
XTRACT: A System for Extracting Document Type Descriptors
from XML Documents

Minos Garofalakis
Bell Laboratories

minos@bell-labs.com

Aristides Gionis�

Stanford University

gionis@cs.stanford.edu

Rajeev Rastogi
Bell Laboratories

rastogi@bell-labs.com

S. Seshadri
Bell Laboratories

seshadri@bell-labs.com

Kyuseok Shimy

KAIST and AITrc

shim@cs.kaist.ac.kr

Abstract
XML is rapidly emerging as the new standard for data representa-
tion and exchange on the Web. An XML document can be accom-
panied by aDocument Type Descriptor(DTD) which plays the role
of a schema for an XML data collection. DTDs contain valuable
information on the structure of documents and thus have a crucial
role in the efficient storage of XML data, as well as the effective
formulation and optimization of XML queries. In this paper, we
propose XTRACT, a novel system for inferring a DTD schema for
a database of XML documents. Since the DTD syntax incorporates
the full expressive power ofregular expressions, naive approaches
typically fail to produce concise and intuitive DTDs. Instead, the
XTRACT inference algorithms employ a sequence of sophisticated
steps that involve: (1) finding patterns in the input sequences and
replacing them with regular expressions to generate “general” can-
didate DTDs, (2) factoring candidate DTDs using adaptations of
algorithms from the logic optimization literature, and (3) apply-
ing the Minimum Description Length (MDL) principle to find the
best DTD among the candidates. The results of our experiments
with real-life and synthetic DTDs demonstrate the effectiveness of
XTRACT’s approach in inferring concise and semantically mean-
ingful DTD schemas for XML databases.

1 Introduction
Motivation and Background. The genesis of the Extensi-
ble Markup Language (XML) was based on the thesis that
structured documents can be freely exchanged and manipu-
lated, if published in a standard, open format. Indeed, as a
corroboration of the thesis, XML today promises to enable
a suite of next-generation Web applications ranging from in-
telligent web searching to electronic commerce.

In many respects, XML data is an instance ofsemi-
structured data[1]. XML documents comprise hierarchi-
cally nested collections ofelements, where each element
can be either atomic (i.e., raw character data) or composite
(i.e., a sequence of nested subelements). Further,tagsstored
with elements in an XML document describe the semantics

�Work done while visiting Bell Laboratories.
yWork done while visiting Bell Laboratories.

of the data rather than simply specifying how the element
is to be displayed (as in HTML). Thus, XML data, like
semistructured data, is hierarchically structured and self-
describing.

A characteristic, however, that distinguishes XML from
semistructured data models is the notion of aDocument Type
Descriptor(DTD) that may optionally accompany an XML
document. A document’s DTD serves the role of a schema
specifying the internal structure of the document. Essen-
tially , a DTD specifies for every element, theregular expres-
sionpattern that subelement sequences of the element need
to conform to. DTDs are critical to realizing the promise of
XML as the data representation format that enables free in-
terchange of electronic data (EDI) and integration of related
news, products, and services information from disparate data
sources. This is because, in the absence of DTDs, tagged
documents have little meaning. However, once the major
software vendors and corporations agree on domain-specific
standards for DTD formats, it would become possible for
inter-operating applications to extract, interpret, and analyze
the contents of a document based on the DTD that it con-
forms to.

In addition to enabling the free exchange of electronic
documents through industry-wide standards, DTDs also
provide the basic mechanism for defining the structure of
the underlying XML data. As a consequence, DTDs play
a crucial role in the efficient storage of XML data as well
as the formulation, optimization, and processing of queries
over a collection of XML documents. For instance, in
[23], DTD information is exploited to generate effective
relational schemas, which are subsequently employed to
efficiently store and query entire XML documents in a
relational database. In [7], frequently occurring portions of
XML documents are stored in a relational system, while the
remainder is stored in an overflow graph; once again, the
DTD is exploited to simplify overflow mappings. Similarly,
DTDs can be used to devise efficient plans for queries
and thus speed up query evaluation in XML databases by
restricting the search to only relevant portions of the data
(see, for example, [8, 13]). The basic idea is to use the
knowledge of the structure of the data captured by the DTD
to prune elements that cannot potentially satisfy the path
expression in the query. Finally, by shedding light on how
the underlying data is structured, DTDs aid users in forming

meaningful queries over the XML database.
Despite their importance, however, DTDs arenot manda-

tory and an XML document may not always have an accom-
panying DTD. In fact, several recent papers (e.g., [12, 25])
claim that it is frequently possible that only specific portions
of XML databases will have associated DTDs, while the
overall database is still “schema-less”. This may be the case,
for instance, when large volumes of XML documents are
automatically generated from data stored in relational data-
bases, flat files (e.g., HTML pages, bibliography files), or
other semistructured data repositories. Since very little data
is in XML format today, it is very likely that, at least initially,
the majority of XML documents will be automatically gen-
erated from pre-existing data sources by a new generation
of software tools. In most cases, such automatically-created
document collections will not have an accompanying DTD.

Therefore, based on the above discussion on the virtues
of a DTD, it is important to devise algorithms and tools that
can infer an accurate, meaningful DTD for a given collection
of XML documents (i.e.,instancesof the DTD). This is
not an easy task. Since the DTD syntax incorporates the
full specification power of regular expressions, manually
deducing such a DTD schema for even a small set of
XML documents created by a user could prove to be a
process of daunting complexity. Furthermore, as we show
in this paper, naive approaches fail to deliver meaningful
and intuitive DTD descriptions of the underlying data.
Both problems are, of course, exacerbated forlarge XML
document collections. In light of the several benefits of
DTDs, we can motivate a myriad of potential applications
for efficient, automated DTD discovery tools. For example,
consider an employment web site that integrates information
on job openings from thousands of different web sites
including company home pages, newspaper classified sites,
and so on. These XML documents, although related, may
not all have the same structure and, even if some of the
documents are accompanied by DTDs, the DTDs may not
be identical. An alternative to manually transforming all the
XML documents to conform to a single format would be to
simply store the documents in their original formats and use
DTD discovery tools to derive a single DTD description for
the entire database. This inferred DTD can then help in the
formulation, optimization, and processing of queries over
the database of stored XML documents. Further, the ability
to extract DTDs for a range of XML formats supported by
the major participants in a specific industrial setting can also
aid in the DTD standardization process for the industry.

Our Contributions. In this paper, we describe the archi-
tecture of XTRACT, a novel system for inferring an accu-
rate, meaningful DTD schema for a repository of XML doc-
uments. A naive and straightforward solution to our DTD
extraction problem would be to infer as the DTD for an ele-
ment, a “concise” expression which describesexactlyall the
sequences of subelements nested within the element in the
entire document collection. As we demonstrate in Section 3,

however, the DTDs generated by this approach tend to be
voluminous and unintuitive (especially for large XML doc-
ument collections). In fact, we discover that accurate and
meaningful DTD schemas that are also intuitive and appeal-
ing to humans (i.e., resemble what a human expert is likely
to come up with) tend togeneralize. That is, “good” DTDs
are typically regular expressions describing subelement se-
quences thatmay not actually occurin the input XML doc-
uments. (Note that this, in fact, is always the case for DTD
regular expressions that correspond to infinite regular lan-
guages, e.g., DTDs containing one or more Kleene stars
“*” [15].) In practice, however, there are numerous such
candidate DTDs that generalize the subelement sequences
in the input, and choosing the DTD that best describes the
structure of these sequences is a non-trivial task. In the infer-
ence algorithms employed in the XTRACT system, we pro-
pose the following novel combination of sophisticated tech-
niques to generate DTD schemas that effectively capture the
structure of the input sequences.

