XTRACT: A System for Extracting Document Type Descriptors
from XML Documents

Minos Garofalakis Aristides Gionis* Rajeev Rastogi S. Seshadri Kyuseok Shint
Bell Laboratories Stanford University Bell Laboratories Bell Laboratories KAIST and AlTrc

minos@bell-labs.com gionis@cs.stanford.edu rastogi@bell-labs.com seshadri@bell-labs.com shim@cs.kaist.ac.kr
Abstract of the data rather than simply specifying how the element

XML is rapidly emerging as the new standard for data representa- IS to be displayed (as_ in _HTML).- Thus, XML data, like
tion and exchange on the Web. An XML document can be accom- Semistructured data, is hierarchically structured and self-
panied by &document Type Descript¢DTD) which plays the role describing.

of a schema for an XML data collection. DTDs contain valuable A characteristic, however, that distinguishes XML from
information on the structure of documents and thus have a crucial . ! : .

. . -~ semistructured data models is the notion Bfacument Type
role in the efficient storage of XML data, as well as the effective D . DTD) th . I XML
formulation and optimization of XML queries. In this paper, we escriptor () that m",’ly optionally accompany an
propose XTRACT, a novel system for inferring a DTD schema for document. A document's DTD serves the role of a schema

a database of XML documents. Since the DTD syntax incorporates SPeCifying the internal structure of the document. Essen-
the full expressive power akgular expressionsiaive approaches tially, a DTD specifies for every element, tregular expres-
typically fail to produce concise and intuitive DTDs. Instead, the sionpattern that subelement sequences of the element need
XTRACT inference algorithms employ a sequence of sophisticated to conform to. DTDs are critical to realizing the promise of
steps that involve: (1) finding patterns in the input sequences and XML as the data representation format that enables free in-
replacing them with regular expressions to generate “general” can-terchange of electronic data (EDI) and integration of related
didate DTDs, (2) factoring candidate DTDs using adaptations of news products, and services information from disparate data
algorithms from the logic optimization literature, and (3) apply- 4o \rcas This is because, in the absence of DTDs, tagged
ing the Minimum Description Length (MDL) principle to find the . - ;

. . documents have little meaning. However, once the major
best DTD among the candidates. The results of our experiments - . o

software vendors and corporations agree on domain-specific

with real-life and synthetic DTDs demonstrate the effectiveness of 8 .
XTRACT's approach in inferring concise and semantically mean- Standards for DTD formats, it would become possible for

ingful DTD schemas for XML databases. inter-operating applications to extract, interpret, and analyze
the contents of a document based on the DTD that it con-

1 Introduction forms to.

Motivation and Background. The genesis of the Extensi- [N addition to enabling the free exchange of electronic

ble Markup Language (XML) was based on the thesis that documents through industry-wide standards, DTDs also
structured documents can be freely exchanged and manipuprovide the basic mechanism for defining the structure of
lated, if published in a standard, open format. Indeed, as athe underlying XML data. As a consequence, DTDs play
corroboration of the thesis, XML today promises to enable @ crucial role in the efficient storage of XML data as well
a suite of next-generation Web applications ranging from in- as the formulation, optimization, and processing of queries
telligent web searching to electronic commerce. over a collection of XML documents. For instance, in
In many respects, XML data is an instance sgmi- [23], DTD information is exploited to generate effective
structured data[1]. XML documents comprise hierarchi- relational schemas, which are subsequently employed to
cally nested collections oflements where each element €fficiently store and query entire XML documents in a
can be either atomic (i.e., raw character data) or compositerelational database. In [7], frequently occurring portions of
(i.e., a sequence of nested subelements). Futtigsstored XML documents are stored in a relational system, while the

with elements in an XML document describe the semantics 'émainder is stored in an overflow graph; once again, the
DTD is exploited to simplify overflow mappings. Similarly,

DTDs can be used to devise efficient plans for queries
and thus speed up query evaluation in XML databases by
restricting the search to only relevant portions of the data
(see, for example, [8, 13]). The basic idea is to use the
knowledge of the structure of the data captured by the DTD
to prune elements that cannot potentially satisfy the path
expression in the query. Finally, by shedding light on how

the underlying data is structured, DTDs aid users in forming

*Work done while visiting Bell Laboratories.
TWork done while visiting Bell Laboratories.

meaningful queries over the XML database. however, the DTDs generated by this approach tend to be

Despite their importance, however, DTDs ar manda- voluminous and unintuitive (especially for large XML doc-
tory and an XML document may not always have an accom- ument collections). In fact, we discover that accurate and
panying DTD. In fact, several recent papers (e.g., [12, 25]) meaningful DTD schemas that are also intuitive and appeal-
claim that it is frequently possible that only specific portions ing to humans (i.e., resemble what a human expert is likely
of XML databases will have associated DTDs, while the to come up with) tend tgeneralize That is, “good” DTDs
overall database is still “schema-less”. This may be the case,are typically regular expressions describing subelement se-
for instance, when large volumes of XML documents are guences thatay not actually occuin the input XML doc-
automatically generated from data stored in relational data-uments. (Note that this, in fact, is always the case for DTD
bases, flat files (e.g., HTML pages, bibliography files), or regular expressions that correspond to infinite regular lan-
other semistructured data repositories. Since very little dataguages, e.g., DTDs containing one or more Kleene stars
is in XML format today, it is very likely that, at least initially, ~ “*" [15].) In practice, however, there are numerous such
the majority of XML documents will be automatically gen- candidate DTDs that generalize the subelement sequences
erated from pre-existing data sources by a new generationin the input, and choosing the DTD that best describes the
of software tools. In most cases, such automatically-createdstructure of these sequences is a non-trivial task. In the infer-
document collections will not have an accompanying DTD. ence algorithms employed in the XTRACT system, we pro-

Therefore, based on the above discussion on the virtuesP0se the following novel combination of sophisticated tech-
of a DTD, it is important to devise algorithms and tools that Nidues to generate DTD schemas that effectively capture the
can infer an accurate, meaningful DTD for a given collection Structure of the input sequences.
of XML documents (i.e. instancesof the DTD). This is eGeneralization. As a first step, the XTRACT system em-
not an easy task. Since the DTD syntax incorporates the ploys novel heuristic algorithms for finding patterns in each
full specification power of regular expressions, manually input sequence and replacing them with appropriate regular
deducing such a DTD schema for even a small set of expressions to produce more general candidate DTDs. The
XML documents created by a user could prove to be a main goal of the generalization step is to judiciously intro-
process of daunting complexity. Furthermore, as we show duce metacharacters (like Kleene stars “*”) to produce reg-
in this paper, naive approaches fail to deliver meaningful ular subexpressions that generalize the patterns observed in
and intuitive DTD descriptions of the underlying data. the input sequences. Our generalization heuristics are based
Both problems are, of course, exacerbatedldoge XML on the discovery of frequent, neighboring occurrences of
document collections. In light of the several benefits of subsequences and symbols within each input sequence. In
DTDs, we can motivate a myriad of potential applications their effort to introduce a sufficient amount of generalization
for efficient, automated DTD discovery tools. For example, while avoiding an explosion in the number of resulting pat-
consider an employment web site that integrates information terns, our techniques are inspired by practical, real-life DTD
on job openings from thousands of different web sites examples.
including company home pages, newspaper classified sitessFactoring. As a second step, the XTRACT systéautors
and so on. These XML documents, although related, may common subexpressions from the generalized candidate
not all have the same structure and, even if some of the DTDs obtained from the generalization step, in order to
documents are accompanied by DTDs, the DTDs may not make them more concise. The factoring algorithms applied

be identical. An alternative to manually transforming all the gre appropriate adaptations of techniques from the logic
XML documents to conform to a single format would be to optimization literature [4, 24].

