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ABSTRACT
Several studies have demonstrated the effectiveness of the
wavelet decomposition as a tool for reducing large amounts
of data down to compact wavelet synopses that can be used
to obtain fast, accurate approximate answers to user queries.
While conventional wavelet synopses are based on greedily
minimizing the overall root-mean-squared (i.e., L2-norm)
error in the data approximation, recent work has demon-
strated that such synopses can suffer from important prob-
lems, including severe bias and wide variance in the quality
of the data reconstruction, and lack of non-trivial guarantees
for individual approximate answers. As a result, probabilis-
tic thresholding schemes have been recently proposed as a
means of building wavelet synopses that try to probabilisti-
cally control other approximation-error metrics, such as the
maximum relative error in data-value reconstruction, which
is arguably the most important for approximate query an-
swers and meaningful error guarantees.

One of the main open problems posed by this earlier work
is whether it is possible to design efficient deterministic
wavelet-thresholding algorithms for minimizing non-L2 error
metrics that are relevant to approximate query processing
systems, such as maximum relative or maximum absolute er-
ror. Obviously, such algorithms can guarantee better wave-
let synopses and avoid the pitfalls of probabilistic techniques
(e.g., “bad” coin-flip sequences) leading to poor solutions.
In this paper, we address this problem and propose novel,
computationally efficient schemes for deterministic wavelet
thresholding with the objective of optimizing maximum-
error metrics. We introduce an optimal low polynomial-time
algorithm for one-dimensional wavelet thresholding – our
algorithm is based on a new Dynamic-Programming (DP)
formulation, and can be employed to minimize the maxi-
mum relative or absolute error in the data reconstruction.
Unfortunately, directly extending our one-dimensional DP
algorithm to multi-dimensional wavelets results in a super-
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exponential increase in time complexity with the data di-
mensionality. Thus, we also introduce novel, polynomial-
time approximation schemes (with tunable approximation
guarantees for the target maximum-error metric) for deter-
ministic wavelet thresholding in multiple dimensions.

1. INTRODUCTION
Approximate query processing over precomputed data syn-

opses has emerged as a cost-effective approach for deal-
ing with the huge data volumes, the high query complex-
ities, and the increasingly stringent response-time require-
ments that characterize today’s Decision Support Systems
(DSS) applications. Typically, DSS users pose very com-
plex queries to the underlying Database Management Sys-
tem (DBMS) that require complex operations over Giga-
bytes or Terabytes of disk-resident data and, thus, take a
very long time to execute to completion and produce ex-
act answers. Due to the exploratory nature of many DSS
applications, there are a number of scenarios in which an
exact answer may not be required, and a user may in fact
prefer a fast, approximate answer. For example, during a
drill-down query sequence in ad-hoc data mining, initial
queries in the sequence frequently have the sole purpose
of determining the truly interesting queries and regions of
the database [13]. Providing (reasonably accurate) approx-
imate answers to these initial queries gives users the ability
to focus their explorations quickly and effectively, without
consuming inordinate amounts of valuable system resources.
An approximate answer can also provide useful feedback on
how well-posed a query is, allowing DSS users to make an in-
formed decision on whether they would like to invest more
time and resources to execute their query to completion.
Moreover, approximate answers obtained from appropriate
synopses of the data may be the only available option when
the base data is remote and unavailable [2]. Finally, for DSS
queries requesting a numerical answer (e.g., total revenues
or annual percentage), it is often the case that the full preci-
sion of the exact answer is not needed and the first few digits
of precision will suffice (e.g., the leading few digits of a total
in the millions or the nearest percentile of a percentage) [1].

Wavelets provide a mathematical tool for the hierarchical
decomposition of functions, with a long history of success-
ful applications in signal and image processing [14, 19, 20].
Recent studies have also demonstrated the applicability of
wavelets to selectivity estimation [15] and to approximate
query processing over massive relational tables [3, 21] and



data streams [16, 10]. Briefly, the idea is to apply wavelet
decomposition to the input relation (attribute column(s) or
OLAP cube) to obtain a compact data synopsis that com-
prises a select small collection of wavelet coefficients. The
results of Matias, Vitter, and Wang [15, 21] and Chakrabarti
et al. [3] have demonstrated that fast and accurate approx-
imate query processing engines can be designed to operate
solely over such compact wavelet synopses.