�Generalization. As a first step, the XTRACT system em-
ploys novel heuristic algorithms for finding patterns in each
input sequence and replacing them with appropriate regular
expressions to produce more general candidate DTDs. The
main goal of the generalization step is to judiciously intro-
duce metacharacters (like Kleene stars “*”) to produce reg-
ular subexpressions that generalize the patterns observed in
the input sequences. Our generalization heuristics are based
on the discovery of frequent, neighboring occurrences of
subsequences and symbols within each input sequence. In
their effort to introduce a sufficient amount of generalization
while avoiding an explosion in the number of resulting pat-
terns, our techniques are inspired by practical, real-life DTD
examples.

�Factoring. As a second step, the XTRACT systemfactors
common subexpressions from the generalized candidate
DTDs obtained from the generalization step, in order to
make them more concise. The factoring algorithms applied
are appropriate adaptations of techniques from the logic
optimization literature [4, 24].

�Minimum Description Length (MDL) Principle. In
the final and most important step, the XTRACT system
employs Rissanen’sMinimum Description Length(MDL)
principle [21, 22] to derive an elegant mechanism for
composing a near-optimal DTD schema from the set of
candidate DTDs generated by the earlier two steps. (Our
MDL-based notion of optimality will be defined formally
later in the paper.) The MDL principle has its roots in
information theory and, essentially, provides a principled,
scientific definition of the optimal “theory/model” that can
be inferred from a set of data examples [20]. Abstractly,
in our problem setting, MDL ranks each candidate DTD
depending on the number of bits required to describe
the input collection of sequencesin terms of the DTD
(DTDs requiring fewer bits are ranked higher). As a
consequence, the optimal DTD according to the MDL

principle is the one that is general enough to cover a
large subset of the input sequences but, at the same time,
captures the structure of the input sequences with a fair
amount of detail, so that they can be described easily
(with few additional bits) using the DTD. Thus, the MDL
principle provides a formal notion of “best DTD” that
exactly matches our intuition. Using MDL essentially
allows XTRACT to control the amount of generalization
introduced in the inferred DTD in a principled, scientific
and, at the same time, intuitively appealing fashion. We
demonstrate that selecting the optimal DTD based on the
MDL principle has a direct and natural mapping to the
Facility Location Problem(FLP), which is known to be
NP-complete [14]. Fortunately, efficient approximation
algorithms with guaranteed performance ratios have been
proposed for the FLP in the literature [6], thus allowing us to
efficiently compose the final DTD in a near-optimal manner.

We have implemented our XTRACT DTD derivation al-
gorithms and conducted an extensive experimental study
with both real-life and synthetic DTDs. Our findings show
that, for a set of random inputs that conform to a predeter-
mined DTD, XTRACT always produces a DTD that is either
identical or very close to the original DTD. We also observe
that the quality of the DTDs returned by XTRACT is far
superior compared to those output by the IBM Alphaworks
DDbE (Data Descriptors by Example) DTD extraction tool1,
which is unable to identify a majority of the DTDs. Fur-
ther, a number of the original DTDs correctly inferred by
XTRACT contain several regular expressions terms, some
nested within one another. Thus, our experimental results
clearly demonstrate the effectiveness of XTRACT’s method-
ology for deducing fairly complex DTDs.

Several extensions to DTDs, e.g., Document Content
Descriptors (DCDs) and XML Schemas, are being evolved
by the Web community. These extensions aim to add
typing information, since DTDs treat all data as strings.
Therefore, XTRACT, can be used with little or no changes
for inferring DCDs and XML Schemas in conjunction
with other mechanisms for inferring the types. However,
these proposals are still evolving – therefore, we do not
concentrate on these extensions in this paper.

The work reported in this paper has been done in the con-
text of theSERENDIP data mining project at Bell Labo-
ratories (www.bell-labs.com/projects/serendip).

2 Related Work
The problem of mining DTDs from a collection of XML
documents is, to the best of our knowledge, novel and has
not been previously addressed in the literature. A few DTD
extraction software tools can be found on the Web (e.g., the
IBM Alphaworks DDbE product) – however, it has been
our experience that these tools are somewhat naive in their
approach and the quality of the DTDs inferred by them is
poor (see Section 7).

1www.alphaworks.ibm.com/formula/xml/

The problem of extracting a schema from semistructured
data has been addressed in [8, 13, 18]. Although, XML can
be viewed as an instance of semistructured data, the kinds
of schema considered in [8, 13, 18] are very different from
a DTD. The schemas extracted by [8, 13, 18] attempt to
find a typing for semistructured data. Assuming a graph-
based model for semistructured data (nodes denote objects
and labels on edges denote relationships between them),
finding a typing is tantamount to grouping objects that have
similarly labeled edges to and from similarly typed objects.
The typing then describes this grouping in terms of the labels
of the edges to (from) this type of objects and the types of
the objects at the other end of the edge. In contrast, one
can perhaps view the DTD as having already grouped all
objects based on their incoming edges (tag of the element)
into the same type and then describing the possible sequence
of outgoing edges (subelements) as a regular expression. It is
the fact that the outgoing edges from a type can be described
by an arbitrary regular expression that distinguishes DTDs
from the schemas in semistructured databases. Since the
schemas in semistructured databases are expressed using
plain sequences or sets of edges, they cannot be used to infer
DTDs corresponding to arbitrary regular expressions.

The inference of formal languages from examples has a
long and rich history in the field of computational learning
theory, and more related to our work is the extensive
study of the inference ofDeterministic Finite Automata
(DFAs) [2, 10, 11] (see also [19] for a detailed survey of
the topic). The above line of work is purely theoretical and
focuses on investigating the computational complexity of the
language inference problem, while we are mainly interested
in devising practical algorithms for real-world applications.
In this sense, our research is more closely related to the
work in [5] which addresses the problem of approximating
roughly equivalentregular expressions from a long enough
string, and the work in [16] where theMDL principle is
used to infer apattern languagefrom positives examples.
However, the problem tackled in [16] is much simpler
than ours, since it assumes that the set of simple patterns
whose subset is to be computed is available. Furthermore,
the patterns considered in [16] are simple sequences that
are permitted to contain single symbol wildcards. In our
problem setting, unlike [16], patterns are general regular
expressions and are not known apriori.

3 Problem Formulation and Overview
In this section, we present a precise definition of the problem
of inferring a DTD from a collection of XML documents
and then present an overview of the steps performed by
the XTRACT system. Briefly, an XML document consists
of nested element structures starting with a root element.
Subelements of an element can either be elements or simple
character data. A DTD is a grammar for describing the
structure of an XML document. A DTD constrains the
structure of an element by specifying a regular expression

that its subelement sequences have to conform to. Figure 1
illustrates an example XML document, in which the root
element (article) has two nested subelements (title
and author), and theauthor element in turn has two
nested subelements. Figure 2 illustrates a DTD that our
example XML document conforms to. More details on the
XML specification can be found in [3]. For brevity, in the
remainder of the paper, we denote elements of an XML
document by a single letter from the lower-case alphabet.

<article>
<title>

A Relational Model for Large Shared
Data Banks

</title>
<author>

<name> E. F. Codd </name>
<affiliation> IBM Research </affiliation>

</author>
</article>

Figure 1: An Example XML Document

<!ELEMENT article(title, author*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author(name, affiliation)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>

Figure 2: An Example DTD

3.1 Problem Definition
Our primary focus in this paper is to infer a DTD for a
collection of XML documents. Thus, for each element
that appears in the document collection, our goal is to
derive a regular expression that subelement sequences for
the element (in the XML documents) conform to. Note
that an element’s DTD is completely independent of the
DTD for other elements, and only restricts the sequence
of subelements nested within the element. Therefore, for
simplicity of exposition, in the remainder of the paper, we
concentrate on the problem of extracting a DTD for a single
element. We do not address the problem of computing
attribute lists for an element – since these are simple lists,
their computation is not particularly challenging.

