in

extent
� �  has a child element in extent

� k  . (We use label
� k 

to denote the common label of all data elements in extent
� k  .)

At a high level, several recently-proposed techniques for build-
ing path-index structures for XML (including m -indexes [14] and
A( n )-indexes [11]), as well as statistical summaries for XML databases
(including XSKETCHes [15, 16] and twig-XSKETCHes [18]) are all
based on the abstract “node-partitioning” idea described above. As
an example, the basic twig-XSKETCH summary mechanism, which
targets selectivity-estimation of complex twig queries, augments
our general graph-synopsis model with (1) per-node count informa-
tion that records the size of each synopsis node’s extent, (2) local-
ized per-edge stability information, indicating whether the synopsis
edge is backward- and/or forward-stable, and (3) edge distribution
information, that captures the distribution of child counts for the
elements in the node’s extent, across different stable ancestor or de-
scendant edges. These localized edge distributions are maintained
selectively on a per-node basis in the form of edge histograms, and
essentially enable the computation of selectivity estimates for twig
queries. For a simple example, consider a synopsis node � and two
emanating synopsis edges �po k and �qosr . A two-dimensional
edge histogram tvu �&w B 	[w C  would capture the fraction of data ele-
ments in extent

� �  that have exactly
w B children in extent

� k 
and

w C children in extent
� r  .

Limitations of Selectivity-Estimation Synopses. Given the amount
of earlier work on XML summarization and the number of already-
existing synopsis data structures for XML, a natural question that
arises is whether there is a real need for a new summarization mech-
anism for approximate XML query answering. Our key observation
here is that the focus of all earlier work in the area has been on the
problem of selectivity estimation (for XPath expressions [15, 16]
or twig queries [6, 18]) and, unfortunately, even the state-of-the-art
solutions for XML selectivity estimates prove to be inadequate in
accurately capturing the complete tree structure of the underlying
document.

We illustrate our observation with a simple example on twig-
XSKETCH synopses (we focus on the twig-XSKETCH model since
it also uses a graph-synopsis and it is applicable in the general
case of schema-less documents.) Consider the two XML docu-
ment trees

� B and
� C shown in Figure 3(a,b). Both documents

have the same set of distinct label-paths and differ only in the num-
ber of

w
children for the different x elements (the corresponding

counts/multiplicities are shown along the edge). It is straightfor-
ward to verify that any twig query will have the same selectivity
in either of the two documents and, in effect, both documents map
to the same, zero-error twig-XSKETCH synopsis, shown in Fig-
ure 3(c), with the (exact) edge histograms for nodes y and z de-
picted in Figure 3(d). Consider, for instance, the twig query 4
shown in Figure 3(e). Using the twig-XSKETCH and the method-
ology in [18], we can estimate its selectivity s

��{M� 4  with the ex-
pression s

��{M� 4 ie}|
extent

� y �|�~��*��� � tv� � x i~ t�� �&wl| x i~ x ~�w ,
which yields the same (accurate) estimate of m�� for both documents� B and

� C . Note, however, that the tree structure for the binding
tuples of 4 is in fact very different across our two example docu-
ments. For example, looking at the edge distribution in the query
result, for document

� B , each y element appears in � binding tu-



ples, while for document
� C , one element ( � B ) appears in � tuples

and the other ( � C ) appears in � tuples. This type of information
is not captured by the twig-XSKETCH synopsis, since it does not
affect the overall selectivity estimate.
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Figure 3: (a) Document
� B , (b) Document

� C , (c) Twig-XSKETCH, (d)
Edge-histograms, (e) Twig query ¥ , (f) Count-Stable Synopses.

Again, the key observation here is that, while twig-XSKETCHes
and edge histograms provide an accurate summarization mecha-
nism for twig selectivity estimation, they cannot model the details
of the tree structure for the twig query’s binding tuples; thus, we
expect them to be inadequate as a general-purpose approximate
query answering tool (the results of our empirical study in Sec-
tion 6 clearly verify our expectations.) Furthermore, as this paper
demonstrates, our new synopses are also conceptually simpler, sig-
nificantly easier to build, and provide more accurate results than
twig-XSKETCHes even for the simpler selectivity estimation prob-
lem.

3.2 Count-Stability and the TREESKETCH Syn-
opsis

Our proposed TREESKETCH synopsis data structure is a specific
instantiation of the generic graph-synopsis model outlined earlier
in this section. TREESKETCHes rely on a novel, intuitive concept
of localized stability, termed count stability, defined formally as
follows.

DEFINITION 3.1. Let _¦` �cb§�
denote a (label-respecting)

equivalence relation over the nodes of
�����
	[��

, and let
� � 	 k  de-

note a pair of equivalence classes (i.e., element-node partitions)
induced by _ . We say that the pair

� � 	 k  is n -stable (where n©¨ª� )
if and only if each element

� �«� has exactly n child elements ink . The relation _ and the graph synopsis gih �(�j resulting from
the corresponding element partitioning are said to be count stable
if and only if, for every possible pair of element partitions

� � 	 k 
there exists some n©¨ª� such that

� � 	 k  is n -stable.

Note that the element partitions � , k in the above definition es-
sentially correspond to the extents of synopsis nodes in gih �(�l ;

furthermore, for n -stability, we treat the special case n e � as
the absence of child elements (i.e., no synopsis edge between �
and k ). As an example, the count stable summaries for the XML
trees of Figure 3(a,b) are shown in Figure 3(f), where the summary
edges are annotated with the corresponding n . It is easy to see that
our notion of count stability is a refinement of the traditional F-
stability relation for trees employed by both XSKETCHes [15, 16]
and twig-XSKETCHes [18]; in other words, the equivalence classes
for the count-stability relation are generated by further partitioning
the equivalence classes for F-stability.

Intuitively, our concept of count stability tries to define a class
of equivalence relations where element nodes are grouped together
only if the data sub-tree structures underneath them are identical.
As the following lemma shows, the count-stable graph-synopsis for
a data tree

�
is uniquely defined and, furthermore, it accurately

captures the structure of
�

.

LEMMA 3.1. Given a data tree
�����
	��^

, there exists a unique
minimal (in terms of the number of equivalence classes) count-
stable equivalence relation _¬` ��b� . Furthermore, there exists
a function ®°¯;±³²=´¶µ from stable relations to XML trees, such that®i¯·±³²=´³µ � _  is isomorphic to the original document tree

�
.

Thus, the tree structure of the original document
�

can be re-
trieved with zero-error from a synopsis ¸ h �(�l if _ is stable. The
problem, of course, is that the size of a count-stable synopsis can
become very large – it can easily be in the order of the original
document size. Given the stringent time and storage limitations
typically associated with interactive approximate query answering,
it is clear that perfect count-stable summaries cannot be very useful
as a data-approximation tool for real-time XML data exploration.
Instead, our proposed TREESKETCH synopses try to approximately
capture the underlying document-tree structure within a predefined
space budget. Intuitively, the key idea behind TREESKETCHes is
to locally approximate count-stable relations in the graph-synopsis
wherever structural correlations exist in the underlying data, while
relaxing the count-stability requirement where such correlations are
not dominant and independence/uniformity assumptions are suffi-
cient. Our TREESKETCH synopsis model is simply defined as fol-
lows.

