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ABSTRACT
Recent years have witnessed an increasing interest in designing algorithms
for querying and analyzing streaming data (i.e., data that is seen only once
in a fixed order) with only limited memory. Providing (perhaps approxi-
mate) answers to queries over such continuous data streams is a crucial re-
quirement for many application environments; examples include large tele-
com and IP network installations where performance data from different
parts of the network needs to be continuously collected and analyzed.

In this paper, we consider the problem of approximately answering gen-
eral aggregate SQL queries over continuous data streams with limited mem-
ory. Our method relies on randomizing techniques that compute small
“sketch” summaries of the streams that can then be used to provide approx-
imate answers to aggregate queries with provable guarantees on the approx-
imation error. We also demonstrate how existing statistical information on
the base data (e.g., histograms) can be used in the proposed framework to
improve the quality of the approximation provided by our algorithms. The
key idea is to intelligently partition the domain of the underlying attribute(s)
and, thus, decompose the sketching problem in a way that provably tight-
ens our guarantees. Results of our experimental study with real-life as well
as synthetic data streams indicate that sketches provide significantly more
accurate answers compared to histograms for aggregate queries. This is es-
pecially true when our domain partitioning methods are employed to further
boost the accuracy of the final estimates.

1. INTRODUCTION
Traditional Database Management Systems (DBMS) software is

built on the concept of persistent data sets, that are stored reliably
in stable storage and queried/updated several times throughout their
lifetime. For several emerging application domains, however, data
arrives and needs to be processed on a continuous (

�������
) basis,

without the benefit of several passes over a static, persistent data
image. Such continuous data streams arise naturally, for example,
in the network installations of large Telecom and Internet service
providers where detailed usage information (Call-Detail-Records
(CDRs), SNMP/RMON packet-flow data, etc.) from different parts
of the underlying network needs to be continuously collected and
analyzed for interesting trends. Other applications that generate�
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rapid, continuous and large volumes of stream data include trans-
actions in retail chains, ATM and credit card operations in banks,
financial tickers, Web server log records, etc. In most such appli-
cations, the data stream is actually accumulated and archived in the
DBMS of a (perhaps, off-site) data warehouse, often making ac-
cess to the archived data prohibitively expensive. Further, the abil-
ity to make decisions and infer interesting patterns on-line (i.e., as
the data stream arrives) is crucial for several mission-critical tasks
that can have significant dollar value for a large corporation (e.g.,
telecom fraud detection). As a result, recent years have witnessed
an increasing interest in designing data-processing algorithms that
work over continuous data streams, i.e., algorithms that provide re-
sults to user queries while looking at the relevant data items only
once and in a fixed order (determined by the stream-arrival pattern).

Two key parameters for query processing over continuous data-
streams are (1) the amount of memory made available to the on-
line algorithm, and (2) the per-item processing time required by the
query processor. The former constitutes an important constraint
on the design of stream processing algorithms, since in a typical
streaming environment, only limited memory resources are avail-
able to the query-processing algorithms. In these situations, we
need algorithms that can summarize the data stream(s) involved
in a concise, but reasonably accurate, synopsis that can be stored
in the allotted (small) amount of memory and can be used to pro-
vide approximate answers to user queries along with some reason-
able guarantees on the quality of the approximation. Such approx-
imate, on-line query answers are particularly well-suited to the ex-
ploratory nature of most data-stream processing applications such
as, e.g., trend analysis and fraud/anomaly detection in telecom-
network data, where the goal is to identify generic, interesting or
“out-of-the-ordinary” patterns rather than provide results that are
exact to the last decimal.
Prior Work. The strong incentive behind data-stream computa-
tion has given rise to several recent (theoretical and practical) stud-
ies of on-line or one-pass algorithms with limited memory require-
ments for different problems; examples include quantile and order-
statistics computation [16, 21], estimating frequency moments and
join sizes [3, 2], data clustering and decision-tree construction [10,
18], estimating correlated aggregates [13], and computing one-di-
mensional (i.e., single-attribute) histograms and Haar wavelet de-
compositions [17, 15]. Other related studies have proposed tech-
niques for incrementally maintaining equi-depth histograms [14]
and Haar wavelets [22], maintaining samples and simple statistics
over sliding windows [8], as well as general, high-level architec-
tures for stream database systems [4].

None of the earlier research efforts has addressed the general
problem of processing general, possibly multi-join, aggregate queries
over continuous data streams. On the other hand, efficient ap-



proximate multi-join processing has received considerable atten-
tion in the context of approximate query answering, a very active
area of database research in recent years [1, 6, 12, 19, 20, 24].
The vast majority of existing proposals, however, rely on the as-
sumption of a static data set which enables either several passes
over the data to construct effective, multi-dimensional data syn-
opses (e.g., histograms [20] and Haar wavelets [6, 24]) or intel-
ligent strategies for randomizing the access pattern of the relevant
data items [19]. When dealing with continuous data streams, it is
crucial that the synopsis structure(s) are constructed directly on the
stream, that is, in one pass over the data in the fixed order of arrival;
this requirement renders conventional approximate query process-
ing tools inapplicable in a data-stream setting. (Note that, even
though random-sample data summaries can be easily constructed
in a single pass [23], it is well known that such summaries typi-
cally give very poor result estimates for queries involving one or
more joins [1, 6, 2]1).
Our Contributions. In this paper, we tackle the hard technical
problems involved in the approximate processing of complex (pos-
sibly multi-join) aggregate decision-support queries over continu-
ous data streams with limited memory. Our approach is based on
randomizing techniques that compute small, pseudo-random sketch
summaries of the data as it is streaming by. The basic sketching
technique was originally introduced for on-line self-join size esti-
mation by Alon, Matias, and Szegedy in their seminal paper [3]
and, as we demonstrate in our work, can be generalized to pro-
vide approximate answers to complex, multi-join, aggregate SQL
queries over streams with explicit and tunable guarantees on the
approximation error. An important practical concern that arises
in the multi-join context is that the quality of the approximation
may degrade as the variance of our randomized sketch synopses in-
creases in an explosive manner with the number of joins involved
in the query. To this end, we propose novel sketch-partitioning
techniques that take advantage of existing approximate statistical
information on the stream (e.g., histograms built on archived data)
to decompose the sketching problem in a way that provably tightens
our estimation guarantees. More concretely, the key contributions
of our work are summarized as follows.� SKETCH-BASED APPROXIMATE PROCESSING ALGORITHMS
FOR COMPLEX AGGREGATE QUERIES. We show how small, sketch
synopses for data streams can be used to compute provably-accurate
approximate answers to aggregate multi-join queries. Our tech-
niques extend and generalize the earlier results of Alon et al. [3,
2] in two important respects. First, our algorithms provide proba-
bilistic accuracy guarantees for queries containing any number of
relational joins. Second, we consider a wide range of aggregate op-
erators (e.g., COUNT, SUM) rather than just simple COUNT aggre-
gates. We should also point out that our error-bound derivation for
multi-join queries is non-trivial and requires that certain acyclicity
restrictions be imposed on the query’s join graph.� SKETCH-PARTITIONING ALGORITHMS TO BOOST ESTIMATION
ACCURACY. We demonstrate that (approximate) statistics (e.g.,
histograms) on the distributions of join-attribute values can be used
to reduce the variance in our randomized answer estimate, which is
a function of the self-join sizes of the base stream relations. Thus,
we propose novel sketch-partitioning techniques that exploit such
statistics to significantly boost the accuracy of our approximate an-
swers by (1) intelligently partitioning the attribute domains so that
the self-join sizes of the resulting partitions are minimized, and (2)
judiciously allocating space to independent sketches for each par-	

The sampling-based join synopses of [1] provide a solution to this problem
but only for the special case of static, foreign-key joins.

tition. For single-join queries, we develop a sketch-partitioning al-
gorithm that exploits a theorem of Breiman et al. [5] to compute an
optimal solution, that is provably near-optimal for minimizing the
estimate variance. We also present bounds on the error in the final
answer as a function of the error in the underlying statistics (used
to compute the partitioning). Unfortunately, for queries with more
than one join, we demonstrate that the sketch-partitioning problem
is 
�� -hard. Thus, we introduce a partitioning heuristic for multi-
joins that can, in fact, be shown to produce near-optimal solutions
if the underlying attribute-value distributions are independent.� EXPERIMENTAL RESULTS VALIDATING OUR SKETCH-BASED
TECHNIQUES. We present the results of an experimental study
with several real-life and synthetic data sets over a wide range of
queries that verify the effectiveness of our sketch-based approach to
complex stream-query processing. Specifically, our results indicate
that compared to on-line histogram-based methods, sketching can
give much more accurate answers that are often superior by factors
ranging from three to an order of magnitude. Our experiments also
demonstrate that our sketch-partitioning algorithms result in sig-
nificant reductions in the estimation error (almost a factor of two),
even when coarse histogram statistics are employed to select the
join-attribute partitions.

Note that, even though we develop our sketching algorithms in
the data-stream context, our techniques are more generally applica-
ble to huge Terabyte databases where performing multiple passes
over the data for the exact computation of query results may be
prohibitively expensive. Our sketch-partitioning algorithms are, in
fact, ideal for such “huge database” environments, where an ini-
tial pass over the data can be used to compute random samples,
approximate histograms, or other statistics which can subsequently
be used as the basis for determining the sketch partitions.

2. STREAMS AND RANDOM SKETCHES

2.1 The Stream Data-Processing Model
We now briefly describe the key elements of our generic archi-

tecture for query processing over continuous data streams (depicted
in Figure 1); similar architectures for stream processing have been
described elsewhere (e.g., [4, 15]). Consider an arbitrary (possibly
complex) SQL query  over a set of relations � 	���������� ��� and let� ��� � denote the total number of tuples in ��� . (Extending our archi-
tecture to handle multiple queries is straightforward, although inter-
esting research issues, e.g., inter-query space allocation, do arise;
we will not consider such issues further in this paper.) In con-
trast to conventional DBMS query processors, our stream query-
processing engine is allowed to see the data tuples in � 	 ��������� ���
only once and in fixed order as they are streaming in from their re-
spective source(s). Backtracking over the data stream and explicit
access to past data tuples are impossible. Further, the order of tuple
arrival for each relation ��� is arbitrary and duplicate tuples can oc-
cur anywhere over the duration of the � � stream. Hence, our stream
data model assumes the most general “unordered, cash-register”
rendition of stream data considered by Gilbert et al. [15] for com-
puting one-dimensional Haar wavelets over streaming values and,
of course, generalizes their model to multiple, multi-dimensional
streams since each ��� can comprise several distinct attributes.