A major shortcoming of conventional wavelet-based tech-
niques for approximate query processing (including all the
above-cited studies) is the fact that the quality of approx-
imate answers can vary widely and no meaningful error
guarantees can be provided to the users of the approxi-
mate query engine. Coefficients in conventional wavelet syn-
opses are typically chosen to optimize the overall root-mean-
squared (i.e., L2-norm average) error in the data approxi-
mation which, as demonstrated in a recent study by Garo-
falakis and Gibbons [7, 8], can result in wide variance as well
as severe bias in the quality of the approximation over the
underlying domain of data values. Their proposed solution,
termed probabilistic wavelet synopses, relies on probabilistic-
thresholding schemes (based on randomized rounding [17])
for synopsis construction that try to probabilistically control
other approximation-error metrics, such as the maximum
relative error in the data reconstruction [7, 8]. Such maxi-
mum relative-error metrics are arguably the most important
for effective approximate query processing and can provide
meaningful error guarantees for individual approximate an-
swers. In order to probabilistically control maximum rela-
tive error, the algorithms proposed in [7, 8] explicitly try to
minimize appropriate probabilistic metrics (such as normal-
ized standard error or normalized bias) for the randomized
synopsis construction process [7, 8]. (Similar schemes are
also given for controlling maximum absolute error.)

Our Contributions. A potential problem with the pro-
babilistic-thresholding techniques of [7, 8] is that, exactly
due to their probabilistic nature, there is always a possi-
bility of a “bad” sequence of coin flips resulting in a poor
synopsis; furthermore, they are based on a quantization of
the possible synopsis-space allotments, whose impact on the
quality of the final synopsis is not entirely clear. Clearly,
a deterministic thresholding algorithm that explicitly min-
imizes the relevant maximum-error metric (e.g., maximum
relative error) in the synopsis, is always guaranteed to give
better results. Unfortunately, as already pointed out by
by Garofalakis and Gibbons [7, 8], their thresholding algo-
rithms depend critically on the probabilistic nature of their
solution, and are inapplicable in a deterministic setting. In
fact, one of the main open problems cited in [7, 8] is whether
it is possible to design efficient deterministic thresholding
for minimizing non-L2 error metrics that are relevant for
approximate query answers, such as the maximum relative
or absolute error in the data approximation.

In this paper, we propose novel, computationally efficient
schemes for deterministic wavelet thresholding with the ob-
jective of optimizing maximum-error metrics (e.g., maxi-
mum relative error). We start by presenting an optimal
low polynomial-time algorithm for one-dimensional wave-
let thresholding. Our algorithm is based on a novel Dyna-
mic-Programming (DP) formulation and can be employed
to minimize either maximum relative error or maximum ab-
solute error in the data reconstruction – its running time

and working-space requirements are only O(N 2 B log B) and
O(NB), respectively, where N denotes the size of the data
domain and B is the desired size of the synopsis (i.e., num-
ber of retained coefficients). Unfortunately, directly extend-
ing our optimal DP algorithm to multi-dimensional wavelets
results in a super-exponential increase in time complexity
with the data dimensionality, rendering such a solution un-
usable even for the relatively small dimensionalities where
wavelets are typically used (e.g., 2–5 dimensions). Thus,
we also introduce two efficient, polynomial-time approxima-
tion schemes (with tunable ε-approximation guarantees for
the target maximum-error metric) for deterministic wavelet
thresholding in multiple dimensions. Both our approxima-
tion schemes are based on approximate dynamic programs
that tabulate a much smaller number of sub-problems than
the optimal DP solution, while guaranteeing a small devia-
tion from the optimal objective value. More specifically, our
first approximation algorithm can give ε-additive-error guar-
antees for maximum relative or absolute error, whereas our
second algorithm is a (1+ε)-approximation scheme for maxi-
mum absolute error – the running time for both our approx-
imation schemes is roughly proportional to O( 1

ε
N log2 N

B log B). To the best of our knowledge, our work is the first
to propose efficient optimal and near-optimal algorithms
for building wavelet synopses optimized for maximum-error
metrics in one or multiple dimensions.

Organization. The remainder of this paper is organized
as follows. Section 2 discusses background material on the
wavelet decomposition and wavelet data synopses. Then,
in Section 3, we develop our deterministic maximum-error
thresholding algorithms for both one- and multi-dimensional
wavelets. Section 4 gives an overview of related work and,
finally, Section 5 outlines our conclusions along with some
interesting directions for future research in this area.

2. WAVELET BASICS
Wavelets are a useful mathematical tool for hierarchically

decomposing functions in ways that are both efficient and
theoretically sound. Broadly speaking, the wavelet decom-
position of a function consists of a coarse overall approxima-
tion together with detail coefficients that influence the func-
tion at various scales [20]. The wavelet decomposition has
excellent energy compaction and de-correlation properties,
which can be used to effectively generate compact repre-
sentations that exploit the structure of data. Furthermore,
wavelet transforms can generally be computed in linear time.

