
Processing Set Expressions over Continuous
Update Streams

Sumit Ganguly
Bell Laboratories

Lucent Technologies
Murray Hill, NJ 07974

sganguly@bell-labs.com

Minos Garofalakis
Bell Laboratories

Lucent Technologies
Murray Hill, NJ 07974

minos@bell-labs.com

Rajeev Rastogi
Bell Laboratories

Lucent Technologies
Murray Hill, NJ 07974

rastogi@bell-labs.com

ABSTRACT
There is growing interest in algorithms for processing and
querying continuous data streams (i.e., data that is seen
only once in a fixed order) with limited memory resources.
In its most general form, a data stream is actually an update
stream, i.e., comprising data-item deletions as well as inser-
tions. Such massive update streams arise naturally in several
application domains (e.g., monitoring of large IP network
installations, or processing of retail-chain transactions).

Estimating the cardinality of set expressions defined over
several (perhaps, distributed) update streams is perhaps one
of the most fundamental query classes of interest; as an ex-
ample, such a query may ask “what is the number of distinct
IP source addresses seen in passing packets from both router
R1 and R2 but not router R3?”. Earlier work has only ad-
dressed very restricted forms of this problem, focusing solely
on the special case of insert-only streams and specific op-
erators (e.g., union). In this paper, we propose the first
space-efficient algorithmic solution for estimating the car-
dinality of full-fledged set expressions over general update
streams. Our estimation algorithms are probabilistic in na-
ture and rely on a novel, hash-based synopsis data structure,
termed “2-level hash sketch”. We demonstrate how our 2-
level hash sketch synopses can be used to provide low-error,
high-confidence estimates for the cardinality of set expres-
sions (including operators such as set union, intersection,
and difference) over continuous update streams, using only
small space and small processing time per update. Further-
more, our estimators never require rescanning or resampling
of past stream items, regardless of the number of deletions in
the stream. We also present lower bounds for the problem,
demonstrating that the space usage of our estimation algo-
rithms is within small factors of the optimal. Preliminary
experimental results verify the effectiveness of our approach.

1. INTRODUCTION
Query-processing algorithms for conventional Database

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

Management Systems (DBMS) rely on (possibly) several
passes over a collection of static data sets in order to produce
an accurate answer to a user query. For several emerging ap-
plication domains, however, updates to the data arrive on a
continuous basis, and the query processor needs to be able to
produce answers to user queries based solely on the observed
stream of data and without the benefit of several passes over
a static data image. As a result, there has been a flurry
of recent work on designing effective query-processing algo-
rithms that work over continuous data streams to produce
results online while guaranteeing (1) small memory foot-
prints, and (2) low processing times per stream item [1, 10,
13, 15]. Such algorithms typically rely on summarizing the
data stream(s) involved in concise synopses that can be used
to provide approximate answers to user queries along with
some reasonable guarantees on the quality of the approxi-
mation.

In their most general form, real-life data streams are ac-
tually update streams; that is, the stream is a sequence of
updates to data items, comprising data-item deletions as
well as insertions 1. Such continuous update streams arise
naturally, for example, in the network installations of large
Internet service providers, where detailed usage information
(SNMP/RMON packet-flow data, active VPN circuits, etc.)
from different parts of the underlying network needs to be
continuously collected and analyzed for interesting trends.
Other application domains giving rise to continuous and
massive update streams include retail-chain transaction pro-
cessing (e.g., purchase and sale records), ATM and credit-
card operations, logging Web-server usage records, and so
on. The processing of such streams follows, in general, a
distributed model where each stream (or, part of a stream)
is observed and summarized by its respective party (e.g., the
element-management system of an individual IP router) and
the resulting synopses are then collected (e.g., periodically)
at a central site, where queries over the entire collection of
streams can be processed [15]. This model is used, for exam-
ple, in Lucent’s Interprenet and Cisco’s NetFlow products
for IP network monitoring.

Clearly, there are several forms of queries that users or
applications may wish to pose (online) over such continuous
update streams; examples include joins or multi-joins [1,
10], norm computations [2, 19], or quantile estimation [16].
Perhaps one of the most fundamental queries of interest is
estimating the result cardinalities of set expressions defined

1Item modifications are simply seen as a deletion directly followed
by an insertion of the modified item.

over several update streams. As an example, an application
monitoring active IP-sessions may wish to correlate the IP-
session sources seen at routers R1, R2, and R3 by posing
a query such as: “estimate the number of distinct IP ad-
dresses seen at both R1 and R2 but not R3”. This is simply
the number of distinct elements (i.e., set cardinality) for the
(multi-)set (source(R1)∩source(R2))−source(R3), where
source(Ri) is the multi-set of IP source addresses seen at
router Ri. The ability to effectively estimate the cardinality
of such set expressions over the observed streams of updates
for IP-session data in the underlying network can be crucial
in quickly detecting possible denial-of-service attacks, net-
work routing or load-balancing problems, potential reliabil-
ity concerns (catastrophic points-of-failure), and so on. Set
expressions are also an integral part of query languages for
relational database systems; for example, the SQL standard
supports set operators like UNION, INTERSECT, and EXCEPT

(i.e., difference) in queries over tables with compatible sche-
mas [22]. Thus, one-pass synopses for effectively estimat-
ing set-expression cardinalities can be extremely useful, e.g.,
in the optimization of such queries over Terabyte relational
databases.

Prior Work. Estimating the cardinality of set union (i.e.,
number of distinct elements) over (one or more) element
streams is a very basic problem with several practical ap-
plications (e.g., query optimization); as a result, several
solutions have been proposed in the literature for the set-
union estimation problem. In their influential paper, Fla-
jolet and Martin [12] propose a randomized estimator for
distinct-element counting that relies on a hash-based syn-
opsis data structure; to this date, the Flajolet-Martin (FM)
technique remains one of the most effective approaches for
this estimation problem. The analysis of Flajolet and Mar-
tin makes the (unrealistic) assumption of an explicit family
of hash functions exhibiting ideal random properties; in a
later paper, Alon et al. [2] present a more realistic analy-
sis of the FM estimator that relies solely on simple, linear
hash functions. Several estimators based on uniform ran-
dom sampling have also been proposed for distinct-element
counting [6, 17]; however, such sampling-based approaches
are known to be inaccurate and substantial negative results
have been shown by Charikar et al. [6] stating that accu-
rate estimation of the number of distinct values (to within
a small constant factor with constant probability) requires
nearly the entire data set to be sampled! More recently,
Gibbons et al. [14, 15] have proposed specialized sampling
schemes specifically designed for distinct-element counting;
their sampling schemes rely on hashing ideas (similar to [12])
to obtain a random sample of the distinct elements in the
input streams that is then used for estimation. Finally, Bar-
Yossef et al. [4] propose improved distinct-count estimators
that combine new techniques and ideas from [2, 12, 15].

All these earlier papers on set-union estimation either ig-
nore the possibility of deletions in the input stream(s) or
fail to deal with deletions in a completely satisfactory man-
ner. For example, sampling-based solutions like [14, 15]
may very well require rescanning and resampling of past
stream items when deletions cause the maintained sample
to be depleted; this is clearly an unrealistic requirement in
a data-streaming environment. More importantly, none of
the above-mentioned papers addresses the problem of deal-
ing with general set expressions (including operators like set
intersection or difference), which is obviously significantly

more complex than simple set union.
The method of Minwise Independent Permutations (MIPs)

[5, 8, 18] is, to the best of our knowledge, the only known
technique that can accurately estimate the result cardinali-
ties of set operators other than union (e.g., intersection) over
an insertion stream rendering a multi-set of data items. Fur-
thermore, extending the basic technique to deal with set ex-
pressions is relatively straightforward (e.g., see [7]). Unfor-
tunately, MIPs are also ill-equipped for dealing with general
update streams. Deletions can easily deplete the MIP syn-
opsis, rendering it useless for the purposes of set-expression
estimation unless we are able to rescan past stream items;
again, however, this is not a realistic option in a data-stream
setting.

Our Contributions. In this paper, we present the first
space-efficient algorithmic solution for the full-fledged prob-
lem of estimating set-expression cardinalities over general
update streams. Our proposed estimators are probabilis-
tic in nature and rely on a novel, hash-based synopsis data
structure, termed “2-level hash sketch”. We present novel es-
timation algorithms that use our 2-level hash sketch stream
synopses to provide low-error, high-confidence estimates for
the cardinality of general set expressions (including set union,
intersection, and difference operators) over continuous up-
date streams, using only small space and small processing
time per update. We also present lower bounds demonstrat-
ing that the space usage of our basic estimators is within
small factors of the best possible for any (randomized) solu-
tion. Furthermore, our estimators never require rescanning
or resampling of past stream items, regardless of the num-
ber of deletions in the stream: at any point in time, our
2-level hash sketch summary is guaranteed to be identical
to that obtained if the deleted items had never occurred in
the stream! More concretely, the key contributions of our
work are summarized as follows.