Our stream query-processing engine is also allowed a certain
amount of memory, typically significantly smaller than the total
size of the data set(s). This memory is used to maintain a concise
and accurate synopsis of each data stream � � , denoted by ����� ��� .
The key constraints imposed on each synopsis ������� � are that (1) it
is much smaller than the total number of tuples in � � (e.g., its size is
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Figure 1: Stream Query-Processing Architecture.

logarithmic or polylogarithmic in
� � � � ), and (2) it can be computed

in a single pass over the data tuples in ��� in the (arbitrary) order
of their arrival. At any point in time, our query-processing algo-
rithms can combine the maintained synopses ����� 	 � ��������� ������� �
to produce an approximate answer to query  .

2.2 Pseudo-Random Sketch Summaries
The Basic Technique: Self-Join Size Tracking. Consider a sim-
ple stream-processing scenario where the goal is to estimate the
size of the self-join of relation � over one of its attributes � � � as
the tuples of � are streaming in; that is, we seek to approximate
the result of query ! COUNT ���#"%$'&(� � . Letting dom � � � de-
note the domain of the join attribute2 and )*�%+ � be the frequency of
attribute value + in � � � , we want to produce an estimate for the
expression SJ � � �  -, ��. dom / &10 )*�%+ �32 (i.e., the second moment
of � ). In their seminal paper, Alon, Matias, and Szegedy [3] prove
that any deterministic algorithm that produces a tight approxima-
tion to SJ � � � requires at least 4�� � dom � � � � � bits of storage, render-
ing such solutions impractical for a data-stream setting. Instead,
they propose a randomized technique that offers strong probabilis-
tic guarantees on the quality of the resulting SJ � � � approximation
while using only logarithmic space in

�
dom � � � � . Briefly, the basic

idea of their scheme is to define a random variable 5 that can be
easily computed over the streaming values of � � � , such that (1)5 is an unbiased (i.e., correct on expectation) estimator for SJ � � � ,
so that 687 5:9; SJ � � � ; and (2) 5 has sufficiently small variance
Var �<5 � to provide strong probabilistic guarantees for the quality of
the estimate. This random variable 5 is constructed on-line from
the streaming values of � � � as follows:� Select a family of four-wise independent binary random vari-

ables =�> �@? +A CB �������1� � dom � � � � D , where each > �@E ='FGB �IH B D
and JK7 >��L H B�98 MJK7 >N�� OFGB�9P QBNR � (i.e., 687 >N�%98 S

). Informally, the four-wise independence condition means
that for any 4-tuple of >N� variables and for any 4-tuple of=TFGB �IH B D values, the probability that the values of the vari-
ables coincide with those in the =TFGB �IH B D 4-tuple is exactlyBNRTB�U (the product of the equality probabilities for each in-
dividual >N� ). The crucial point here is that, by employing
known tools (e.g., orthogonal arrays) for the explicit con-
struction of small sample spaces supporting four-wise inde-
pendent random variables, such families can be efficiently
constructed on-line using only VK�%WYX[Z � dom � � � � � space [3].� Define 5\ \] 2 , where ]- , �%. dom / &10 )*�%+ � > � . Note that] is simply a randomized linear projection (inner product) of
the frequency vector of � � � � with the vector of > � ’s that can2 Without loss of generality, we assume that each attribute domain dom ^`_ba

is indexed by the set of integers c�dfehg�eIijijike�l dom ^m_najlpo#g�q , wherel dom ^`_bahl denotes the size of the domain.

be efficiently generated from the streaming values of � as
follows: Start with ]r S and simply add > � to ] whenever
the +ts`u value of � is observed in the stream.

To further improve the quality of the estimation guarantees, Alon,
Matias, and Szegedy propose a standard boosting technique that
maintains several independent identically-distributed (iid) instanti-
ations of such random variables 5 and uses averaging and median-
selection operators to boost accuracy and probabilistic confidence.
(Independent instances can be constructed by simply selecting in-
dependent random seeds for generating the families of four-wise
independent >N� ’s for each instance.) More specifically, the synopsis�����v� � comprises w� \w 	Nx w 2 randomized linear-projection variables]K� y , where w 	 is a parameter that determines the accuracy of the
result and w 2 determines the confidence in the estimate. The final
boosted estimate z of SJ � � � is the median of w 2 random variablesz 	���������� z|{~} , each z1� being the average of w 	 iid random variables] 2� y , �� �B ��������� w 	 , where each ] � y uses the same on-line con-
struction as the variable ] (described above). The averaging step
is used to reduce the variance, and hence the estimation error (by
Chebyshev’s inequality), and median-selection is used to boost the
confidence in the estimate (by Chernoff bounds). We use the term
atomic sketch to describe each randomized linear projection ] � y of
the data stream and the term sketch for the overall synopsis � . The
following theorem [3] demonstrates that the sketch-based method
offers strong probabilistic guarantees for the second-moment esti-
mate while utilizing only logarithmic space in the number of dis-
tinct � � � values and the length of the stream.

THEOREM 2.1 ([3]). The estimate z computed by the above
algorithm satisfies: JK7 � z�F SJ � � � �T� � R'� w 	 SJ � � � 91�\B�F ��� {�}�� 2 .
This implies that the algorithm estimates SJ � � � in one pass with
a relative error of at most � with probability at least B�F�� (i.e.,JK7 � z�F SJ � � � �(� � x SJ � � � 9#��B�F�� ) while using onlyVC��� �3� / 	 �3�h0� } �%WYXfZ � dom � � � � H WYXfZ � � � �~� bits of memory.

Extensions: Binary Joins, Wavelets, and �@� Differencing. In a
more recent paper, Alon et al. [2] demonstrate how the above al-
gorithm can be extended to deal with deletions in the data stream
and demonstrate its benefits experimentally over naive solutions
based on random sampling. They also show how their sketch-based
approach applies to handling the size-estimation problem for bi-
nary joins over a pair of distinct tuple streams. More specifically,
consider approximating the result of the query � COUNT ��� 	"%$T�1��� &��I�1�|}�� &|}�� 2 � over two relational streams � 	 and � 2 . (Note
that, by the definition of the equi-join operation, the two join at-
tributes have identical value domains, i.e., dom � ��	 �  dom � � 2 � .)
As previously, let =�>N� ? +* �B ��������� �dom � ��	 � � D be a family of four-
wise independent =TFGB �IH B D random variables with 687 >��`9| S , and
define the randomized linear projections ] 	  , ��. dom / &��j0 ) 	 �%+ � >N�
and ] 2  , �%. dom / &|}�0 ) 2 �%+ � >N� , where ) 	 �%+ � , ) 2 �%+ � represent the
frequencies of � 	 � � 	 and � 2 � � 2 values, respectively. The follow-
ing theorem [2] shows how sketching can be applied for estimating
binary-join sizes in limited space.

THEOREM 2.2 ([2]). Let the atomic sketches ] 	 and ] 2 be
as defined above. Then 687 ] 	 ] 2 9  � � 	 "%$f&��I�|&1}¡� 2 � and
Var �%] 	 ] 2 � � � x SJ 	 � ��	 � x SJ 2 � � 2 � , where SJ 	 � ��	 � , SJ 2 � � 2 �
is the self-join size of � 	 � � 	 and � 2 � � 2 , respectively. Thus, av-
eraging over ¢� !VK� SJ 	 � ��	 � SJ 2 � � 2 � R����I2��£2 �3� iid instantiations
of the basic scheme, where � is a lower bound on the join size,
guarantees an estimate that lies within constant relative error � of� � 	 "%$ &����|&|} � 2 � with high probability.



Techniques relying on the same basic idea of compact, pseudo-
random sketching have also been proposed recently for other data-
stream applications. Gilbert et al. [15] propose the use of sketches
for approximately computing one-dimensional Haar wavelet coeffi-
cients and range aggregates over streaming numeric values. Strauss
et al. [11] discuss sketch-based techniques for the on-line estima-
tion of � 	 differences between two numeric data streams. None
of these earlier studies, however, has considered the hard technical
problems involved in using sketching to effectively approximate the
results of complex, multi-join aggregate SQL queries over multiple
massive data streams.

3. APPROXIMATING COMPLEX QUERY
ANSWERS USING STREAM SKETCHES

In this section, we describe our sketch-based techniques for com-
puting guaranteed-quality approximate answers to general aggre-
gate operators over complex, multi-join SQL queries spanning mul-
tiple streaming relations � 	 �������1� � � . More specifically, the class
of queries that we consider is of the general form: “SELECT AGG
FROM � 	 � � 2 ��������� � � WHERE ¤ ”, where AGG is an arbitrary ag-
gregate operator (e.g., COUNT, SUM or AVERAGE) and ¤ repre-
sents the conjunction of of ¥ equi-join constraints3 of the form� � � � y  (��¦ � �v§ ( � � � � y denotes the � s%u attribute of relation � � ).

We first demonstrate how sketches can provide approximate an-
swers with probabilistic quality guarantees to COUNT aggregates,
and then show how our results can be generalized to other aggrega-
tion operators like SUM. In order to derive probabilistic guarantees
on the estimation error, we require that each attribute belonging to
a relation appears at most once in the join conditions ¤ . Note that
this is not a serious restriction, as any set of join conditions can
be transformed to satisfy our requirement, as follows. For any at-
tribute � � � � y that occurs ¨ª©«B times in ¤ , we add ¨¬F�B new “at-
tributes” to ��� , and replace ¨F�B occurrences of ��� � � y in ¤ , each
with a distinct new attribute. These new ¨ªF(B attributes are ex-
act replicas of ��� � � y , so they all take on values identical to ��� � � y
within each tuple of ��� . For instance, if ¤� #�3��� 	�� ��	  �� 2 � ��	 �
AND ��� 	 � � 	  Q��® � � 	 �3� , we can modify it to satisfy our our
single attribute-occurrence constraint by adding a new attribute� 2 to � 	 which is a replica of � 	 , and replacing an occurrence
of � 	�� ��	 so that, for example ¤! ¯�3��� 	�� ��	  °� 2 � ��	 � AND��� 	 � � 2  °��® � � 	 �3� . Clearly, this addition of new “attributes”
can be carried out only at a conceptual level, e.g., as part of our
sketch-computation logic. We assume that ¤ satisfies our single
attribute-occurrence constraint in the remainder of this section.