simply store the documents in their original formats and use
DTD discovery tools to derive a single DTD description for
rmaaon. spviano, o essng o e oy TP Risanenfinmum Descrpion LengioL)
the databas,e c?f stored XML doc?uments I%urth?ar the abilit pnnmplg [21, 22] to Qer|ve an elegant mechanism for
; ¢ ' ' db Y composing a near-optimal DTD schema from the set of
o extrgct DT[.)Sf orarange o XML formfats supporte Y candidate DTDs generated by the earlier two steps. (Our
the majorpart|C|pants ina spemflc industrial se'gtlng can also MDL-based notion of optimality will be defined formally
aid in the DTD standardization process for the industry. later in the paper.) The MDL principle has its roots in

Our Contributions. In this paper, we describe the archi- information theory and, essentially, provides a principled,
tecture of XTRACT, a novel system for inferring an accu- scientific definition of the optimal “theory/model” that can
rate, meaningful DTD schema for a repository of XML doc- be inferred from a set of data examples [20]. Abstractly,
uments. A naive and straightforward solution to our DTD in our problem setting, MDL ranks each candidate DTD
extraction problem would be to infer as the DTD for an ele- depending on the number of bits required to describe
ment, a “concise” expression which descrikezactlyall the the input collection of sequences terms of the DTD
sequences of subelements nested within the element in th€DTDs requiring fewer bits are ranked higher). As a
entire document collection. As we demonstrate in Section 3, consequence, the optimal DTD according to the MDL

eMinimum Description Length (MDL) Principle. In
the final and most important step, the XTRACT system

principle is the one that is general enough to cover a The problem of extracting a schema from semistructured
large subset of the input sequences but, at the same timedata has been addressed in [8, 13, 18]. Although, XML can
captures the structure of the input sequences with a fairbe viewed as an instance of semistructured data, the kinds
amount of detail, so that they can be described easily of schema considered in [8, 13, 18] are very different from
(with few additional bits) using the DTD. Thus, the MDL a DTD. The schemas extracted by [8, 13, 18] attempt to
principle provides a formal notion of “best DTD” that find a typing for semistructured data. Assuming a graph-
exactly matches our intuition. Using MDL essentially based model for semistructured data (nodes denote objects
allows XTRACT to control the amount of generalization and labels on edges denote relationships between them),
introduced in the inferred DTD in a principled, scientific finding a typing is tantamount to grouping objects that have
and, at the same time, intuitively appealing fashion. We similarly labeled edges to and from similarly typed objects.
demonstrate that selecting the optimal DTD based on the The typing then describes this grouping in terms of the labels
MDL principle has a direct and natural mapping to the of the edges to (from) this type of objects and the types of
Facility Location Problem(FLP), which is known to be the objects at the other end of the edge. In contrast, one
NP-complete [14]. Fortunately, efficient approximation can perhaps view the DTD as having already grouped all
algorithms with guaranteed performance ratios have beenobjects based on their incoming edges (tag of the element)
proposed for the FLP in the literature [6], thus allowing us to into the same type and then describing the possible sequence
efficiently compose the final DTD in a near-optimal manner. of outgoing edges (subelements) as a regular expression. Itis
We have implemented our XTRACT DTD derivation al- the fact that the outgoing edges from a type can be described
gorithms and conducted an extensive experimental studyby an arbitrary regular expression that distinguishes DTDs
with both real-life and synthetic DTDs. Our findings show from the schemas in semistructured databases. Since the
that, for a set of random inputs that conform to a predeter- schemas in semistructured databases are expressed using
mined DTD, XTRACT always produces a DTD that is either plain sequences or sets of edges, they cannot be used to infer
identical or very close to the original DTD. We also observe DTDs corresponding to arbitrary regular expressions.
that the quality of the DTDs returned by XTRACT is far The inference of formal languages from examples has a
superior compared to those output by the IBM Alphaworks long and rich history in the field of computational learning
DDbE (Data Descriptors by Example) DTD extraction fpol theory, and more related to our work is the extensive
which is unable to identify a majority of the DTDs. Fur- study of the inference oDeterministic Finite Automata
ther, a number of the original DTDs correctly inferred by (DFAs) [2, 10, 11] (see also [19] for a detailed survey of
XTRACT contain several regular expressions terms, somethe topic). The above line of work is purely theoretical and
nested within one another. Thus, our experimental resultsfocuses on investigating the computational complexity of the
clearly demonstrate the effectiveness of XTRACT's method- language inference problem, while we are mainly interested
ology for deducing fairly complex DTDs. in devising practical algorithms for real-world applications.
Several extensions to DTDs, e.g., Document Content In this sense, our research is more closely related to the
Descriptors (DCDs) and XML Schemas, are being evolved work in [5] which addresses the problem of approximating
by the Web community. These extensions aim to add roughly equivalentegular expressions from a long enough
typing information, since DTDs treat all data as strings. string, and the work in [16] where thgIDL principle is
Therefore, XTRACT, can be used with little or no changes used to infer gpattern languagdrom positives examples.
for inferring DCDs and XML Schemas in conjunction However, the problem tackled in [16] is much simpler
with other mechanisms for inferring the types. However, than ours, since it assumes that the set of simple patterns
these proposals are still evolving — therefore, we do not whose subset is to be computed is available. Furthermore,
concentrate on these extensions in this paper. the patterns considered in [16] are simple sequences that
The work reported in this paper has been done in the con-are permitted to contain single symbol wildcards. In our
text of theSERENDIP data mining project at Bell Labo- problem setting, unlike [16], patterns are general regular
ratories (ww.bell-labs.com/projects/serendip). expressions and are not known apriori.

2 Related Work 3 Problem Formulation and Overview

The problem of mining DTDs from a collection of XML In this section, we present a precise definition of the problem
documents is, to the best of our knowledge, novel and hasof inferring a DTD from a collection of XML documents
not begn previously addressed in the literature. A few DTD and then present an overview of the steps performed by
extraction software tools can be found on the Web (e.9. they v TRACT system. Briefly, an XML document consists
IBM Alphaworks DDbE product) — however, it has been of nested element structures starting with a root element.

our experience that the;e tools are somewhat naive in th.eirSubeIements of an element can either be elements or simple
approach and the quality of the DTDs inferred by them is character data. A DTD is a grammar for describing the

poor (see Section 7). structure of an XML document. A DTD constrains the
Iwww.alphaworks.ibm.com/formula/xml/ structure of an element by specifying a regular expression

that its subelement sequences have to conform to. Figure 1 As stated, an obvious solution to the problemis to find the
illustrates an example XML document, in which the root most “concise” regular expressidd whose language i$.
element érticle) has two nested subelementilé One mechanism to find such a regular expression is to factor
and author), and theauthor element in turn has two as much as possible, the expression corresponding torthe
nested subelements. Figure 2 illustrates a DTD that our of sequences id. Factoring a regular expression makes it
example XML document conforms to. More details on the “concise” without changing the language of the expression.
XML specification can be found in [3]. For brevity, in the For exampleab|ac can be factored inta(b|c). An alternate
remainder of the paper, we denote elements of an XML method for computing the most concise regular expression
document by a single letter from the lower-case alphabet. is to first find the automaton with the smallest number of
states that accepfsand then derive the regular expression
from the automaton. (Note, however, that the obtained