DEFINITION 3.2. A TREESKETCH synopsis ¹jg for an XML
data tree

�
is a node- and edge-labeled graph-synopsis for

�
,

where: (1) each node � in ¹ºg stores an element count count
� � 
e|

extent
� � �| ; and, (2) each edge

� � 	 k  in ¹jg stores an (average)
child count count

� � 	 k  equal to the average number of children
in extent

� k  for each element in extent
� �  .

Thus, instead of storing complex histograms for edge combina-
tions in a B/F-stable neighborhood of a node (like twig-XSKETCHes
[18]), our TREESKETCHes simply maintain a localized average
child count for each edge in the synopsis (without requiring any
stability properties for that edge). The interpretation of the stored
average is simple: all elements in the extent of � have count

� � 	 k 
child elements in the extent of k . Obviously, this is trivially satis-
fied in a stable synopsis where each edge

� � 	 k  is count stable forn e count
� � 	 k  .

There is an interesting and intuitive connection between TREE-
SKETCHes and the clustering of points in multi-dimensional spaces.
More specifically, let � be a synopsis node with outgoing edges�*o k B , ����� , �1o k=» . The set of outgoing edges defines a ¼ -
dimensional space, where an element

� �«� is mapped to a point�&w B �����	 ����� 	�w » ����� if it has
w � ����

children to node k � , m¾½-¿l½¬¼ .
The recorded average edge counts essentially map all points in this



space to point
�
count

� � 	 k B �	 ����� 	 count � � 	 k?» � , which actu-
ally represents the centroid of the cluster. We can thus characterize
the quality of a TREESKETCH synopsis by using a metric that quan-
tifies the quality of the induced clustering. The metric that we adopt
in our work is the squared error of the clustering, which essentially
measures the euclidean distance between points and their corre-
sponding centroid. The squared error for a single cluster � is de-
fined as À�3 � � °e �2Á�Â u � B�Ã � Ã » �&w � ����6Ä count

� � 	 k � � C , while
the squared error À�3 � ¹jg  for a synopsis ¹jg is simply the sum of
squared errors for all the induced clusters. Note, of course, that
the squared error for a count-stable synopsis is zero since all edge-
count centroids are exact, i.e., the child counts for any element in a
given synopsis-node extent are identical (and equal to the corre-
sponding edge counts). We have chosen the squared error metric
since it captures a notion of weighted variance, but it is possible
to use other metrics such as the Manhattan distance or the pair-
wise intra-cluster distance. Irrespective of the actual choice, the
existence of a workload-independent TREESKETCH-quality met-
ric is a major difference from earlier summarization techniques
which are also based on graph synopses, but quantify the quality
of summaries on a per-workload basis (examples include both XS-
KETCHes and twig-XSKETCHes.) As we will see later, this feature
will enable fast construction times, since the quality of a summary
in the space of possible TREESKETCHes can be determined very
efficiently, without requiring the costly evaluation of a query work-
load (as in the case of XSKETCH and twig-XSKETCH construc-
tion).

4. SYNOPSIS CONSTRUCTION AND QUERY
PROCESSING

In this section, we start by describing novel, efficient bottom-up
construction procedures for count-stable summaries and our
TREESKETCH synopses (for a given space budget). We then in-
troduce algorithms for approximating the results as well as the se-
lectivities of XML twig queries over TREESKETCH synopses.

4.1 Building the Count-Stable Summary
Our algorithm for constructing the complete count-stable sum-

mary of an input XML tree
�

(termed BUILDSTABLE) is depicted
in Figure 4. In a nutshell, BUILDSTABLE processes element nodes
in a post-order traversal of

�
and constructs the count-stable synop-

sis graph g in a bottom-up fashion. A hash table tÅW {0	EÆ Z is used to
maintain the collection of equivalence classes (i.e., synopsis nodes)
built thus far, hashed on the (common) class label

{
and the identi-

fying tuple of child counts
Æ

to other equivalence classes. The key
observation here is that, by virtue of the post-order traversal, when
visiting an element node

�
, its children in

�
have already been as-

signed to equivalence classes in g ; thus, the equivalence class for
�

can be determined (with the help of tÅW Z ) based on its label and the
classes and counts of its children (Step 3). If a class for

�
does not

already exist, a new class/synopsis node is created and the appro-
priate edges and counts are added to g (Steps 4–8). Finally,

�
is

added to the extent of the corresponding synopsis node (Step 9).
Algorithm BUILDSTABLE constructs the count-stable summary

of an XML tree in linear Ç �[| �^|  time; note that, for building the
“child-count signature” in Step 3, only the element’s child classes
are necessary, and these can be easily accessed using a stack during
the post-order traversal.

4.2 Building TREESKETCH Synopses
As already mentioned in Section 3.2, the size of an exact count-

stable synopsis typically renders it useless in the context of a real-

Procedure BUILDSTABLE(
�

)
Input: XML Document

�
.

Output: Count-Stable synopsis È of
�

.
begin
1.

�
:= É ; È := É

2. for each element ÊÌË � in post-order do
3.

�
:= Í �+Î � � � � �iÏ�Î � is a node in È andÐ

children
� Ê �¶Ñ extent �YÎ � � Ð�Ò � �iÓ ��Ô

4. if
� �Õ

label
� Ê � ���×Ö Ò É � then

5. Add node
Î

to È with label
�YÎ·� Ò

label
� Ê �

6.
�Õ

label
� Ê � �J�×Ö :=

Î
7. for

�+Î � � � � � Ë � do add edge
Î �MØÙ�Ú Î �

to È
8. endif
9.

Î
:=
�Õ

label
� Ê � ���×Ö ; extent �+Î·� := extent

�YÎ·�³Û Í�Ê Ô
10. endfor
end

Figure 4: Algorithm BUILDSTABLE.

life approximate query processing system. Such systems usually
place tight limits on the space budget for building synopses of
the underlying data collection. Thus, there is a clear need for ef-
fectively constructing compressed TREESKETCH synopses under
a given space budget, while maintaining a high-quality XML-data
approximation in order to enable meaningful approximate answers.