Let e be an element that appears in the XML documents
for which we want to infer a DTD. It is straightforward to
compute the sequence of subelements nested within each
<e> </e> pair in the XML document collection. LetI
denote the set ofN such sequences, one sequence for every
occurrence of elemente in the data. The problem we address
in this paper can be stated as follows.

Problem Statement. Given a setI of N input sequences
nested within elemente, compute a DTD fore such that
every sequence inI conforms to the DTD.2

As stated, an obvious solution to the problem is to find the
most “concise” regular expressionR whose language isI .
One mechanism to find such a regular expression is to factor
as much as possible, the expression corresponding to theor
of sequences inI . Factoring a regular expression makes it
“concise” without changing the language of the expression.
For example,abjac can be factored intoa(bjc). An alternate
method for computing the most concise regular expression
is to first find the automaton with the smallest number of
states that acceptsI and then derive the regular expression
from the automaton. (Note, however, that the obtained
regular expression may not be the shortest regular expression
for I .) In any case, such a concise regular expression
whose language isI , is unfortunately not a “good” DTD
in the sense it tends to be voluminous and unintuitive. We
illustrate this using the DTD of Figure 2. Suppose we have
a collection of XML documents that conform to this DTD.
Abbreviating thetitle tag byt, and theauthor tag by
a, it is reasonable to expect the following sequences to be
the subelement sequences of thearticle element in the
collection of XML documents:t, ta, taa, taaa, taaaa.
Clearly, the most concise regular expression for the above
language istjt(aja(aja(ajaa))) which is definitely much
more voluminous and much less intuitive than a DTD such
asta�.

In other words, the obvious solution above never “gen-
eralizes” and would therefore never contain metacharacters
like � in the inferred DTD. Clearly, a human expert would at
most times want to use such metacharacters in a DTD to suc-
cinctly convey the constraints he/she wishes to impose on the
structure of XML documents. Thus, the challenge is to infer
for the set of input sequencesI , a “general” DTD which is
similar to what a human would come up with. However, as
the following example illustrates, there can be several possi-
ble “generalizations” for a given set of input sequences and
thus we need to devise a mechanism for choosing the one
that best describes the sequences.

Example 3.1 ConsiderI = fab; abab; abababg. A number
of DTDs match sequences inI – (1) (a j b)�, (2) ab j
abab j ababab, (3) (ab)�, (4) ab j ab(ab j abab), and
so on. DTD (1) is similar to ANY in that it allows any
arbitrary sequence ofas andbs, while DTD (2) is simply
an or of all the sequences inI . DTD (4) is derived from
DTD (2) by factoring the subsequenceab from the last two
disjuncts of DTD (2). The problem with DTD (1) is that
it represents a gross over-generalization of the input, and
the inferred DTD completely fails to capture any structure
inherent in the input. On the other hand, DTDs (2) and (4)
accurately reflect the structure of the input sequences but do
not generalize or learn any meaningful patterns which make
the DTDs smaller or simpler to understand. Thus, none of
the DTDs (1), (2) or (4) seem “good”. However, of the above
DTDs, (3) has great intuitive appeal since it is succinct and
it generalizes the set of input sequences without losing too
much information about the structure of the sequences.2

Based on the discussion in the above example, we can
characterize the set of desirable DTDs by placing the
following two qualitative restrictions on the inferred DTD.

R1: The DTD should beconcise(i.e., small in size).

R2: The DTD should beprecise(i.e, not cover too many
sequences not contained inI).

Restriction R1 above ensures that the inferred DTD is
easy to understand and succinct, thus eliminating, in many
cases, concise regular expressions whose language isI .
Restriction R2, on the other hand, attempts to ensure that the
DTD is not too general and captures the structure of input
sequences, thus eliminating a DTD such as ANY. While the
above restrictions seem reasonable at an intuitive level, in
general, there is a tradeoff between a DTD’s “conciseness”
and its “preciseness”, and a good DTD is one that strikes
the right balance between the two. The problem here is
that conciseness and preciseness are qualitative notions – in
order to resolve the tradeoff between the two, we need to
devise quantitative measures for mathematically capturing
these two qualitative notions.

3.2 Using the MDL Principle to Define a Good DTD
We use the MDL principle [21, 22] to define an information-
theoretic measure for quantifying and thereby resolving the
tradeoff between the conciseness and preciseness properties
of DTDs. The MDL principle has been successfully applied
in the past in a variety of situations ranging from construct-
ing good decision tree classifiers [17, 20] to learning com-
mon patterns in sets of strings [16].

Roughly speaking, the MDL principle states that the best
theory to infer from a set of data is the one which minimizes
the sum of

(A) the length of the theory, in bits, and

(B) the length of the data, in bits, when encoded with the
help of the theory.

We will refer to the above sum for a theory, as theMDL cost
for the theory. The MDL principle is a general one and needs
to be instantiated appropriately for each situation. In our
setting, the theory is the DTD and the data is the sequences in
I . Thus, the MDL principle assigns each DTD an MDL cost
and ranks the DTDs based on their MDL costs (DTDs with
lower MDL costs are ranked higher). Furthermore, parts (A)
and (B) of the MDL cost for a DTD depend directly on its
conciseness and preciseness, respectively. Part (A) is the
number of bits required to describe the DTD and is thus a
direct measure of its conciseness. Further, since a DTD that
is more precise captures the structure of the input sequences
more accurately, fewer bits are required to describe the
sequences inI in terms of a more precise DTD. As a result,
Part (B) of the MDL cost captures a DTD’s preciseness.
The MDL cost for a DTD thus provides us with an elegant
and principled mechanism (rooted in information theory)
for quantifying (and combining) the conflicting concepts of
conciseness and preciseness in a single unified framework.

Note that the actual encoding scheme used to specify a
DTD as well as the data (with the help of the DTD) plays
a critical role in determining the actual values for the two
components of the MDL cost. We defer the details of
the actual encoding scheme to Section 4. However, in the
following example, we employ a simple encoding scheme (a
coarser version of the scheme in Section 4) to illustrate how
ranking DTDs based on their MDL cost closely matches our
intuition of their “goodness”.

Example 3.2 Consider the input setI and DTDs from
Example 3.1. We compute the MDL cost of each DTD,
which, as mentioned earlier, is the cost of encoding the
DTD itself and the sequences inI in terms of the DTD. We
then rank the DTDs based on their MDL costs (DTDs with
smaller costs are considered better). In our simple encoding
scheme, we assume a cost of 1 unit for each character.

DTD (1), (a j b)�, has a cost of 6 for encoding the DTD.
In order to encode the sequenceabab using the DTD, we
need one character to specify the number of repetitions of
the the term(a j b) that precedes the� (in this case, this
number is 4), and 4 additional characters to specify which
of a or b is chosen from each repetition. Thus, the total cost
of encodingabab using(a j b)� is 5 and the MDL cost of
the DTD is6 + 3 + 5 + 7 = 21. Similarly, the MDL cost
of DTD (2) can be shown to be 14 (to encode the DTD)+
3 (to encode the input sequences; we need one character to
specify the position of the disjunct for each sequence) = 17.
The cost of DTD (3) is 5 (to encode the DTD)+ 3 (to encode
the input sequences – note that we only need to specify the
number of repetitions of the termab for each sequence) =
8. Finally, DTD (4) has a cost of 14 + 5 (1 character to
encode sequenceab and 2 characters for each of the other
two input sequences) = 19. Thus, since DTD (3) has the
least MDL cost, it would be considered the best DTD by the
MDL principle – which matches our intuition.2

3.3 Overview of the XTRACT System

The architecture of the XTRACT system is illustrated in
Figure 3(a). As shown in the figure, the system consists
of three main components: the generalization module, the
factoring module, and the MDL module. Input sequences in
I are processed by the three subsystems one after another,
the output of one subsystem serving as input to the next.
We denote the outputs of the generalization and factoring
modules bySG andSF , respectively. Observe that bothSG
andSF contain the initial input sequences inI . This is to
ensure that the MDL module has a wide range of DTDs to
choose from that includes the obvious DTD which is simply
an or of all the input sequences inI . In the following, we
provide a brief description of each subsystem; we defer a
more detailed description of the algorithms employed by
each subsystem to later sections.