2.1 One-Dimensional Haar Wavelets
Suppose we are given the one-dimensional data vector A

containing the N = 8 data values A = [2, 2, 0, 2, 3, 5, 4, 4].
The Haar wavelet transform of A can be computed as fol-
lows. We first average the values together pairwise to get a
new “lower-resolution” representation of the data with the
following average values [2, 1, 4, 4]. In other words, the av-
erage of the first two values (that is, 2 and 2) is 2, that
of the next two values (that is, 0 and 2) is 1, and so on.
Obviously, some information has been lost in this averaging
process. To be able to restore the original values of the data
array, we need to store some detail coefficients, that capture
the missing information. In Haar wavelets, these detail co-
efficients are simply the differences of the (second of the)
averaged values from the computed pairwise average. Thus,



in our simple example, for the first pair of averaged values,
the detail coefficient is 0 since 2 − 2 = 0, for the second
we again need to store −1 since 1 − 2 = −1. Note that no
information has been lost in this process – it is fairly sim-
ple to reconstruct the eight values of the original data array
from the lower-resolution array containing the four averages
and the four detail coefficients. Recursively applying the
above pairwise averaging and differencing process on the
lower-resolution array containing the averages, we get the
following full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

The wavelet transform (also known as the wavelet decom-
position) of A is the single coefficient representing the over-
all average of the data values followed by the detail coeffi-
cients in the order of increasing resolution. Thus, the one-
dimensional Haar wavelet transform of A is given by WA =
[11/4, −5/4, 1/2, 0, 0, −1, −1, 0]. Each entry in WA is
called a wavelet coefficient. The main advantage of using
WA instead of the original data vector A is that for vectors
containing similar values most of the detail coefficients tend
to have very small values. Thus, eliminating such small co-
efficients from the wavelet transform (i.e., treating them as
zeros) introduces only small errors when reconstructing the
original data, resulting in a very effective form of lossy data
compression [20].

Note that, intuitively, wavelet coefficients carry different
weights with respect to their importance in rebuilding the
original data values. For example, the overall average is
obviously more important than any detail coefficient since it
affects the reconstruction of all entries in the data array. In
order to equalize the importance of all wavelet coefficients,
we need to normalize the final entries of WA appropriately. A
common normalization scheme [20] is to divide each wavelet

coefficient by
√

2l, where l denotes the level of resolution
at which the coefficient appears (with l = 0 corresponding
to the “coarsest” resolution level). Thus, the normalized

coefficient, c∗i , is ci/
√

2level(ci).

Basic Haar Wavelet Properties and Notational Con-
ventions. A helpful tool for exploring and understand-
ing the key properties of the Haar wavelet decomposition
is the error tree structure [15]. The error tree is a hierarchi-
cal structure built based on the wavelet transform process
(even though it is primarily used as a conceptual tool, an
error tree can be easily constructed in linear O(N) time).
Figure 1(a) depicts the error tree for our simple example
data vector A. Each internal node ci (i = 0, . . . , 7) is as-
sociated with a wavelet coefficient value, and each leaf di

(i = 0, . . . , 7) is associated with a value in the original data
array; in both cases, the index i denotes the positions in
the (data or wavelet transform) array. For example, c0 cor-
responds to the overall average of A. Note that the values
associated with the error tree nodes cj are the unnormalized
coefficient values; the resolution levels l for the coefficients
(corresponding to levels in the tree) are also depicted. We
use the terms “node”, “coefficient”, and “node/coefficient
value” interchangeably in what follows. For ease of refer-

Symbol Description
i ∈ {0..N − 1}

N Number of data-array cells
D Data-array dimensionality
B Space budget for synopsis
A, WA Input data and wavelet transform arrays

di Data value for ith data-array cell

d̂i Reconstructed data value for ith array cell
ci Haar coefficient at index/coordinate i

Ti Error subtree rooted at node ci

coeff(Ti), data(Ti) Coefficient/data values in Ti subtree
path(u) All non-zero proper ancestors of

node u in the error tree
s Sanity bound for relative-error metric
relErri, absErri Relative/absolute error for data value di

Table 1: Notation.

ence, Table 1 summarizes some of the key notation used in
this paper with a brief description of its semantics. De-
tailed definitions of all these parameters are provided at
the appropriate locations in the text. For simplicity, the
notation assumes one-dimensional wavelets – extensions to
multi-dimensional wavelets are straightforward. Additional
notation will be introduced when necessary.

Given a node u in an error tree T , let path(u) denote
the set of all proper ancestors of u in T (i.e., the nodes on
the path from u to the root of T , including the root but
not u) with non-zero coefficients. A key property of the
Haar wavelet decomposition is that the reconstruction of
any data value di depends only on the values of coefficients
on path(di); more specifically, we have

di =
�

cj∈path(di)

signij · cj , (1)

where signij = +1 if di is in the left child subtree of cj or
j = 0, and signij = −1 otherwise. Thus, reconstructing any
data value involves summing at most log N + 1 coefficients.
For example, in Figure 1(a), d4 = c0− c1 + c6 = 11

4
− (− 5

4
)+

(−1) = 3. The support region for a coefficient ci is defined
as the set of (contiguous) data values that ci is used to
reconstruct; the support region for a coefficient ci is uniquely
identified by its coordinate i.