Given the aforementioned natural analogy between
TREESKETCHes and data clustering (Section 3.2), our goal of con-
structing an effective synopsis can be translated to computing an
effective clustering of the XML elements. Here, of course, an ele-
ment cluster is “tight” if it encompasses data elements with similar
sub-trees, and “tightness” can be quantified using the squared error
for the clustering (as discussed in Section 3.2). Thus, our goal is to
build a TREESKETCH synopsis ¹jg that fits within a given space
budget, such that the overall square error À�3 � ¹jg  for the synopsis
is minimized. The analogy with clustering also highlights the dif-
ficulty of TREESKETCH construction, since such clustering prob-
lems are known to be ÜÞÝ -hard even in the simple case of points
in a low-dimensional space [19, 23]. Furthermore, TREESKETCH
construction typically deals with a high-dimensional space which is
defined by the clustering itself (i.e., the space itself changes as ele-
ments are assigned to clusters)! Thus, the problem is significantly
more complex and existing clustering algorithms are not directly
applicable.

Our approach is based on a generic bottom-up clustering paradigm:
starting from the count-stable synopsis, our algorithm (termed TS-
BUILD) incrementally reduces the synopsis size by merging nodes
with similar sub-structures, until the budget constraint is met. This
resembles agglomerative hierarchical clustering algorithms, which
start with one cluster per input data point and successively reduce
the number of clusters by merging neighboring groups (according
to some appropriate distance metric). Another possible option is
a top-down approach that starts from a coarse summary and grad-
ually expands it by splitting nodes (this is actually the approach
taken in the XSKETCH work [15, 16, 18]). In the clustering lit-
erature, however, bottom-up algorithms have been shown to per-
form better than their top-down counterparts; in addition, we have
experimentally verified that bottom-up TREESKETCH construction
yields much better results, without significantly increasing con-
struction time.

The TSBUILD Algorithm. We now describe our TREESKETCH-
construction algorithm in more detail. In a nutshell, TSBUILD
maintains a pool of candidate operations to be applied to the work-
ing TREESKETCH synopsis ¹jg (initialized to the count-stable graph),
where each operation ß in the pool merges two nodes of ¹ºg (de-



Procedure TSBUILD( à ,
£

, á8â , ãäâ )
Input: XML document à ; space budget

£
; upper/lower bounds for

heap size
� á8â � ãäâ �

Output: TREESKETCH synopsis åÌÈ of
�

of size æ £
begin
1. åÌÈ := BUILDSTABLE(

�
) // Start with the count-stable summary

2. çéè¦É
3. while (size

� åÌÈ � Ó £ ) do
4. ç := CREATEPOOL( å°È , á â )
5. while

�
size

� åÌÈ � Ó £ and size
� ç � Ó ã â � do

6. ê*èëç¶ì í;îMí·ïñð R �(�
7. åÌÈ := ê � å�È � // Apply ê on å�È
8. Let

Î·ò
be the new synopsis node

9. for each ê^óôËõç do
10. if ( ê ó ì R î�ö�Ê�÷ Ñ êì R î�ö�Ê�÷løÒ É ) then
11. Remove ê ó from ç
12. Add a merge between ê ó ì R î�ö�Ê�÷ Ù ê¾ì R î�ö�Ê�÷ and

Î ò
to ç

13. endif
14. Recompute ê ó ì Ê ���Eù � ê ó ì ÷Eð&ú�Ê ù for all ê ó Ë affected

� ç � ê �
15. endwhile
16. endwhile
17. return åÌÈ
end

Figure 5: Algorithm TSBUILD.

noted by ß � ¼üû=ý � À ). If ß � ¹jg  denotes the resulting synopsis after
applying the merge ß on ¹jg , we define ß � ��þ=þ ù e À�3 � ß � ¹lg ��ÄÀ�3 � ¹jg  to be the increase in squared error from ¹jg to ß � ¹jg  ,
and ß � À�¿�ÿ � ù e size

� ¹jg �Ä size
� ß � ¹jg � to be the corre-

sponding decrease in synopsis size. The pool of candidate oper-
ations is organized in a min-heap according to the marginal-gain
ratio ß � ��þ=þ ù�� ß � À�¿�ÿ � ù , i.e., the operation at the top of the heap
offers the least increase in squared error per unit of space that is
saved. At each step of the construction algorithm, the operation at
the top of the heap is applied, the pool is updated with new merge
operations for the new node, and the

��þ�þ ù 	 À�¿0ÿ � ù metrics are re-
computed for the new pool of candidate merge operations. This
process is repeated until the heap is exhausted (i.e., no merge oper-
ations are possible) or the size of the ¹ºg synopsis drops below the
allotted space budget.

The pseudo-code for our TSBUILD algorithm is shown in Fig-
ure 5. TSBUILD initializes the min-heap � of candidate merge
operations through function CREATEPOOL (discussed below), and
then applies successive merges according to our marginal-gain cri-
terion (Steps 5-15). In order to limit the memory requirements
of the algorithm and increase efficiency, the size of the operations
heap is bounded by the supplied parameter � â . As operations are
performed, the size of the heap is gradually reduced and when it
drops below a supplied threshold � â , the heap is re-generated and
the process repeated.

A potential performance bottleneck for the construction process
is the re-computation of the

��þ�þ ù and À�¿�ÿ � ù metrics for the merge
operations in the heap. To make this more efficient, our TSBUILD
algorithm employs two key techniques. First, re-computation is
performed only for a limited subset of the candidate merge opera-
tions. The key observation here is that the

��þ=þ ù and À�¿�ÿ � ù metrics
measure differences in the characteristics of the synopsis (rather
than absolute quantities) and, thus, most of them can be preserved
across merges. More specifically, if ß is the merge that was per-
formed last and � ò is the newly created node, then TSBUILD only
needs to compute the metrics for operations that merge parent or
child nodes of � ò (we denote this set of operations as affected

���
);

for the remaining operations, the
��þ�þ ù , À�¿0ÿ � ù metrics remain un-

changed.

Procedure CREATEPOOL( å×È , á8â )
Input: Synopsis åÌÈ ; heap-size upper bound á6â .
Output: Double-ended heap ç containing ædá6â merge operations.
begin
1. çéè É , �¤Ê	��Ê
� :=

�
2. while

� �¤Ê	��Ê
��� height
� å�È � and size

� ç � �ñá â � do
3. �¤Ê	��Ê
� := �¤Ê	��Ê
�� �
4. for all

Î � ��Ë^å�È Ï label �+Î·� Ò label
� � � do

5. if
�����
� Í�ö�ÊMí���ç �YÎ³� � ö�Ê0í���ç � � �MÔ Ò �¤Ê	��Ê	� � then

6. Let ê be the operation that merges
Î

, �
7. ç¶ì í Î ÷Eç � ê �
8. if

�
size

� ç � Ó á â � then ç¶ì í îJí;ï ��� �(�
9. endif
10. endfor
11. endwhile
12. return ç
end

Figure 6: Algorithm CREATEPOOL.