The Generalization Subsystem.For each input sequence,
the generalization module generates zero or more candidate

Module
MDL

S
G

S
G

S
F

bbd
bbbbe

ab
abab
ac

bc
bd

ad

(b)

MDL (FLP)ab
abab
ac

bc
bd

ad

bbd
bbbbe
(ab)*
(a|b)*
b*d
b*e
b*(d|e)

(a|b)(c|d)

Inferred DTD: (ab)* | (a|b)(c|d) | b*(d|e)

I =

Inferred DTD: (ab)* | (a|b)(c|d) | b*(d|e)

(a)

{ ab, abab, ac, ad, bc, bd, bbd, bbbbe }

Factoring
Module

Input Sequences

Module

I

Generalization

= U { (a|b)(c|d), b*(d|e) }

= U { (ab)*, (a|b)*, b*d, b*e }

Figure 3: Architecture of the XTRACT System

DTDs that are derived by replacing patterns in the input se-
quence with regular expressions containing metacharacters
like � and j (e.g.,(ab)�, (a j b)�). Note that the initial in-
put sequences do not contain metacharacters and so the can-
didate DTDs introduced by the generalization module are
more general. For instance, in Figure 3(a), sequencesabab

andbbbe result in the more general candidate DTDs(ab)�,
(a j b)� andb�e being output by the generalization subsys-
tem. Also, observe that each candidate DTD produced by
the generalization module may cover only a subset of the
input sequences. Thus, the final DTD output by the MDL
module may be anor of multiple candidate DTDs.

Ideally, in the generalization phase, we should consider all
DTDs that cover one or more input sequences as candidates,
so that the MDL step can choose the best among them.
However, the number of such DTDs can be enormous.
For example, the sequenceababaabb is covered by the
following DTDs in addition to many more –(a j b)�; (a j
b)�a�b�; (ab)�(a j b)�; (ab)�a�b�. Therefore, in this paper,
we outline several novel heuristics, inspired by real-life
DTDs2, for limiting the set of candidate DTDsSG output
by the generalization module.

The Factoring Subsystem. The factoring component
factors two or more candidate DTDs inSG into a new
candidate DTD. The length of the new DTD is smaller than
the sum of the sizes of the DTDs factored. For example,
in Figure 3(a), candidate DTDsb�d and b�e representing
the expressionb�d j b�e, when factored, result in the DTD
b�(d j e); similarly, the candidatesac, ad, bc and bd are
factored into(a j b)(c j d) (the pre-factored expression is
ac j ad j bc j bd). Although factoring leaves the semantics of
candidate DTDs unchanged, it is nevertheless an important
step. The reason being that factoring reduces the size of
the DTD and thus the cost of encoding the DTD, without
seriously impacting the cost of encoding input sequences

2The DTDs are available at Robin Cover’s SGML/XML web page
(www.oasis-open.org/cover/).

using the DTD. Thus, since the DTD encoding cost is a
component of the MDL cost for a DTD, factoring can result
in certain DTDs being chosen by the MDL module that may
not have been considered earlier. We appropriately modify
factoring algorithms for boolean functions in the logic
optimization area [4, 24] to meet our needs. However, even
though every subset of candidate DTDs can, in principle,
be factored, the number of these subsets can be huge and
only a few of them result in good factorizations. We propose
novel heuristics to restrict our attention to subsets that can
be factored effectively.

The MDL Subsystem.The MDL subsystem finally chooses
from among the set of candidate DTDsSF generated by
the previous two subsystems, a set of DTDs that cover all
the input sequences inI and the sum of whose MDL costs
is minimum. The final DTD is then anor of the DTDs in
the set. For the input sequences in Figure 3(a), we illustrate
(using solid lines) in Figure 3(b), the input sequences (in the
right column) covered by the candidate DTDs inSF (in the
left column).

The above cost minimization problem naturally maps to
theFacility Location Problem(FLP) for which polynomial-
time approximation algorithms have been proposed in the
literature [6, 14]. We adapt the algorithm from [6] for our
purposes, and using it, the XTRACT system is able to infer
the DTD shown at the bottom of Figure 3(b).

4 The MDL Subsystem
The MDL subsystem constitutes the core of the XTRACT
system – it is responsible for choosing a setS of candidate
DTDs from SF such that the final DTDD (which is an
or of the DTDs inS) (1) covers all sequences inI , and
(2) has minimum MDL cost. Consequently, we describe
this module first, and postpone the presentation of the
generalization and factoring modules to Sections 5 and 6,
respectively.

Recall that the MDL cost of a DTD that is used to
explain a set of sequences, comprises (A) the length, in
bits, needed to describe the DTD; and (B) the length of
the sequences (in bits) when encoded in terms of the DTD.
In the following subsection, we first present the encoding
schemes for computing parts (A) and (B) of the MDL cost
of a DTD. Subsequently, in Section 4.2, we present the
algorithm for computing the setS �SF of candidate DTDs
whose or yields the final DTDD with minimum MDL
cost. Note that the candidate DTDs inSF can be complex
regular expressions (containing�, j, etc.) output by the
generalization and factoring subsystems.

4.1 The Encoding Scheme

We begin by describing the procedure for estimating the
number of bits required to encode the DTD itself (part (A) of
the MDL cost). Let� be the set of subelement symbols that
appear in sequences inI . LetM be the set of metacharacters
j;� ;+; ?; (;). Let the length of a DTD viewed as a string

(A) seq(D; s) = � if D = s. In this case, the DTDD is a
sequence of symbols from the alphabet� and does not contain
any metacharacters.

(B) seq(D1 : : : Dk; s1 : : : sk) = seq(D1; s1) : : : seq(Dk; sk);
that is,D is the concatenation of regular expressionsD1 : : : Dk

and the sequences can be written as the concatenation of the
subsequencess1 : : : sk, such that each subsequencesi matches
the corresponding regular expressionDi.

(C) seq(D1j : : : jDm; s) = i seq(Di; s); that is,D is the exclusive
choice of regular expressionsD1 : : : Dm, andi is the index of
the regular expression that the sequences matches. Note that
we needdlogme bits to encode the indexi.

(D) seq(D�; s1 : : : sk) =

�
k seq(D; s1) : : : seq(D; sk) if k > 0
0 otherwise

In other words, the sequences = s1 : : : sk is produced from
D� by instantiating the repetition operatork times, and each
subsequencesi matches thei-th instantiation. In this case,
since there is no simple and inexpensive way to bound apriori
the number of bits required for the indexk, we first specify
the number of bits required to encodek in unary (that is, a
sequence ofdlog ke 1s, followed by a 0) and then the indexk
usingdlog ke bits. The 0 in the middle serves as the delimiter
between the unary encoding of the length of the index and the
actual index itself.