<ar<tltil|2z regular expression may not be the shortest regular expression
A Relational Model for Large Shared for 1.) In any case, such a concise regular expression
Data Banks whose language i$, is unfortunately not a “good” DTD
<ftitle> in the sense it tends to be voluminous and unintuitive. We
<author> illustrate this using the DTD of Figure 2. Suppose we have
<name> E. F. Codd </name> a collection of XML documents that conform to this DTD.
<affiliation> IBM Research </affiliation> Abbreviating thetitle tag byt, and theauthor tag by
. /ajiiﬁ‘ézop a, it is reasonable to expect the following sequences to be

the subelement sequences of #récle element in the
Figure 1: An Example XML Document collection of XML documents:t, ta, taa, taaa, taaaa.
Clearly, the most concise regular expression for the above
language ist|t(a|a(ala(alaa))) which is definitely much
more voluminous and much less intuitive than a DTD such

<IELEMENT article(title, author*)>
<I[ELEMENT title (#PCDATA)>

<IELEMENT author(name, affiliation)> asta”. , ,
<IELEMENT name (#PCDATA)> In other words, the obvious solution above never “gen-
<IELEMENT affiliation (#PCDATA)> eralizes” and would therefore never contain metacharacters
like * in the inferred DTD. Clearly, a human expert would at
Figure 2: An Example DTD most times want to use such metacharactersin a DTD to suc-

cinctly convey the constraints he/she wishes to impose on the
structure of XML documents. Thus, the challenge is to infer
3.1 Problem Definition for the set of input sequencésa “general” DTD which is
similar to what a human would come up with. However, as
collection of XML documents. Thus, for each element the foIIowing exgmple iIIustrgtes, there can be several possi-
ble “generalizations” for a given set of input sequences and

that appears in the document collection, our goal is to d to devi hanism for choosing th
derive a regular expression that subelement sequences fo$hus we need fo devise a mechanism for choosing the one

the element (in the XML documents) conform to. Note that best describes the sequences.
that an element's DTD is completely independent of the gxample 3.1 Consider = {ab, abab, ababab}. A number
DTD for other elements, and only restricts the sequence of pTDs match sequences ih— (1) (a | b)*, (2) ab |
of subelements nested within the element. Therefore, for ;5,8 | ababab, (3) (ab)*, (4) ab | ab(ab | abab), and
simplicity of exposition, in the remainder of the paper, we g5 on, DTD (1) is similar to ANY in that it allows any
concentrate on the problem of extracting a DTD for a single grpjtrary sequence afs andbs, while DTD (2) is simply
element. We do not address the problem of computing an or of all the sequences if. DTD (4) is derived from
attribute lists for an element — since these are simple lists, pTp (2) by factoring the subsequenak from the last two
their computation is not particularly challenging. disjuncts of DTD (2). The problem with DTD (1) is that
Let e be an element that appears in the XML documents it represents a gross over-generalization of the input, and
for which we want to infer a DTD. It is straightforward 10 the inferred DTD completely fails to capture any structure
compute the sequence of subelements nestgd within eaclynerent in the input. On the other hand, DTDs (2) and (4)
<e> </e> pair in the XML document collection. Lef accurately reflect the structure of the input sequences but do
denote the set aV such sequences, one sequence for every not generalize or learn any meaningful patterns which make
occurrence of elementin the data. The problem we address the DTDs smaller or simpler to understand. Thus, none of
in this paper can be stated as follows. the DTDs (1), (2) or (4) seem “good”. However, of the above
Problem Statement. Given a setl of N input sequences DTDs, (3) has great intuitive appeal since it is succinct and
nested within element, compute a DTD fore such that it generalizes the set of input sequences without losing too
every sequence if conforms to the DTDU much information about the structure of the sequeniCes.

Our primary focus in this paper is to infer a DTD for a

Based on the discussion in the above example, we can Note that the actual encoding scheme used to specify a
characterize the set of desirable DTDs by placing the DTD as well as the data (with the help of the DTD) plays
following two qualitative restrictions on the inferred DTD. a critical role in determining the actual values for the two
R1: The DTD should beoncise(i.e., small in size). components of the MDL cost. We' defer the detail§ of
the actual encoding scheme to Section 4. However, in the
following example, we employ a simple encoding scheme (a
coarser version of the scheme in Section 4) to illustrate how

Restriction R1 above ensures that the inferred DTD is ranking DTDs based on their MDL cost closely matches our
easy to understand and succinct, thus eliminating, in manyintuition of their “goodness”.
cases, concise regular expressions whose languade is
Restriction R2, on the other hand, attempts to ensure that theExample 3.2 Consider the input sef and DTDs from
DTD is not too general and captures the structure of input Example 3.1. We compute the MDL cost of each DTD,
sequences, thus eliminating a DTD such as ANY. While the which, as mentioned earlier, is the cost of encoding the
above restrictions seem reasonable at an intuitive level, inDTD itself and the sequences Irin terms of the DTD. We
general, there is a tradeoff between a DTD’s “conciseness” then rank the DTDs based on their MDL costs (DTDs with
and its “preciseness”, and a good DTD is one that strikes smaller costs are considered better). In our simple encoding
the right balance between the two. The problem here is scheme, we assume a cost of 1 unit for each character.
that conciseness and preciseness are qualitative notions —in DTD (1), (a | b)*, has a cost of 6 for encoding the DTD.
order to resolve the tradeoff between the two, we need to |n order to encode the sequende:ib using the DTD, we
devise quantitative measures for mathematically capturingneed one character to specify the number of repetitions of
these two qualitative notions. the the term(a | b) that precedes the (in this case, this

. o . number is 4), and 4 additional characters to specify which
3.2 Using the MDL Principle to Define a Good DTD of a or b is chosen from each repetition. Thus, the total cost
We use the MDL principle [21, 22] to define an information- o encodingabab using (a | b)* is 5 and the MDL cost of
theoretic measure for quantifying and thereby resolving the {he pTD is6 + 3 + 5 + 7 = 21. Similarly, the MDL cost
tradeoff between the conciseness and preciseness propertigs pTD (2) can be shown to be 14 (to encode the DTD)
of DTDs. The MDL principle has been successfully applied 3 (to encode the input sequences; we need one character to
in the past in a variety of situations ranging from construct- gpecify the position of the disjunct for each sequence) = 17.
ing good decision tree classifiers [17, 20] to learning com- The cost of DTD (3) is 5 (to encode the DTB)3 (to encode
mon patterns in sets of strings [16]. the input sequences — note that we only need to specify the

Roughly speaking, the MDL principle states that the best nymber of repetitions of the tera for each sequence) =
theory to infer from a set of data is the one which minimizes g Finally, DTD (4) has a cost of 14 + 5 (1 character to

R2: The DTD should beprecise(i.e, not cover too many
sequences not containediii

the sum of encode sequenas and 2 characters for each of the other
(A) the length of the theory, in bits, and two input sequences) = 19. Thus, since DTD (3) has the
(B) the length of the data, in bits, when encoded with the least MDL cost, it would be considered the best DTD by the

help of the theory. MDL principle — which matches our intuitiorl

We will refer to the above sum for a theory, as MBL cost 33 Overview of the XTRACT System
for the theory. The MDL principle is a general one and needs) o ,

to be instantiated appropriately for each situation. In our The architecture of the XTRACT system is illustrated in
setting, the theory is the DTD and the data is the sequencesirf 19ure 3(@). As shown in the figure, the system consists
I. Thus, the MDL principle assigns each DTD an MDL cost of thrge main components: the generalization module, the
and ranks the DTDs based on their MDL costs (DTDs with factoring module, and the MDL module. Input sequences in
lower MDL costs are ranked higher). Furthermore, parts (A) I are processed by the three subs_ystems_ one after another,
and (B) of the MDL cost for a DTD depend directly on its the output of one subsystem serving as |.nput to the ngxt.
conciseness and preciseness, respectively. Part (A) is tha/Ve denote the outputs of the' generalization and factoring
number of bits required to describe the DTD and is thus a Modules bySg andS, respectively. Observe that bofig

direct measure of its conciseness. Further, since a DTD tha@"d Sz contain the initial input sequences In This is to

is more precise captures the structure of the input sequence§nsure that the MDL module has a wide range of DTDs to
more accurately, fewer bits are required to describe the choose from thatincludes the obvious DTD whichiis simply
sequences if in terms of a more precise DTD. As a result, @nor of all the input sequences ih In the following, we