Our second technique makes the computation of
��þ=þ ù more effi-

cient by storing “sufficient” statistics in each synopsis node. Briefly,
each node stores the sum and the sum of squares for the child
counts of its elements along each outgoing edge in the synopsis.
It is straightforward to show that these statistics are sufficient in or-
der to compute the squared-error metric for the synopsis À�3 � ¹jg 
without accessing the base data. In addition, in certain cases, these
statistics can be combined in order to derive the statistics of new
nodes (created through merge operations). The complete details
are beyond the scope of this presentation and can be found in the
full paper [17]. Note that this idea is similar to the one proposed
in the BIRCH clustering algorithm [23], where clusters are repre-
sented only by a collection of similar sufficient statistics throughout
the computation. In our case, however, the stored statistics do not
obviate the need to access a small subset of the base data (although
this can be done very efficiently, by accessing only the relevant
parts of the count-stable summary). Again, we defer the details to
the full version of this paper [17].

Generation of Candidate Operations. We now discuss the de-
tails of our CREATEPOOL algorithm for initializing a heap of at
most � â merge operations. An obvious approach would be to gen-
erate all possible pair-wise merges and keep the top � â operations
according to our ratio metric

��þ=þ ù � À�¿�ÿ � ù . Unfortunately, such a
solution requires evaluating Ç � \ C  merge operations, where \ is
the number of nodes in the count-stable summary and, thus, be-
comes prohibitively expensive as the size and complexity of the
data grows. Given that CREATEPOOL is invoked repeatedly during
the TREESKETCH-construction process, this increased complexity
has a significant negative impact on construction times. On the
other hand, reducing the number of operations considered increases
the efficiency of the candidate-generation stage, but it also runs the
risk of “polluting” the heap with less effective merge operations
that can affect the quality of the generated TREESKETCHes.

To overcome this difficult problem, we adopt a heuristic that lim-
its the number of merge operations considered while ensuring that
the heap only contains operations that are likely to be beneficial.
The key observation here is that a merge of two nodes � and k
leads to a “good” clustering of the elements involved only if � andk have similarly structured sub-trees. Thus, our TREESKETCH-
construction algorithm is much more likely to apply merge opera-
tions on the children of � and k first, before merging � and k them-
selves. This observation suggests a bottom-up approach for pop-
ulating the heap with merge operations, starting with nodes close



to the leaves of the current synopsis and proceeding upward to the
root.

Figure 6 shows the pseudo-code for our CREATEPOOL algorithm
that implements the aforementioned heuristic. CREATEPOOL uses
the concept of a node’s depth in order to examine merge opera-
tions in a bottom-up fashion. More specifically, let

�
be a docu-

ment element. The depth of
�

is defined as � if
�

is a leaf, and m��� ²�¯���ý ����� � ��� � �� otherwise, where the maximum is taken over all� � � children
����

. Intuitively, the depth of an element is the
longest path that leads to a leaf descendant. The depth of a synop-
sis node � is defined as

� ²�¯ ÁEÂ u ��ý ����� � ������ . CREATEPOOL eval-
uates merge operations at increasing depths in the current synopsis¹ºg and only records the best � â of the operations seen thus far
(this can be implemented efficiently through a double-ended heap).
Candidate generation terminates when the current depth has been
exhausted and the heap holds the maximum allowed number of op-
erations.

4.3 Approximate Query Processing
We now turn our attention to the problem of generating approx-

imate answers from a concise TREESKETCH synopsis. At an ab-
stract level, our query evaluation algorithm, termed EVALQUERY,
processes the input query 4 over an input TREESKETCH ¹ºg and
produces an output TREESKETCH ¹jg 5 that summarizes the nest-
ing tree \é] � 4  (the full nesting tree can be retrieved by expanding¹ºg 5 ). As noted in Section 2, the full nesting tree can be used to
reconstruct the binding tuples of 4 and ultimately its result. The
evaluation algorithm uses the structure information of ¹jg in order
to identify matches of the query’s path expressions, while the stored
edge counts are used to approximate the cardinalities of the corre-
sponding result sets. Similar to any summarization method, the
use of the stored information is coupled with a set of appropriate
statistical assumptions that compensate the lack of detailed distri-
bution information at certain parts of the synopsis. As we will see,
the validity of these assumptions depends on the quality of element
clustering within each synopsis node and is thus directly linked to
the heuristics of the TSBUILD algorithm. Intuitively, this direct
relationship between the build algorithm and the query process-
ing framework leads to the construction of summaries that compute
highly accurate approximate answers.

Figure 7 shows the pseudo-code for algorithm EVALQUERY.
The algorithm processes query 4 over the input synopsis ¹ºg and
incrementally builds the result TREESKETCH ¹jg 5 . Each node� 5 � ¹jg 5 corresponds to a set of elements with tag label

� � 5
 ,
which come from the extent of a node � � ¹jg and will appear
in the bindings of query variable 3 � 4 . We will use the nota-
tion � 5 � � 	 3  to denote this association and the shorthand � 5 � 3 
when no confusion arises. In addition, x�¿�¼üýTW 3�Z will denote the set
of nodes in ¹jg 5 that contain bindings for 3 .

Initially, the approximate TREESKETCH contains a root nodeþ�5Ì�� "!#! < � ¹ºg �	 3�7  which specifies the binding of the topmost vari-
able 3 7 to the root of the document. The algorithm processes the
query nodes in a pre-order traversal and, for each node 3 , evalu-
ates the path expressions to the children of 3 , relative to the com-
puted bindings in x�¿�¼üýTW 3�Z . More specifically, for each child 3 �
and binding � 5�� � 	 3  � x�¿�¼üýTW 3�Z , the algorithm computes a list
of bindings z � 3 � 	 � 5
e%$ � k 	 n '& for variable 3 � (lines 4-9),
where k � ¹jg and n & � is a descendant count. Essentially,
each

� k 	 n  � z � 3 � 	 � 5  specifies that every element in � 5 (the
current binding for 3 ) has exactly n descendants in k along path9 :=<?> � 3 	 3 �  . The new bindings are recorded with the insertion of
a node k 5 � k 	 3 �  and an edge � 5 o k 5 . Since an element in � 5
can have descendants in the same node k through multiple paths

procedure EVALQUERY( å°È , ¥ )
Input: TREESKETCH åÌÈ of document

�
; twig query ¥

Output: TREESKETCH å�È 5 that approximates the nesting tree ( ] � ¥ �
begin
1. Initialize å�È 5 with root � 5 ��)�*+* ) � å�È � � A 7 �
2. for each A Ëõ¥ in a pre-order traversal do
3. for each

Î 5 �YÎ � A � Ë � ð R ö Õ A Ö&� A � Ë children � A � do
4. Let í ò be the main path of ��� )-, � A � A � � .
5. . := Í�Ê � Ð Ê � Ò Î0/ ì�ì[ì / �+1 is an embedding of í òºÔ
6. for all Ê � Ò Î0/ ì�ì[ì / �+16Ë%. do
7.