3.1 Using Sketches to Answer COUNT Queries
The output of a COUNT query  COUNT is the number of tuples

in the cross-product of � 	��������1� ��� that satisfy the equality con-
straints in ¤ over the join attributes. Assume a renaming of the

� ¥
join attributes in ¤ to ��	��j� 2 �������1�j� 2 � such that each equi-join
constraint in ¤ is of the form � yL � �'± y , for B � � � ¥ . Let
dom � � � �  ²=TB �������1� � dom � � � � � D be the domain of attribute � � ,
and ³- dom � ��	 � � x�x�x � dom � � 2 � � . Also, let ´�¦ denote the
subset of (renamed) attributes from relation ��¦ appearing in ¤ and
let ³G¦G dom � � ¦ � � � x�x�x � dom � � ¦Nµ ¶�·fµ � , where � ¦ � ���������3� ¦�µ ¶N·'µ
are the attributes in ´ ¦ . An assignment ¸ assigns values to join at-
tributes from their respective domains. If ¸ E ³ , then each join
attribute � y is assigned a value ¸;7 �[9 by ¸ . On the other hand, if¸ E ³�¦ , then ¸ only assigns a value ¸¹7 �[9 to attributes � E ´�¦ .
(Henceforth, we will simply use � to refer to attribute � y when the® Simple value-based selections on individual relations are trivial to evaluate
over the streaming tuples.

Symbol Descriptionº 	 ej»j»I»¼e º � Relations in aggregate query_ 	 eh»h»h»ket_ 2 � Attributes over which join is defined
dom ^m_ y a Domain of attribute _ y½

dom ^`_ 	 aA¾�ijiIif¾ dom ^m_ 2 � a¿ ¦ Join attributes in relation
º ¦½ ¦ Projection of

½
on attributes in

¿ ¦
SJ ¦ ^ ¿ ¦ a Self-join of relation

º ¦ on attributes in
¿ ¦À

Assignment of values to (a subset of) join attributesÀ£Á ÂNÃ
Value assigned to attribute

ÂÀ£Á ¿ ¦ Ã Projection of I on attributes in
¿ ¦Ä ¦ ^ À a Number of tuples in

º ¦ that match
ÀÅ ¦ Atomic sketch for relation

º ¦cIÆ y §�ÇNÈ¼É g�eh»h»h» Family of four-wise independent random»I»j»¼e�l dom ^m_ y ahl q variables for attribute _ y
Table 1: Notation.

distinction is clear from the context.) We use ¸¹7 ´�¦�9 to denote the
projection of ¸ on attributes in ´�¦ ; note that ¸;7 ´�¦N9 E ³�¦ . Finally,
for ¸ E ³�¦ , we use )[¦¼�Y¸ � to denote the number of tuples in ��¦
whose value for attribute � equals ¸;7 �[9 for all � E ´*¦ . Table 1 sum-
marizes some of the key notational conventions used throughout
the paper; additional notation will be introduced when necessary.

The result of our COUNT query can now be expressed as  COUNT  ,�Ê .[ËnÌ ÍIyNÎ ÊkÏ yhÐÑ� ÊkÏ �'± yhÐ�Ò � ¦ � 	 )�¦Ó�Y¸;7 ´�¦N9 � . This is essentially the prod-
uct of the number of tuples in each relation that match a value as-
signment ¸ , summed over all assignments ¸ E ³ that satisfy the
equi-join constraints ¤ . Our sketch-based randomized algorithm
for producing a probabilistic estimate of the result of a COUNT
query is similar in spirit to the technique originally proposed in
[3] and described in Section 2. Essentially, we construct a random
variable ] that is an unbiased estimator for  COUNT (i.e., 687 ]Ô9�  COUNT), and whose variance can be appropriately bounded from
above. Then, by employing the standard averaging and median-
selection trick of [3], we boost the accuracy and confidence of ]
to compute an estimate of  COUNT that guarantees small relative
error with high probability.

We now show how such a random variable ] can be constructed.
For each pair of join attributes � � ¥ H � in ¤ , we build a family of
four-wise independent random variables =�> yIÌ § ?fÕ  �B �������1� � dom � � y � � D ,
where each > yIÌ § E =TFGB �hH B D . The key here is that an every equi-
join attribute pair � and ¥ H � shares the same > family, and so
for all Õ:E dom � � y�� , > yIÌ §  ¡> �'± yIÌ § ; however, we define a distinct> family for each of the ¥ distinct equi-join pairs using mutually-
independent random seeds to generate each > family. Thus, ran-
dom variables belonging to families defined for different attribute
pairs are completely independent of each other. Since, as men-
tioned earlier, the family for attribute pair � � ¥ H � can be effi-
ciently constructed on-line using only VK�%WÖX[Z � dom � � y � � � space,
the space requirements for all ¥ families of random variables is, �y�� 	 VK�%WYXfZ � dom � � y � � � .

For each relation � ¦ , we define the atomic sketch for � ¦ , ] ¦ to
be equal to , Ê .fË · �<)[¦Ó�Y¸ � Ò y�.T× · > yIÌ Ê¼Ï yjÐ � , and define the COUNT
estimator random variable as ]� Ò �¦ � 	 ]K¦ (i.e., the product of
the atomic relation sketches ]8¦ ). Note that each atomic sketch]8¦ can be efficiently computed as tuples of �G¦ are streaming in;
more specifically, ]8¦ is initialized to

S
and, for each tuple Ø in the��¦ stream, the quantity Ò yN.'× · > yIÌ s Ï yhÐ is added to ]K¦ , where Ø�7 �[9

denotes the value of attribute � in tuple Ø .
Example 1: Consider the following COUNT query over relations� 	 , � 2 and � ® : SELECT COUNT(*) FROM � 	�� � 2 � � ® WHERE� 	 � � 	  Ù� 2 � � 	 AND � 2 � � 2  Ù�v® � � 	 . After renaming, we get



��	  Ú� 	�� ��	 , � 2  Ú� 2 � � 2 , � ®  r� 2 � ��	 , and ��Û  Ú� ® � ��	 .
The first join involves attributes � 	 and � ® , while the second is on
attributes � 2 and ��Û . Thus, we define two families of four-wise
independent random variables (one for each join pair): =�> 	 Ì § ?¼Õ  B �������1� � dom � ��	 � � D and =�> 2 Ì § ?¹Õ  MB �������|� � dom � � 2 � � D . Three
separate atomic sketches ] 	 , ] 2 and ] ® are maintained for the
three relations, and are defined as follows: ] 	  , s .'�1� > 	 Ì s Ï 	 Ð ,] 2  , s .'��} > 	 Ì s Ï ® Ð > 2 Ì s Ï 2 Ð , and ] ®  , s .T��Ü > 2 Ì s Ï Û Ð . The value of
the random variable ]ª ¬] 	 ] 2 ]K® gives our final estimate for the
result of the COUNT query.

As the following lemma shows, the random variable ]ª Ò �¦ � 	 ] ¦ Ò � ¦ � 	 , Ê .[Ë · �<)�¦Ó�Y¸ � Ò yN.'× · > yIÌ ÊkÏ yhÐ � is indeed an unbiased es-
timator for our COUNT aggregate.

LEMMA 3.1. The random variable ]Ý Ò �¦ � 	 ] ¦ is an unbi-
ased estimator for  COUNT; that is 687 ]�9| ( COUNT.

As in traditional query processing, the join graph for our input
query  COUNT is defined as an undirected graph consisting of a
node for each relation ��� , +Þ �B �������1�3ß , and an edge for each join-
attribute pair � � ¥ H � between the relation nodes containing the
join attributes � and ¥ H � . Our computation of tight upper and
lower bounds on the variance of ] relies on the assumption that
the join graph for  COUNT is acyclic. Thus, the probabilistic qual-
ity guarantees provided by our techniques are valid only for acyclic
multi-join queries. This is not a serious limitation, since many SQL
join queries encountered in database practice are in fact acyclic;
this includes chain joins (see Example 3.1) as well as star joins
(the dominant form of queries over the star/snowflake schemas of
modern data warehouses [7]). Under this acyclicity assumption,
the following lemma bounds the variance of our unbiased estima-
tor ] for  COUNT. To simplify the statement of our result, let
SJ ¦��<´�¦ �  , Ê .[Ë · )[¦Ó�Y¸ �32 denote the size of the self-join of rela-
tion ��¦ over all attributes in ´�¦ .

LEMMA 3.2. Assume that the join graph for  COUNT is acyclic.
Then, for the random variable ]r Ò �¦ � 	 ]8¦ :�à¦ � 	 SJ ¦ ^ ¿ ¦ a|o áÊ .[ËnÌ ÊkÏ yhÐ � Ê¼Ï �'± yhÐ

�à¦ � 	 Ä ¦ ^ ÀpÁ ¿ ¦ Ã a 2vâ Var ^ Å a
â¬ã ^mä � oågIa 2pæ ghçéèê �à¦ � 	 SJ ¦ ^ ¿ ¦ a|o áÊ .[ËnÌ ÊkÏ yhÐÑ� ÊkÏ �'± yhÐ

�à¦ � 	 Ä ¦ ^ À£Á ¿ ¦ Ã a%ëì
2

The final estimate z for  COUNT is chosen to be the median
of w 2 random variables z 	��������1� z|{�} , each z|� being the average ofw 	 iid random variables ] � y , B � � � w 	 , where each ] � y is
constructed on-line in a manner identical to the construction of ]
above. Thus, the total size of our sketch synopsis for  COUNT
is VK�<w 	Gx w 2 x , �yI� 	 WYXfZ �dom � � y � � � 4. The values of w 	 and w 2
for achieving a certain degree of accuracy with high probability are
derived based on the following theorem that summarizes our results
in this section.