Part (B) of the MDL cost captures a DTD's preciseness. provide a prlef descr'lpt.lon of each supsystem; we defer a
The MDL cost for a DTD thus provides us with an elegant More detailed description of the algorithms employed by
and principled mechanism (rooted in information theory) ©&ch subsystem to later sections.

for quantifying (and combining) the conflicting concepts of The Generalization Subsystem.For each input sequence,
conciseness and preciseness in a single unified framework. the generalization module generates zero or more candidate

Input Sequences using the DTD. Thus, since the DTD encoding cost is a
I'={ ab, abab, ac, ad, b, bd, bbd, bbbbe } component of the MDL cost for a DTD, factoring can result
»— MOLELP) in certain DTDs being chosen by the MDL module that may
not have been considered earlier. We appropriately modify
factoring algorithms for boolean functions in the logic
optimization area [4, 24] to meet our needs. However, even
though every subset of candidate DTDs can, in principle,
A be factored, the number of these subsets can be huge and
e only a few of them result in good factorizations. We propose

novel heuristics to restrict our attention to subsets that can

Inferred DTD:(ab)* | (@b)(cid) [b*(@l) e factored effectively.

The MDL Subsystem.The MDL subsystem finally chooses

gEREBER

g
&

Inferred DTD:(ab)* | (alb)(cld) | b*(dle)

@ (®) from among the set of candidate DT generated by
_ _ the previous two subsystems, a set of DTDs that cover all
Figure 3: Architecture of the XTRACT System the input sequences ihand the sum of whose MDL costs

is minimum. The final DTD is then aar of the DTDs in

the set. For the input sequences in Figure 3(a), we illustrate
(using solid lines) in Figure 3(b), the input sequences (in the
DTDs that are derived by replacing patterns in the input se- right column) covered by the candidate DTDsS# (in the
quence with regular expressions containing metacharacterseft column).

like * and| (e.g., (ab)*, (a | b)*). Note that the initial in- The above cost minimization problem naturally maps to
put sequences do not contain metacharacters and so the carnhe Facility Location Problen{FLP) for which polynomial-
didate DTDs introduced by the generalization module are time approximation algorithms have been proposed in the
more general. For instance, in Figure 3(a), sequeabe’s |iterature [6, 14]. We adapt the algorithm from [6] for our
andbbbe result in the more general candidate DT(@$)*, purposes, and using it, the XTRACT system is able to infer
(a | b)* andb*e being output by the generalization subsys- the DTD shown at the bottom of Figure 3(b).

tem. Also, observe that each candidate DTD produced by

the generalization module may cover only a subset of the 4 The MDL Subsystem

input sequences. Thus, th_e final DTD output by the MDL The MDL subsystem constitutes the core of the XTRACT
module may be aor of multiple candidate DTDs. o) . .
system — it is responsible for choosing a Sebf candidate

Ideally, in the generallzatloq phase, we should cons@erall DTDs from S such that the final DTOD (which is an
DTDs that cover one or more input sequences as candidates

so that the MDL step can choose the best among them.or of the DTDS inS) (1) covers all sequences i and.
(2) has minimum MDL cost. Consequently, we describe
However, the number of such DTDs can be enormous.

. this module first, and postpone the presentation of the
For example, the sequenaéabaabb is covered by the eneralization and factoring modules to Sections 5 and 6
following DTDs in addition to many more {a | b)*, (a | g g ’

. 1w N . . e L respectively.
b)"ab ’.(ab) (a | D)7, (ab)"a"d .'T.herefore,' in this Paper, Recall that the MDL cost of a DTD that is used to
we outline several novel heuristics, inspired by real-life

o . explain a set of sequences, comprises (A) the length, in
DTDS?, for I|m.|t|ng the set of candidate DTDSg output bits, needed to describe the DTD; and (B) the length of
by the generalization module.

) . the sequences (in bits) when encoded in terms of the DTD.
The Factoring Subsystem. The factoring component |n the following subsection, we first present the encoding
factors two or more candidate DTDs #; into a new gchemes for computing parts (A) and (B) of the MDL cost
candidate DTD. The length of the new DTD is smaller than f 5 DTD. Subsequently, in Section 4.2, we present the
the sum of the sizes of the DTDs factored. For example, algorithm for computing the s&t CSr of candidate DTDs

in Figure 3(a), candidate DTDs'd and b*e representing \hoseor yields the final DTDD with minimum MDL

the expression™d | b*e, when factored, result in the DTD ¢ost, Note that the candidate DTDsSp- can be complex
b*(d | e); similarly, the candidatesc, ad, bc andbd are reqular expressions (containirig |, etc.) output by the

ac | ad | be | bd). Although factoring leaves the semantics of

candidate DTDs unchanged, it is nevertheless an important4.1 The Encoding Scheme

step. The reason being that factorir)g reduces the 'size ofiwe begin by describing the procedure for estimating the
the DTD and thus the cost of encoding the DTD, without mper of bits required to encode the DTD itself (part (A) of
seriously impacting the cost of encoding input sequencese MpL cost). LetS be the set of subelement symbols that
2The DTDs are available at Robin Covers SGML/XML web page aPpearin sequencesinLet M be the set of metacharacters
(www.oasis-open.org/cover/). l,*,+,7,(,). Letthe length of a DTD viewed as a string

(A) seq(D,s) = eif D = s. In this case, the DTDD is a
sequence of symbols from the alphaketnd does not contain
any metacharacters.

(B) seq(D1...Dg,5s1...8k) seq(D1,5s1) ...seq(Dy, st);
thatis,D is the concatenation of regular expressidns. . . Dy,
and the sequencecan be written as the concatenation of the
subsequences ... sg, such that each subsequen¢enatches

the corresponding regular expressibn

(C) seq(D1]...|Dm,s) =i seq(D;,s); thatis,D is the exclusive
choice of regular expressiods; ... D,,, andi is the index of
the regular expression that the sequenceatches. Note that

we needlog m] bits to encode the index

k seq(D,s1)...seq(D,s;) ifk>0

0 otherwise
In other words, the sequenee= s; ... sy is produced from

D* by instantiating the repetition operatbrtimes, and each
subsequencs; matches the-th instantiation. In this case,
since there is no simple and inexpensive way to bound apriori
the number of bits required for the indéx we first specify
the number of bits required to encod&ein unary (that is, a
sequence oflog k] 1s, followed by a 0) and then the indéx
using[log k] bits. The 0 in the middle serves as the delimiter
between the unary encoding of the length of the index and the
actual index itself.

(D) Seq(D*, S1... Sk) =

Figure 4: The Encoding Scheme

in ¥ U M, ben. Then, the length of the DTD in bits is
nflog(| £ | + | M |)]. As an example, IeE consist of
the elements andb. The length in bits of the DT2*b* is
4 x [log(2 + 6)] = 12. Similarly, the length in bits of the
DTD (ab|abb)(aa|ab*) is 16 x 3 = 48.