U 1 := EVALEMBED
� í � Ê � � ; �l� A � � Î 5 � è � �+1 �0U 1 �

8. done
9. for

� � ��U � in
�j� A � � Î 5 � do

10. Add node � 5 � � � A � � to å�È 5 if it does not exist
11. Add edge

Î 5 Ú � 5 to åÌÈ 5 if it does not exist
12. count

�YÎ 5 � � 5 �  Ò U
13. done
14. done
15. if

��2 A � Ë � ç ð��¤ö � Ê R Õ A Ö Ï � ð R ö Õ A � Ö Ò43 �
then

16. return
3

// The answer is empty
17. done
18. return åÌÈ 5
end

Figure 7: Algorithm EVALQUERY.

in the synopsis, all counts n that correspond to the same k are ag-
gregated in count

� � 5 	 k 5f (line 12). Note that the algorithm in-
serts exactly one node � 5 � � 	 3  for each pair

� � 	 3  , thus forming
a graph-structured summary ¹ºg 5 . This optimization, which guar-
antees a worst case size of Ç �[| ¹ºg |M~E| 4 |  for the intermediate result
synopsis, stems from the interpretation of the TREESKETCH sum-
marization model: all elements in � contain identically structured
sub-trees and thus need to be represented only once in the synopsis
(regardless of their ancestor nodes.) The query node 3 is included in
the association in order to correctly handle the case where elements
of the same node appear in the bindings of different query nodes.
In order to compute the set of bindings z � 3 � 	 � 5  for variable 3 � ,
the algorithm first identifies the synopsis paths that possibly con-
tain descendants of � 5 along 9;:=<=> � 3 	 3 �  , and the number of de-
scendants along each path is computed with algorithm EVALEM-
BED. The separate invocations of EVALEMBED essentially apply
an independence assumption between the different variables of the
query, which translates to an independence assumption on the un-
derlying path distribution. We defer this point to the end of the sec-
tion, where we discuss the relationship of the processing assump-
tions to the general TREESKETCH framework.

The pseudo-code for algorithm EVALEMBED is shown in Fig-
ure 8. The final descendant count is computed as the number of
descendants ¼65 along the main path of the embedding, scaled by
the selectivity factors of the branch embeddings. The count ¼65 is
estimated simply as the product of the corresponding edge counts,
using the assumption that every element in source node � � has
count

� � ��	 � ��7 B  children to target node � ��7 B (this is the basic
interpretation of the TREESKETCH model.) To estimate the selec-
tivity À � of branching predicate Xl � , the algorithm calls itself recur-
sively to compute the number of descendants for each element of
node � � (the source of the branch) along the different embeddings
of Xl � . If there exists at least one embedding such that the descen-
dant count is ¨ m , then all elements in � � satisfy the branching
predicate and the selectivity is equal to 1. In the opposite case (all
descendant counts are strictly less than 1), each count is treated
as the fraction of elements in � that have descendants along the
corresponding embedding of the branching predicate. Since an ele-
ment satisfies the branching predicate if it is the root of at least one



Procedure EVALEMBED(í , Ê )
Input: XPath í Ò l B Õ 8l B Ö / ì�ì[ì / l » Õ 8l » Ö ; synopsis pathÊ Ò Î 7 /�Î B / ìEì[ì /�Î » , where

Î B / ì�ì[ì /�Î » is an embedding of
l B / l C / ìEìEì / l »

Output: Estimated number of descendants for each element of
Î

along í .
begin
1. R 5 := 9 7
: � Ã » count �YÎ �<; B � Î � � // Descendants along main path
2. for each

8
l
� Ëlí do // Compute the selectivity of branches

3. . � := Í�Ê � Ð Ê � Ò Î � / � B / ì�ì[ì / �+1 is an embedding of
8
l
� Ô

4. for all � 1 Ï Í�Ê � Ð Ê � Ò Î � / ì[ì[ì / � 1 Ë=. � Ô øÒ43
do

5.
U 1 := > Á@?�Â�A¶Ø EVALEMBED

� 8
l
� � Ê � �

6. ( � è U 1
7. done
8. if

2 U � Ë=( � Ï U �CB � then
9. ÷ � := 1
10. else

11. ÷ � :=

D >E ?�Â#F8Ø U � Ù >E ?�� E
G Â#F8ØJ� ��HI 1 � U �KJ U 1 � >E ?�� E
G � E	L � ��HI 1 HI ò � U �MJ U 1 J U ò � Ù J�J�JON // inclusion-exclusion

12. endif
13. done
14. return R 5 J 9 B�Ã � Ã » ÷ �
end

Figure 8: Algorithm EVALEMBED.

matching embedding, the overall selectivity is computed using the
inclusion-exclusion principle on the recorded fractions (line 11).
We note that the application of the exclusion/inclusion principle
essentially makes use of an independence assumption on the distri-
bution of document edges, which, as we discuss below, is derived
from the interpretation of the TREESKETCH summarization model
and is closely related to the squared error of the synopsis.
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Figure 9: (a) Query 4 , (b) TREESKETCH ¹jg (c) Result
TREESKETCH ¹ég 5 .

EXAMPLE 4.1. Consider the invocation of EVALQUERY on the
query 4 and synopsis ¹jg shown in Figure 4.3. Initially, the result
synopsis contains a root

þ 5 �&þ=	 3 7  only and x�¿�¼üýTW 3 7 Z e þ 5
. On

the first iteration of EVALQUERY, variable 3�7 is processed and the
bindings of child variable 3 B are computed. In this case, it is easy
to verify that each element in

þ=5
has 10 descendants along path

//a to node a . As a result, node a 5Ì� a 	 3 B  is inserted in ¹ºg 5
along with edge

 5 o a 5 , and count
�� � 	 a 5 
e m�� .

Let us consider now the processing of 3 B , and more specifically,
the computation of bindings from 3 B to 3 D . Starting from nodea , which appears in the bindings of 3 B , we can identify exactly
one simple embedding of 9;:�<?> � 3 B 	 3 D õecb W ��d Z ����e , namely

�ëe

a �+fg��h . The bindings of 3�D , therefore, will be the descendants of a
along the given embedding. To compute the number of descendants
for each element in a (algorithm EVALEMBED), we first observe
that ¼ 5 e count

� a 	 f 
~ count � f 	 h Ìe � ~ � � � e m . This count
needs to be scaled by the selectivity of the branching predicate W ��d Z ,
for which there exist two embeddings: i � , with descendant count
0.6, and i � , with descendant count 0.7. Essentially, 60% of ele-
ments in D have a branching embedding along i � and 70% have
a branching embedding along i � . The overall branch selectivity is
computed as À e � � j �«� � k Ä � � j ~ � � k e � � �?� . Thus, the number
of descendants along d[/g]//f for each binding in 3 B is m ~ � � �?�
and ¹jg 5 is updated accordingly. The final result synopsis ¹jg 5
is shown in Figure 4.3(c) (synopsis nodes are annotated with the
corresponding query node).