THEOREM 3.1. Let  COUNT be an acyclic, multi-join COUNT
query over relations � 	���������� �v� , such that  COUNT ��� and

SJ ¦��<´�¦ � �¬í ¦ . Then, using a sketch of size VK� 2 }tî /Yïbð·Iñ ��ò · 0 � �3� / 	 �3�h0ó } � }, �yI� 	 WÖX[Z �dom � � y�� � � , it is possible to approximate  COUNT so
that the relative error of the estimate is at most � with probability
at least B:F � .Û

Note that this includes the ô 	 iIô 2 i�^öõ æ gIa space required for storing theô 	 i�ô 2 ih÷ Å � y variables for the ÷ É õ æ g relations.

3.2 Using Sketches to Answer SUM Queries
Our sketch-based approach for approximating complex COUNT

aggregates can also be extended to compute approximate answers
for complex queries with other aggregate functions, like SUM, over
relation streams. A SUM query has the form SELECT SUM( ��� � � y )
FROM � 	 � � 2 �������1� � � WHERE ¤ . As earlier, let � 	 ���������3� 2 �
be a renaming of the

� ¥ join attributes in ¤ and, without loss of
generality , let ���ø ²� 	 and � 2 �'± 	 denote the attribute in � 	
whose value is summed in the join result. Further, for an assign-
ment of values ¸ E ³ 	 to all the join attributes in � 	 , let SUM(̧ )
= , s .T�1��Ì ÍIyN.'×'��Î s Ï yhÐ � Ê¼Ï yjÐ Ø�7 � 2 �'± 	 9 ; thus, SUM(̧ ) is basically the
sum of the values taken by attribute � 2 �f± 	 in all tuples Ø in � 	
that match ¸ on the join attributes ´ 	 . The result of our SUM
query is a scalar quantity  SUM whose value can be expressed as, Ê .[ËnÌ ÍIyNÎ ÊkÏ yhÐÑ� ÊkÏ �'± yhÐ SUM �Y¸;7 ´ 	 9 � x Ò � ¦ � 2 ) ¦ �Y¸;7 ´ ¦ 9 � .Similar to the COUNT case, in order to approximate  SUM over
a data stream, we utilize families of four-wise independent random
variables > to build atomic sketches ]8¦ for each relation, using
distinct, independent > families for each pair of join attributes. The
atomic sketches ] ¦ for ¢ � �������1� ] ¦ are also defined as de-
scribed earlier for COUNT queries; that is, ]P¦ù , Ê .[Ë · �<)�¦¼�Y¸ �Ò y�.T× · > yIÌ ÊkÏ yhÐ � . However, for the relation � 	 containing the SUM
attribute, ] 	 is defined in a slightly different manner as ] 	  , Ê .[Ë@� (SUM �Y¸ � Ò yN.'×'� > yIÌ ÊkÏ yhÐ � . Note that ] 	 can be efficiently
maintained on the streaming tuples of � 	 by simply adding the
quantity Ø�7 � 2 �f± 	 9 x Ò yN.'×'� > yIÌ s Ï yjÐ for each incoming � 	 tuple Ø . Us-
ing arguments similar to those in Lemmas 3.1 and 3.2, the random
variable ]ú Ò �¦ � 	 ]8¦ can be shown to have an expected value
of  SUM, and (assuming an acyclic join graph) a variance that is
bounded by terms similar to those in Lemma 3.2 [9]. These results
can be used to build sketch synopses for  SUM with probabilistic
accuracy guarantees similar to those stated in Theorem 3.1.

4. IMPROVING ANSWER QUALITY:
SKETCH PARTITIONING

In the proof of Theorem 3.1, to ensure an upper bound of � on
the relative error of our estimate for  COUNT with high probabil-
ity we require that, for each + , Var �%z �<� � � } ó }û ; this is achieved by
defining each z|� as the average of w 	 iid instances of the atomic-
sketch estimator ] , so that Var �%z|� �  Var /Ñü 0{j� . Then, since by
Lemma 3.2, Var �%] � � � 2 � x Ò � ¦ � 	 SJ ¦ �<´ ¦f� , averaging over w 	 �2 }~î[ý¼Ü�þ ïbð·hñ � SJ · / × · 0� } ó } iid copies of ] , allows us to guarantee the re-
quired upper bound on the variance of z � . An important practical
concern for multi-join queries is that (as is evident from Lemma 3.2)
our upper bound on the Var �%] � and, therefore, the number of ] in-
stances w 	 required to guarantee a given level of accuracy increases
explosively with the number of joins ¥ in the query.

To deal with this problem, in this section, we propose novel
sketch-partitioning techniques that exploit approximate statistics
on the streams to decompose the sketching problem in a way that
provably tightens our estimation guarantees. The basic idea is that,
by intelligently partitioning the domain of join attributes in the
query and estimating portions of  COUNT individually on each
partition, we can significantly reduce the storage (i.e., number of iid] copies) required to approximate each z1� within a given level of
accuracy. (Of course, our sketch-partitioning results are equally ap-
plicable to the dual optimization problem; that is, maximizing the
estimation accuracy for a given amount of sketching space.) Our
techniques can also be extended in a natural way to other aggrega-
tion operators (e.g., SUM, VARIANCE) similar to the generalization
described in Section 3.2.



The key observation we make is that, given a desired level of ac-
curacy, the number of required iid copies of ] , is proportional to
the product of the self-join sizes of relations � 	��������1� ��� over the
join attributes (Theorem 3.1). Further, in practice, join-attribute do-
mains are frequently skewed and the skew is often concentrated in
different regions for different attributes. As a consequence, we can
exploit approximate knowledge of the data distribution(s) to intel-
ligently partition the domains of (some subset of) join attributes
so that, for each resulting partition ÿ of the combined attribute
space, the product of self-join sizes of relations restricted to ÿ
is very small compared to the same product over the entire (un-
partitioned) attribute space (i.e., Ò � ¦ � 	 SJ ¦Ó�<´1¦ � ). Thus, letting ]��
denote an atomic-sketch estimator for the portion of  COUNT that
corresponds to partition ÿ of the attribute space, we can expect the
variance Var �%]�� � to be much smaller than Var �%] � .

Now, consider a scheme that averages over w � iid instances of the
atomic sketch ]�� for partition ÿ , and defines each z1� as the sum of
these averages over all partitions ÿ . We can then show that 687 z � 9�  COUNT and Var �%z|� �  , � Var /Ñü�� 0{ � . Clearly, achieving small
self-join sizes and variances Var �%]�� � for the attribute-space parti-
tions ÿ means that the total number of iid sketch instances , � w �
required to guarantee that Var �%z|� � � � } ó }û is also small; this, in
turn, implies a smaller storage requirement for the prescribed accu-
racy level of our z|� estimator5. We formalize the above intuition in
the following subsection and then present our sketch-partitioning
results and algorithms for both single- and multi-join queries.

4.1 Our General Technique
Consider once again the  COUNT aggregate query (Section 3).

In general, our sketch-partitioning techniques partition the domain
of each join attribute � y into ¨Ky«� B disjoint subsets denoted
by J yIÌ 	 �������1� J yIÌ ��� . Further, the domains of a join-attribute pair� y and � �f± y are partitioned identically (note that dom � � y �  
dom � � �'± y � ). This partitioning on individual attributes induces
a partitioning of the combined (multi-dimensional) join-attribute
space, which we denote by � . Thus, �r !=T��J 	 Ì § � ��������� J � Ì § î1� ?B � Õ y � ¨ y D . Each element ÿ E � identifies a unique par-
tition of the global attribute space, and we represent by ³�� the
restriction of this global attribute space ³ to ÿ ; in other words,³	�  =h¸ E ³ ? ¸;7 �[9 � ¸;7 ¥ H �[9 E ÿb7 �[9 ��
 � D , where ÿn7 �[9 denotes
the partition of attribute � in ÿ . Similarly, ³�¦ Ì � is the projection of³ � on the join attributes in relation ��¦ .

For each partition ÿ E � , we construct random variables ]��
that estimate  COUNT on the domain space ³ � , in a manner sim-
ilar to the atomic sketch ] in Section 3. Thus, for each partitionÿ and join attribute pair � , ¥ H � , we have an independent fam-
ily of random variables =�> yIÌ § Ì � ?vÕøE ÿb7 �[9 D , and for each (rela-
tion, partition) pair ����¦ � ÿ � , we define a random variable ]P¦ Ì �  ,�Ê .fË ·� � �<)[¦Ó�Y¸ � Ò�y�.T× · > yIÌ Ê¼Ï yjÐöÌ � � . Variable ]�� is then obtained
as the product of ] ¦ Ì � ’s over all relations, i.e., ] �  Ò � ¦ � 	 ] ¦ Ì � .
It is easy to verify that 687 ]��Ó9 is equal to the number of tuples in
the join result for partition ÿ and thus, by linearity of expectation,687 , � ] � 9  , � 687 ] � 9� ( COUNT.

By independence across partitions, we have Var � , � ]�� �  , � Var �%] � � . As in Section 3, to reduce the variance of our parti-
tioned estimator, we construct iid instances of each ]�� . However,
since Var �%]�� � may differ widely across the partitions, we can ob-
tain larger reductions in the overall variance by maintaining a larger�

Given Var ^�� � a â � } ó }û , a relative error at most � with probability at leastg¹o�� can be guaranteed by selecting the median of ô 2 É����� ^tg�����a�� �
instantiations.

number of copies for partitions with a higher variance. Let w�� de-
note the number of iid copies of the sketch ] � maintained for par-
tition ÿ and let z|�%Ì � be the average of these w�� copies. Then, we
compute z � as , � z �%Ì � (averaging over iid copies does not alter
the expectation, so that 687 z1�`9  \ COUNT.