We next describe the scheme for encoding a sequenc
using a DTD (part (B) of the MDL cost). Our encoding

scheme constructs a sequence of integral indices (which
forms the encoding) for expressing a sequence in terms of.

a DTD. The following simple examples illustrate the basic
building blocks on which our encoding scheme for more
complex DTDs is built:

1. The encoding for the sequeneén terms of the DTDa
is the empty string.

2. The encoding for the sequenkén terms of the DTD
a | b | cis the integral index 1 (denotes thiats at
position 1, counting from 0, in the above DTD).

3. The encoding for the sequeni in terms of the DTD
b* is the integral index 3 (denotes 3 repetition$of

We now generalize the encoding scheme for arbitrary

of the encodings for operators and? since these can be
defined in a similar fashion to (for *, k is always greater
than 0, while for?, k can only assume values 1 or 0). We now
illustrate our encoding scheme using the following example.

Example 4.1 Consider the DTD(ab|c)*(de|fg*) and the
sequencebccabfggg to be encoded in terms of the DTD.
Below, we list how steps (A), (B), (C) and (D) in Figure 4 are
recursively applied to derive the encoding
seq((ablc)* (de| fg*), abccabfggg).

1. Apply Step (B): seq((ab|c)*, abccab) seq((de| fg~), f999)
2. Apply Step (D): 4 seq(ab|c, ab) seq(ab|c, ¢) seq(able, c)
seq(ablc, ab) seq((de|fg*), f999)

3. Apply Step (C): 4 0 seq(ab, ab) 1 seq(c,c) 1 seq(e,c) O
seq(ab, ab) 1 seq(fg*, f999)

4. Apply Step (A): 40110 1seq(fg*, f999)
5. Apply Steps (A), (B) and (D):;4011013

In order to derive the final bit sequence corresponding
to the above indices, we need to include in the encoding
the unary representation for the number of bits required to
encode the indices 4 and 3. Thus, we obtain the following
bit encoding for the sequence (we have inserted blanks in
between the encoding for successive indices for clarity).

seq((ablc)*(de|fg™),abccabfggg) = 1110100 0 1 1 0 1 11011

O

In steps (B), (C) and (D), we need to be able to determine
if a sequence matches a DTDD. Since a DTD is a regular
expression, well-established techniques for finding out if a
sequence is covered by a regular expression can be used

efor this purpose [15] and have a complexity@t|D]| - |s|)

(Is| denotes the length of sequengp These methods
involve constructing a non-deterministic finite automaton
for D and can also be used to decompose the sequence
into subsequences such that each subsequence matches the
corresponding sub-part of the DTD, thus enabling us to
come up with the encoding.

Note that there may be multiple ways of partitioning
the sequence such that each subsequence matches the
corresponding sub-part of the DTD. In such a case,
we can extend the above procedure to enumerate every
decomposition ofs that match sub-parts ab, and then
select from among the decompositions the one that results
in the minimum length encoding of in terms of D.

The complexity of considering all possible decompositions,
however, is much higher and therefore not included in our
XTRACT implementation.

DTDs and arbitrary sequences. Let us denote the sequence

of integral indices for a sequence when encoded in
terms of a DTDD by seq(D,s). We defineseq(D, s)

recursively in terms of component DTDs withihas shown
in Figure 4. Thus,seq(D,s) can be computed using

4.2 Computing the DTD with Minimum MDL Cost

We now turn our attention to the problem of computing the
final DTD D (which is anor of a subse& of candidate DTDs
in Sx) that covers all the input sequences/imand whose

a recursive procedure based on the encoding scheme oMDL cost for encoding sequences Inis minimum. The

Figure 4. Note that we have not provided the definitions

above minimization problem maps naturally to trecility

Location Problem(FLP) [6, 14]. The FLP is formulated as
follows: Let C be a set of clients and be a set of facilities
such that each facility “serves” every client. There is a
costc(j) of “choosing” a facilityj € J and a costi(j,)

of serving clienti € C by facility j € J. The problem
definition asks to choose a subset of facilittesC .J such

that the sum of costs of the chosen facilities plus the sum of

costs of serving every client by its closest chosen facility is
minimized, that is

min{ > c(j) + D mind(j,i) }.

jeF ieC

1)

The problem of inferring the minimum MDL cost DTD
can be reduced to FLP as follows: LE&the the sef of input
sequences and be the set of candidate DTDs 8. The
cost of choosing a facility is the length of the corresponding
candidate DTD. The cost of serving cliehfrom facility
J,» d(j,1), is the length of the encoding of the sequence
corresponding to client using the DTD corresponding to
facility j. If a DTD j does not cover a sequentethen
we setd(j,4) to co. Thus, the sef’ computed by the FLP
corresponds to our desired sebpf candidate DTDs.

The FLP is NP-hard; however, it can be reduced tcstite
cover problemand then approximated within a logarithmic
factor as shown in [14]. In our implementation, we employ
the randomized algorithm from [6] which approximates the
FLP within a constant factor if the distance function is a
metric. Even though our distance function is not a metric, we
have found the FLP approximations produced by [6] for our
problem setting to be very good in practice. Furthermore,
the time complexity of [6] for computing the approximate
solution isO(N? - log N), whereN = |I].

5 The Generalization Subsystem

The quality of the DTD computed by the MDL module is
very dependent on the set of candidate DTDsinput to it.

In caseSx were to contain only input sequenceslinthen

the final DTD output by the MDL subsystem would simply
be theor of all the sequences ih However, as we observed
earlier, this is not a desirable DTD since it is neither concise
nor intuitive. Thus, in order to infer meaningful DTDs,
it is crucial that the candidate DTDs i be general

The goal of the generalization component is to achieve this

objective by inferring a sefg of general DTDs which are
then input to the factorization step. As we mentioned before
the factorization step infers additional factored DTDs and
generates which is a superset &g.

The generalization componentin XTRACT infers a num-

ber of regular expressions which we have found to frequently
appear in real-life DTDs. Some of the most common regular

expressions from real-life DTDs atébc*, (abc)*, (a|b|c)*,

and((ab)*c)*. These are examples that appear in the News-

paper Association of America (NAA) Classified Advertizing
Standards XML DTD. (A detailed description of the NAA

Swww.naa.org/technology/clsstdtf/Adex010.dtd

data can be found in the full version of this paper [9].)

Although our algorithms can infer regular expressions that
are more complex than the above, we do not infer certain
complex expressions such @?c*d?)* that are less likely
to occur in practice. We defer further discussion of this topic
to Section 7.

We now discuss our generalization algorithm which is
outlined in Figure 5. ProcedureE®ERALIZE infers several
DTDs for each input sequence Inndependently and adds
them to the setSg. Therefore, it may over-generalize in
some cases (since we are inferring DTDs based on a single
sequence); however, our MDL step will ensure that such
overly general DTDs are not chosen as part of the final
inferred DTD, if there are better alternatives. Recall that
the generalization step is merely trying to provide several
alternate candidates to the MDL step. In particuiyp |,
and therefore, the DTD corresponding to ¢his of the input
will always be considered during the MDL step.

The essence of proceduree@ERALIZE lies in the two
procedures BBCOVERSEQPATTERN and DISCOVEROR-
PATTERN, which are repeatedly called with various param-
eter values. We discuss the details of these procedures and
the roles of their parameters next.