As noted previously, the evaluation algorithm applies a set of in-
dependence assumptions during the processing of an input query
over a concise TREESKETCH summary. At a closer inspection, all
the processing assumptions can be reduced to a basic independence
assumption that de-correlates the distribution of document edges
along different paths of the document. This assumption is essen-
tially derived from the interpretation of the TREESKETCH synop-
sis model: given a synopsis edge �Þo k , all elements in � have
count

� � 	 k  children in k , independent of incoming or outgoing
paths (Section 3). Obviously, this interpretation is trivially satisfied
on a stable synopsis where, by virtue of count-stability, all elements
in the extent of a node � have the same edge counts to child nodes.
As a result, EVALQUERY will compute the exact nesting tree of
a query when the accessed edges of the synopsis are count-stable.
In the general case of a compressed TREESKETCH, it is straight-
forward to observe that the validity of the assumption is directly
related to the error of the induced element clustering: if the error is
low, i.e., the clusters are tight, then the elements are closer to the
centroid (which is defined by the recorded average edge counts),
and the assumption becomes more valid. In essence, there is a close
relationship between the squared error of the synopsis, which quan-
tifies the tightness of the clusters, and the quality of the generated
approximate answers. This observation provides the “missing link”
between the construction algorithm and the evaluation framework:
although the build process does not use a workload-based approach
to ensure high-quality approximate answers, it achieves the same
goal by keeping the squared error low and thus making the basic
independence assumption more valid.

4.4 Selectivity Estimation
In this section we briefly discuss the use of TREESKETCHes for

estimating the selectivity of twig queries. As shown in earlier stud-
ies [5, 13], accurate estimation for the number of bindings tuples
for twig queries is a key requirement in producing effective query
plans for complex declarative queries over XML data.

Our proposed estimation framework uses the result of the EVAL-
QUERY algorithm to efficiently compute an estimate of the query’s
selectivity. More specifically, the estimation algorithm performs
a single post-order traversal of the structural summary ¹ég 5 and
computes, for each node, the average number of binding tuples per
element in its extent. Given the bounded size of ¹jg 5 , it becomes
clear that the estimation process has low memory requirements and
can be performed very efficiently. In the interest of space, we do
not discuss the estimation algorithm further. The full details can be
found in the full version of this paper.



5. AN ERROR METRIC FOR APPROXIMATE
XML QUERY ANSWERS

In order to evaluate the effectiveness of the proposed approximate
query answering framework, it is necessary to measure the degree
of similarity between the approximate nesting tree \mlon � 4  that
is computed over a concise synopsis ¹jg , and the true nesting tree\é] � 4  of the query. More formally, this translates to computing
a distance ý ¿0À � � � \ lon � 4 �	 \ ] � 4 � between the two XML trees
which essentially quantifies the error of approximation. There are
numerous proposals for distance metrics over trees, the most widely
used being the tree-edit distance metric [20]. As we will see next,
however, the proposed metrics essentially measure the syntactic
differences between the two XML trees and thus fail to capture the
semantics of approximate answers. We note that our discussion will
focus on the tree-edit distance metric, but our observations hold for
other graph-theoretic metrics as well.

The tree-edit distance ý ¿0À � A �(� B 	J� C  between two XML trees� B and
� C measures the minimum cost sequence of edit operations

that transform
� B to

� C (or vise versa). The basic edit operations
include adding, deleting, or relabeling a tree node, while more com-
plex operations (such as copying whole sub-trees) are usually mod-
elled as a composition of simple operations. Consider, for instance,
the example of Figure 10, where ¸ � and ¸ ù denote sub-trees of
sizes

| ¸ � | and
| ¸ ù | respectively and numbers along edges denote

child cardinalities. We will assume that
�

is the true nesting tree
of the query, and

� B 	J� C are two possible approximations. If we
limit the edit operations to node insertion and deletion, and assum-
ing that each operation has unit cost, it is straightforward to show
that ý ¿0À � A �(��	J� B 
eqp ~?| ¸ � | � p ~?| ¸ ù | (essentially, we have to add
3 ¸ � sub-trees to the left � element of

� B and delete 3 ¸ � sub-trees
from the right � element in order to transform

� B to
�

). Similarly,ý ¿0À � A �(��	J� C °eqp�~�| ¸ � | � pÌ~�| ¸ ù | . According to tree-edit distance,
therefore,

� B and
� C are equally good approximations of the true

result. Intuitively, however, we expect
� C to be a better approxi-

mation since it maintains the correlation between the number of ¸ �
and ¸ ù subtrees under the same parent (few ¸ � are combined with
several ¸ ù and vise versa); answer

� B , on the other hand, conveys
exactly the opposite trait, that there is an equal number of ¸ � and¸ ù sub-trees under every � .
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Figure 10: Query answer
�

and two approximations
� B , � C

The previous example illustrates that the syntactic difference be-
tween two documents, as measured by tree-edit distance or other
similar graph-theoretic metrics, is not a suitable similarity metric
for approximate answers. Intuitively, an approximate answer is
useful if it preserves the statistical traits of the true answer, with-
out necessarily being identical to it, and the distance metric should
capture this type of “approximate” similarity. Similar observations
have been made in the context of approximate answers for rela-
tional queries [3, 10], where the result of a query is a multi-set of
values. In short, these studies have argued convincingly that set-
theoretic metrics, which correspond to syntax-oriented metrics in
the XML world, do not yield intuitive results when comparing two
value sets (the approximate and the true answer). This has led to

the introduction of new distance metrics, such as the MAC [10] and
the EMD [3], in order to measure effectively the quality of approx-
imate answers to relational queries.

A New Distance Metric for XML Trees. We introduce a novel
distance metric, termed Element Simulation Distance (ESD), that
avoids the shortcomings of syntax-oriented metrics by capturing re-
gions of approximate similarity between the compared XML trees.
To the best of our knowledge, ours is the first metric that consid-
ers both the overall path structure and the distribution of document
edges, when computing the distance between two XML trees.

We now describe the ESD metric in more detail. Let � � � B
and k � � C be elements of the compared trees with label

� � �e
label

� k  . We wish to define a function
� ¸vu � � 	 k  that measures

the degree of “simulation”, or sub-tree similarity, between the two
elements. Let � 5 and

� 5 denote the children of � and k respec-
tively that have tag

�
. If we treat �w5 	�� 5 as two sets of “values”,

where the distance between any two elements � ó � � 5 	 k ó � � 5
can be measured as

� ¸vu � � ó 	 k ó  (i.e., a recursive application of
the metric to the children of � 	 k ), then we can measure the dis-
tance ý ¿0À ��x8� �v5 	E� 5  between �w5 	[� 5 by using any existing value-
set distance metric, like MAC [10] or EMD [3]. The result is an
indication of how well � ’s children of tag