2.2 Multi-Dimensional Haar Wavelets
The Haar wavelet decomposition can be extended to multi-

dimensional data arrays using two distinct methods, namely
the standard and nonstandard Haar decomposition [20]. Each
of these transforms results from a natural generalization of
the one-dimensional decomposition process described above,
and both have been used in a wide variety of applications, in-
cluding approximate query answering over high-dimensional
DSS data sets [3, 21].

As in the one-dimensional case, the Haar decomposition
of a D-dimensional data array A results in a D-dimensional
wavelet-coefficient array WA with the same dimension ranges
and number of entries. (The full details as well as efficient
decomposition algorithms can be found in [3, 21].) Consider
a D-dimensional wavelet coefficient W in the (standard or
nonstandard) wavelet-coefficient array WA. W contributes
to the reconstruction of a D-dimensional rectangular region
of cells in the original data array A (i.e., W ’s support re-
gion). Further, the sign of W ’s contribution (+W or −W )
can vary along the quadrants of W ’s support region in A.
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Figure 1: (a) Error-tree structure for our example data

array A (N = 8). (b) Support regions and signs for the

sixteen nonstandard two-dimensional Haar basis func-

tions. The coefficient magnitudes are multiplied by +1

(−1) where a sign of + (resp., −) appears, and 0 in blank

areas.

As an example, Figure 1(b) depicts the support regions and
signs of the sixteen nonstandard, two-dimensional Haar co-
efficients in the corresponding locations of a 4 × 4 wavelet-
coefficient array WA. The blank areas for each coefficient
correspond to regions of A whose reconstruction is indepen-
dent of the coefficient, i.e., the coefficient’s contribution is 0.
Thus, WA[0, 0] is the overall average that contributes pos-
itively (i.e.,“+WA[0, 0]”) to the reconstruction of all values
in A, whereas WA[3, 3] is a detail coefficient that contributes
(with the signs shown in Figure 1(b)) only to values in A’s
upper right quadrant. Each data cell in A can be accu-
rately reconstructed by adding up the contributions (with
the appropriate signs) of those coefficients whose support
regions include the cell. Figure 1(b) also depicts the two lev-
els of resolution (l = 0, 1) for our example two-dimensional
Haar coefficients; as in the one-dimensional case, these levels
define the appropriate constants for normalizing coefficient
values [3, 20].

Error-tree structures for multi-dimensional Haar wavelets
can be constructed (once again in linear O(N) time) in a
manner similar to those for the one-dimensional case, but
their semantics and structure are somewhat more complex.
A major difference is that, in a D-dimensional error tree,
each node (except for the root, i.e., the overall average) ac-
tually corresponds to a set of 2D − 1 wavelet coefficients
that have the same support region but different quadrant
signs and magnitudes for their contribution. Furthermore,
each (non-root) node t in a D-dimensional error tree has
2D children corresponding to the quadrants of the (com-
mon) support region of all coefficients in t.1 (Note that
the sign of each coefficient’s contribution to the leaf (data)
values residing at each of its children in the tree is deter-
mined by the coefficient’s quadrant sign information.) As
an example, Figure 2 depicts the error-tree structure for the
two-dimensional 4× 4 Haar coefficient array in Figure 1(b).

1The number of children (coefficients) for an internal error-tree
node can actually be less than 2D (resp., 2D − 1) when the sizes
of the data dimensions are not all equal. In these situations,
the exponent for 2 is determined by the number of dimensions
that are “active” at the current level of the decomposition (i.e.,
those dimensions that are still being recursively split by averag-
ing/differencing).

Thus, the (single) child t of the root node contains the coeffi-
cients WA[0, 1], WA[1, 0], and WA[1, 1], and has four children
corresponding to the four 2 × 2 quadrants of the array; the
child corresponding to the lower-left quadrant contains the
coefficients WA[0, 2], WA[2, 0], and WA[2, 2], and all coeffi-
cients in t contribute with a “+” sign to all values in this
quadrant.
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Figure 2: Error-tree structure for the sixteen nonstan-

dard two-dimensional Haar coefficients for a 4 × 4 data

array (data values omitted for clarity).

Based on the above generalization of the error-tree struc-
ture to multiple dimensions, we can naturally extend the for-
mula for data-value reconstruction (Equation (1)) to multi-
dimensional Haar wavelets. Once again, the reconstruction
of di depends only on the coefficient sets for all error-tree
nodes in path(di), where the sign of the contribution for
each coefficient W in node t ∈ path(di) is determined by the
quadrant sign information for W .