5.1 Discovering Sequencing Patterns

Procedure DsCOVERSEQPATTERN, shown in Figure 5,
takes as input an input sequencand returns a candidate
DTD that is derived frons by replacing sequencing patterns
of the formzx - -- 2, for a subsequence in s, with the
regular expressiofx)*. In addition tos, the procedure also
accepts as input a threshold parametes 1 which is the
minimum number of contiguous repetitions of subsequence
x in s required for the repetitions to be replaced w(th*.

In case there are multiple subsequencesth the maximum
number of repetitions in Step 2, the longest among them is
chosen, and subsequent ties are resolved arbitrarily.

Note that instead of introducing the regular expression
term (z)* into the sequence, we choose to introduce an
auxiliary symbol that serves as a representative for the term.
The auxiliary symbols enable us to keep the description of
our algorithms simple and clean, since their input is always
a simple sequence of symbols. We ensure that there is a one-
to-one correspondence between auxiliary symbols and regu-
lar expression terms throughout the XTRACT system; thus,

" if the auxiliary symbol,A denotes(bc)* in one candidate

DTD, then it representdc)* in every other candidate DTD.
Also, observe that procedura - OVERSEQPATTERN may
perform several iterations and thus new sequencing patterns
may contain auxiliary symbols corresponding to patterns re-
placed in previous iterations. For example, invoking pro-
cedure DSCOVERSEQPATTERN with the input sequence

s = abababcababe andr = 2 yields the sequencé;cA;c

after the first iteration, wherd; is an auxiliary symbol for

the term(ab)*. After the second iteration, the procedure re-
turns the candidate DTA,, whereA, is the auxiliary sym-

procedure GENERALIZE(T)

begin

1. for eachsequence in I

2. adds to Sg

3. for r :=2,3,4

4, s’ 1= DISCOVERSEQPATTERN(s, 1)

5. for d:=0.1-|s'|,0.5-|s'|,|s'|

6. s'" := DISCOVERORPATTERN(s', d)
7. adds” to Sg

end

procedure DISCOVERSEQPATTERN(s, 1)

begin
1. repeat
2. letz be a subsequence ofvith the maximum

3 number & r) of contiguous repetitions i
4 replace all® r) contiguous occurrences of
5. z in s with a new auxiliary symbol; = (z)~
6. until (s no longer containg r contiguous

7 occurrences of any subsequemge

8. return s

end

procedure DISCOVERORPATTERN(s, d)

begin

1. si1,82,...,8n = PARTITION(s,d)

2. for each subsequence; in s1, s2, ..., Sn

3 let the set of distinct symbols i}

4, beai,as,...,am

5. if (m>1)

6 replace subsequenggin sequence by a
7 new auxiliary symbol; = (a1|---|am)”
8. return s

end

procedure PARTITION(s, d)
begin

1. 2:=start:=end:=1
2. s; = s[start,end]

3. while (end < |s|)

4 while (end < |s| and a symbol ins; occurs to
5. the right ofs; within a distancel)
6. end := end + 1;

7 s; = s[start, end];

8 if (end < |s])

9. ti=1+41;

10. start .= end + 1,

11. end := end + 1;

12. s; = s[start,end];

13. return si, 82, -+, 8;

end

Figure 5: The Generalization Algorithm

bol corresponding td(ab)*c)*. Thus, the resulting candi-
date DTD returned by procedure S OVERSEQPATTERN
can contain*’s nested within othet’s. Finally, we have
chosen to invoke BBCOVERSEQPATTERN (from GENER-
ALIZE) with three different values for the parameteto
control the eagerness with which we generalize. For exam-
ple, for the sequenceabbb, DISCOVERSEQPATTERN with
r = 2 would infera*b*, while with » = 3, it would infer
aab*. Inthe MDL step, if many other sequences are covered
by aab*, then a DTD ofaab* may be preferred to a DTD of
a*b*, since it more accurately describes sequencés in

The time complexity of the procedure is dominated by
the first step that involves finding the subsequenaceith
the maximum number of contiguous repetitions. Since
s contains at mostO(|s|?) possible subsequences and
computing the number of repetitions for each subsequence
takesO(|s|) steps, the complexity of the first step(|s|®)
per iteration, in the worst case.

5.2 Discovering Or Patterns

Procedure DsCOVERORPATTERN infers patterns of the
form (a1|as| . .. |an)* based on the locality of these symbols
within a sequence. It discovers such localities by first par-
titioning (using procedureARTITION) the input sequence
into the smallest possible subsequenges,, .. ., s,, such
that for any occurrence of a symholin a subsequence,
there does not exist another occurrence @fi some other
subsequence; within a distancel (which is a parameter to
DiscovERORPATTERN). Each subsequenggin s is then
replaced by the patterfu, |as| . .. |a.,)* wherea,, ... an,
are the distinct symbols in the subsequengce The intu-
ition here is that ifs; contains frequent repetitions of the
symbolsay, as, . . ., an in close proximity, then it is very
likely thats; originated from a regular expression of the form
(ailas|...|am)*. As an illustration, on the input sequence
abcbac, procedure DsCOVERORPATTERN returns

e aAjacford = 2,whered; = (b | ¢)*,
e aA,ford=3,whered, = (a|b|¢)*, and
e A, ford =4,whered, =(a|b|c)*.

A critical component for discoveringr patterns is pro-
cedure RRTITION, which we now discuss in more detail.
Before that, we define the following notation for sequences.
For a sequence, s[i, j] denotes the subsequencesddtart-
ing at thei’” symbol and ending at thg” symbol of s.
Procedure RRTITION constructs subsequencessoin the
ordersi, sz, and so on. Assuming that throughs; have
been generated, it construets.; by startings;; immedi-
ately afters; ends and expanding the subsequesigg to
the right as long as required to ensure that there is no sym-
bol in s;41 that occurs within a distanag to the right of
sj+1. By construction, there cannot exist such a symbol to
the left ofs;1 ;. Note that the condition of whether a symbol
in s; occurs within a distancé outsides; can be checked in
O(Js]) time if we keep track of the next occurrence outside

of every symbol irs; — this can be achieved by initially con- (1) share common prefixes or suffixes, and (2) have minimal
structing for every symbol, the locations of its occurrences overlap with other selected DTDs. Due to space constraints,
in s sorted order. Therefore, the time complexity of proce- we omit the detailed description of our heuristic as well as
dures RRTITION and DSCOVERORPATTERN can be easily the factoring algorithm itself (which is an adaptation of fac-

shown to beO)(|s|?). toring algorithms for boolean expressions from the logic op-
Note that procedure &NERALIZE invokes DSCOVEROR- timization literature [24]). The details can be found in the
PATTERN on the DTDs that result from calls tolBCOVER- full version of this paper [9].

SEQPATTERN and therefore it is possible to infer more com-
plex DTDs of the form(a|(bc)*)* in addition to DTDs like 7 Experimental Results

(alblc)*. For instance, for the input sequence= abcbea, To determine the effectiveness of XTRACT’s methodology
procedure DBCOVERSEQPATTERN invoked withr = 2 for inferring the DTD of a database of XML documents, we
would returns’ = aA;a, whered; = (bc)*, whichwhenin- conducted a study with both synthetic and real-life DTDs.
put to DISCOVERORPATTERN returnss” = A, ford = [s'|, We also compared the DTDs produced by XTRACT with
whereA; = (a|A,)". Further, observe thatiBCOVEROR- those generated by the IBM Alphaworks DTD extraction

PATTERN is invoked with various values of (expressed as tool, DDbE*, for XML data. Our results indicate that

a fraction of the length of the input sequence) to control the XTRACT outperforms DDbE over a wide range of DTDs,
degree of generalization. Small valuesidéad to conserva- and accurately finds almost every original DTD while DDbE
tive generalizations while larger values resultin more liberal f4is to do so for most DTDs. Thus, our results clearly

generalizations. demonstrate the effectiveness of XTRACT’s approach that
] employs generalization and factorization to derive a range
6 The Factoring Subsystem of general and concise candidate DTDs, and then uses the

In a nutshell, the factoring step derives factored forms for MDL principle as the basis to select amongst them.

expressions consisting of am of a subset of the candidate .