Figure 4: The Encoding Scheme

in � [M, ben. Then, the length of the DTD in bits is
ndlog(j � j + j M j)e. As an example, let� consist of
the elementsa andb. The length in bits of the DTDa�b� is
4 � dlog(2 + 6)e = 12. Similarly, the length in bits of the
DTD (abjabb)(aajab�) is 16 � 3 = 48.

We next describe the scheme for encoding a sequence
using a DTD (part (B) of the MDL cost). Our encoding
scheme constructs a sequence of integral indices (which
forms the encoding) for expressing a sequence in terms of
a DTD. The following simple examples illustrate the basic
building blocks on which our encoding scheme for more
complex DTDs is built:

1. The encoding for the sequencea in terms of the DTDa
is the empty string�.

2. The encoding for the sequenceb in terms of the DTD
a j b j c is the integral index 1 (denotes thatb is at
position 1, counting from 0, in the above DTD).

3. The encoding for the sequencebbb in terms of the DTD
b� is the integral index 3 (denotes 3 repetitions ofb).

We now generalize the encoding scheme for arbitrary
DTDs and arbitrary sequences. Let us denote the sequence
of integral indices for a sequences when encoded in
terms of a DTDD by seq(D; s). We defineseq(D; s)
recursively in terms of component DTDs withinD as shown
in Figure 4. Thus,seq(D; s) can be computed using
a recursive procedure based on the encoding scheme of
Figure 4. Note that we have not provided the definitions

of the encodings for operators+ and? since these can be
defined in a similar fashion to� (for +, k is always greater
than 0, while for?, k can only assume values 1 or 0). We now
illustrate our encoding scheme using the following example.

Example 4.1 Consider the DTD(abjc)�(dejfg�) and the
sequenceabccabfggg to be encoded in terms of the DTD.
Below, we list how steps (A), (B), (C) and (D) in Figure 4 are
recursively applied to derive the encoding
seq((abjc)�(dejfg�); abccabfggg).

1. Apply Step (B): seq((abjc)�; abccab) seq((dejfg�); fggg)
2. Apply Step (D): 4 seq(abjc; ab) seq(abjc; c) seq(abjc; c)
seq(abjc; ab) seq((dejfg�); fggg)
3. Apply Step (C): 4 0 seq(ab; ab) 1 seq(c; c) 1 seq(c; c) 0
seq(ab; ab) 1 seq(fg�; fggg)
4. Apply Step (A): 4 0 1 1 0 1seq(fg�; fggg)
5. Apply Steps (A), (B) and (D):4 0 1 1 0 1 3

In order to derive the final bit sequence corresponding
to the above indices, we need to include in the encoding
the unary representation for the number of bits required to
encode the indices 4 and 3. Thus, we obtain the following
bit encoding for the sequence (we have inserted blanks in
between the encoding for successive indices for clarity).

seq((abjc)�(dejfg�); abccabfggg) = 1110100 0 1 1 0 1 11011

2

In steps (B), (C) and (D), we need to be able to determine
if a sequences matches a DTDD. Since a DTD is a regular
expression, well-established techniques for finding out if a
sequence is covered by a regular expression can be used
for this purpose [15] and have a complexity ofO(jDj � jsj)
(jsj denotes the length of sequences). These methods
involve constructing a non-deterministic finite automaton
for D and can also be used to decompose the sequences

into subsequences such that each subsequence matches the
corresponding sub-part of the DTDD, thus enabling us to
come up with the encoding.

Note that there may be multiple ways of partitioning
the sequences such that each subsequence matches the
corresponding sub-part of the DTDD. In such a case,
we can extend the above procedure to enumerate every
decomposition ofs that match sub-parts ofD, and then
select from among the decompositions the one that results
in the minimum length encoding ofs in terms of D.
The complexity of considering all possible decompositions,
however, is much higher and therefore not included in our
XTRACT implementation.

4.2 Computing the DTD with Minimum MDL Cost
We now turn our attention to the problem of computing the
final DTDD (which is anor of a subsetS of candidate DTDs
in SF) that covers all the input sequences inI and whose
MDL cost for encoding sequences inI is minimum. The
above minimization problem maps naturally to theFacility

Location Problem(FLP) [6, 14]. The FLP is formulated as
follows: LetC be a set of clients andJ be a set of facilities
such that each facility “serves” every client. There is a
costc(j) of “choosing” a facilityj 2 J and a costd(j; i)
of serving clienti 2 C by facility j 2 J . The problem
definition asks to choose a subset of facilitiesF � J such
that the sum of costs of the chosen facilities plus the sum of
costs of serving every client by its closest chosen facility is
minimized, that is

min
F�J

f
X
j2F

c(j) +
X
i2C

min
j2F

d(j; i) g: (1)

The problem of inferring the minimum MDL cost DTD
can be reduced to FLP as follows: LetC be the setI of input
sequences andJ be the set of candidate DTDs inSF . The
cost of choosing a facility is the length of the corresponding
candidate DTD. The cost of serving clienti from facility
j, d(j; i), is the length of the encoding of the sequence
corresponding to clienti using the DTD corresponding to
facility j. If a DTD j does not cover a sequencei, then
we setd(j; i) to 1. Thus, the setF computed by the FLP
corresponds to our desired setS of candidate DTDs.

The FLP is NP-hard; however, it can be reduced to theset
cover problemand then approximated within a logarithmic
factor as shown in [14]. In our implementation, we employ
the randomized algorithm from [6] which approximates the
FLP within a constant factor if the distance function is a
metric. Even though our distance function is not a metric, we
have found the FLP approximations produced by [6] for our
problem setting to be very good in practice. Furthermore,
the time complexity of [6] for computing the approximate
solution isO(N2 � logN), whereN = jI j.

5 The Generalization Subsystem
The quality of the DTD computed by the MDL module is
very dependent on the set of candidate DTDsSF input to it.
In caseSF were to contain only input sequences inI , then
the final DTD output by the MDL subsystem would simply
be theor of all the sequences inI . However, as we observed
earlier, this is not a desirable DTD since it is neither concise
nor intuitive. Thus, in order to infer meaningful DTDs,
it is crucial that the candidate DTDs inSF be general.
The goal of the generalization component is to achieve this
objective by inferring a setSG of general DTDs which are
then input to the factorization step. As we mentioned before,
the factorization step infers additional factored DTDs and
generatesSF which is a superset ofSG .

The generalization component in XTRACT infers a num-
ber of regular expressions which we have found to frequently
appear in real-life DTDs. Some of the most common regular
expressions from real-life DTDs area�bc�, (abc)�, (ajbjc)�,
and((ab)�c)�. These are examples that appear in the News-
paper Association of America (NAA) Classified Advertizing
Standards XML DTD3. (A detailed description of the NAA

3www.naa.org/technology/clsstdtf/Adex010.dtd

data can be found in the full version of this paper [9].)
Although our algorithms can infer regular expressions that

are more complex than the above, we do not infer certain
complex expressions such as(ab?c�d?)� that are less likely
to occur in practice. We defer further discussion of this topic
to Section 7.

We now discuss our generalization algorithm which is
outlined in Figure 5. Procedure GENERALIZE infers several
DTDs for each input sequence inI independently and adds
them to the setSG . Therefore, it may over-generalize in
some cases (since we are inferring DTDs based on a single
sequence); however, our MDL step will ensure that such
overly general DTDs are not chosen as part of the final
inferred DTD, if there are better alternatives. Recall that
the generalization step is merely trying to provide several
alternate candidates to the MDL step. In particular,SG� I,
and therefore, the DTD corresponding to theor’s of the input
will always be considered during the MDL step.

The essence of procedure GENERALIZE lies in the two
procedures DISCOVERSEQPATTERN and DISCOVEROR-
PATTERN, which are repeatedly called with various param-
eter values. We discuss the details of these procedures and
the roles of their parameters next.