The success of our sketch-partitioning approach clearly hinges
on being able to efficiently compute the w � iid instances of ]8¦ Ì � for
each (relation, partition) pair as data tuples are streaming in. For
each partition ÿ , we maintain w � independent families > yIÌ � of vari-
ables for each attribute pair � � ¥ H � , where each family is generated
using an independent random seed. Further, for every tuple Ø E � ¦
in the stream and for every partition ÿ such that Ø lies in ÿ (that is,Ø E ³�¦ Ì � ), we add to ]8¦ Ì � the quantity Ò y�.T× · > yIÌ s Ï yhÐÖÌ � . (Note that
a tuple Ø in ��¦ typically carries only a subset of the join attributes,
so it can belong to multiple partitions ÿ .) Our sketch-partitioning
techniques make the process of identifying the relevant partitions
for a tuple very efficient by using the (approximate) stream statis-
tics to group contiguous regions of values in the domain of each
attribute � y into a small number of coarse buckets (e.g., histogram
statistics trivially give such a bucketization). Then, each of the¨ y partitions for attribute � y comprises a subset of such buckets
and each bucket stores an identifier for its corresponding partition.
Since the number of such buckets is typically small, given an in-
coming tuple Ø , the bucket containing Ø�7 �[9 (and, therefore, the rele-
vant partition along � y ) can be determined very quickly (e.g., using
binary or linear search). This allows us to very efficiently determine
the relevant partitions ÿ for streaming data tuples.

The total storage required for the atomic sketches over all the
partitions is VK� , � w�� , �yI� 	 WYXfZ �dom � � y � � � to compute each z1� .
For the sake of simplicity, we approximate the storage overhead for
each >hyIÌ � family for partition ÿ by the constant VK� , �y�� 	 WYXfZ � dom � � y � � �
instead of the more precise (and less pessimistic) VK� , �y�� 	 WYXfZ � ÿb7 �[9 � � .
Our sketch-partitioning approach still needs to address two very
important issues: (1) Selecting a good set of partitions � ; and (2)
Determining the number of iid copies w�� of ]�� to be constructed
for each partition ÿ . Clearly, effectively addressing these issues is
crucial to our final goal of minimizing the overall space allocated
to the sketch while guaranteeing a a certain degree of accuracy �
for each z � . Specifically, we aim to compute a partitioning � and
allocating space w� to each partition ÿ such that Var �%z|� � � � } ó }û
and , ��. � w � is minimized.

Note that, by independence across partitions and the iid charac-

teristics of individual atomic sketches, we have Var �%z �<�  , � Var � ü�� �{ � .
Given a attribute-space partitioning � , the problem of choosing the
optimal allocation of w�� ’s that minimizes the overall sketch space
while guaranteeing an upper bound on Var �%z ��� can be formulated
as a concrete optimization problem. The following theorem de-
scribes how to compute such an optimal allocation.

THEOREM 4.1. Consider a partitioning � of the join-attribute

domains. Then, allocating space w��� û!
Var � ü � �#" � ! Var � ü � �� } ó } to

each ÿ E � ensures that Var �%z|� � � � } ó }û and , � w�� is minimum.

From the above theorem, it follows that, given a partitioning � ,
the optimal space allocation for a given level of accuracy requires

a total sketch space of: , � w�  û / " � ! Var � ü � � 0 }� } ó } . Obviously,
this means that the optimal partitioning � with respect to mini-
mizing the overall space requirements for our sketches is one that
minimizes the sum , �%$ Var �`] �k� . Thus, in the remainder of
this section, we focus on techniques for computing such an opti-
mal partitioning � ; once � has been found, we use Theorem 4.1



to compute the optimal space allocation for each partition. We first
consider the simpler case of single-join queries, and address multi-
join queries in Section 4.3.

4.2 Sketch-Partitioning for Single-Join Queries
We describe our techniques for computing an effective partition-

ing � of the attribute space for the estimation of COUNT queries
over single joins of the form � 	 "%$ &*�I�1&|} � 2 . Since we only
consider a single join-attribute pair (and, of course dom � � 	 �  
dom � � 2 � ), for notational simplicity, we ignore the additional sub-
script for join attributes wherever possible. Our partitioning algo-
rithms rely on knowledge of approximate frequency statistics for
attributes � 	 and � 2 . Typically, such approximate statistics are
available in the form of per-attribute histograms that split the under-
lying data domain dom � � y[� into a sequence of contiguous regions
of values (termed buckets) and store some coarse aggregate statis-
tics (e.g., number of tuples and number of distinct values) within
each bucket.

4.2.1 Binary Sketch Partitioning
Consider the simple case of a binary partitioning � of dom � ��	 �

into two subsets J 	 and J 2 ; that is, �# =NJ 	 � J 2 D . Let )[¦Ó�%+ � de-
note the frequency of value + E dom � ��	 � in relation ��¦ . For each
relation ��¦ , we associate with the (relation, partition) pair ���G¦ � J § �
a random variable ]8¦ Ì &('  , ��.(&(' )�¦Ó�%+ � >N�%Ì &(' , where Õ � ¢ E ='B � � D .
We can now define ]�&('Þ ¬] 	 Ì &('t] 2 Ì &(' for ÕAE ='B � � D . It is obvious
that 6P7 ]�&('<9p � � 	 "%$f&����1&|}�)Ó&��I.(&(':� 2 � (i.e., the partial COUNT
over J § ), and it is easy to check that the variance Var �%] & ' � is as
follows [2]:

Var ^ Å &(' a É á�%.(&(' Ä 	 ^+*�a 2 á�%.,&(' Ä 2 ^-*�a 2 æ èê¹á��.(&(' Ä 	 ^+*�a Ä 2 ^-*%a ëì 2o ä á��.(&(' Ä 	 ^+*�a 2 Ä 2 ^-*%a 2 (1)

Theorem 4.1 tells us that the overall storage is proportional to$ Var �%]�&T� � H $ Var �%]�&f} � . Thus, to minimize the total sketch-
ing space through partitioning, we need to find the partitioning�Ú ª=�J 	�� J 2 D that minimizes $ Var �%]�&T� � H $ Var �%]�&f} � . Un-
fortunately, the minimization problem using the exact values for
Var �%]�&T� � and Var �%]�&f} � as given in Equation (1) is very hard;
we conjecture this optimization problem to be 
�� -hard and leave
proof of this statement for future work. Fortunately, however, due
to Lemma 3.2, we know that the variance Var �%].&(' � lies in be-
tween , ��.(& ' ) 	 �%+ �32 , ��.(& ' ) 2 �%+ �32 F , �%.(& ' ) 	 �%+ �32 ) 2 �%+ �32 and

� x� , �%.,& ' ) 	 �%+ � 2 , �%.,& ' ) 2 �%+ � 2¹F , ��.(&(' ) 	 �%+ � 2�) 2 �%+ � 2 � . In general,
one can expect the first term , ��.(&(' ) 	 �%+ � 2 , ��.(&(' ) 2 �%+ � 2 (i.e., the
product of the self-join sizes) to dominate the above bounds. We
now demonstrate that, under a loose condition on join-attribute dis-
tributions, we can find a close to � � -approximation to the opti-
mal value for $ Var �%]�&T� � H $ Var �%]�&f} � by simply substituting
Var �%] & ' � with , ��.(& ' ) 	 �%+ � 2 , ��.(& ' ) 2 �%+ � 2 , the product of self-
join sizes of the two relations.

Specifically, suppose that we define the join of � 	 and � 2 to
be / -spread if and only if the condition , y10�1� ) 	 �Ö� � ) 2 �Ö� � �2/ x) 	 �%+ � ) 2 �%+ � holds for all + E dom � ��	 � , for some constant /(©!B .
Essentially, the / -spread condition states that not too much of the
join-frequency “mass” is concentrated at any single point of the
join-attribute domain dom � � 	 � . We typically expect the / -spread
condition to be satisfied in most practical scenarios; violating the
condition requires not only ) 	 �%+ � and ) 2 �%+ � to be severely skewed,

but also that their skews are aligned so that they result in extreme
skew in the resulting join-frequency vector ) 	 �%+ � ) 2 �%+ � . When no
such extreme scenarios arise, and for reasonably-sized join attribute
domains, we typically expect the / parameter in the / -spread defi-
nition to be fairly large; for example, when the ) 	 �%+ � ) 2 �%+ � distribu-
tion is approximately uniform, the / -spread condition is satisfied
with /� \VK� �dom � � 	 � � � ©G©(B .

THEOREM 4.2. For a / -spread join � 	 "%$«� 2 , determining
the optimal solution to the binary-partitioning problem using the
self-join-size approximation to the variance guarantees a � � RÓ��B1F23 	 ±54 � -factor approximation to the optimal binary partitioning (with
respect to the summed square roots of partition variances). In gen-
eral, if ¨ domain partitions are allowed, the optimal self-join-size
solution guarantees a � � R���B:F �3 	 ±54 � -factor approximation.

Given the approximation guarantees in Theorem 4.2, we con-
sider the simplified partitioning problem that uses the self-join size
approximation for the partition variances; that is, we aim to find a
partitioning � that minimizes the function:6 ^+7¹a É98 á�%.,&T� Ä 	 ^+*�a 2 á�%.,&T� Ä 2 ^+*�a 2 æ 8 á��.(&f} Ä 	 ^-*%a 2 á��.(&f} Ä 2 ^-*%a 2 »

(2)

Clearly, a brute-force solution to this problem is extremely ineff-
ficient as it requires VK� � dom / &��j0 � time (proportional to the number
of all possible partitionings of dom � ��	 � ). Fortunately, we can take
advantage of the following classic theorem from the classification-
tree literature [5] to design a much more efficient optimal algo-
rithm.

THEOREM 4.3 ([5]). Let :��<; � be a concave function of ; de-
fined on some compact domain =³ . Let J  #='B ����������> D �?> ©v � ,
and 
 + E J let @���© S and ß � be real numbers with values in =³
not all equal. Then one of the partitions =NJ 	 � J 2 D of J that mini-

mizes , �%.,&T� @��A:�� "	B<C�D �FE B � B"	BGC�D � E B � H , �%.,&[} @��H:�� "%BGC�D }FE B � B"	B<C�D } E B � has the

property that 
 + 	 E J 	��A
 + 2 E J 2 �*ß �`�JI ß �ö} .
To see how Theorem 4.3 applies to our partitioning problem, let+ E dom � ��	 � , and set ß �Ô LK � / �m0 }K } / �m0 } , @��� K } / �ö0 }" � C dom MON �QP K } / yI0 } .