• Novel 2-level Hash Sketch Synopses and Basic Set-
Operator Estimators over Update Streams. We for-
mally introduce the 2-level hash sketch synopsis data struc-
ture and describe its maintenance over a continuous stream
of updates (rendering a multi-set of data elements). Briefly,
2-level hash sketches extend the hash-based synopses of Fla-
jolet and Martin [12] in a non-trivial manner that renders
them (a) robust to item deletions in the stream, and (b)
useful for estimating the cardinalities of set difference and
intersection (in addition to set union). We then present
novel algorithms for (probabilistically) estimating the cardi-
nalities of the three basic set operations (union, difference,
and intersection) over 2-level hash sketches. To simplify the
analysis of our basic estimators, we initially assume ideal,
fully-independent hash mappings for 2-level hash sketch con-
struction; we then demonstrate how our analysis carries over
to the (more realistic) limited-independence case. We also
prove a lower bound for all randomized approximation algo-
rithms, showing that the space requirements of our estima-
tors is actually within small polynomial and log factors of
the optimal.

• Extension to General Set-Expression Estimation
over Update Streams. We generalize our basic-operator
estimators (and their analysis) to derive an accurate, small-
space (probabilistic) estimation algorithm for the cardinality
of general set expressions over a collection of continuous up-
date streams. Once again, ours is the first approach to solve

this estimation problem for arbitrary update streams, while
guaranteeing that no access to past stream items will ever
be needed. Furthermore, even though we present our esti-
mators in a single-site setting, our solution also naturally
extends to the more general “distributed-streams model with
stored coins” of Gibbons and Tirthapura [15].

• Experimental Results Validating our Methodol-
ogy. We present preliminary results from an experimen-
tal study with different synthetic data sets that verify the
effectiveness of our 2-level hash sketch synopses and esti-
mation algorithms. The results substantiate our theoretical
claims, demonstrating the ability of our techniques to pro-
vide space-efficient and accurate estimates for set-expression
cardinality queries over continuous streaming data.

2. PRELIMINARIES
In this section, we discuss the basic elements of our update-

stream processing architecture and introduce some key con-
cepts and notation for our estimation algorithms. We also
describe the hash-based Flajolet-Martin (FM) distinct-value
count estimator in more detail, as it will provide the basis for
our 2-level hash sketch synopses (introduced in Section 3).

2.1 Update-Stream Processing Model
The key elements of our update-stream processing archi-

tecture for set-expression estimation are depicted in Fig-
ure 1; similar architectures for processing data streams have
been described elsewhere (see, for example, [10]).

Synopsis−Maintenance
Algorithm

Update stream for An

Update stream for A1

Memory

Set−Expression Query E

Synopsis
for A1

Synopsis

Update stream for A2

for An
Synopsis
for A2

Estimate of |E| Set−Expression
Estimator

Figure 1: Update-Stream Processing Architecture.

Without loss of generality, we assume that each input
stream renders a multi-set Ai of elements from the inte-
ger domain [M] = {0, . . . , M − 1} as a continuous stream
of updates. (To simplify the exposition, we also assume
that M is a power of 2.) Each such update is a triple of
the form < i, e,±v >, where i identifies the multi-set Ai

being updated, e ∈ [M] denotes the specific data element
whose frequency changes, and ±v is the net change in the
frequency of e in Ai, i.e., “+v” (“−v”) denotes v insertions
(resp., deletions) of e. We assume that all deletions in our
update streams are legal; that is, an update < i, e,−v > can
only be issued if the net frequency of e in Ai is at least v.
We also let N denote an upper bound on the total number
of data elements (i.e., the sum of element frequencies) in any
multi-set Ai. In contrast to conventional DBMS processing,
our stream processor is allowed to see the update tuples for
each Ai only once and in the fixed order of arrival as they
stream in from their respective source(s). Backtracking over

an update stream and explicit access to past update tuples
are impossible.

Given a set expression E over the multi-set streams Ai,
we use |E| to denote the number of distinct elements in
E whose net frequency is greater than zero; for example,
|A1 ∪ A2| is the number of distinct elements in the union of
streams A1 and A2. Our stream-processing engine is allowed
a certain amount of memory, typically significantly smaller
than the total size of its input(s). This memory is used to
maintain a concise synopsis for each update stream Ai. The
key constraints imposed on such synopses are that: (1) they
are much smaller than the number of elements in Ai (e.g.,
their size is logarithmic or polylogarithmic in |Ai|); and, (2)
they can be easily maintained, during a single pass over the
update tuples for Ai, in the (arbitrary) order of their arrival.
At any point in time, given an arbitrary set expression E
over the Ai’s, our set-expression cardinality estimator can
combine the maintained collection of synopses to produce
an estimate for |E|.

Even for the simpler case of insert-only streams, com-
munication complexity arguments can be applied to show
that the exact computation of set-expression cardinalities
requires at least Ω(M) space2, even for randomized algo-
rithms [21, 20]. Instead, our focus is to approximate the
quantity X = |E| to within a small relative error, with high
confidence. Thus, we seek to obtain a (randomized) (ε, δ)-

approximation scheme [2, 15], that computes an estimate X̂

of X such that Pr
�
|X̂ − X| ≤ εX � ≥ 1 − δ.

2.2 The Flajolet-Martin Distinct-Count
Estimator

The Flajolet-Martin (FM) technique [12] for estimating
the number of distinct elements (i.e., set-union cardinality)
over a stream of insertions relies on a family of hash func-
tions H that map incoming data values uniformly and inde-
pendently over the collection of binary strings in the input
data domain [M]. It is then easy to see that, if h ∈ H
and lsb(s) denotes the position of the least-significant 1 bit
in the binary string s, then for any i ∈ [M], lsb(h(i)) ∈
{0, . . . , log M − 1} and Pr [lsb(h(i)) = l] = 1

2l+1 .3 The ba-
sic hash synopsis maintained by an instance of the FM al-
gorithm (i.e., a specific choice of hash function h ∈ H) is
simply a bit-vector of size Θ(log M). This bit-vector is ini-
tialized to all zeros and, for each incoming value i in the
input multi-set Ai, the bit located at position lsb(h(i)) is
turned on. Of course, to boost accuracy and confidence, the
FM algorithm employs averaging over several independent
instances (i.e., r independent choices of the mapping hash-
function h ∈ H and corresponding synopses). The overall
FM algorithm is depicted in Figure 2.

Intuitively, the FM algorithm works since, by the proper-
ties of the hash functions in H, we expect a fraction of 1

2l+1

of the distinct values in Ai to map to location l in each syn-
opsis; thus, we expect |Ai|/2 values to map to bit 0, |Ai|/4
to map to bit 1, and so on. Therefore, the location of the
leftmost zero in a bit-vector synopsis is a good indicator of

2The asymptotic notation f(n) = Ω(g(n)) is equivalent to g(n) =
O(f(n)). Similarly, the notation f(n) = Θ(g(n)) means that
functions f(n) and g(n) are asymptotically equal (to within con-
stant factors); in other words, f(n) = O(g(n)) and g(n) =
O(f(n)) [9].
3All log’s in this paper denote base-2 logarithms.

procedure EstimateDistinctFM(S, {h1(), . . . , hr()})
Input: Stream S of data items (i.e., insertions) in the domain

[M] = {0, . . . ,M − 1}, family of randomizing hash functions
hi (i = 1, . . . , r).

Output: Estimate R of the number of distinct values in S.
begin

1. for i := 1 to r do
2. bitSketchi[] := [0, . . . , 0] // bit-string of length Θ(log M)
3. for each j ∈ S do

4. for i := 1 to r do bitSketchi[hi(j)] := 1
1. for i := 1 to r do
2. for m := log M − 1 downto 0 do

3. if bitSketchi[m] = 0 then leftmostZero := m
4. sum := sum + leftmostZero
5. endfor

6. R := 1.2928 × 2sum/r

7. return(R)
end

Figure 2: The Flajolet-Martin Distinct-Count Esti-
mation Procedure.

log |Ai|. In fact, Flajolet and Martin proved that the estima-
tion procedure depicted in Figure 2 is guaranteed to return
an unbiased estimate for |Ai| (i.e., the expected value of the
returned quantity R is E[R] = |Ai|).

The analysis of Flajolet and Martin actually assumes the
existence of an explicit family of hash functions H exhibiting
some ideal random properties (namely, fully-independent
value mappings) [12]; unfortunately, such hash functions
are impossible to compute in small space. Alon et al. [2]
present a more realistic analysis of a very similar scheme
(based again on bit-vector hash synopses) that relies solely
on linear hash functions (guaranteeing only pairwise inde-
pendence). Such hash functions can be computed using only
a seed of size O(log M) and, as shown in [2], produce syn-
opses that guarantee a distinct-value estimate that is within
a constant multiplicative factor with constant probability.