5.1 Discovering Sequencing Patterns

Procedure DISCOVERSEQPATTERN, shown in Figure 5,
takes as input an input sequences and returns a candidate
DTD that is derived froms by replacing sequencing patterns
of the form xx � � �x, for a subsequencex in s, with the
regular expression(x)�. In addition tos, the procedure also
accepts as input a threshold parameterr > 1 which is the
minimum number of contiguous repetitions of subsequence
x in s required for the repetitions to be replaced with(x)�.
In case there are multiple subsequencesx with the maximum
number of repetitions in Step 2, the longest among them is
chosen, and subsequent ties are resolved arbitrarily.

Note that instead of introducing the regular expression
term (x)� into the sequences, we choose to introduce an
auxiliary symbol that serves as a representative for the term.
The auxiliary symbols enable us to keep the description of
our algorithms simple and clean, since their input is always
a simple sequence of symbols. We ensure that there is a one-
to-one correspondence between auxiliary symbols and regu-
lar expression terms throughout the XTRACT system; thus,
if the auxiliary symbol,A denotes(bc)� in one candidate
DTD, then it represents(bc)� in every other candidate DTD.
Also, observe that procedure DISCOVERSEQPATTERN may
perform several iterations and thus new sequencing patterns
may contain auxiliary symbols corresponding to patterns re-
placed in previous iterations. For example, invoking pro-
cedure DISCOVERSEQPATTERN with the input sequence
s = abababcababc andr = 2 yields the sequenceA1cA1c

after the first iteration, whereA1 is an auxiliary symbol for
the term(ab)�. After the second iteration, the procedure re-
turns the candidate DTDA2, whereA2 is the auxiliary sym-

procedure GENERALIZE(I)
begin
1. for each sequences in I

2. adds to SG

3. for r := 2; 3; 4
4. s0 := DISCOVERSEQPATTERN(s;r)
5. for d := 0:1 � js0j; 0:5 � js0j; js0j
6. s00 := DISCOVERORPATTERN(s0; d)
7. adds00 to SG

end

procedure DISCOVERSEQPATTERN(s,r)
begin
1. repeat
2. letx be a subsequence ofs with the maximum
3. number (� r) of contiguous repetitions ins
4. replace all (� r) contiguous occurrences of
5. x in s with a new auxiliary symbolAi = (x)�

6. until (s no longer contains� r contiguous
7. occurrences of any subsequencex)
8. return s

end

procedure DISCOVERORPATTERN(s,d)
begin
1. s1; s2; : : : ; sn := PARTITION(s;d)
2. for each subsequencesj in s1; s2; : : : ; sn
3. let the set of distinct symbols insj
4. bea1; a2; : : : ; am
5. if (m > 1)
6. replace subsequencesj in sequences by a
7. new auxiliary symbolAi = (a1j � � � jam)�

8. return s

end

procedure PARTITION(s;d)
begin
1. i := start := end := 1
2. si = s[start; end]
3. while (end < jsj)
4. while (end < jsj and a symbol insi occurs to
5. the right ofsi within a distanced)
6. end := end+ 1;
7. si := s[start; end];
8. if (end < jsj)
9. i := i+ 1;
10. start := end+ 1;
11. end := end+ 1;
12. si := s[start; end];
13. return s1; s2; � � � ; si
end

Figure 5: The Generalization Algorithm

bol corresponding to((ab)�c)�. Thus, the resulting candi-
date DTD returned by procedure DISCOVERSEQPATTERN

can contain�’s nested within other�’s. Finally, we have
chosen to invoke DISCOVERSEQPATTERN (from GENER-
ALIZE) with three different values for the parameterr to
control the eagerness with which we generalize. For exam-
ple, for the sequenceaabbb, DISCOVERSEQPATTERN with
r = 2 would infera�b�, while with r = 3, it would infer
aab�. In the MDL step, if many other sequences are covered
by aab�, then a DTD ofaab� may be preferred to a DTD of
a�b�, since it more accurately describes sequences inI .

The time complexity of the procedure is dominated by
the first step that involves finding the subsequencex with
the maximum number of contiguous repetitions. Since
s contains at mostO(jsj2) possible subsequences and
computing the number of repetitions for each subsequence
takesO(jsj) steps, the complexity of the first step isO(jsj3)
per iteration, in the worst case.

5.2 Discovering Or Patterns
Procedure DISCOVERORPATTERN infers patterns of the
form (a1ja2j : : : jam)� based on the locality of these symbols
within a sequences. It discovers such localities by first par-
titioning (using procedure PARTITION) the input sequences
into the smallest possible subsequencess1; s2; : : : ; sn, such
that for any occurrence of a symbola in a subsequencesi,
there does not exist another occurrence ofa in some other
subsequencesj within a distanced (which is a parameter to
DISCOVERORPATTERN). Each subsequencesi in s is then
replaced by the pattern(a1ja2j : : : jam)� wherea1; : : : ; am
are the distinct symbols in the subsequencesi. The intu-
ition here is that ifsi contains frequent repetitions of the
symbolsa1; a2; : : : ; am in close proximity, then it is very
likely thatsi originated from a regular expression of the form
(a1ja2j : : : jam)�. As an illustration, on the input sequence
abcbac, procedure DISCOVERORPATTERN returns

� aA1ac for d = 2, whereA1 = (b j c)�,

� aA2 for d = 3, whereA2 = (a j b j c)�, and

� A2 for d = 4, whereA2 = (a j b j c)�.

A critical component for discoveringor patterns is pro-
cedure PARTITION, which we now discuss in more detail.
Before that, we define the following notation for sequences.
For a sequences, s[i; j] denotes the subsequence ofs start-
ing at theith symbol and ending at thejth symbol of s.
Procedure PARTITION constructs subsequences ofs in the
orders1, s2, and so on. Assuming thats1 throughsj have
been generated, it constructssj+1 by startingsj+1 immedi-
ately aftersj ends and expanding the subsequencesj+1 to
the right as long as required to ensure that there is no sym-
bol in sj+1 that occurs within a distanced to the right of
sj+1. By construction, there cannot exist such a symbol to
the left ofsj+1. Note that the condition of whether a symbol
in si occurs within a distanced outsidesi can be checked in
O(jsj) time if we keep track of the next occurrence outsidesi

of every symbol insi – this can be achieved by initially con-
structing for every symbol, the locations of its occurrences
in s sorted order. Therefore, the time complexity of proce-
dures PARTITION and DISCOVERORPATTERN can be easily
shown to beO(jsj2).

Note that procedure GENERALIZE invokes DISCOVEROR-
PATTERN on the DTDs that result from calls to DISCOVER-
SEQPATTERN and therefore it is possible to infer more com-
plex DTDs of the form(aj(bc)�)� in addition to DTDs like
(ajbjc)�. For instance, for the input sequences = abcbca,
procedure DISCOVERSEQPATTERN invoked with r = 2
would returns0 = aA1a, whereA1 = (bc)�, which when in-
put to DISCOVERORPATTERN returnss00 = A2 for d = js0j,
whereA2 = (ajA1)

�. Further, observe that DISCOVEROR-
PATTERN is invoked with various values ofd (expressed as
a fraction of the length of the input sequence) to control the
degree of generalization. Small values ofd lead to conserva-
tive generalizations while larger values result in more liberal
generalizations.