Substituting in Equation (2), we obtain:6 ^-7¹a É 8 á��.(&T� Ä 2 ^-*�a 2 á��.(&T� Ä 2 ^-*�a 2 ÷ � æ 8 á��.(&f} Ä 2 ^-*%a 2 á��.(&f} Ä 2 ^-*%a 2 ÷ �
É á � Ä 2 ^+*�a 2SRT 8 á��.(&T�VU � á��.(&T�VU � ÷ � æ 8 á��.(&T�VU � á�%.(&T�VU � ÷ �-WX
É á � Ä 2 ^+*�a 2SRT á�%.,&T� U �ZY[[\ ] �%.,&'� U � ÷ �] �%.(&T� U � æ á��.(&f} U �ZY[[\ ] ��.(&f} U � ÷ �] �%.,&f} U � WX

Except for the constant factor , �%. dom / &��I0 ) 2 �%+ � 2 (which is al-
ways nonzero if � 2_^ a` ), our objective function b now has ex-
actly the form prescribed in Theorem 4.3 with :��<; �  � ; . Since) 	 �%+ � � S � ) 2 �%+ � � S for + E dom � ��	 � , we have ß �¹� S � @��v� S ,
and 
 J §.c dom � � 	 � � "	BGC�D ' E B"	B<C�D ' E B � B � S

. So, all that remains to

be shown is that � ; is concave on dom � � 	 � . Since concaveness is
equivalent to negative second derivative and � � ; �Ad d  �FGBNR � ; � ® � 2 �S

, Theorem 4.3 applies.



Applying Theorem 4.3 essentially reduces the search space for
finding an optimal partitioning of dom � � � from exponential to lin-
ear, since only partitionings in the order of increasing ß � ’s need to
be considered. Thus, our optimal binary-partitioning algorithm for
minimizing b��%� � simply orders the domain values in increasing
order of frequency ratios K � / �ö0K } / �ö0 , and only considers partition bound-
aries between two consecutive values in that order; the partitioning
with the smallest resulting value for bÔ�%� � gives the optimal solu-
tion.
Example 2: Consider the join � 	 "%$ &����|&|} � 2 of two relations� 	 and � 2 with dom � ��	 �  dom � � 2 �  ª=TB � � �fe�� � D . Also, let
the frequency ) ¦ �%+ � of domain values + for relations � 	 and � 2 be
as follows: g ä g hÄ 	 ^+*�a ä�d i ghd äÄ 2 ^+*�a ä gQi g ghd

Without partitioning, the number of copies w 	 of the atomic-
sketch estimator ] , so that Var �%z|� � � � } ó }û is given by w 	  û Var /Ñü 0� } ó } , where Var �%] �  kj �1l x�e1e m�H B�U jf2�F � x�m j � j� �B m1m l'�[� by
Equation (1). Now consider the binary partitioning � of dom � � 	 �
into J 	  Ú=TB �Qe D and J 2  -= � � � D . The total number of copies, � w� of the sketch estimators ]�� for partitions J 	 and J 2 is

, � w �  û / ! Var /Ñü D � 0 ± ! Var /Ñü D } 0`0 }� } ó } (by Theorem (4.1)), where� $ Var �%] &T��� H $ Var �%] &f}��3�32  � � U �fSfS H � U �'S[S �32  � j�U S[S .
Thus, using this binary partitioning, the sketching space require-
ments are reduced by a factor of {j�" � { �  	<û3û?nfo?o2 ��p?q?qsr � � j .

Note that the partitioning � with J 	  ¡=TB �fe D and J 2  ¡= � � � D
also minimizes the function b��%� � defined in Equation (2). Thus,
our approximation algorithm based on Theorem 4.3 returns the
above partitioning � . Essentially, since ß'	  2 q }2 }  -B SfS , ß 2  � }	t� }  B�R l , ß ®  	Hq }® }  B S[S R l and ß Û  2 }	Hq }  BNR � j , only
the three split points in the sequence

� � � �QeÓ� B of domain values ar-
ranged in the increasing order of ß � need to be considered. Of the
three potential split points, the one between

�
and e results in the

smallest value ( B �f� ) for bÔ�%� � .
4.2.2 K-ary Sketch Partitioning

We now describe how to extend our earlier results to more gen-
eral partitionings comprising ¨O� � domain partitions. By The-
orem 4.1, we aim to find a partitioning �M °=�J 	��������1� Ju� D of
dom � ��	 � that minimizes $ Var �%]�&T� � Hù������H $ Var �%]�& v � , where
each Var �%] & ' � is computed as in Equation (1). Once again, given
the approximation guarantees of Theorem 4.2, we substitute the
complicated variance formulas with the product of self-join sizes;
thus, we seek to find a partitioning �  �=�J 	��������1� Ju� D that mini-
mizes the function:6 ^+7¹a É 8 á�%.,&T� Ä 	 ^+*�a 2 á�%.,&T� Ä 2 ^+*�a 2 æ »h»h» æ 8 á�%.,& v Ä 	 ^-*�a 2 á�%.(& v Ä 2 ^-*%a 2

(3)

A brute-force solution to minimizing b��%� � requires an impracti-
cal VK�%¨ dom / &��I0 � time. Fortunately, we have shown the following
generalization of Theorem 4.3 that allows us to drastically reduce
the problem search space and design a much more efficient algo-
rithm.

THEOREM 4.4. Consider the function wé��J 	 �������1� J ���  , �§ � 	, �%.,& ' @��A:�� "	B<C�D ' E B � B"JBGC�D ' E B � , where : , @�� and ß � are defined as in The-

orem 4.3 and =NJ 	 �������|� J � D is a partitioning of JC ¡='B ���������?> D .

Then among the partitionings that minimize wé��J 	��������|� Ju� � there
is one partitioning =NJ 	 �������1� J � D with the following property x :
 Õ � Õ d E =TB �������1� ¨ D ?�Õ I Õ d  zy 
 + E J §#
 + d E J §�{ ß �|I ß � { .

As described in Section 4.2.1, our objective function b��%� �
can be expressed as , ��. dom / &��j0 ) 2 �%+ � 2 wé��J 	 �������1� J �G� , where:��<; �  � ; , ß �A K � / �m0 }K } / �m0 } and @��* K } / �m0 }" � C dom MON � P K } / y�0 } ; thus, min-

imizing bÔ�t=NJ 	��������1� Ju� D � is equivalent to minimizing wé��J 	��������1� Ju� � .
By Theorem 4.4, to find the optimal partitioning for w , all we
have to do is to consider an arrangement of elements + in J° =TB �������1�?> D in the order of increasing ß � ’s, and find ¨�F�B split
points in this sequence such that w for the resulting ¨ partitions
is as small as possible. The optimum ¨�F«B split points can be
efficiently found using dynamic programming, as follows. Without
loss of generality, assume that B �������1�?> is the sequence of elements
in J in increasing value of ß � . For B �~} � > and B ��� � ¨ ,
let ��� } � � � be the value of w for the optimal partitioning of ele-
ments B ������� } (in order of increasing ß � ) in

�
parts. The equations

describing our dynamic-programming algorithm are:

� ^+�|ehgIa É �á �ö� 	 U �t� ^ ] ��m� 	 U � ÷ �] ��ö� 	 U � a� ^+��eA�[a É��%���	?� y� �_�� � � ^ Â et�voùgIa æ �á�ö�Óy ± 	 U �G� ^ ] ��ö�¼y ± 	 U � ÷ �] ��ö�Óy ± 	 U � a� �� e���� g
The correctness of our algorithm is based on the linearity of w .

Also let �A� } � � � be the index of the last element in partition
� F�B

of the optimal partitioning of B ��������� } in
�

parts (so that the last
partition consists of elements between �A� } � � � H B and

}
). Then,�A� } � B �  S and for

� ©�B , �A� } � � �  ����jZ|���O� 	?� y�� � =���Ö� � � F B �H , ��ö�¼y ± 	 @��t:�� "	�B ñ � ý � E B � B" �B ñ � ý � E B � D . The actual best partitioning can

then be reconstructed from the values of �A� } � � � in time VK�%¨ � ;
essentially, the �%¨�F�B � s`u split point of the optimal partitioning is�A� > � ¨ � , the split point preceding it is �*���A� > � ¨ � � ¨ªF(B � , and so
on. The space complexity of the algorithm is obviously VK�%¨ > �
and the time complexity is VK�%¨ > 2 � , since we need VK� > � time to
find the index � that achieves the minimum for a fixed

}
and

�
,

and the function :�� � for sequences of consecutive elements can be
computed in time VK� > 2�� .
4.3 Sketch-Partitioning for Multi-Join Queries
Queries Containing 2 Joins. When queries contain 2 or more
joins, unfortunately, the problem of computing an optimal parti-
tioning becomes intractable. Consider the problem of estimating
the join-size of the following query over three relations � 	 (con-
taining attribute ��	 ), � 2 (containing attributes � 2 and � ® ) and��® (containing attribute � Û ): � 	 "%$ &����1&|Ü � 2 "%$ &|}��|&F� ��® . We
are interested in computing a partitioning � of attribute domains��	 and � 2 such that

� � �£���
and the quantity , ��$ Var �%]�� �

is minimized. Let the partitions of dom � � y[� be J yIÌ 	 �������1� J yIÌ � � .
Then the number of partitions in � ,

� � �  (¨ 	 ¨ 2 . Also, for values+ � � , let ) 	 �%+ � , ) 2 �%+ � � � and )�®'�Ö� � be the frequencies of the values in
relations � 	�� � 2 and � ® , respectively.

Due to Lemma 3.2, for a partition ��J 	 Ì § � � J 2 Ì § } �bE � ,



Var �%] / & � � ' � Ì & } � ' } 0 � �
B S x �¡£¢��.(& � � ' � ) 	 �%+ � 2 ¢/ ��Ì y�0<. / & � � ' � Ì & } � ' } 0 ) 2 �%+ � � � 2 ¢yN.(& } � ' }) ® �Ö� � 2
F ¢/ ��Ì yI0<. / & � � ' � Ì & } � ' } 0 ) 	 �%+ � 2 ) 2 �%+ � � � 2 ) ® �Ö� � 2 �A¤¥

Since the first term in the above equation for variance is the dom-
inant term, for the sake of simplicity, we focus on computing a par-
titioning � that minimizes the following quantity:�:�á§ �h� 	 �n}á§ }�� 	 Y[[\ á�%.,& � � ' � Ä 	 ^-*%a 2 á/ �%Ì yI0<. / & � � ' � Ì & } � ' } 0Ä 2 ^-*te Â a 2 áyN.(& } � ' } Ä ® ^ Â a 2 (4)

Unfortunately, we have shown that computing such an optimal
partitioning is 
�� -hard based on a reduction from the MINIMUM
SUM OF SQUARES problem [9].