3. PROCESSING SET OPERATORS OVER
UPDATE STREAMS

In this section, we describe the key ideas underlying our
proposed solution for processing set expressions over con-
tinuous update streams. We begin by defining our basic
synopsis data structures (termed 2-level hash sketches) and
the algorithm for maintaining a 2-level hash sketch over a
streams of updates (insertions/deletions) to an input multi-
set. We also describe some procedures for testing (with high
probability) certain elementary properties over our 2-level
hash sketch synopses that are used as basic primitives in
our set-operator routines. We then present our estimation
algorithms for processing the three basic set operations (set
union, set difference, and set intersection) over 2-level hash
sketch synopses. Our algorithm for union can utilize a sim-
ple extension of the FM hashing data structure, so it does
not actually require the full power of our 2-level hash sketch
synopses. (The case of set union is not the focal point of
this paper, as the union sub-problem has already been ex-
tensively treated in the literature; however, for the sake of
homogeneity, we do present a novel algorithm in the con-
text of our sketches and describe its analysis.) The role
of 2-level hash sketches becomes critical in our algorithms
for estimating set difference and intersection; to the best of
our knowledge, ours is the first approach to provide low-

error, high-confidence probabilistic estimates for these two
set operators for general update streams with arbitrary dele-
tions (without ever requiring resampling or rescanning of the
stream).

To simplify the exposition in this section, we first present
and analyze our estimation schemes assuming ideal random-
izing hash functions that guarantee fully-independent value
mappings. Then, in Section 3.6, we demonstrate some key
statistical lemmas that enable all our results to carry over to
the more realistic limited-independence case. More specifi-
cally, we show that our analysis can be carried out assum-
ing only O(log 1

ε
)-wise independence, where ε denotes the

relative-error guarantee provided by our techniques. (An
O(log 1

ε
)-wise independent randomizing hash function over

[M] can be implemented using only O(log 1
ε
log M) space

with standard techniques [3, 18].) Finally, Section 3.7 presents
a lower bound on the space usage of any randomized set-
operator cardinality estimation algorithm showing that our
estimators are within small factors of the best possible so-
lution.

3.1 Our Stream Synopsis: 2-level Hash Sketches
Our proposed synopsis data structure, termed 2-level hash

sketch, is a generalization of the basic bit-vector hash syn-
opsis proposed by Flajolet and Martin for distinct-value es-
timation [12]. 2-level hash sketch synopses rely on two dis-
tinct, independent families (i.e., levels) of hash functions H
and G. The first-level hash functions h ∈ H are randomizing
hash functions that map [M] uniformly onto a range [Mk]
(i.e., h : [M] → [Mk]), where k is a small integer constant
(e.g., k = 2) used to guarantee that the h mapping over the
elements of [M] is injective with high probability. On the
other hand, second-level hash functions g ∈ G randomize
the domain values in [M] uniformly over the binary domain
[2] = {0, 1} (i.e., g : [M] → [2]).

A 2-level hash sketch uses one randomly-chosen first-level
hash function h ∈ H and s independently-chosen second-
level hash functions g1, . . . , gs ∈ G, where s is a parameter
of the 2-level hash sketch. As in the Flajolet-Martin al-
gorithm (Figure 2), the first-level hash function h is used
in conjunction with the lsb operator to map the domain
values in [M] onto a logarithmic range {0, . . . , Θ(log M)}
of first-level buckets with exponentially decreasing proba-
bilities. Then, each of the s second-level hash functions gi

(i = 1, . . . , s) is applied to the collection of elements map-
ping to a given first-level bucket to further map each element
to one of two second-level buckets (i.e., 0 or 1) and the cor-
responding element counter. Conceptually, a 2-level hash
sketch for a streaming multi-set A can be seen as a three-
dimensional array XA of size Θ(log M) × s × 2, where each
entry XA[i1, i2, i3] is a data-element counter of size O(log N).
The structure of our 2-level hash sketch synopses is pictori-
ally depicted in Figure 3.

Maintenance. The algorithm for maintaining a 2-level
hash sketch synopsis XAi

over a stream of updates to a
multi-set Ai is fairly simple. The sketch structure is first
initialized to all zeros and, for each incoming update <
i, e,±v >, the element counters at the appropriate locations
of the XAi

sketch are updated; that is, for each j = 1, . . . , s,
we simply set XAi

[lsb(h(e)), j, gj(e)] := XAi
[lsb(h(e)), j, gj(e)]

± v. Note here that our 2-level hash sketch synopses are es-
sentially impervious to delete operations; in other words, the
sketch obtained at the end of an update stream is identical

g (e)
1

g (e)
2

g (e)
s

count10

count11

count20

count21

counts0

counts1

���
�

���
�

���
�

���
�

��	
	

�
�

�

0 logM

0

1

First level

stream element: e LSB(h(e))

Second level

Θ()

Figure 3: Our 2-level Hash Sketch Synopses.

to a sketch that never sees the deleted items in the stream.

We now proceed to describe our algorithms for process-
ing basic set operators over update streams using our 2-
level hash sketch synopses and their analysis. As men-
tioned earlier, to simplify the exposition, our analysis ini-
tially assumes ideal, fully-independent first-level hash func-
tions. (For second-level hash mappings, simple pair-wise
independence is sufficient for our analysis (Lemma 3.1).)

3.2 Elementary Property Checks
Our basic set-operator estimators rely on checking certain

elementary properties for the collection of elements that map
to a given first-level bucket in a 2-level hash sketch synop-
sis. We now describe the procedures for performing these
elementary property checks. Briefly, the key idea here is
to make use of the second-level information maintained for
the first-level bucket in question; of course, given the space
limitations for our 2-level hash sketches, the implications
made are necessarily probabilistic (with high confidence for
sufficiently large s; see Lemma 3.1).

Our three procedures for checking elementary 2-level hash
sketch properties (termed SingletonBucket, IdenticalSingleton-

Bucket, and SingletonUnionBucket) are depicted in Figure 4.
Procedure SingletonBucket(X , i) returns true iff the collec-
tion of distinct elements mapping to the ith first-level bucket
is a singleton (i.e., contains only one distinct element). Given
two 2-level hash sketches XA and XB (for update streams
A and B) built using the same first- and second-level hash
functions, procedure IdenticalSingletonBucket(XA , XB , i) re-
turns true iff the ith first-level buckets for both XA and XB

(1) are singletons, and (2) contain the exact same distinct
value from [M]. Finally, procedure SingletonUnionBucket(XA ,
XB , i) returns true iff the set union of the elements from A
and B mapping to the ith first-level bucket of XA and XB is
a singleton.

The key intuition behind our three property checkers is
that they employ the randomizing properties of the second-
level binary hash signatures in a 2-level hash sketch to derive
a high-confidence answer about properties of the element
collection in the corresponding first-level bucket. As the
following lemma demonstrates, our procedures are guaran-
teed to draw a valid conclusion with a confidence of at least
1 − δ as long as the number of (independent) second-level
hash functions s is Θ(log 1

δ
) and each such function gi is (at

least) pair-wise independent.

Lemma 3.1. Procedures SingletonBucket, IdenticalSingleton-

Bucket, and SingletonUnionBucket return the correct value with

procedure SingletonBucket(X , i)
Input: 2-level hash sketch X , first-level bucket index i.
Output: true iff ith bucket is a singleton.
begin

1. if (X [i, 1, 0] + X [i, 1, 1] = 0) return false // bucket is empty
2. unique := true; j := 1
3. while (unique and j ≤ s) do

4. if (X [i, j, 0] > 0 and X [i, j, 1] > 0) then

5. unique := false // at least two elements in this bucket
6. j := j + 1
7. endwhile

8. return(unique)
end

procedure IdenticalSingletonBucket(XA, XB , i)
Input: 2-level hash sketches XA, XB , first-level bucket index i.
Output: true iff ith buckets in XA and XB contain the same

singleton value.
begin
1. if (not SingletonBucket(XA , i)) or (not SingletonBucket(XB , i))

then

2. return(false)
3. same := true; j := 1
4. while (same and j ≤ s) do

5. if ((XA[i, j, 0] > 0) 6= (XB [i, j, 0] > 0) or

(XA[i, j, 1] > 0) 6= (XB [i, j, 1] > 0)) then

6. same := false // buckets differ in at least one element
7. j := j + 1
8. endwhile

9. return(same)
end

procedure SingletonUnionBucket(XA, XB , i)
Input: 2-level hash sketches XA, XB , first-level bucket index i.
Output: true iff the union of ith buckets in XA and XB is a

singleton.
begin

1. if ((SingletonBucket(XA , i) and (XB [i, 1, 0] + XB [i, 1, 1] = 0))
or (SingletonBucket(XB , i) and (XA[i, 1, 0] + XA[i, 1, 1] = 0)))
then

2. return(true) // one singleton and one empty bucket
3. else return(IdenticalSingletonBucket(XA , XB , i))
end

Figure 4: Elementary Property Check Procedures
for 2-level Hash Sketches.

probability at least 1 − δ if the number of second-level hash
functions is s = Θ(log 1

δ
) and each gi is m-wise independent

with m ≥ 2.