DTDs in Sg. For example, for candidate DTD&:, ad, be 7.1 Algorithms

andbd in Sg, the factoring step would generate the factored In the following, we describe the two DTD extraction

form (a | b)(c | d). Note that since the final DTD is art of algorithms that we considered in our experimental study.

candidate DTDs irS 7, factored forms are candidates, too. XTRACT: Our implementation of XTRACT includes all

Further, a factored candidate DTD, because of its smallerthree modules as described in Sections 4, 5, and 6. In

size, has a lower MDL cost, and is thus more likely to be the generalization step, we discover both sequencing and

chosen in the MDL step. Thus, since factored forms (due or patterns using procedureeERERALIZE. In the factoring

to their compactness) are more desirable (see restribtlon step, £k = % subsets are chosen for factoring and the

in Section 3), factoring can result in better-quality DTDs. In parameteb is set to 0 in the procedureAETORSUBSETS

this section, we describe the algorithms used by the factoringFinally, in the MDL step, we employ the algorithm from [6]

module to derive factored forms of the candidate DTDs in to compute an approximation to the FLP solution.

Sg produced by the generalization step. DDbE: We used Version 1.0 of the DDbE DTD extraction
Factored DTDs are common in real life, when there are tool in our experiments. DDbE is a Java component library

several choices to be made. For example, in the DTD in for inferring a DTD from a data set consisting of well-

Figure 2, an article may be categorized based on whetherformed XML instances. DDbE offers parameters that allow

it appeared in a workshop, conference, or journal; it may e yser to control the structure of the content models and

also be classified according to its area as belonging 10y, tynes used for attribute declarations. Two important
either computer science, physics, chemistry, etc. As a

consequence, the DTD (in factored form) for the element parameters .Of D.DbE are (1) the maximum number of
article could be as follows: consecutive identical tokens that should not be replaced by a

list, and (2) the number of applications of factoring. For our
<IELEMENT article(title, author*, experiments we used the default values of these parameters,
(workshop | conference | journal), which are 1 and 2, respectively [9].
(computer science | physics | chemistry | ...))
7.2 Data Sets
In order to evaluate the quality of DTDs retrieved by
XTRACT, we used both synthetic as well as real-life DTD
schemas. For each DTD for a single element, we generated
an XML file containing 1000 instantiations of the element.
These 1000 instantiations were generated by randomly
sampling from the DTD for the element. Thus, the initial set
of input sequencebto both XTRACT and DDbE contained

In addition to the factored forms generated from candi-
dates inSg, the set of candidate DTDs output by the factor-
ization moduleS#, also contains all the DTDs ifig. Ide-
ally, factored forms for every subset 8§ should be added
to Sx to be considered by the MDL module. However, this
is clearly impractical, sincé&g could be very large. We
have devised a heuristic strategy for selecting sets of candi-
dates inSg that when factored yield “good” factored DTDs.
Intuitively, our heuristic greedily selects DTDs fra$g that 4www.alphaworks.ibm.com/formula/xml/

No. Original DTD No | Original DTD Simplified
1 abedelefghlij|klm DTD
2 (alble|d| f)*gh 1 | <EENTITY included-elements alblc|d|e
3 (alblc|d)*|e (audio-clip|blind-box-reply|
4 (abede)* f link|pi-char|video-clip)>
5 (ab)*|cdef|(ghi)* 2 | <IELEMENT communications-contacts (albc|d|e)*
6 abede f (glhlilf) (k|llm|n|o) (phone|fax|email|pager|web-page)*>
7 (ablc)d*e*(fgh)* 3 | <IELEMENT employment-services ab*c*
8 | (a|b)(cdefg)*hijklmnopq(r|s)* (employment-service.type,
9 (abed)*|(e| flg)*|h|(ijklm)* employment-service.location*
10 | o [(Bleldlel /) [oh Ty &) [Tmn)” (e:22-generict29))>
4 | <IENTITY location (addr*area?, a*b?c?d?
Table 1: Synthetic DTD Data Set city?,state?,zip-code?,country?)>
5 | <IELEMENT transfer-info (a(bc)Td)*
(transfer-number,(from-to,co-id)+,
somewhere between 500 and 1000 sequences (after the contact-info)*>
elimination of duplicates) conforming to the original DTD. 6 | <IELEMENT real-estate-services @b d?)*
Synthetic DTD Data Set. We used a synthetic data gen- (r-e.type, r-e.location?,
erator to generate the synthetic data sets. Each DTD is I-e.response-modes*,i-e.comment?)*>
randomly chosen to have one of the following two forms:
Aq|As|As| -+ |A, andA; Ay Ag - - - Ay, Thus, aDTD has, Table 2: Real-life DTD Data Set

building blocks withn, randomly chosen betwedrandmpb,

wheremb is an input parameter to the generator that speci-
fies the maximum number of building blocks in a DTD. Each DTD 4 contains the metacharacter ? in conjunction with the

building block 4; further consists ofi; symbols, wheres; metacharactet, while DTDs 5 and 6 contain two regular

is randomly chosen to be betwegrandms (the parame- expressions with’s, one nested within the other.
ter ms specifies the maximum number of symbols that can .
be contained in a building block). Each building blodk 7.3 Quality of Inferred DTDs

has one of the following four forms, each of which has Synthetic DTD Data Set. For the synthetic data set,
an equal probability of occurrence: (J; |as|as]. . . |an,), XTRACT infers eachof the original DTDs correctly. In

(2) arasas...an,, (3) (ai]as|as|as]...|an,)*; and (4) contrast, DDbE computes the accurate DTD only for DTD 1,
(a1asasay - . . an,)*. Here, they;’s denote subelement sym- Which is the simplest DTD containing no metacharacters.
bols. Thus, our synthetic data generator essentially generate&Vven for the simple DTDs 2-5, not only is DDbE unable
DTDs containing one level of nesting of regular expression t0 correctly deduce the original DTD, but it also infers a
terms. DTD that does not cover the set of input sequences. In

In Table 1, we show the synthetic DTDs that we consid- 2ddition, DDDE is not very good at factoring DTDs and,
ered in our experiments_ Note that’ in the figure, we Only unlike XTRACT, it is unable to derive the final factored form
include the regular expression corresponding to the DTD. for DTD 6. Finally, DDBE infers an extremely complex
The DTDs were produced using our generator with the input DTD for the simple DTD 7 and overly general DTDs for
parametersnb andms both set to 5. (We use letters from the more complex DTDs 8-10. (The exact DTDs inferred by
the alphabet as subelement symbols.) DDbE can be found in the full version of this paper [9].) Our