THEOREM 4.5. The problem of computing a partitioning J yIÌ 	 �������� J�yIÌ �|� of dom � � y � for join attribute � y , �  ÚB � � such that� � �  C¨ 	 ¨ 2 �¦�
and the quantity in Equation (4) is minimized

is 
�� -hard.

In the following subsection, we present a simple heuristic for
partitioning attribute domains of multi-join queries that is optimal
if attribute value distributions within each relation are independent.
Optimal Partitioning Algorithm for Independent Join Attributes.
For general multi-join queries, the partitioning problem involves
computing a partitioning J yIÌ 	 �������1� J yIÌ � � of each join attribute do-
main dom � � y � such that

� � �  Ò �y�� 	 ¨Ky �§�
and the quan-

tity , ��$ Var �%]�� � is minimized. Ignoring constants and retaining
only the dominant self-join term of Var �%] � � for each partition ÿ
(see Lemma 3.2), our problem reduces to computing a partitioning
that minimizes the quantity , �%¨ Ò � ¦ � 	 , Ê .fË ·� � )�¦¼�Y¸ � 2 . Since

the 2-join case is a special instance of the general multi-join prob-
lem, due to Theorem 4.5, our simplified optimization problem is
also 
�� -hard. However, if we assume that the join attributes
in each relation are independent, then a polynomial-time dynamic
programming solution can be devised for computing the optimal
partitioning. We will employ this optimal dynamic programming
algorithm for the independent attributes case as a heuristic for split-
ting attribute domains for multi-join queries even when attributes
may not satisfy our independence assumption.

Suppose that for a relation �G¦ , join attribute � E ´�¦ and value+ E dom � � y[� , )[¦ Ì y �%+ � denotes the number of tuples in ��¦ for whom� y has value + . Then, the attribute value independence assumption
implies that for ¸ E ³ ¦ , ) ¦ �Y¸ �  � � ¦ � Ò yN.'× · K ·� � / ÊkÏ yjÐÑ0© � · © . This
is because the independence of attributes implies the fact that the
probability of a particular set of values for the join attributes is
the product of the probabilities of each of the values in the set.
Under this assumption, one can show that the optimization problem
for multiple joins can be decomposed to optimizing the product of
single joins. Recall that attributes � and ¥ H � form a join pair, and
in the following, we will denote by � �Ö� � the relation containing
attribute � y .

THEOREM 4.6. If relations � 	 �������1� � � satisfy the attribute value
independence assumption, then , � ¨ Ò � ¦ � 	 , Ê .[Ë ·�� � )�¦Ó�Y¸ � 2 is

simply ª � ¦ � 	 l º ¦ lª �y�� 	 l º ^ Â ahlÑl º ^mõ æ Â ahl �ày�� 	 i�|�á § � 	 8 á�%.,& � � ' Ä � / y�0�Ì y ^+*�a 2 á�%.,& � � ' Ä � / �'± y�0�Ì y ^+*�a 2
Thus, due to Theorem 4.6, and since ïbð·hñ � © � · ©ï î� ñ � © � / y�0 © © � / �'± y�0 © is a

constant independent of the partitioning, we simply need to com-
pute ¨8y partitions for each attribute � y such that the product of, �|�§ � 	 ¨ , �%.(& � � ' ) � / y�0<Ì y �%+ � 2 , �%.,& � � ' ) � / �f± yI0<Ì y �%+ � 2 for �� �B ���������¥ is minimized and Ò �y�� 	 ¨Ky �«�

. Clearly, the dynamic pro-
gramming algorithm from Section 4.2.2 can be employed to ef-
ficiently compute, for a given value of ¨Py , the optimal ¨8y parti-
tions (denoted by J	¬ ��syIÌ 	 �������1� J	¬ ��syIÌ ��� ) for an attribute � that minimize, �|�§ � 	 ¨ , �%.(& � � ' ) � / y�0<Ì y �%+ � 2 , �%.,& � � ' ) � / �f± yI0<Ì y �%+ � 2 . Let P�Ö� � ¨Ky �
denote this quantity for the optimal partitions; then, our problem is
to compute the values ¨ 	 ��������� ¨L� for the ¥ attributes such thatÒ �yI� 	 ¨8y ��

and Ò �y�� 	 8�Ö� � ¨8y � is minimum. This can be
efficiently computed using dynamic programming as follows. Sup-
pose ® � } � � � denotes the minimum value for Ò �y�� 	 8�Ö� � ¨8y � such
that ¨ 	 ��������� ¨ � satisfy the constraint that Ò �yI� 	 ¨ y �¯�

, forB �«} � ¥ and B �«�«�§�
. Then, one can define ®¡� } � � �

recursively as follows:

®¡� } � � �  �° 8� } � � � if
}  ¡B���O� 	?� § �²± =�® � } F B � Õ%� x 8� } �,³ ± §�´ � D otherwise

Clearly, ®¡�%¥ � � � can be computed using dynamic program-
ming, and it corresponds to the minimum value of function, � ¨ Ò � ¦ � 	 , Ê .[Ë ·�� � ) ¦ �Y¸ � 2 for the optimal partitioning when

attributes are independent. Furthermore, if �8� } � � � denotes the
optimal

�
partitions of the attribute space over � 	��������1�j� � , then�8� } � � �  �=NJ ¬ ��s	 Ì 	 �������1� J ¬ ��s	 Ì ± D if

}  �B . Otherwise, �8� } � � �  �8� } F¬B � Õ q � � =�J ¬ ��s� Ì 	 �������1� J ¬ ��s� Ì+µV¶' ·V¸ D , where Õ q  ¹���jZ����O� 	?� § �5±=1®¡� } F B � Õ%� x 8� } �(³ ± §´ � D .
Computing 8� } � � � for B �º}Ú� ¥ and B �º� �»�

us-
ing the dynamic programming algorithm from Section 4.2.2 takesVK� , �y�� 	 �dom � � y � � 2 � � time in the worst case. Furthermore, us-
ing the computed 8� } � � � values to compute ® �%¥ � � � has a worst-
case time complexity of VK�%¥ � � . Thus, overall, the dynamic pro-
gramming algorithm for computing ®¡�%¥ � � � has a worst-case time
complexity of VK�3�%¥ H , �yI� 	 � dom � � y�� � 2�� � � . The space complex-
ity of the dynamic programming algorithm is VK�<�.��¼'y � dom � � y � � � � ,
since computation of ® for a specific value of

}
requires only ®

values for
} F B and  values of

}
to be kept around.

Note that since building good one-dimensional histograms on
streams is much easier than building multi-dimensional histograms,
in practice, we expect the partitioning of the domain of join at-
tributes to be made based exclusively on such histograms. In this
case, the independence assumption will need to be made anyway
to approximate the multi-dimensional frequencies, and so the opti-
mum solution can be found using the above proposed method.

5. EXPERIMENTAL STUDY
In this section, we present the results of an extensive experimen-

tal study of our sketch-based techniques for processing queries in a



streaming environment. Our objective was twofold: We wanted to
(1) compare our sketch-based method of approximately answering
complex queries over data streams with traditional histogram-based
methods, and (2) examine the impact of sketch partitioning on the
quality of the computed approximations. Our experiments consider
a wide range of COUNT queries on both synthetic and real-life data
sets. The main findings of our study can be summarized as follows.� Improved Query Answer Quality. Our sketch-based algorithms
are quite accurate when estimating the results of complex aggregate
queries. Even with few kilobytes of memory, the relative error in fi-
nal answer is frequently less than 10%. Our experiments also show
that our sketch-based method gives much more accurate answers
than on-line histogram-based methods, the improvement in accu-
racy ranging from a factor of three to over an order of magnitude.� Effectiveness of Sketch Partitioning. Our study shows that
partitioning attribute domains (using our dynamic programming
heuristic to compute the partitions) and carefully allocating the
available memory to sketches for the partitions can significantly
boost the quality of returned estimates.� Impact of Approximate Attribute Statistics. Our experiments
show that sketch partitioning is still very effective and robust even if
only very rough and approximate attribute statistics for computing
partitions are available.

Thus our experimental results validate the thesis of this paper
that sketches are a viable, effective tool for answering complex ag-
gregate queries over data streams, and that a careful allocation of
available space through sketch partitioning is important in prac-
tice. In the next section, we describe our experimental setup and
methodology. All experiments in this paper were performed on a
Pentium III with 1 GB of main memory, running Redhat Linux 7.2.

5.1 Experimental Testbed and Methodology
Algorithms for Query Answering. We focused on algorithms that
are truly on-line in that they can work exclusively with a limited
amount of main memory and a small per-tuple processing over-
head. Since histograms are a popular data reduction technique for
approximate query answering [20], and a number of algorithms for
constructing equi-depth histograms on-line have been proposed re-
cently [21, 16], we consider equi-depth histograms in our study.
However, we do not consider random-sample data summaries since
these have been shown to perform poorly for queries with one or
more joins [1, 6, 2].� Equi-Depth Histograms. We construct one-dimensional equi-
depth histograms off-line since space-efficient on-line algorithms
for histograms are still being proposed in the literature, and we
would like our study to be valid for the best single-pass algorithms
of the future. We do not consider multi-dimensional histograms in
our experiments since their construction typically involves multi-
ple passes over the data. (The technique of Gibbons et al. [14] for
constructing approximate multi-dimensional histograms utilizes a
backing sample and thus cannot be used in our setting.) Conse-
quently, we use the attribute value independence assumption to ap-
proximate the value distribution for multiple attributes from the in-
dividual attribute histograms. Thus, by assuming that values within
each bucket are distributed uniformly and attributes are indepen-
dent, the entire relation can be approximated and we use this ap-
proximation to answer queries. Note that a one-dimensional his-
togram with ½ buckets requires

� ½ words (4-byte integers) of stor-
age, one word for each bucket boundary and one for each bucket
count.� Sketches. We use our sketch-based algorithm from Section 3
for answering queries, and the dynamic programming-based al-

gorithm from Section 4.3 for computing partitions. We employ
sophisticated de-randomization techniques to dramatically reduce
the overhead for generating the >hy families of independent random
variables6. Thus, when attribute domains are not partitioned, the
total storage requirement for a sketch is approximately w 	:x w 2 x[ß
words, which is essentially the overhead of storing w 	bx w 2 random
variables for the ß relations. On the other hand, in case attributes
are split, then the space overhead for the sketch is approximately, � w � x w 2 x[ß words. In our experiments, we found that smaller
values for w 2 generally resulted in better accuracy, and so we set w 2
to 2 in all our experiments.