Proof (sketch): Consider, as an example, the Singleton-

Bucket procedure. In order to check whether a first-level
bucket contains just a single distinct value, the procedure
essentially checks each one of the s second level bucket pairs
to see if there is at least one pair with both counts pos-
itive; if such a pair cannot be found, then the procedure
concludes that the bucket is a singleton. Assume that the
procedure returns an erroneous conclusion. Clearly, if the
bucket is truly a singleton, the SingletonBucket procedure will
always return the correct answer; so, the only possible er-
ror occurs when the bucket contains at least two distinct
values but the SingletonBucket procedure concludes that the
bucket is a singleton. The only way this can happen is if, for
each one of the s second-level bucket pairs, the correspond-
ing hash function maps the two distinct element values to
the same binary value (0 or 1). By pair-wise independence,
this happens with probability 1

2
for a given second-level hash

function gj ; thus, by the independence of the gj ’s the proba-

procedure SetUnionEstimator({X i
A,X i

B} (i = 1, . . . , r), ε)
Input: r independent 2-level hash sketch pairs {X i

A,X i
B} for

streams A and B, relative accuracy parameter ε.
Output: Estimate for |A ∪ B|.
begin
1. f := (1 + ε)r/8
2. index := 0
3. while (true) do

4. count := 0
5. for i := 1 to r do

6. if (X i
A[index, 1, 0] + X i

A[index, 1, 1] > 0) or

(X i
B [index, 1, 0] + X i

B [index, 1, 1] > 0) then

7. count := count +1
8. endfor
9. if (count ≤ f) then break // first index with count ≤ f
10. else index := index +1
11. endwhile

12. p̂ := count / r ; R := 2index+1

13. return(log(1−p̂)
log(1−1/R)

)

end

Figure 5: Set-Union Cardinality Estimator.

bility of an erroneous singleton conclusion is upper-bounded
by (1

2
)s ≤ δ for s = Θ(log 1

δ
).

3.3 The Set-Union Estimator
Given two multi-sets of elements A and B in the form of

continuous update streams, the set-union cardinality |A∪B|
is the number of distinct elements with positive net fre-
quency in either A or B. We present an (ε, δ)-estimator
for the set-union cardinality |A ∪ B| based on maintained
2-level hash sketch synopses XA and XB for streams A and
B, respectively. Our set-union algorithm does not actually
require the full power of 2-level hash sketches, since it does
not need to make use of any second-level hash structures.
Thus, our union estimator can work by simply maintaining
a single counter (of size O(log N)) for each of the Θ(log M)
first-level hash buckets (Figure 3). 4 This means that, in
the simpler case of set union, we can use a simple extension
of the basic FM hash data structure.

Our algorithm for producing an (ε, δ)-estimator for the
union of two update streams A and B (termed SetUnionEs-

timator) is shown in Figure 5. Briefly, our estimator exam-
ines an input collection of r independent 2-level hash sketch
synopses built over A and B in parallel (each copy using
independently-chosen first- and second-level hash functions
from H and G) in order to determine the smallest first-level
bucket index at which only a constant fraction ≤ (1+ε)/8 of
the sketch buckets turns out to be non-empty for the union
A ∪ B (Steps 4-10). (Note that the non-empty if-condition
in Step 6 can be checked by simply maintaining a single
element counter at the corresponding first-level bucket; we
present the algorithm assuming full 2-level hash sketch syn-
opses for uniformity.) As our analysis shows, the observed
fraction p̂ (Step 12) of non-empty first-level hash buckets can
be used to provide an estimate for the probability of observ-
ing a non-empty bucket at this level of the sketch which, in
turn, allows us to give a robust estimate for |A∪B| (Step 13).

Analysis. We first demonstrate that, when the number of

4Of course, for the general set-expression estimation problem con-
sidered in this paper, we need to build full 2-level hash sketch
synopses for each update stream, since we do not know a-priori
how a stream will be used in an incoming expression (Figure 1).

independent input sketches is r = Θ(log(1/δ)

ε2
), algorithm Se-

tUnionEstimator terminates with a bucket index for which the
non-empty bucket count satisfies 7(1−ε)r

128
≤ count ≤ (1+ε)r

8
with probability at least 1 − δ. Consider a specific level j
of first-level hash buckets and let pj denote the probability
that bucket j is non-empty for A ∪ B, i.e., bucket j is not
empty in either XA or XB . By independence, this probabil-
ity is exactly pj = 1 − (1 − 1/Rj)

u, where u = |A ∪ B| and
Rj = 2j+1. A simple application of the binomial expansion
gives us that u/Rj − (1/2)(u/Rj)

2 ≤ pj ≤ u/Rj .
Now, fix j to be a positive integer such that 1/16 <

u/Rj ≤ 1/8; for this value j of the bucket index, the above
bounds for the probability pj = p give 7/128 < p ≤ 1/8.
Note that the ratio count/r at this level j is essentially an
average over r independent observations of the 0/1 random
variable corresponding to pj = p. By Chernoff bounds, the
estimate p̂j = p̂ = count/r at level j satisfies |p̂ − p| ≤ εp

with probability at least 1 − δ as long as rp ≥ 2 log(1/δ)

ε2
,

or (since p > 7/128) r ≥ 256 log(1/δ)

7ε2
. Consequently, with

this value j of the bucket index and r = Θ(log(1/δ)

ε2
), our

SetUnionEstimator procedure finds p̂ ∈ (1 ± ε)p which implies

that 7(1−ε)r
128

≤ count ≤ (1+ε)r
8

with probability at least 1−δ
(since 7/128 < p ≤ 1/8 at this level j).

Thus, with probability ≥ 1 − δ, SetUnionEstimator finds a

level j such that count ≤ (1+ε)r
8

and the ratio p̂j = count/r
satisfies |p̂j − pj | ≤ εpj . The following lemma then demon-
strates that, for pj ≤ 1/4, we can directly substitute the
estimate p̂j in the equation pj = 1 − (1 − 1/Rj)

u and solve
for u without any significant change in the relative accuracy
guarantees. (A similar lemma is proven in [4], even though
their proposed estimation technique is quite different from
ours.)

Lemma 3.2. Let f(x) = log(1− x)/ log(1− 1/R). If |y −
x| ≤ ε

2
x for some ε < 1 and x ≤ 1/4, then |f(y) − f(x)| ≤

εf(x).

Proof: By Taylor Series, there is a value in w ∈ (x, y) such
that ln (1 − y) = ln (1 − x) − (y − x)/(1 − w) (ln denotes
the natural logarithm function). Thus, we have:

(−ln (1 − 1/R))|f(y) − f(x)| ≤ |y − x|
1 − max{x, y} ≤

ε
2
x

1 − (1 + ε
2
)x

.

Now, since x ≤ 1/4 and ε < 1, we have (1+ ε
2
)x < 3/8 which

gives: (−ln (1 − 1/R))|f(y) − f(x)| ≤ εx ≤ −εln (1 − x).
Since, for any x, ln x = log x · ln 2, the result follows.

We summarize the results of the above analysis in the
following theorem.

Theorem 3.3. Procedure SetUnionEstimator returns an (ε, δ)-
estimate for the size of the set union |A ∪ B| of two update
streams A and B using 2-level hash sketch synopses with a

total storage requirement of Θ(log(1/δ)

ε2
log M log N).

3.4 The Set-Difference Estimator
Given two multi-sets A and B presented as a continuous

stream of updates, the cardinality of the set difference of A
and B (i.e., |A−B|) is defined as the number of distinct el-
ement values whose net frequency is positive in A and zero
in B. In this section, we present an (ε, δ)-approximation
scheme for estimating the set-difference operator over two
update streams A and B based on their maintained 2-level

procedure SetDifferenceEstimator({X i
A,X i

B} (i = 1, . . . , r), û, ε)
Input: r independent 2-level hash sketch pairs {X i

A,X i
B} for

streams A and B, set-union cardinality estimate û, relative
accuracy parameter ε.