2.3 Wavelet-Based Data Reduction: Coeffi-
cient Thresholding

Given a limited amount of storage for building a wavelet
synopsis of the input data array A, a thresholding procedure
retains a certain number B << N of the coefficients in WA

as a highly-compressed approximate representation of the
original data (the remaining coefficients are implicitly set
to 0). The goal of coefficient thresholding is to determine
the “best” subset of B coefficients to retain, so that some
overall error measure in the approximation is minimized.
The method of choice for the vast majority of earlier studies
on wavelet-based data reduction and approximation [3, 15,
16, 21] is conventional coefficient thresholding that greed-
ily retains retains the B largest Haar-wavelet coefficients in
absolute normalized value. It is a well-known fact that this
thresholding method is in fact provably optimal with respect
to minimizing the overall root-mean-squared error (i.e., L2-
norm average error) in the data compression [20]. More

formally, letting d̂i denote the (approximate) reconstructed
data value for cell i, retaining the B largest normalized co-
efficients implies that the resulting synopsis minimizes the

quantity � 1
N � i(di − d̂i)2 (for the given amount of space

B).
Unfortunately, wavelet synopses optimized for overall L2

error may not always be the best choice for approximate
query processing systems. As observed in the recent study
of Garofalakis and Gibbons [7, 8], such conventional wavelet
synopses suffer from several important problems, including
the introduction of severe bias in the data reconstruction



and wide variance in the quality of the data approxima-
tion, as well as the lack of non-trivial guarantees for indi-
vidual approximate answers. To address these shortcom-
ings, their work introduces novel, probabilistic thresholding
schemes based on randomized rounding [17], that proba-
bilistically round coefficients either up to a larger rounding
value (to be retained in the synopsis) or down to zero. In-
tuitively, their probabilistic schemes assign each non-zero
coefficient fractional storage y ∈ (0, 1] equal to its retention
probability, and then flip independent, appropriately-biased
coins to construct the synopsis. Their winning strategies
(termed MinRelVar and MinRelBias in [7, 8]) are based on
trying to probabilistically control the the maximum relative
error (with an appropriate sanity bound s)2 in the approxi-
mation of individual data values based on the synopsis; that
is, they attempt to minimize the quantity

max
i

�
|d̂i − di|

max{|di|, s} � ,

(where d̂i denotes the data value reconstructed based on the
synopsis) with sufficiently high probability. More specifi-
cally, their MinRelVar and MinRelBias algorithms are based
on Dynamic-Programming (DP) formulations that explic-
itly minimize appropriate probabilistic metrics, such as the
maximum normalized standard error (MinRelVar) or the max-
imum normalized bias (MinRelBias), in the randomized syn-
opsis construction; these formulations are then combined
with a quantization of the potential fractional-storage allot-
ments to give combinatorial thresholding algorithms [7, 8].
(Similar probabilistic schemes are also given for probabilis-
tically controlling maximum absolute error.)

3. OUR SOLUTION: DETERMINISTIC
WAVELET THRESHOLDING

Rather than trying to probabilistically control maximum
relative error through the optimization of probabilistic mea-
sures (like normalized standard error or bias [7, 8]), a more
direct solution would be to design deterministic threshold-
ing schemes that explicitly minimize maximum-error met-
rics. Obviously, such schemes can not only guarantee bet-
ter synopses, but they can also avoid the potential pitfalls
of randomized techniques, as well as the space-quantization
requirement of [7, 8] whose impact on the quality of the fi-
nal solution is not entirely clear. Unfortunately, as already
pointed out by Garofalakis and Gibbons [8], their DP formu-
lations and algorithms depend crucially on the ability to as-
sign fractional storage (i.e., retention probability) values in
(0, 1] to individual coefficients, which renders their schemes
inapplicable for deterministic wavelet thresholding (where
the storage assigned to each coefficient is either 0 or 1). In
fact, one of the main open problems in [7, 8] is whether
it is possible to design efficient algorithms for determinis-
tic Haar-coefficient thresholding for minimizing non-L2 er-
ror metrics that are relevant for approximate query answers,
such as maximum relative or absolute error in the data ap-
proximation. We now attack this problem for both one- and
multi-dimensional Haar wavelets.

3.1 One-Dimensional Wavelet Thresholding
2The role of the sanity bound is to ensure that relative-error
numbers are not unduly dominated by small data values [12, 21].

In this section, we propose a novel, simple, low polynomial-
time scheme based on Dynamic-Programming (DP) for build-
ing deterministic Haar-wavelet synopses that minimize the
maximum relative or absolute error in the data-value ap-

proximation. More formally, let relErri = |d̂i−di|
max{|di|,s}

be an

error metric that combines relative error with an appropri-
ate sanity bound s (as in [7, 8]) and, similarly, let absErri =

|d̂i − di| denote the absolute approximation error for the ith

data value. Our deterministic wavelet thresholding problem
can be formally defined as follows.