6 The Factoring Subsystem
In a nutshell, the factoring step derives factored forms for
expressions consisting of anor of a subset of the candidate
DTDs in SG . For example, for candidate DTDsac, ad, bc
andbd in SG , the factoring step would generate the factored
form (a j b)(c j d). Note that since the final DTD is anor of
candidate DTDs inSF , factored forms are candidates, too.
Further, a factored candidate DTD, because of its smaller
size, has a lower MDL cost, and is thus more likely to be
chosen in the MDL step. Thus, since factored forms (due
to their compactness) are more desirable (see restrictionR1
in Section 3), factoring can result in better-quality DTDs. In
this section, we describe the algorithms used by the factoring
module to derive factored forms of the candidate DTDs in
SG produced by the generalization step.

Factored DTDs are common in real life, when there are
several choices to be made. For example, in the DTD in
Figure 2, an article may be categorized based on whether
it appeared in a workshop, conference, or journal; it may
also be classified according to its area as belonging to
either computer science, physics, chemistry, etc. As a
consequence, the DTD (in factored form) for the element
article could be as follows:

<!ELEMENT article(title, author*,
(workshop | conference | journal),
(computer science | physics | chemistry | ...))

In addition to the factored forms generated from candi-
dates inSG , the set of candidate DTDs output by the factor-
ization module,SF , also contains all the DTDs inSG . Ide-
ally, factored forms for every subset ofSG should be added
to SF to be considered by the MDL module. However, this
is clearly impractical, sinceSG could be very large. We
have devised a heuristic strategy for selecting sets of candi-
dates inSG that when factored yield “good” factored DTDs.
Intuitively, our heuristic greedily selects DTDs fromSG that

(1) share common prefixes or suffixes, and (2) have minimal
overlap with other selected DTDs. Due to space constraints,
we omit the detailed description of our heuristic as well as
the factoring algorithm itself (which is an adaptation of fac-
toring algorithms for boolean expressions from the logic op-
timization literature [24]). The details can be found in the
full version of this paper [9].

7 Experimental Results
To determine the effectiveness of XTRACT’s methodology
for inferring the DTD of a database of XML documents, we
conducted a study with both synthetic and real-life DTDs.
We also compared the DTDs produced by XTRACT with
those generated by the IBM Alphaworks DTD extraction
tool, DDbE4, for XML data. Our results indicate that
XTRACT outperforms DDbE over a wide range of DTDs,
and accurately finds almost every original DTD while DDbE
fails to do so for most DTDs. Thus, our results clearly
demonstrate the effectiveness of XTRACT’s approach that
employs generalization and factorization to derive a range
of general and concise candidate DTDs, and then uses the
MDL principle as the basis to select amongst them.

7.1 Algorithms
In the following, we describe the two DTD extraction
algorithms that we considered in our experimental study.
XTRACT: Our implementation of XTRACT includes all
three modules as described in Sections 4, 5, and 6. In
the generalization step, we discover both sequencing and
or patterns using procedure GENERALIZE. In the factoring
step, k = N

10
subsets are chosen for factoring and the

parameter� is set to 0 in the procedure FACTORSUBSETS.
Finally, in the MDL step, we employ the algorithm from [6]
to compute an approximation to the FLP solution.
DDbE: We used Version 1.0 of the DDbE DTD extraction
tool in our experiments. DDbE is a Java component library
for inferring a DTD from a data set consisting of well-
formed XML instances. DDbE offers parameters that allow
the user to control the structure of the content models and
the types used for attribute declarations. Two important
parameters of DDbE are (1) the maximum number of
consecutive identical tokens that should not be replaced by a
list, and (2) the number of applications of factoring. For our
experiments we used the default values of these parameters,
which are 1 and 2, respectively [9].

7.2 Data Sets
In order to evaluate the quality of DTDs retrieved by
XTRACT, we used both synthetic as well as real-life DTD
schemas. For each DTD for a single element, we generated
an XML file containing 1000 instantiations of the element.
These 1000 instantiations were generated by randomly
sampling from the DTD for the element. Thus, the initial set
of input sequencesI to both XTRACT and DDbE contained

4www.alphaworks.ibm.com/formula/xml/

No. Original DTD
1 abcdejefghjijjklm
2 (ajbjcjdjf)�gh
3 (ajbjcjd)�je
4 (abcde)�f
5 (ab)�jcdef j(ghi)�

6 abcdef(gjhjijj)(kjljmjnjo)
7 (ajbjc)d�e�(fgh)�

8 (ajb)(cdefg)�hijklmnopq(rjs)�

9 (abcd)�j(ejf jg)�jhj(ijklm)�

10 a�j(bjcjdjejf)�jghj(ijjjk)�j(lmn)�

Table 1: Synthetic DTD Data Set

somewhere between 500 and 1000 sequences (after the
elimination of duplicates) conforming to the original DTD.
Synthetic DTD Data Set. We used a synthetic data gen-
erator to generate the synthetic data sets. Each DTD is
randomly chosen to have one of the following two forms:
A1jA2jA3j � � � jAn andA1A2A3 � � �An. Thus, a DTD hasn
building blocks withn randomly chosen between1 andmb,
wheremb is an input parameter to the generator that speci-
fies the maximum number of building blocks in a DTD. Each
building blockAi further consists ofni symbols, whereni
is randomly chosen to be between1 andms (the parame-
terms specifies the maximum number of symbols that can
be contained in a building block). Each building blockAi

has one of the following four forms, each of which has
an equal probability of occurrence: (1)(a1ja2ja3j : : : jani

),
(2) a1a2a3 : : : ani

, (3) (a1ja2ja3ja4j : : : jani
)�; and (4)

(a1a2a3a4 : : : ani
)�. Here, theai’s denote subelement sym-

bols. Thus, our synthetic data generator essentially generates
DTDs containing one level of nesting of regular expression
terms.

In Table 1, we show the synthetic DTDs that we consid-
ered in our experiments. Note that, in the figure, we only
include the regular expression corresponding to the DTD.
The DTDs were produced using our generator with the input
parametersmb andms both set to 5. (We use letters from
the alphabet as subelement symbols.)

The ten synthetic DTDs vary in complexity with later
DTDs being more complex than earlier ones. For instance,
DTD 1 does not contain any metacharacters, while DTDs 2
through 5 contain simple sequencing andor patterns. DTD 6
represents a DTD in factored form, while in DTDs 7 through
10 factors are combined with sequencing andor patterns.
Real-life DTD Data Set. We obtained our real-life DTDs
from the Newspaper Association of America (NAA) Clas-
sified Advertising Standards XML DTD produced by the
NAA Classified Advertising Standards Task Force5. We
examined this real-life DTD data and collected six repre-
sentative DTDs that are shown in Table 2. Of the DTDs
shown in the table, the last three DTDs are quite interesting.

5www.naa.org/technology/clsstdtf/Adex010.dtd

No Original DTD Simplified
DTD

1 <!ENTITY included-elements ajbjcjdje
(audio-clip|blind-box-reply|

link|pi-char|video-clip)>

2 <!ELEMENT communications-contacts (ajbjcjdje)�

(phone|fax|email|pager|web-page)*>

3 <!ELEMENT employment-services ab�c�

(employment-service.type,

employment-service.location*

(e.zz-generic-tag)*)>

4 <!ENTITY location (addr*,area?, a�b?c?d?
city?,state?,zip-code?,country?)>

5 <!ELEMENT transfer-info (a(bc)+d)�

(transfer-number,(from-to,co-id)+,

contact-info)*>

6 <!ELEMENT real-estate-services (ab?c�d?)�

(r-e.type,r-e.location?,

r-e.response-modes*,r-e.comment?)*>

Table 2: Real-life DTD Data Set

DTD 4 contains the metacharacter ? in conjunction with the
metacharacter�, while DTDs 5 and 6 contain two regular
expressions with�’s, one nested within the other.