Output: Estimate for |A − B|.
begin

1. sum := count := 0
2. for i := 1 to r do

3. atomicEstimate := AtomicDiffEstimator(X i
A, X i

B , û)
4. if (atomicEstimate 6= noEstimate) then
5. sum := sum + atomicEstimate; count := count +1
6. endif

7. endfor
8. return(sum × û / count)
end

procedure AtomicDiffEstimator(X i
A, X i

B , û, ε)
begin

1. index := dlog(β·û
1−ε

)e // β is constant > 1 (see analysis)

2. if (not SingletonUnionBucket(X i
A , X i

B , index)) then

3. return(noEstimate)
4. estimate := 0
5. if (SingletonBucket(X i

A , index) and

(X i
B [index, 1, 0] + X i

B [index, 1, 1] = 0)) then

6. estimate := 1 // found witness of A − B
7. return(estimate)
end

Figure 6: Set-Difference Cardinality Estimator.

hash sketch synopses XA and XB. Our set-difference algo-
rithm assumes the existence of an (ε′, Θ(δ))-estimate û that
approximates the cardinality of the union u = |A ∪ B| to
within a relative error of ε′ = ε/3 with probability at least
1−Θ(δ). (û can be obtained using the XA and XB synopses,
and the procedure described in Section 3.3.)

Our algorithm for estimating set difference over two up-
date streams A and B (termed SetDifferenceEstimator) is de-
picted in Figure 6. Briefly, our algorithm uses averaging over
r independent copies of 2-level hash sketch synopses built
over A and B; each of the r copies using independently-
chosen first- and second-level hash functions from H and
G. For each corresponding pair of 2-level hash sketches for
A and B (which, of course, use the same hash functions),
our basic difference-estimation procedure (termed AtomicD-

iffEstimator) is called to return an atomic estimate. The key
idea in AtomicDiffEstimator is to try to discover a singleton
first-level bucket in the pair X i

A and X i
B that contains a

“witness” element for A − B. This is accomplished by se-
lecting a first-level bucket at a level located slightly higher
than log |A ∪ B| (Steps 1-2), so that we actually find a sin-
gleton bucket for A ∪ B with constant probability; if the
bucket is not a singleton, then we cannot use this pair of
sketches in our set-difference estimation and a noEstimate
flag is returned. Otherwise, we check to see whether the
bucket contains a witness element for A − B using the Sin-

gletonBucket procedure for the X i
A bucket and a simple test

to see if the X i
B bucket is empty (Step 5). AtomicDiffEstimator

returns an atomic estimate of 1 if it finds a witness singleton
and 0 otherwise. SetDifferenceEstimator then simply averages
all the valid (i.e., 0 or 1) atomic estimates and scales the
result by the union estimate û to compute the final estimate
for the set difference |A − B|.
Analysis. Consider the first-level bucket “index” chosen
in Step 3 of our AtomicDiffEstimator procedure, and let R =

2index+1. Note that, by our selection of û, R is at least
β|A∪B| with high probability. In this bucket, our procedure
tries to discover a witness value for A − B by checking the
following condition.

Set-Difference Witness Condition: Bucket “index” is a
non-empty singleton for A and empty for B, provided
that bucket “index” is a singleton bucket for A ∪ B.

Let p denote the (conditional) probability that the Set-Differ-
ence Witness Condition is true. Then, we can write:

p =
Pr [“index” singleton for A and empty for B]

Pr [“index” singleton for A ∪ B]

=
|A−B|

R

�
1 − 1

R � |A∪B|−1

|A∪B|
R

�
1 − 1

R � |A∪B|−1
=

|A − B|
|A ∪ B| .

To see this, note that the probability of any given element
mapping to bucket “index” is 1/R, so (by independence)
the probability of a given element being the single element
mapping to that bucket is exactly 1

R
(1−1/R)|A∪B|−1. Now,

the number of elements that can give a singleton bucket for
A and an empty bucket for B is exactly |A − B|, giving

the numerator |A−B|
R

(1 − 1/R)|A∪B|−1 (a similar argument
applies for the denominator), and the derivation follows.

Our technique relies on using the 0/1 atomic estimates
returned from the AtomicDiffEstimator procedure as indepen-
dent “observations” of p and averaging them to obtain an
estimate p̂ of p. Since (as shown above) p = |A−B|/|A∪B|,
our final estimate for the set-difference size |A−B| is d̂ = p̂·û
(Step 8). Let r denote the number of independent 2-level
hash sketch synopses maintained and r′ be the number of in-
dependent observations of p used to obtain p̂. Clearly, r′ ≤ r
since for some of our sketches the first-level “index” bucket is
not a singleton and a noEstimate flag is returned; however,
we can lower-bound the probability that a valid observation
of p is obtained as follows:

Pr [0/1 observation] = Pr [“index” singleton for A ∪ B]

=
|A ∪ B|

R

�
1 − 1

R � |A∪B|−1

>
|A ∪ B|

R

�
1 − |A ∪ B|

R � >
β − 1

β2
,

where the first inequality follows from Bernoulli’s inequality
and the second inequality comes from the fact that |A ∪
B|/R < 1/β. Then, we can simply apply Chernoff bounds
to show that, with probability at least 1 − Θ(δ), for any
constant ε1 < 1, the number of valid observations r′ is going

to be at least (1 − ε1)
β−1
β2 r as long as r ≥ Θ(log(1/δ)β2

ε2
1
(β−1)

).

In order to produce an (ε, δ)-estimate d̂ for the set dif-
ference |A − B|, we ensure that our p̂ average determined
in procedure SetDifferenceEstimator is an (ε/3, Θ(δ))-estimate
for p; that is:

Pr
�
|p̂ − p| ≤ εp

3
� ≥ 1 − Θ(δ).

By Chernoff bounds, the above inequality holds if r′p ≥
Θ(log(1/δ)

ε2
) or, equivalently, r′ ≥ Θ(log(1/δ)|A∪B|

ε2|A−B|
). Assum-

ing this condition is satisfied, we have:

|d̂ − |A − B|| = |p̂û − pu| ∈ |p(1 ± ε/3)u(1 ± ε/3)| ⊆ pu(1 ± ε),

since ε ≤ 1. Thus, we obtain an (ε, δ)-estimate for |A − B|
provided that the number of valid p observations r′ satisfies

r′ ≥ Θ(log(1/δ)|A∪B|

ε2|A−B|
) or the total number of independent 2-

level hash sketches maintained is r ≥ Θ(log(1/δ)β2|A∪B|

ε2 min{ε2
1
,1−ε1}(β−1)|A−B|

)

(since, as discussed above, r′ ≥ (1−ε1)
β−1
β2 r with high prob-

ability if r ≥ Θ(log(1/δ)β2

ε2
1
(β−1)

)). The optimal values for the

constants ε1 and β (i.e., the values minimizing the required
number of independent sketch copies) can be easily deter-
mined from the above expression as ε1 = (

√
5 − 1)/2 and

β = 2. Based on the above analysis, we can state the fol-
lowing theorem.

Theorem 3.4. Procedure SetDifferenceEstimator returns an
(ε, δ)-estimate for the size of the set difference |A−B| of two
update streams A and B using 2-level hash sketch synopses
with a total storage requirement of

Θ

�
log(1/δ)|A ∪ B|

ε2|A − B| log M log N log(
log(1/δ)M

ε2δ
) � .

Proof: Follows easily from the above analysis. The Θ(log M
log N log(log M

δ
)) term denotes the size of each 2-level hash

sketch synopsis maintained by our algorithm. Note that,
in order to guarantee a confidence of 1 − δ for the final
estimate, each of the possible basic property checks done
over the chosen level for each of our r maintained 2-level
hash sketch synopses has to have a probability of failure

≤ Θ(δ
r
) (by the union bound). Since r = Θ(log(1/δ)|A∪B|

ε2|A−B|
) ≤

Θ(log(1/δ)M

ε2
), the number of second-level hash buckets (and

counters) required is s = Θ(log(log(1/δ)M

ε2δ
)).

3.5 The Set-Intersection Estimator
Given two continuous update streams A and B, the car-

dinality of the set intersection of streams A and B (i.e.,
|A ∩ B|) is defined as the number of distinct data elements
whose net frequency is positive in both A and B. The struc-
ture of our set-intersection estimator (termed SetIntersection-

Estimator) for A and B based on their 2-level hash sketch
synopses XA and XB is basically identical to that of the
SetDifferenceEstimator procedure depicted in Figure 6. The
only difference is that, since we are now looking for “wit-
ness” elements for the intersection A ∩ B, the if-condition
in Step 5 of procedure AtomicDiffEstimator is changed to: “(
SingletonBucket(X i

A , index) and SingletonBucket(X i
B , index)

)”, to obtain the corresponding atomic set-intersection es-
timation algorithm AtomicIntersectEstimator. The following
theorem can then be shown using an analysis similar to that
of Section 3.4.