[Deterministic Maximum Relative/Absolute Error
Minimization] Given a synopsis space budget B, deter-
mine a subset of at most B Haar-wavelet coefficients that
minimize the maximum relative (or, absolute) error in the
data-value approximation; that is, for err ∈ {relErr, absErr},
minimize maxi∈{0,... ,N−1}{erri}

The important thing to note here is that, unlike the prob-
abilistic normalized standard error or normalized bias met-
rics employed in [7, 8], our relErr and absErr metrics do not
have a simple monotonic/additive structure over the Haar-
coefficient error tree. The key problem, of course, is that,
even though data values are simple linear combinations of
coefficients, each coefficient contributes with a different sign
on different parts of the underlying data domain. Unfortu-
nately, the above facts also imply that the DP formulations
in [7, 8] are no longer applicable, since the assumed “prin-
ciple of optimality” for error subtrees is no longer valid; in
other words, due to the absence of additive/monotonic struc-
ture for the objective, the optimal solution for the subtree
rooted at node cj is not necessarily a combination of the
optimal (partial) solutions for cj ’s child subtrees.

We now formulate a novel DP recurrence and algorithm
for our deterministic maximum-error optimization problem.
In a nutshell, the basic idea in our new DP formulation is
to condition the optimal error value for an error subtree not
only on the root node cj of the subtree and the amount B of
synopsis storage allotted, but also on the error that “enters”
that subtree through the coefficient selections made on the
path from the root to node cj (excluding cj itself), i.e., co-
efficient selections on path(cj). The key observation here is
that, since the depth of the error tree is O(log N), we can af-
ford to tabulate all such possible selections while keeping the
running-time of our algorithm in the low-polynomial range.

More formally, let B denote the total space budget for the
synopsis, and let Tj be the subtree of the error-tree rooted
at node cj , with coeff(Tj) (data(Tj)) denoting the set of
coefficient (resp., data) values in Tj . Finally, let M [j, b, S]
denote the optimal (i.e., minimum) value of the maximum
error (relative or absolute) among all data values in Tj as-
suming a synopsis space budget of b coefficients for the Tj

subtree, and that a subset S ⊆ path(cj) (of size at most
min{B − b, log N + 1}) of proper ancestors of cj have been
selected for the synopsis; that is, assuming a relative-error
metric (i.e., err = relErr),

M [j, b, S] = min
Sj⊆coeff(Tj ),|Sj |≤b � max

di∈data(Tj)
relErri � ,

where

relErri =
|di − � ck∈path(di)∩(Sj∪S) signik · ck|

max{|di|, s}
.



(The case for absolute error (i.e., err = absErr) is defined
similarly.) We now formulate a DP recurrence for computing
the M [j, b, S] entries; clearly, M [0, B, φ] gives us the desired
optimal error value at the root node of the error tree (the
corresponding error-optimal wavelet synopsis can then be
built by simply re-tracing the choices of our DP computation
using standard techniques).

The base case for our recurrence occurs for data (i.e., leaf)
nodes in the Haar error tree; that is, for cj = dj−N with j ≥
N (see Figure 1(a)). In this case, M [j, b, S] is not defined for
b > 0, whereas for b = 0 and for each subset S ⊆ path(dj−N )
(of size ≤ min{B, log N + 1}) we define

M [j, 0, S] =
|dj−N − � ck∈S signj−N,k · ck|

r
,

where r = max{|dj−N |, s} for err = relErr, and r = 1 for err =
absErr.

In the case of an internal error-tree node cj with j < N ,
our DP algorithm has two distinct choices when comput-
ing M [j, b, S], namely either drop coefficient cj or keep it
in the final synopsis. If we choose to drop cj from the syn-
opsis, then it is easy to see that the maximum error from
cj ’s two child subtrees (i.e., c2j and c2j+1) will be propa-
gated upward; thus, the minimum possible maximum error
M [j, b, S] for Tj in this case is simply

min
0≤b′≤b

max � M [2j, b′, S] , M [2j + 1, b − b′, S] � . (2)

Note that, in the above recurrence, S contains proper an-
cestors of cj which are clearly proper ancestors of c2j and
c2j+1 as well; thus, the right-hand side of the recurrence is
well-defined as the DP computation proceeds bottom-up to
reach cj . If, on the other hand, we choose to keep cj in
the synopsis (assuming, of course, b ≥ 1), the least possible
error M [j, b, S] for Tj is computed as

min
0≤b′≤b−1

max � M [2j, b′, S ∪ {cj}] ,

M [2j + 1, b − b′ − 1, S ∪ {cj}] � . (3)

(Again, note that the right-hand side of the recurrence is
well-defined.) The final value for M [j, b, S] defined as the
minimum of the two possible choices for coefficient cj , i.e.,
Equations (2) and (3) above. A pseudo-code description
of our optimal DP algorithm for deterministic maximum-
error thresholding in one dimension (termed MinMaxErr) is
depicted in Figure 3.