7.3 Quality of Inferred DTDs

Synthetic DTD Data Set. For the synthetic data set,
XTRACT infers eachof the original DTDs correctly. In
contrast, DDbE computes the accurate DTD only for DTD 1,
which is the simplest DTD containing no metacharacters.
Even for the simple DTDs 2–5, not only is DDbE unable
to correctly deduce the original DTD, but it also infers a
DTD that does not cover the set of input sequences. In
addition, DDbE is not very good at factoring DTDs and,
unlike XTRACT, it is unable to derive the final factored form
for DTD 6. Finally, DDbE infers an extremely complex
DTD for the simple DTD 7 and overly general DTDs for
the more complex DTDs 8–10. (The exact DTDs inferred by
DDbE can be found in the full version of this paper [9].) Our
results for synthetic data clearly demonstrate the superiority
of XTRACT’s approach (based on the combination of
generalization, factoring, and the MDL principle) compared
to that of DDbE for the DTD inference problem.
Real-life DTD Data Set. The DTDs generated by the two
algorithms for the real-life data set are shown in Table 3.
Of the six DTDs, XTRACT is able to infer the first five
correctly. In contrast, DDbE is able to derive the accurate
DTD only for DTDs 1 and 2, and an approximate DTD
for DTD 3. Basically, with an additional factoring step,
DDbE could obtain the original DTD for DTD 3. Note,
however, that DDbE is unable to infer the simple DTD 4 that
contains the metacharacter?. In contrast, XTRACT is able
to deduce this DTD because its factorization step takes into
account the identity element “1” and simplifies expressions

No Simplified DTD Obtained DTD obtained
DTD by XTRACT by DDbE

1 ajbjcjdje ajbjcjdje ajbjcjdje

2 (ajbjcjdje)� (ajbjcjdje)� (ajbjcjdje)�

3 (ab�c�) ab�c� (ab+c�)j(ac�)

4 a�b?c?d? a�b?c?d? (a+b(cj(c?d))?)j

((bja+)?cd)j((a+jb)?d)j

((a+jb)?c)ja+jb)

5 (a(bc)+d)� (a(bc)�d)� (ajbjcjd)+

6 (ab?c�d?)� – (ajbjcjd)+

Table 3: DTDs generated for Real-life Data Set

of the form 1ja to a?. DTD 5 represents an interesting
case where XTRACT is able to mine a DTD containing
regular expressions containing nested�’s. This is due to our
generalization module that iteratively looks for sequencing
patterns. On the other hand, DDbE simply over-generalizes
DTD 5 by or-ing all the symbols in it and enclosing them
within the metacharacter+. Finally, neither XTRACT nor
DDbE is able to correctly infer DTD 6. (The approximate
DTD derived by XTRACT for DTD 6 is rather complex and,
therefore, we chose to omit it from Table 3.) The reason
for XTRACT’s failure is that our generalization subsystem
does not detect patterns containing the optional symbol ?.
Finding such patterns requires a more sophisticated analysis
of symbol occurrences within and across sequences, and we
plan to pursue this further as part of our future work.

8 Conclusions

We have presented the architecture of the XTRACT system
for inferring a DTD for a database of XML documents. The
problem of automated DTD derivation is complicated by the
fact that the DTD syntax incorporates the full expressive
power of regular expressions. Specifically, as we have
shown, naive approaches that do not “generalize” beyond
the input element sequences fail to deduce concise and
semantically meaningful DTDs. Instead, XTRACT applies
sophisticated algorithms to compute a DTD that is more
along the lines of what a human expert would infer. We
compared the quality of the DTDs inferred by XTRACT
with those returned by the IBM Alphaworks DDbE tool on
synthetic and real-life DTDs. In our experiments, XTRACT
outperformed DDbE by a wide margin; for most of our
test cases, XTRACT was able to accurately infer the DTD
whereas DDbE completely failed to do so. A number of
the DTDs which were correctly identified by XTRACT were
fairly complex and contained factors, metacharacters and
nested regular expression terms. Thus, our results clearly
demonstrate the effectiveness of the XTRACT approach that
employs generalization and factorization to derive a range
of general and concise candidate DTDs, and then uses the
MDL principle as the basis to select amongst them.

References
[1] S. Abiteboul. Querying semi-structured data. InProc. of the

Intl. Conf. on Database Theory (ICDT), 1997.
[2] D. Angluin. On the complexity of minimum inference of

regular sets.Information and Control, 39(3):337–350, 1978.
[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible

markup language (XML). (www.w3.org/TR/REC-xml)
[4] R. K. Brayton and C. McMullen. The decomposition and

factorization of boolean expressions. InProc of the Intl. Symp.
on Circuits and Systems, 1982.

[5] A. Brazma. Efficient identification of regular expressions
from representative examples. InProc. of the Ann. Conf. on
Computational Learning Theory (COLT), 1993.

[6] M. Charikar and S. Guha. Improved combinatorial algorithms
for the facility location and k-median problems. InProc. of the
Ann. Symp. on Foundations of Computer Science (FOCS), 1999.

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-
structured data with stored. InProc. of the ACM SIGMOD Intl.
Conf. on Management of Data, 1999.

[8] M. Fernandez and D. Suciu. Optimizing regular path expres-
sions using graph schemas. InProc. of the Intl. Conf. on Data-
base Theory (ICDT), 1997.

[9] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: A System for Extracting Document
Type Descriptors from XML Documents. Bell Labs Tech.
Memorandum, 1999.

[10] E. Mark Gold. Language identification in the limit.Informa-
tion and Control, 10(5):447–474, 1967.

[11] E. Mark Gold. Complexity of automaton identification from
given data.Information and Control, 37(3):302–320, 1978.

[12] R. Goldman, J. McHugh, and J. Widom. From semistructured
data to XML: Migrating the lore data model and query language.
In Proc. of the Intl. Workshop on the Web and Databases
(WebDB), 1999.

[13] R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases. In
Proc. of the Intl. Conf. on Very Large Data Bases (VLDB), 1997.

[14] D. S. Hochbaum. Heuristics for the fixed cost median
problem.Mathematical Programming, 22:148–162, 1982.

[15] J. E. Hopcroft and J. D. Ullman.Introduction to Automaton
Theory, Languages, and Computation. Addison-Wesley, Read-
ing, Massachusetts, 1979.

[16] P. Kilpeläinen, H. Mannila, and E. Ukkonen. MDL learning
of unions of simple pattern languages from positive examples. In
Proc. of the European Conf. on Computational Learning Theory
(EuroCOLT), 1995.

[17] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision
tree pruning. InProc. of the Intl. Conf. on Knowledge Discovery
and Data Mining (KDD), 1995.

[18] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
schema from semistructured data. InProc. of the ACM SIGMOD
Intl. Conf. on Management of Data, 1998.

[19] L. Pitt. “Inductive inference, DFAs, and computational
complexity”. Analogical and Inductive Inference, pp. 18–44,
1989.

[20] J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using
the Minimum Description Length Principle.Information and
Computation, 80:227–248, 1989.

[21] J. Rissanen. Modeling by shortest data description.Automat-
ica, 14:465–471, 1978.

[22] J. Rissanen. Stochastic Complexity in Statistical Inquiry.
World Scientific Publ. Co., 1989.

[23] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt,
and J. Naughton. Relational databases for querying XML
documents: Limitations and opportunities. InProc. of the Intl.
Conf. on Very Large Data Bases (VLDB), 1999.

[24] A. R. R. Wang. Algorithms for Multi-level Logic Optimiza-
tion. PhD thesis, Univ. of California, Berkeley, 1989.

[25] J. Widom. Data management for XML: research directions.
IEEE Data Engineering Bulletin, 1991.