Theorem 3.5. Procedure SetIntersectionEstimator returns an
(ε, δ)-estimate for the size of the set intersection |A ∩ B| of
two update streams A and B using 2-level hash sketch syn-
opses with a total storage requirement of

Θ

�
log(1/δ)|A ∪ B|

ε2|A ∩ B| log M log N log(
log(1/δ)M

ε2δ
) � .

3.6 Extension to Limited Independence
Thus far, the analysis of our set-operation estimators has

made the (unrealistic) assumption that the first-level hash
functions used in our 2-level hash sketch synopses guarantee
fully (i.e., M -wise) independent value mappings. (Second-
level hash mappings only require pair-wise independence
(Lemma 3.1).) In this section, we present a series of statisti-
cal lemmas that allow the analysis of our (ε, δ) set-operation
estimators to be extended to the much more realistic setting
of t-wise independent first-level hashing, where t = Θ(log 1

ε
).

Note that maintaining these first-level hash functions im-
plies an additive storage cost of O(log 1

ε
log M) per 2-level

hash sketch for storing an appropriate seed (e.g., [3, 18]).
This cost can be factored in the equations of Theorems 3.3-
3.5 by simply adding a log 1

ε
multiplicative factor.

The only place in our analysis where the assumption of full
independence is used is in deriving the closed-form expres-
sion for the probability of the conditions checked through
our 2-level hash sketch synopses (e.g., the “Set-Difference
Witness Condition” for set difference, or the non-empty
bucket condition for set union). Our results below demon-
strate that these (fully-independent) probabilities are actu-
ally estimated to within small relative error if only t-wise
independence is assumed with t = Θ(log 1

ε
). Assume that

we have fixed a first-level bucket j and let 1/R = 1/2j+1 de-
note the probability that an element in [M] maps to bucket
j. We use i-subscripted small letters (e.g., xi, yi) to denote
the Boolean random variables for the simple event “the ith

distinct value in a stream maps to bucket j”. Throughout
this section, we use Pr [] (Prt []) to denote the probabil-
ity function under full (resp., t-wise) independence of these
Boolean random variables. (We omit the proofs of these
statistical results since they are fairly long and do not offer
much in terms of understanding; similar results for limited
independence variables have appeared elsewhere, e.g., [18].)

Lemma 3.6. Let X = � m
i=1 xi be the sum of m Boolean

random variables such that E[xi] = 1/R, for 1 ≤ i ≤ m.
Then, |Prt [X ≥ 1] −Pr [X ≥ 1] | ≤ 2

�
m
t � (1/R)t.

Corollary 3.7. Under the assumptions of Lemma 3.6,

and if t ≥ max{3, log(2/ε)
log(R/m)

} then,

|Prt [X ≥ 1] − Pr [X ≥ 1] | ≤ εPr [X ≥ 1] and

|Prt [X = 0] − Pr [X = 0] | ≤ εPr [X = 0] .

Note that, with xi’s corresponding to the distinct elements
of the union A∪B, the condition X ≥ 1 in Corollary 3.7 is es-
sentially the set-union condition in Step 6 of procedure SetU-

nionEstimator (Figure 5) that checks for a non-empty bucket
for A ∪ B. Thus, Corollary 3.7 shows that the non-empty
bucket fraction p̂ assuming full independence (in the anal-
ysis of Section 3.3) is approximated to within a relative er-
ror of ε if only Θ(log(1/ε))-independent hash functions are
used. The corresponding result for the set-difference and
set-intersection witness conditions is slightly more compli-
cated and relies on the following statistical lemma (we omit
the detailed constants to simplify the exposition).

Lemma 3.8. Let X = � S1
xi and Y = � S2

yj denote
the sums of disjoint sets S1, S2 of Boolean random variables
with E � xi � = E � yi � = 1/R for each xi ∈ S1, yi ∈ S2, and

let E denote the event E := (X = 1∧Y = 0|X +Y = 1). If
t ≥ max{4, Θ(log(1/ε)}, then |Prt [E] − Pr [E] | ≤ εPr [E] .

Again, it is easy to see that, with S1 := A − B and S2

:= B, the event E := (X = 1 ∧ Y = 0|X + Y = 1) in
Lemma 3.8 is exactly the set-difference witness condition
described in the analysis of our SetDifferenceEstimator estima-
tor in Section 3.4. Similarly, with S1 := A ∩ B and S2 :=
(A∪B)−S1, E gives the corresponding condition for set in-
tersection (Section 3.5). Thus, Lemma 3.8 that the witness
condition probability estimate p̂ assuming full independence
(see analysis in Section 3.4) is estimated to within a relative
error of ε using only Θ(log(1/ε))-wise independence.

An interesting question, of course, is how this additional
level of approximation affects the storage requirements of
our estimators. We now demonstrate that the effect is bounded
by a small constant factor. Consider the case of set differ-
ence and let p̂t denote the probability of a set-difference wit-
ness under t-wise independence with t = Θ(log(3/ε)). Our
final estimate is p̂tû and we would like to guarantee that
it is within (1 ± ε)pu. A simple application of the triangle
inequality gives:

|p̂tû − pu| ≤ |p̂tû − p̂û| + |p̂û − pu| ≤ ε

3
p̂û + |p̂û − pu|

and, assuming that p̂û (the estimate under full indepen-
dence) approximates pu to within a relative error of ε/3, we
have:

|p̂tû − pu| ≤ ε

3
(1 +

ε

3
)pu +

ε

3
pu ≤ εpu,

for any ε < 1. Thus, simply tightening our relative-error
requirement to ε′ = ε/3 (with the corresponding increase in
our earlier storage-cost expressions) is sufficient to guarantee
a relative error of ε for the final set-difference estimate with
only Θ(log(3/ε))-wise independence. Very similar deriva-
tions can also be given for our set union and intersection
estimators under limited independence.

3.7 Lower Bounds
At this point, it is interesting to ask how good our ran-

domized estimators for set operators really are – is it pos-
sible to design new estimation procedures that significantly
improve on the space requirements stated in Theorems 3.3–
3.5? In this section, we answer this question in the negative
by demonstrating space lower bounds for set-operation esti-
mators working in the streaming model.

The space requirements of our set-union estimator actu-
ally match those of earlier algorithms for set union over in-
sertion streams (see, for example, [2, 4, 15]; this is, of course,
modulo the O(log N) factor, since our algorithms need to
maintain counters for dealing with deletions in the stream.
Our SetUnionEstimator space requirements also match (to within
log and constant factors) the lower bounds shown by Alon et
al. [2] on the space needed by any randomized algorithm for
estimating the number of distinct values in a data stream.
As evidenced in the space bounds of Theorems 3.4–3.5, es-
timating set difference and intersection is a significantly
more difficult problem than that for union; essentially, our
results show that, with limited space, our estimators can
only provide robust estimates for differences/intersections
that are sufficiently large compared to the corresponding
set union (i.e., |A ∪ B|). (Similar observations have been

made for estimators designed for the special case of insert-
only streams [5, 11].) The following theorem proves a lower
bound for all randomized approximation algorithms stating
that the space requirements of our SetDifferenceEstimator and
SetIntersectionEstimator estimators cannot be significantly im-
proved (their space usage is within small polynomial and log
factors of the optimal).

Theorem 3.9. Any randomized algorithm that, with high
probability, estimates the set cardinality |AopB| (op ∈ {−,∩})
to within any constant relative error ε must use at least

Θ(|A∪B|
ε|AopB|

) bits.

Proof: Let n = |A∪B|. Consider first the problem of esti-
mating the set-intersection cardinality |A∩B|. Determining
the value of |A∩B| exactly with high probability is at least
as hard as the well-known SET-DISJOINTNESS problem of
(probabilistic) communication complexity, which requires at
least Θ(n) bits of communication (i.e., space) [21, 20]. As-
sume now that we have a procedure P (ε) that estimates |A∩
B| with high probability to within a relative error of ε using
less than o(n

ε|A∩B|
) bits; then, we will show that this implies

an o(n) solution for SET-DISJOINTNESS . More specifi-
cally, our algorithm for solving the SET-DISJOINTNESS
problem for A and B is as follows. Pick any constant ε′ < 1
and run P (ε′) to determine a high-probability estimate t̂ of
|A ∩ B|. By our assumptions for P (), we know that this
run will use only o(n

|A∩B|
) bits (remember that ε′ is a con-

stant) and, with high probability, (1 − ε′)|A ∩ B| < t̂ <
(1 + ε′)|A ∩ B|. This last inequality also implies that, with
high probability,

1 − ε′

2(1 + ε′)|A ∩ B| <
1 − ε′

2t̂
<

1

2|A ∩ B| . (1)

Now, run algorithm P (ε) again, this time with ε = 1−ε′

2t̂
;

since, 1−ε′

2t̂
< 1

2|A∩B|
it is easy to see that this run will es-

timate |A ∩ B| to within an additive error of less that 1/2,
so it essentially allows us to estimate |A ∩ B| exactly (with
high probability). Furthermore, the space used by P (ε) is

only o(n
ε|A∩B|

) ≤ o(2n(1+ε′)
1−ε′

) (by Inequality (1)), which is

obviously o(n). Thus, we have a procedure for solving the
SET-DISJOINTNESS problem using less than o(n) bits;
this is clearly a contradiction. The same argument also goes
through for set difference, since A − B is simply A ∩ B.