�
simulate k ’s children

of the same tag. The ESD distance between � and k can now be
measured as the sum of distances for children of matching tags:� ¸vu � � 	 k °e � 5 ý ¿0À ��x8� �v5 	E� 5  . In effect, two elements are more
(or less) similar if their children with matching tags are more (or
less) similar themselves, which recursively extends to the whole
sub-structure underneath the two elements. In the case where one
of �v5 	E� 5 is empty, we apply a straightforward transformation so
that the computation of ý ¿0À ��x8� �w5 	E� 5  is well defined. More con-
cretely, assume without loss of generality that

� 5 ezy
. For each

element
� � �w5 , we insert a unique (artificial) element

��{
in
� 5

with distance
� ¸vu ��� 	�� { le | � |

, where
| � |

is the sub-tree size of�
, and

� ¸vu ��� ó 	[��{?�e}|1	@~ü� ó � �v5 	�� ó��e �
. This transforma-

tion essentially models the insertion of the missing sub-trees underk and allows the set-distance metric to be computed on the new
non-empty set

� 5 .
EXAMPLE 5.1. Consider the example of Figure 10 and let �

and k be the left � elements of
�

and
� B respectively. Elements� 	 k have children of tags

w
and ý (the roots of sub-trees ¸ � and ¸ ù )

and thus
� ¸vu � � 	 k  e ý ¿0À ��x8� � � 	[� �  �«ý ¿0À ��x8� � ù 	�� ù  . In order

to compute ý ¿0À � x � � � 	[� �  , we observe that the pairwise distances� ¸vu �&w � 	�w � �	�w � � � � 	�w � � � � are equal to 0, since the elements
have identical sub-trees. Essentially, the two value sets contain
equal values but at different multiplicities. If we use the MAC met-
ric [10], then the computed distance ý ¿0À ��x8� � � 	[� �  is equal to 8
due to the difference in value frequencies. On the other hand, sets� ù and

� ù have the same elements at the same frequencies and thusý ¿0À � x � � ù 	�� ù Ìe � . Overall,
� ¸vu � � 	 k fe ���ª� e � . Now, as-

sume that k ó is the left � element of
� C . It is straightforward to show

that, under the same MAC metric,
� ¸vu � � 	 k ó ée j and thus, as

expected intuitively, the element of
� C simulates better the element

of the true result.

Having defined the ESD metric between any two elements, we
define the ESD metric between two trees

� B 	J� C as
� ¸vu �(� B 	J� C °e� ¸vu �� "!#! < �(� B �	� �!#! < �(� C � . We note that

� ¸vu �(� B 	J� C  does not
lend itself to a meaningful interpretation, except that a lower value
represents increased similarity between

� B and
� C . This, however,

is a common characteristic of metrics that measure the approxi-
mate distance between complex objects (e.g., a similar observation
holds for the MAC and EMD metrics). We note that it is possible
to compute the ESD metric efficiently by first building the stable



Data Set Elements File Size (MB) Stable Synopsis
Size (KB)

IMDB-TX 102,754 3 77
XMark-TX 103,135 5 276
SProt-TX 182,300 4 265
IMDB 236,822 7 149
XMark 2,048,180 100 2,652
SProt 473,031 10 645
DBLP 1,594,443 48 204

Table 1: Data set characteristics

summaries of
� B and

� C on the fly and then evaluating the metric
on the stable synopses. The key observation is that a stable sum-
mary preserves the path structure and the edge distributions of the
original document, while containing fewer nodes. A detailed de-
scription of the computation of ESD on stable summaries can be
found in the full version of the paper [17].

6. EXPERIMENTAL STUDY
In this section, we present an extensive experimental study of

TREESKETCHes on real-life and synthetic data sets. Our results
verify the effectiveness, in terms of accuracy and construction time,
of the TREESKETCH synopses as structural summaries for large
XML data sets. These benefits become even more apparent in a
comparison to previously proposed techniques, where TREESKETCHes
perform consistently better in all aspects. Overall, this empirical
study indicates that TREESKETCHes are a viable and effective so-
lution for the structural summarization of large XML data sets in
real-world applications.

6.1 Testbed and Methodology
Techniques. We have experimented with two techniques.
TREESKETCHes. We have implemented a fully functional proto-
type of the TREESKETCH framework that we describe in this pa-
per. Throughout our experiments, the construction algorithm uses
an upper limit of � â e m�� 	 �?�=� operations and rebuilds the heap
when its size is reduced below � â e m��=� operations.
Twig-XSKETCHes. Twig-XSKETCHes [18] have been proposed as
a summarization technique for estimating the selectivity of com-
plex twig queries. Since the original proposal focused solely on
selectivity estimation, we have developed an algorithm for produc-
ing approximate answers from a twig-XSKETCHThe algorithm tra-
verses the query tree and uses the distribution information of the
recorded edge histograms in order to sample the number of de-
scendants for each element in the approximate result tree. For the
construction of twig-XSKETCH summaries, we have used the same
parameters that were reported in the original study [18].

Data Sets. We have used four data sets in our experiments: IMDB,
a real-life data set from the Internet Movie Database Project; XMark,
a synthetic data set that models transactions on a on-line auction
site; Swiss Prot, a real-life data set with annotations on proteins;
and DBLP, a real-life data set with bibliographical data. The main
characteristics of the corresponding XML documents are summa-
rized in Table 1. The TX documents have been used in the twig-
XSKETCH study [18], and we include them here for the comparison
of TREESKETCHes against twig-XSKETCHes. Looking at the sizes
of the stable summaries, we observe that count-stability is very ef-
fective in compressing, without loss, the structural information of
the original documents. Still, processing a query over so large a
summary becomes prohibitively expensive relative to the stringent
time requirements of an approximate answering system.

Query Workloads. For each data set, we evaluate the performance

IMDB-TX XMark-TX SProt-TX

Avg Number of
Binding Tuples

3,477 2,436 104,592

IMDB XMark SProt DBLP

Avg Number of
Binding Tuples

13,039 145,577 365,493 78,784

Table 2: Workload characteristics

of the generated summaries against a workload of 1000 positive
queries, i.e., queries that have non-empty results sets. Our exper-
iments with negative workloads have shown that TREESKETCHes
consistently produce empty answers as approximations and we there-
fore omit these workloads from our presentation in the interest of
space. The workload is generated by sampling sub-trees from the
stable synopsis and converting them to twig queries. Table 2 con-
tains the average number of binding tuples per query in the work-
loads that we have generated.

Evaluation Metrics. We quantify the accuracy of approximate an-
swers with the ESD metric which was defined in Section 5. More
specifically, we compute the ESD between the approximate and the
true nesting tree of each query in the workload and report the av-
erage over all queries. Our implementation uses a slightly revised
version of MAC (kindly provided by Y. Ioannidis and V. Poosala)
as the underlying set-distance metric, and limits comparisons to the
binding elements of the same query variables. As always, the com-
plete details can be found in the full paper [17].