In each experiment, we allocate the same amount of memory to
histograms and sketches.
Data Sets. We used two real-life and several synthetic data sets in
our experiments. We used the synthetic data generator employed
previously in [24, 6] to generate data sets with very different char-
acteristics for a wide variety of parameter settings.� Census data set (www.bls.census.gov). This data set was taken
from the Current Population Survey (CPS) data, which is a monthly
survey of about 50,000 households conducted by the Bureau of
the Census for the Bureau of Labor Statistics. Each month’s data
contains around 135,000 tuples with 361 attributes, of which we
used five attributes in our study: age, income, education, weekly
wage and weekly wage overtime. The income attribute is dis-
cretized and has a range of 1:14, and education is a categori-
cal attribute with domain 1:46. The three numeric attributes age,
weekly wage and weekly wage overtime have ranges of 1:99,
0:288416 and 0:288416, respectively. Our study use data from
two months (August 1999 and August 2001) containing 72100 and
81600 records,7 respectively, with a total size of 6.51 MB.� Synthetic data sets. We used the synthetic data generator from
[24] to generate relations with 1, 2 and 3 attributes. The data gener-
ator works by populating uniformly distributed rectangular regions
in the multi-dimensional attribute space of each relation. Tuples
are distributed across regions and within regions using a Zipfian
distribution with values ¾�� � s�¿ � and ¾N� � s �?À , respectively. We set the
parameters of the data generator to the following default values:
size of each domain=1024, number of regions=10, volume of each
region=1000–2000, skew across regions ( ¾ � � s�¿ � )=1.0, skew within
each region ( ¾�� � s �fÀ ) =0.0–0.5 and number of tuples in each rela-
tion = 10,000,000. By clustering tuples within regions, the data
generator used in [24] is able to model correlation among attributes
within a relation. However, in practice, join attributes belonging
to different relations are frequently correlated. In order to capture
this attribute dependency across relations, we introduce a new per-
turbation parameter � (with default value 1.0). Essentially, relation� 2 is generated from relation � 	 by perturbing each region ß in� 	 using parameter � as follows. Consider the rectangular space
around the center of ß obtained as a result of shrinking ß by a fac-
tor � along each dimension. The new center for region ß in � 2 is
selected to be a random point in the shrunk space.
Queries. The workload used to evaluate the various approximation
techniques consists of three main query types: (1) Chain JOIN-
COUNT Queries: We join two or more relations on one or more
attributes such that the join graph forms a chain, and we return the
number of tuples in the result of the join as output of the query;
(2) Star JOIN-COUNT Queries: We join two or more relations on
one or more attributes such that the join graph forms a star, and
we return the number of tuples in the output of the query; (3) Self-p

A detailed discussion of this is outside the scope of this paper.o
We excluded records with missing values.



join JOIN-COUNT Queries: We self-join a relation on one or more
attributes, and we return the number of tuples in the output of the
query. We believe that the above-mentioned query types are fairly
representative of typical query workloads over data streams.
Answer-Quality Metrics. In our experiments we use the absolute
relative error (

© À�Á s � À § � À �h� � ¬QÂ ©À�Á s � À § ) in the aggregate value as a mea-
sure of the accuracy of the approximate query answer. We repeat
each experiment 100 times, and use the average value for the errors
across the iterations as the final error in our plots.

5.2 Results: Sketches vs. Histograms
Synthetic Data Sets. Figure 2 depicts the error due to sketches and
histograms for a self-join query as the amount of available memory
is increased. It is interesting to observe that the relative error due
to sketches is almost an order of magnitude lower than histograms.
The self-join query in Figure 2 is on a relation with a single attribute
whose domain size is 1024000. Further, the one-dimensional data
set contains 10,000 regions with volumes between 1 and 5, and a
skew of 0.2 across the relations ( ¾�� � s-¿ � ). Histograms perform very
poorly on this data set since a few buckets cannot accurately capture
the data distribution of such a large, sparse domain with so many
regions.
Real-life Data Sets. The experimental results with the Census
1999 and 2001 data sets are depicted in Figures 3–5. Figure 3
is a join of the two relations on the Weekly Wage attribute and
Figure 4 involves joining the relations on the Age and Education
attributes. Finally, Figure 5 contains the result of a star query in-
volving four copies of the 2001 Census data set, with center of
the star joined with the three other copies on attributes Age, Edu-
cation and Income. Observe that histograms perform worse than
sketches for all three query types; their inferior performance for the
first join query (see Figure 3) can be attributed to the large domain
size of Weekly Wage (0:288416), while their poor accuracies for
the second and third join queries (see Figures 4 and 5) are due to
the inherent problems of approximating multi-dimensional distri-
butions from one-dimensional statistics. Specifically, the accuracy
of the approximate answers due to histograms suffers because the
attribute value independence assumption leads to erroneous esti-
mates for the multi-dimensional frequency histograms of each re-
lation. Note that this also causes the error for histogram-based data
summaries to improve very little as more memory is made avail-
able to the streaming algorithms. On the other hand, the relative
error with sketches decreases significantly as the space allocated to
sketches is increased – this is only consistent with theory since ac-
cording to Theorem 3.1, the sketch error is inversely proportional
to the square root of sketch storage. It is worth noting that the rel-
ative error of the aggregates for sketches is very low; for all three
join queries, it is less than 2% with only a few kilobytes of memory.

5.3 Results: Sketch Partitioning
In this set of experiments, each sketch is allocated a fixed amount

of memory, and the number of partitions is varied. Also, the sketch
partitions are computed using approximate statistics from histograms
with 25, 50 and 100 buckets (we plot a separate curve for each his-
togram size value). Intuitively, histograms with fewer buckets oc-
cupy less space, but also introduce more error into the frequency
statistics for the attributes based on which the partitions are com-
puted. Thus, our objective with this set of experiments is to show
that even with approximate statistics from coarse-grained small his-
tograms, it is possible to use our dynamic programming heuristic
to compute partitions that boost the accuracy of estimates.
Synthetic Data Sets. Figure 6 illustrates the benefits of partition-
ing attribute domains, on the accuracy of estimates for a chain join

query involving three two-dimensional relations, in which the two
attributes of a central relation are joined with one attribute belong-
ing to each of the other two relations. The memory allocated to the
sketch for the query is 9000 words.

Clearly, the graph points to two definite trends. First, as the
number of sketch partitions increases, the error in the computed
aggregates becomes smaller. The second interesting trend is that as
histograms become more accurate due to an increased number of
buckets, the computed sketch partitions are more effective in terms
of reducing error. There are also two further observations that are
interesting. First, most of the error reduction occurs for the first
few partitions and after a certain point, the incremental benefits of
further partitioning are minor. For instance, four partitions result
in most of the error reduction, and very little gain is obtained be-
yond four sketch partitions. Second, even with partitions computed
using very small histograms and crude attribute statistics, signifi-
cant reductions in error are realized. For instance, for an attribute
domain of size 1024, even with 25 buckets we are able to reduce
error by a factor of 2 using sketch partitioning. Also, note that
our heuristic based on dynamic programming for splitting multiple
join attributes (see Section 4.3) performs quite well in practice and
is able to achieve significant error reductions.
Real-life Data Sets. Sketch partitioning also improves the accu-
racy of estimates for the Census 1999 and 2001 real-life data sets,
as depicted in Figure 7. As for synthetic data sets, we allocate a
fixed amount, 4000 words, of memory to the sketch for the query,
and vary the number of partitions. Also, histograms with 25, 50
and 100 buckets are used to compute sketch partitions. Figure 7 is
the join of the two relations on attribute Weekly Wage Overtime
for Census 1999 and attribute Weekly Wage for Census 2001.

From the figure, we can conclude that the real-life data sets ex-
hibit the same trends that were previously observed for synthetic
data sets. The benefits of sketch partitioning in terms of significant
reductions in error are similar for both sets of experiments. Note
also that histograms with a small number of buckets are effective
for partitioning sketches, even though they give a poor estimate
of the join-size for the experiment in Figure 3. This suggests that
merely guessing the shape of the distributions is sufficient in most
practical situations to allow good sketch partitions to be built.

6. CONCLUSIONS
In this paper, we considered the problem of approximatively an-

swering general aggregate SQL queries over continuous data streams
with limited memory. Our approach is based on computing small
“sketch” summaries of the streams that are used to provide approx-
imate answers of complex multi-join aggregate queries with prov-
able approximation guarantees. Furthermore, since the degrada-
tion of the approximation quality due to the high variance of our
randomized sketch synopses may be a concern in practical situa-
tions, we developed novel sketch-partitioning techniques. Our pro-
posed methods take advantage of existing statistical information
on the stream to intelligently partition the domain of the underly-
ing attribute(s) and, thus, decompose the sketching problem in a
way that provably tightens the approximation guarantees. Finally,
we conducted an extensive experimental study with both synthetic
and real-life data sets to determine the effectiveness of our sketch-
based techniques and the impact of sketch partitioning on the qual-
ity of computed approximations. Our results demonstrate that (a)
our sketch-based technique provides approximate answers of bet-
ter quality than histograms (by factors ranging from three to an
order of magnitude), and (b) sketch partitioning, even when based
on coarse statistics, is an effective way to boost the accuracy of our
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Figure 2: Self-join (1 Attribute)
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Figure 3: Join (1 Attribute)
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Figure 4: Join (2 Attributes)
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Figure 5: Join (3 Attributes)
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Figure 6: Join (3 Relations)
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Figure 7: Join (1 Attribute)

estimates (by a factor of almost two).
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