4. PROCESSING SET EXPRESSIONS
In this section, we generalize the estimation techniques

for individual set operators presented in Sections 3.3-3.5
to formulate an (ε, δ)-estimator for the cardinality of gen-
eral set expressions over a collection of update streams Ai,
i = 1, . . . , n. Such set expressions are of the generic form
E := (((A1op1A2)op2A3) · · ·An), where the connectives opj

denote the standard set operators, namely, union, intersec-
tion, and set difference (as an example, E := A4 − (A3 ∩
(A2∪A1))). Our goal is to estimate |E|, that is, the number
of distinct elements with positive net frequency in the out-
put of E using only a collection of independent small 2-level
hash sketch synopses built over the Ai update streams (of
course, as in the simple set-operator case, for a given sketch,
we use the same first- and second-level hash functions across
all Ai’s).

Briefly, our general set-expression estimator follows along
the lines of our set-difference and set-intersection algorithms.
As in the SetDifferenceEstimator and SetUnionEstimator proce-
dures, we assume a robust estimate û for the union cardinal-
ity u = |∪iAi|, where i ranges over the streams participating
in our input set expression E, and uses û to select an ap-
propriate first-level bucket index j = dlog(β·û

1−ε
)e, where β is

a constant > 1. (This estimate û can be obtained from the
synopses using our SetUnionEstimator procedure.) Our set-
expression estimation algorithm for E starts by discarding
all parallel 2-level hash sketch collections {XA1

,XA2
, . . . }

for which bucket j is not a singleton bucket for ∪iAi. (An
easy generalization of our elementary check procedures in
Section 3.2 can be used to determine this fact with high con-
fidence.) Then, E is mapped to a Boolean expression B(E)
over the level-j buckets of the 2-level hash sketch synopses
for Ai’s; this expression is defined inductively as follows:

E = Ai : Define B(E) := (XAi
[j, 1, 0] + XAi

[j, 1, 1] > 0)
(i.e., true iff bucket j is non-empty in XAi

).

E = E1 ∪ E2 : Define B(E) := B(E1)∨B(E2) (i.e., the dis-
junction of the sub-expressions B(E1) and B(E2)).

E = E1 ∩ E2 : Define B(E) := B(E1)∧B(E2) (i.e., the con-
junction of the sub-expressions B(E1) and B(E2)).

E = E1 − E2 : Define B(E) := B(E1) ∧ B(E2) (i.e., must
satisfy B(E1) and not satisfy B(E2)).

It is easy to see that, with the above methodology, our
Boolean condition B(E) for set expression E essentially cor-
responds to an “E Witness Condition” at the selected bucket
index j, as defined below.

E Witness Condition: Bucket j is a non-empty singleton
for the set expression E defined over A1, . . . , An, pro-
vided that bucket j is a singleton bucket for ∪n

i=1Ai.

As in our development for the SetDifferenceEstimator estima-
tor, letting pE denote the (conditional) probability that the
E Witness Condition is true and R = 2j+1, we have:

pE =
Pr [bucket j non-empty singleton for E]

Pr [bucket j singleton for U = ∪iAi]

=
|E|
R

�
1 − 1

R � |U|−1

|U|
R

�
1 − 1

R � |U|−1
=

|E|
|U | .

An analysis similar to that in Section 3.4 can then be em-
ployed to demonstrate the following theorem.

Theorem 4.1. The set-expression estimator described above
returns an (ε, δ)-estimate for the cardinality of a set-expression
|E| over a collection of update streams A1, . . . , An using 2-
level hash sketch synopses with a total storage requirement
of

Θ

�
n log(1/δ)| ∪i Ai|

ε2|E| log M log N log(
n log(1/δ)M

ε2δ
) � .

We can also easily extend the limited-independence anal-
ysis of Section 3.6 to show that our result for set-expression
estimation holds under only Θ(log(1/ε))-wise independent
first-level hash functions for our sketches. (Once again, the

cost for storing these functions can be factored in by simply
adding a log(1/ε) multiplicative factor in the expression of
Theorem 4.1.)

We should note here that the technique presented in this
section for dealing with the union operator in the context of
larger set expressions is, in fact, different from the SetUnion-

Estimator procedure described in Section 3.3. Instead, the
manner in which our set-expression estimator handles union
essentially follows along the general paradigm of our set dif-
ference and intersection estimators (with an appropriately-
defined “witness” condition – Sections 3.4-3.5). It is easy to
see that both techniques basically have the same asymptotic
storage requirements (remember that set union does not re-
quire second-level hashing). On the other hand, a detailed
analysis shows that our more specialized SetUnionEstimator

algorithm does have better (i.e., smaller) constants for set-
union estimation which is, in general, much easier than the
corresponding problem for set difference/intersection. The
key benefit of the “witness”-based union algorithm is that
(as shown in this section) it allows for a very clean, uniform
algorithm for processing general set expressions.

5. EXPERIMENTAL STUDY
In this section, we present the results of a preliminary

empirical study of our 2-level hash sketch synopses and set-
expression estimators with several synthetic data sets. The
objective of this study is to test the effectiveness of our novel
stream-synopsis data structures and probabilistic estimation
algorithms in practical data-streaming scenarios, and study
their average-case behavior over several different problem
instances. Our preliminary experimental results substanti-
ate our theoretical claims, demonstrating the ability of our
techniques to provide (with only limited space) accurate ap-
proximate answers to set-expression cardinality queries over
continuous streaming data.

5.1 Testbed and Methodology

Methodology. In our experiments, we study the accu-
racy of the probabilistic set-expression cardinality estima-
tion techniques developed in this paper using 2-level hash
sketch synopses constructed over different synthetic data
streams. The primary metric used to gauge the accuracy
of our estimators is the conventional absolute relative er-
ror metric; that is, given an expression E and an estimate
ê = |E| of its cardinality, we define the error of the esti-

mate as the ratio |ê−|E||
|E|

. We perform experiments to mea-

sure the errors of our cardinality estimators as a function
of the space made available for building 2-level hash sketch
synopses for the input data streams. This accuracy/space
tradeoff is studied over various input expressions, ranging
from simple binary set operations (primarily difference and
intersection) to more complex set expressions (over three or
more streams). (Again, note that our techniques are the first
to deal with set difference/intersection and set expressions
over general update streams; thus, in a sense, comparing
against the accurate answer is probably the best measure of
effectiveness for our approach.)

To account for the probabilistic nature of our estimation
algorithms, we run each experiment between 10 − 15 times
(with different random-seed values). The numbers used in
our plots are averages of the observed relative error values af-
ter trimming away 30% of the highest relative errors for each

experiment. We used this more robust, “trimmed-average”
error metric to avoid the effects of outlier estimates (due to
the variance of our randomized schemes) on the observed
average-case behavior of our estimators.

Synthetic Data Generation. Our 2-level hash sketch
synopses are impervious to delete operations, in the sense
that a sketch obtained at the end of an update stream is
identical to one that never sees the deleted items in the
stream. Given this fact, our synthetic data generator pro-
duces insert-only streams for updating the 2-level hash sketch
synopses for our estimation algorithms. Furthermore, since
the accuracy of our cardinality estimates for a set expres-
sion E crucially depends on the ratio of the underlying set
union to |E| (Theorems 3.4, 3.5, 4.1), we generate our data
streams in a controlled manner that allows us to vary this
cardinality ratio and observe the behavior of our techniques
for different settings. (We fix the size of the underlying set
union, i.e., | ∪Ai∈E Ai|, to u ≈ 218 in all our experiments.)

We now describe the data-generation process for a binary
set operation, say A ∩ B, assuming a given target size e for
the cardinality |A ∩ B|. (We vary the value of e from u/2
down to u/210 in diminishing powers of 2.) In a first step, we
generate 218 32-bit random unsigned integers and eliminate
all duplicates (thus, the actual union size u can be slightly
less than 218). Then, for each generated integer x, we insert
x to either (a) both A and B, with probability e/u; or, (b)

only A or only B, with equal probability 1−e/u
2

. Thus, at the
end of this process, we expect to have approximately e

u
u =

e elements in A∩B, and about equal numbers of elements in
both A and B. It is easy to devise a very similar controlled
data-generation scheme for A − B.