Time and Space Complexity. Given a node/coefficient
cj at level l of the error tree, our MinMaxErr algorithm con-
siders at most O(B) space allotments to the Tj subtree and
at most O(2l) subsets of ancestors of cj . Thus, the number
of entries in our DP array M [] that need to be computed
for cj is O(B2l). Furthermore, the time needed to compute
each such entry is O(log B). To see this, note that for any
fixed node k and ancestor subset S, M [k, b′, S] is a decreas-
ing function of the space allotment b′. Thus, the optimal
distribution point b′ in Equations (2)–(3) (Steps 11–28 in
MinMaxErr) can be computed using an O(log B)-time binary
search procedure, looking for the space allotment where the
error values for the two child subtrees are equal or the ad-
jacent pair of cross-over allotments. (To simplify the expo-
sition, this binary-search procedure has been omitted from
the pseudo-code description in Figure 3.) Clearly, the total
number of error-tree nodes at level l is O(2l) making the

procedure MinMaxErr( WA , B , root , S, err )
Input: Array WA = [c0, . . . , cN−1] of N Haar wavelet coefficients,

space budget B (number of retained coefficients), error-subtree
root-node index root, subset of retained ancestors of root node
S ⊆ path(root), target maximum error metric err.

Output: Value of M [root, B, S] according to our optimal dynamic
program (M [root, B, S].value), decision made for the root node
(M [root, B, S].retained), and space allotted to left child subtree
(M [root, B, S].leftAllot). (The last two are used for re-tracing
the optimal solution to build the synopsis.)

begin
1. if (M [root, B, S].computed = true) then
2. return M [root, B, S].value // optimal value already in M []
3. if ( N ≤ root < 2N ) then // leaf/data node
4. if ( B = 0 ) then
5. M [root, B, S].value := |dj−N − � ck∈S signj−N,k · ck|

6. if ( err = relErr ) then

7. M [root, B, S].value :=
M[root,B,S].value

max{|dj−N |,s}

8. endif
9. else
10. M [root, B, S].value := ∞
11. for b := 0 to B step 1 do // first choice: drop root

12. left := MinMaxErr( WA , b , 2 ∗ root , S, err )
13. right := MinMaxErr( WA , B − b , 2 ∗ root + 1 , S, err )
14. if ( max{ left, right } < M [root, B, S].value ) then
15. M [root, B, S].value := max{ left, right }
16. M [root, B, S].retained := false
17. M [root, B, S].leftAllot := b
18. endif
19. endfor
20. for b := 0 to B − 1 step 1 do // second choice: keep root

21. left := MinMaxErr( WA , b , 2 ∗ root , S ∪ {root}, err )
22. right := MinMaxErr( WA , B − b − 1 , 2 ∗ root + 1 ,

S ∪ {root}, err )
23. if ( max{ left, right } < M [root, B, S].value ) then
24. M [root, B, S].value := max{ left, right }
25. M [root, B, S].retained := true
26. M [root, B, S].leftAllot := b
27. endif
28. endfor
29. endif
30. M [root, B, S].computed := true
31. return ( M [root, B, S].value )
end

Figure 3: The MinMaxErr Algorithm: Optimal Deter-
ministic Thresholding for Maximum Error in One
Dimension.

overall time complexity of our DP algorithm

O(

log N�

l=0

2l2lB log B) = O(B log B

log N�

l=0

22l) = O(N2B log B).

With respect to the space requirements of our scheme, note
that, even though the overall size of our DP array M [] is
O(N2B), our MinMaxErr algorithm does not actually require
the entire array to be memory-resident at all times. For
instance, the results for all descendants of a node cj are
no longer needed and can be swapped out of memory once
the results for node cj have been computed. With this
small optimization, it is easy to see that our bottom-up DP
computation never requires more than one active “line” of
the M [] array per error-tree level, where the size of such a
line for a node at level l is O(B2l) (i.e., O(B) space allot-
ments and O(2l) ancestor subsets). Thus, the size of the
memory-resident working set for our DP algorithm drops to



only O( � log N

l=0 2lB) = O(NB). Our analysis for the one-
dimensional case is summarized in the following theorem.

Theorem 3.1. Our MinMaxErr algorithm is an optimal
deterministic thresholding scheme for building one-dimensional
wavelet synopses that minimize the maximum relative error
(or, maximum absolute error) in the data approximation.
MinMaxErr runs in time O(N2B log B) and has a total-space
(working-space) requirement of O(N 2B) (resp., O(NB)).