The ten synthetic DTDs vary in complexity with later results for synthetic data clearly demonstrate the superiority
DTDs being more complex than earlier ones. For instance, °f XTRACT's approach (based on the combination of
DTD 1 does not contain any metacharacters, while DTDs 2 9eneralization, factoring, and the MDL principle) compared
through 5 contain simple sequencing anghatterns. DTD 6 1O that of DDDE for the DTD inference problem.
represents a DTD in factored form, while in DTDs 7 through Real-life DTD Data Set. The DTDs generated by the two
10 factors are combined with sequencing angatterns. algorithms for the real-life data set are shown in Table 3.
Real-life DTD Data Set. We obtained our real-life DTDs ~ Of the six DTDs, XTRACT is able to infer the first five
from the Newspaper Association of America (NAA) Clas- Correctly. In contrast, DDbE is able to derive the accurate
sified Advertising Standards XML DTD produced by the DTD only for DTDs 1 and 2, and an approximate DTD
NAA Classified Advertising Standards Task Fdice We for DTD 3. Basically, with an additional factoring step,

examined this real-life DTD data and collected six repre- PDPE could obtain the original DTD for DTD 3. Note,
sentative DTDs that are shown in Table 2. Of the DTDs however, that DDbE is unable to infer the simple DTD 4 that

shown in the table, the last three DTDs are quite interesting. CONtains the metacharactér in contrast, XTRACT is able
to deduce this DTD because its factorization step takes into
Swww.naa.org/technology/clsstdtf/Adex010.dtd account the identity element “1” and simplifies expressions

No | Simplified | DTD Obtained DTD obtained
DTD by XTRACT by DDbE
1| alblcdle alblc|d|e alb|c|d|e
2 [@lbleldie)” | (albleldle) (@lleldle)”
3 (ab*c*) ab*c* (abTc)|(ac”)
4 | a*b?c?d? a*b?c?d? (a™b(c|(c?d))?)]|
(bla™)2ed)|((a* 0)2d)
((a*)?)la* b)
5| (a(be)td)* (a(bc)*d)* (alble|d)t
6 | (ab?c*d?)= - (alblc|d)+

Table 3: DTDs generated for Real-life Data Set

of the form1|a to a?. DTD 5 represents an interesting
case where XTRACT is able to mine a DTD containing
regular expressions containing nesté&d This is due to our

generalization module that iteratively looks for sequencing
patterns. On the other hand, DDbE simply over-generalizes

DTD 5 by or-ing all the symbols in it and enclosing them
within the metacharacter. Finally, neither XTRACT nor

DDbE is able to correctly infer DTD 6. (The approximate
DTD derived by XTRACT for DTD 6 is rather complex and,

therefore, we chose to omit it from Table 3.) The reason

for XTRACT’s failure is that our generalization subsystem

does not detect patterns containing the optional symbol ?

References

[1] S. Abiteboul. Querying semi-structured data. Aroc. of the
Intl. Conf. on Database Theory (ICDT)997.

[2] D. Angluin. On the complexity of minimum inference of
regular setsinformation and Contrqgl39(3):337-350, 1978.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible
markup language (XML).vjww.w3.0rg/TR/REC-xml)

[4] R. K. Brayton and C. McMullen. The decomposition and
factorization of boolean expressions. Rroc of the Intl. Symp.
on Circuits and System$982.

[5] A. Brazma. Efficient identification of regular expressions
from representative examples. Rroc. of the Ann. Conf. on
Computational Learning Theory (COLT)993.

[6] M. Charikar and S. Guha. Improved combinatorial algorithms
for the facility location and k-median problems. Pnoc. of the
Ann. Symp. on Foundations of Computer Science (FOI29p.

[7] A. Deutsch, M. Fernandez, and D. Suciu. Storing semi-
structured data with stored. FProc. of the ACM SIGMOD Intl.
Conf. on Management of Dgt&999.

[8] M. Fernandez and D. Suciu. Optimizing regular path expres-
sions using graph schemas. Rroc. of the Intl. Conf. on Data-
base Theory (ICDT)1997.

[9] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and
K. Shim. XTRACT: A System for Extracting Document
Type Descriptors from XML Documents. Bell Labs Tech.
Memorandum, 1999.

[10] E. Mark Gold. Language identification in the limihforma-
tion and Contro] 10(5):447-474, 1967.

[11] E. Mark Gold. Complexity of automaton identification from
given data.Information and Contrql37(3):302—-320, 1978.

[12] R. Goldman, J. McHugh, and J. Widom. From semistructured
data to XML: Migrating the lore data model and query language.
In Proc. of the Intl. Workshop on the Web and Databases

Finding such patterns requires a more sophisticated analysis (WebDB) 1999.
of symbol occurrences within and across sequences, and wel3] R. Goldman and J. Widom. DataGuides: Enabling query

plan to pursue this further as part of our future work.

8 Conclusions

We have presented the architecture of the XTRACT system

for inferring a DTD for a database of XML documents. The

problem of automated DTD derivation is complicated by the
fact that the DTD syntax incorporates the full expressive
Specifically, as we have
shown, naive approaches that do not “generalize” beyond
the input element sequences fail to deduce concise and18] S. Nestorov, S. Abiteboul, and R. Motwani.
semantically meaningful DTDs. Instead, XTRACT applies
sophisticated algorithms to compute a DTD that is more [19] L. Pitt.
We

power of regular expressions.

along the lines of what a human expert would infer.
compared the quality of the DTDs inferred by XTRACT
with those returned by the IBM Alphaworks DDbE tool on
synthetic and real-life DTDs. In our experiments, XTRACT
outperformed DDbE by a wide margin; for most of our

test cases, XTRACT was able to accurately infer the DTD
whereas DDbE completely failed to do so. A number of

the DTDs which were correctly identified by XTRACT were

fairly complex and contained factors, metacharacters and
nested regular expression terms. Thus, our results clearly

formulation and optimization in semistructured databases. In
Proc. of the Intl. Conf. on Very Large Data Bases (VLDE)97.

[14] D. S. Hochbaum. Heuristics for the fixed cost median
problem.Mathematical Programming2:148-162, 1982.

[15] J. E. Hopcroft and J. D. Ullmanintroduction to Automaton
Theory, Languages, and Computatiohddison-Wesley, Read-
ing, Massachusetts, 1979.

[16] P. Kilpeldinen, H. Mannila, and E. Ukkonen. MDL learning
of unions of simple pattern languages from positive examples. In
Proc. of the European Conf. on Computational Learning Theory
(EuroCOLT) 1995.

[17] M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision
tree pruning. IrProc. of the Intl. Conf. on Knowledge Discovery
and Data Mining (KDD) 1995.

Extracting

schema from semistructured dataPhoc. of the ACM SIGMOD

Intl. Conf. on Management of Dgt&998.

“Inductive inference, DFAs, and computational
complexity”. Analogical and Inductive Inferencep. 18-44,
1989.

[20] J.R. Quinlan and R. L. Rivest. Inferring Decision Trees Using
the Minimum Description Length Principlelnformation and
Computation80:227-248, 1989.

[21] J. Rissanen. Modeling by shortest data descriptfartomat-
ica, 14:465-471, 1978.

[22] J. Rissanen. Stochastic Complexity in Statistical Inquiry
World Scientific Publ. Co., 1989.

[23] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt,
and J. Naughton. Relational databases for querying XML
documents: Limitations and opportunities. Rroc. of the Intl.
Conf. on Very Large Data Bases (VLDBP99.

demonstrate the effectiveness of the XTRACT approach that[24] A. R. R. Wang. Algorithms for Multi-level Logic Optimiza-

employs generalization and factorization to derive a range

tion. PhD thesis, Univ. of California, Berkeley, 1989.

of general and concise candidate DTDs, and then uses thd25]_J. Widom. Data management for XML: research directions.

MDL principle as the basis to select amongst them.

IEEE Data Engineering Bulletinl991.