For set expressions E involving multiple, say n, streams,
our controlled data generation is slightly more complicated.
Briefly, the main idea is to keep track of all 2n −1 partitions
in the Venn diagram of the underlying set union and give
“assignment probabilities” to each partition such that the
sum of probabilities for all partitions that comprise E is
approximately |E|/u. (For simplicity, the probabilities are
chosen so that all underlying sets have the same expected
size.) Generated random integers are then assigned to these
partitions as discussed above.

5.2 Experimental Results
We now present some of our preliminary experimental

numbers for our probabilistic estimation algorithms. We
focus our discussion here on three input set expressions: bi-
nary set intersection A∩B, binary set difference A−B, and
the more complex three-stream expression (A−B)∩C. (We
have observed qualitatively similar results for the estimation
of other expressions.) We present plots that depict the (av-
erage) relative error behavior of our estimators as a function
of the number of 2-level hash sketch synopses maintained on
each data stream. A rough estimate for the number of bytes
used by our synopses is given by multiplying the number of
sketches with 32; since we are only considering insert-only
streams, this estimate assumes simple bits (instead of coun-
ters) at each cell of our 2-level hash sketches. (The number
of second-level hash functions used is kept fixed at 32.)

Figure 7(a) depicts the average (percentage) relative-error
numbers for our set-intersection cardinality estimator as a
function of the number of 2-level hash sketches used, and for
three distinct values of the target intersection size |A ∩ B|.

The plots demonstrate the effectiveness and accuracy of our
estimation algorithm. Even with as few as 128 − 256 2-
level hash sketches, the error of our estimates is close to or
below 20%, essentially across the range of the target inter-
section sizes tested. And, of course, increasing the number
of sketches can lead to significant further reductions in the
observed estimation error which finally drops to ≤ 10% for
512 sketches.

Similar trends can also be observed for set-difference car-
dinality estimator in Figure 7(b). In this case, errors for
smaller target difference sizes (i.e., |A − B| = 8192) are
higher (about 48%) for small numbers of sketches. Once
again, however, when our synopsis space reaches 512 sketches,
all errors are in the area of 10% or lower. Note that, as pre-
dicted by our theoretical results, the quality of our estimates
for a given number of sketches, in general, improves with
higher target expression sizes. We do, of course, observe
certain crossovers in the plots but they are to be expected
given the variance of our randomized estimation techniques.

Finally, Figure 8 depicts the average relative-error plots
for our set-expression cardinality estimator with the input
expression (A − B) ∩ C, for three different target expres-
sion sizes. The numbers clearly show trends that are very
similar to those observed for the simpler binary set intersec-
tion/difference experiments. Once again, error numbers are
fairly small even for moderate synopsis sizes, eventually tail-
ing off to 20% or lower for 512 sketches. And, in accordance
with our theoretical results (Theorem 4.1), larger target ex-
pression sizes imply better cardinality estimates (for a given
synopsis size).

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400 450 500 550

P
er

ce
nt

ag
e

R
el

at
iv

e
E

rr
or

 (
%

)

Space (in Sketches)

Expression = ((A - B) intersect C)

Expression size = 8192
Expression size = 16384
Expression size = 32768

Figure 8: Average Relative Error for Estimating the
Set-Expression Cardinality |(A − B) ∩ C|.

6. CONCLUSIONS
Estimating the cardinality of set expressions defined over

several (perhaps, distributed) continuous update streams is
a fundamental class of queries that next-generation data-
stream processing systems need to effectively support. In
this paper, we have proposed the first space-efficient algo-
rithmic solution for estimating the cardinality of full-fledged
set expressions over general streams of updates (including
item deletions as well as insertions). Our estimators rely

0

5

10

15

20

25

30

100 150 200 250 300 350 400 450 500 550

P
er

ce
nt

ag
e

R
el

at
iv

e
E

rr
or

 (
%

)

Space (in Sketches)

Expression = (A intersect B)

Intersection size = 4096
Intersection size = 8192

Intersection size = 16384

0

5

10

15

20

25

30

35

40

45

50

100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

R
el

at
iv

e
E

rr
or

 (
%

)

Space (in Sketches)

Expression = (A - B)

Difference size = 8192
Difference size = 16384
Difference size = 32768

Figure 7: Average Relative Error for Estimating: (a) Set-Intersection Cardinality |A ∩ B|; (b) Set-Difference
Cardinality |A − B|.

on a novel, 2-level hash sketch synopsis data structure to
provide low-error, high-confidence estimates for the cardi-
nality of set expressions (including operators such as set
union, intersection, and difference) over continuous update
streams, using only small space and small processing time
per update. Furthermore, unlike earlier approaches, our al-
gorithms never require require rescanning or resampling of
past stream items, regardless of the number of deletions in
the stream. Preliminary results from an empirical study
of our estimators have substantiated our theoretical claims,
showing that our techniques can provide space-efficient and
accurate set-expression cardinality estimates over streaming
data.

7. REFERENCES
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.

“Tracking Join and Self-Join Sizes in Limited Storage”. In
Proc. of the 18th ACM Symp. on Principles of Database
Systems, May 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. “The Space
Complexity of Approximating the Frequency Moments”. In
Proc. of the 28th Annual ACM Symp. on the Theory of
Computing, May 1996.

[3] N. Alon and J. H. Spencer. “The Probabilistic Method”.
John Wiley & Sons, Inc., 1992.

[4] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. “Counting distinct elements in a data stream”. In
Proc. of the RANDOM’2002 Intl. Workshop, September 2002.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. “Min-wise independent permutations”. In
Proc. 30th ACM Symp. on the Theory of Computing, May
1998.

[6] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya.
“Towards Estimation Error Guarantees for Distinct Values”.
In Proc. of the 19th ACM Symp. on Principles of Database
Systems, May 2000.

[7] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan.
“Selectivity Estimation For Boolean Queries”. In Proc. of the
19th ACM Symp. on Principles of Database Systems, May
2000.

[8] E. Cohen. “Size-estimation Framework with Applications to
Transitive Closure and Reachability”. Journal of Computer
and Systems Sciences, 55(3):441–453, December 1997.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

“Introduction to Algorithms”. MIT Press (The MIT Electrical
Engineering and Computer Science Series), 1990.

[10] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
“Processing Complex Aggregate Queries over Data Streams”.
In Proc. of the 2002 ACM SIGMOD Intl. Conf. on
Management of Data, June 2002.

[11] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. “An approximate L1-difference algorithm
for massive data streams”. In Proc. 40th IEEE Symp. on
Foundations of Computer Science, October 1999.

[12] P. Flajolet and G. N. Martin. “Probabilistic Counting
Algorithms for Data Base Applications”. Journal of
Computer and Systems Sciences, 31:182–209, 1985.

[13] M. Garofalakis, J. Gehrke, and R. Rastogi. “Querying and
Mining Data Streams: You Only Get One Look”. Tutorial in
28th Intl. Conf. on Very Large Data Bases, August 2002.

[14] P. B. Gibbons. “Distinct Sampling for Highly-Accurate
Answers to Distinct Values Queries and Event Reports”. In
Proc. of the 27th Intl. Conf. on Very Large Data Bases,
September 2001.

[15] P. B. Gibbons and S. Tirthapura. “Estimating Simple
Functions on the Union of Data Streams”. In Proceedings of
the Thirteenth Annual ACM Symp. on Parallel Algorithms
and Architectures, July 2001.

[16] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. “How to Summarize the Universe: Dynamic
Maintenance of Quantiles”. In Proc. of the 28th Intl. Conf.
on Very Large Data Bases, August 2002.

[17] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
“Sampling-based estimation of the number of distinct values
of an attribute”. In Proc. 21st Intl. Conf. on Very Large Data
Bases, September 1995.

[18] P. Indyk. “A Small Approximately Min-wise Independent
Family of Hash Functions”. In Proc. of the 10th Annual
ACM-SIAM Symp. on Discrete Algorithms, January 1999.

[19] P. Indyk. “Stable Distributions, Pseudorandom Generators,
Embeddings and Data Stream Computation”. In Proc. of the
41st Annual IEEE Symp. on Foundations of Computer
Science, November 2000.

[20] B. Kalyanasundaram and G. Schnitger. “The Probabilistic
Communication Complexity of Set Intersection”. SIAM
Journal on Discrete Mathematics, 5(4):545–557, Nov. 1992.

[21] E. Kushilevitz and N. Nisan. “Communication
Complexity”. Cambridge University Press, 1997.

[22] J. Melton and A. R. Simon. “Understanding the New SQL:
A Complete Guide”. Morgan Kaufmann Publishers, 1993.