For experiments on selectivity estimation, we measure the accu-
racy of the synopses with the average absolute relative error over
all queries in the workload. More formally, if

þ
is the true and

�
the estimated selectivity for a query in the workload, the absolute
relative error is defined as

| þ6Ä^� | � ßp�"� ��� 	 À  . The sanity bound À is
used to avoid the artificially high percentages of low-count queries.
Following common practice [16, 18], we set À to the 10-percentile
of true query counts.

6.2 Results
Approximate Query Answers. In this experiment, we evaluate
the effectiveness of our novel TREESKETCH synopses as a practi-
cal solution for generating approximate answers to complex twig
queries. We present a comparison against the previously proposed
twig-XSKETCH synopses, focusing on two measures: the quality
of the generated approximate answers, and the efficiency of the
construction process.

Figure 11 shows the average ESD metric for approximate an-
swers computed with TREESKETCHes and twig-XSKETCHes on
a workload of 1000 twig queries, and for the XMark-TX, IMDB-
TX, and SwissProt-TX data sets. We note that the increased dis-
tance numbers are partly due to the underlying MAC metric, which
assigns a heavy penalty if the compared element sets contain the
same sub-tree in different multiplicities. The interpretation of the
results is therefore based on the relative performance of the two
techniques, rather than on the absolute distances. Clearly, our novel
TREESKETCH synopses consistently produce approximate answers
of lower error. In all three data sets, the average distance for twig-
XSKETCHes is at least four times higher than the one for TREE-
SKETCHes, and the error for a 10KB TREESKETCH synopsis (low-
est budget) is less than the error for a 50KB twig-XSKETCH (high-
est budget). The effectiveness of TREESKETCHes can be attributed
to our novel clustering-based summarization model, which cap-
tures very accurately the intrinsic sub-structure similarity found in
XML data. The edge-histogram model used by twig-XSKETCHes,
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Figure 11: Average ESD metric for approximate answers: (a) XMark-TX, (b) IMDB-TX, (c) SwissProt-TX

on the other hand, can capture correlations within limited neigh-
borhoods of synopsis nodes, while the typically high dimensional-
ity of edge distributions affects negatively the quality of histogram
approximation.

In terms of construction efficiency, we present a qualitative com-
parison between the two techniques since the twig-XSKETCH code
base is not optimized for speed. The twig-XSKETCH construc-
tion algorithm starts from a coarse label-split graph, which con-
tains exactly one node for all elements of the same tag, and grad-
ually expands it through incremental refinement operations (basi-
cally, node splits, and histogram refinements). To evaluate the ben-
efit of a candidate refinement, the algorithm measures the accu-
racy of the resulting twig-XSKETCH on a sample workload of twig
queries (workload-based evaluation). Our proposed TSBUILD al-
gorithm, on the other hand, compresses the stable summary down
to the available space budget, using the squared error as a workload-
independent quality metric.

IMDB-TX XMark-TX SwissProt-TX
TREESKETCHes 0.7 8 10

Twig-XSKETCHes 13 47 55

Table 3: Construction times (in minutes) for TREESKETCHes
and twig-XSKETCHes

Table 3 compares the construction time for TREESKETCHes and
twig-XSKETCHes for the IMDB-TX, XMark-TX, and SwissProt-
TX data sets. All times are reported in minutes and were mea-
sured on an unloaded Pentium4 3GHz machine, running Linux.
For TREESKETCH synopses, we measure the time to compress the
stable summary down to the smallest summary possible, the la-
bel split graph; for twig-XSKETCHes, we measure the time needed
to expand the original coarse summary to 10KB of storage. This
represents a worst case scenario for TREESKETCHes since the dis-
tance from the stable summary to the label-split graph is certainly
“longer” than the distance from the label-split-graph to 10KB. Still,
a qualitative comparison of the measured times indicates that TREE-
SKETCH construction is much more efficient. As we described in
Section 4.2, the TSBUILD algorithm uses effective heuristics to ex-
plore limited, yet promising regions of the search space, while the
squared error metric, which is workload-independent, avoids the
most expensive step of the twig-XSKETCH algorithm, namely eval-
uating the accuracy of candidate summaries against sample work-
loads.

We have also evaluated the accuracy of TREESKETCH-generated
approximate answers for the large datasets of Table 1. The results

remain qualitatively the same as for the smaller data sets and we
omit them in the interest of space. A detailed presentation can be
found in the full version of this paper [17]. Note that we were not
able to evaluate the performance of the twig-XSKETCH approach
on the large data sets due to the high construction times.

Selectivity Estimation. In this experiment, we evaluate the ef-
fectiveness of our proposed synopses in estimating the selectivity
of complex twig queries with branching path expressions. Fig-
ure 12 shows the average relative estimation error on a workload
of 1000 queries for TREESKETCHes and twig-XSKETCHes, and
for the XMark-TX and SwissProt-TX data sets. The results for the
IMDB-TX data set are similar to XMark-TX and are omitted in the
interest of space. As in the previous experiment, the results show
that TREESKETCHes are effective in summarizing the key proper-
ties of the underlying path distribution. We observe that the estima-
tion error remains well below 10% for all three data sets, even for
small space budgets of 10KB-20KB that represent a small fraction
of the original document sizes. Compared to twig-XSKETCHes,
our new TREESKETCH synopses produce significantly more accu-
rate estimates and exhibit more stable behavior.

Figure 13 shows the TREESKETCH estimation error over a work-
load of 1000 queries and for the XMark, IMDB, SwissProt, and
DBLP data sets (the large data sets of Table 1). The results ver-
ify the effectiveness of TREESKETCHes in computing accurate se-
lectivity estimates for complex twig queries and demonstrate their
nice scaling properties in terms of data size. In all four data sets,
the estimation error drops below 5% for a space budget of 50KB,
which in turn represents an extremely small fraction of the original
document size. At the same time, the construction times remain
affordable given the complexity and size of the involved data sets:
38 minutes for Swiss Prot, 11 minutes for DBLP, 2.5 minutes for
IMDB, while the largest XMark data set required 4 hours.

7. CONCLUSIONS
Approximate answers constitute an effective solution for offset-

ting the high execution cost of complex XML queries in an inter-
active data exploration environment. In this paper, we have initi-
ated the study of approximate query answering for XML data. We
have proposed the TREESKETCH synopses, a novel class of struc-
tural summaries that capture very effectively the sub-structure sim-
ilarity that is commonly found in XML data sets. We have devel-
oped a systematic evaluation algorithm for computing approximate
answers over a concise TREESKETCH summary, and we have de-
scribed an efficient heuristic construction algorithm for building an
effective TREESKETCH for a limited space budget. To quantify the
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Figure 12: Average selectivity estimation error: (a) XMark-TX,
(b) SwissProt-TX.

Figure 13: TREESKETCH estimation er-
ror on large data sets.

quality of the generated approximate answers, we have proposed
a novel distance metric between XML trees that avoids the short-
comings of existing graph-theoretic metrics. Experimental results
on real-life and synthetic data sets have verified the effectiveness
of our approach and have demonstrated its benefits over previously
proposed techniques.
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