3.2 Multi-Dimensional Wavelet Thresholding
Our deterministic wavelet thresholding problem becomes

significantly more complex for multi-dimensional wavelets,
and directly extending our optimal one-dimensional DP for-
mulation to the case of multiple dimensions fails to give
a practical solution. Remember that, in the D-dimensional
error-tree structure (Section 2.2), even though the tree depth
remains O(log N), each node in the tree now contains up
to 2D − 1 wavelet coefficients with the same support re-
gion and different quadrant signs (Figure 2). This implies
that the total number of possible ancestor subsets S for
a multi-dimensional coefficient at a level l = Θ(log N) is

O(2log N·(2D−1)) = O(N2D−1), rendering the exhaustive-enu-
meration DP scheme of Section 3.1 completely impractical,
even for the relatively small data dimensionalities (i.e., D =
2–5) where wavelet-based data reduction is typically em-
ployed. (It is well known that, due to the “dimensionality
curse”, wavelets and other space-partitioning schemes be-
come ineffective above 5–6 dimensions [3, 5, 8, 11].)

In this section, we introduce two efficient, polynomial-
time approximation schemes for deterministic multi-dimen-
sional wavelet thresholding for maximum-error metrics. Both
our approximation schemes are based on approximate dy-
namic programs that explore a much smaller number of op-
tions than the optimal DP formulation, while offering tun-
able ε-approximation guarantees for the final target maximum-
error metric. More specifically, our first scheme can give ε-
additive-error guarantees for maximum relative or absolute
error, whereas our second scheme is a (1+ ε)-approximation
algorithm for maximum absolute error.

3.2.1 An ε-Additive-Error Approximation Scheme for
Absolute/Relative Error Minimization

Intuitively, our optimal one-dimensional DP scheme is
based on exhaustively enumerating, for each error subtree,
all the possible error values “entering” the subtree through
the choices made on the path to the subtree’s root node.
The key technical idea in our first approximation scheme is
to avoid this exhaustive enumeration and, instead, try to
approximately “cover” the range of all possible error contri-
butions for paths up to the root node of an error subtree
using a much smaller number of (approximate) error val-
ues. Our approximation scheme is then going to be based
on a much “sparser” DP formulation, that only tabulates
this smaller set of error values.

Specifically, let R denote the maximum absolute coeffi-
cient value in the error tree, and let ε < 1 denote the de-
sired approximation factor. Clearly, the additive contribu-
tion to the absolute data-value reconstruction error from
any possible path in the error tree is guaranteed to lie in
the range R = [−R2D log N, +R2D log N ]. Our approxi-
mation scheme covers the entire R range using error-value
breakpoints of the form ±(1+ε)k, for a range of (contiguous)

integer values for the exponent k. Note that the number of
such breakpoints needed is essentially

O(log1+ε(2R2D log N) ≈ O � D + log R + log log N

ε � ,

for small values of ε < 1; in other words, k ∈ K = {0, 1, . . . ,
O(D+log R+log log N

ε
)}. Now, let roundε(v) be a function that

rounds any value v ∈ R down to the closest value in the set
E = {0}∪ {±(1 + ε)k, k ∈ K}; that is, letting l = log1+ε |v|,
we have roundε(v) = (1+ ε)blc if v ≥ 1, −(1+ ε)dle if v ≤ −1,
and 0 otherwise. The DP array Ma[] for our approximation
scheme tabulates the values Ma[j, b, e] capturing the ap-
proximate maximum error (relative or absolute) in the Tj

error subtree (rooted at node j), assuming a space budget
of b coefficients allotted to Tj and an approximate/rounded
additive error contribution of e ∈ E due to proper ancestors
of node j being discarded from the synopsis.

The base case for the computation of Ma[], i.e., the case
of a leaf/data node j ≥ N in the error tree is fairly straight-
forward: once again, Ma[j, b, e] is only defined for b = 0,

and Ma[j, b, e] = |e|
r

, where r is either max{|dj−N |, s} or 1
depending on whether we are targeting a relative or absolute
error metric.

In the case of an internal error-tree node j, remember that
each node now corresponds to a set S(j) of at most 2D − 1
(non-zero) coefficients, and has at most 2D child subtrees
(with indices, say, j1, . . . , jm). Assume that we choose to
maintain a subset s ⊆ S(j) of node j’s coefficients in the syn-
opsis and, for each coefficient c ∈ S(j), let sign(c, ji) denote
the sign of c’s contribution to the ji child subtree; then,
we can estimate the least possible maximum error entries
Ma[j, b, e], e ∈ E , for Tj (assuming, of course, that b ≥ |s|)
as

min
0≤b1+...+bm≤b−|s|

max
1≤i≤m

{

Ma[ji, bi, roundε(e +
�

c∈S(j)−s

sign(c, ji) · c)] }.

In other words, for a given selected coefficient subset s, we
consider all possible allotments of the remaining b−|s| space
to children of node j, with the rounded cumulative error that
enters those children taking into account the contribution
from the dropped coefficients in S(j) − s. To avoid the

O(B2D

) factor in run-time complexity implied by the search
of all possible space allotments b1, . . . , bm to child subtrees
in the above recurrence, we can simply order the search
among a node’s children (in a manner similar to [8]). The
basic idea is to generalize our approximate DP-array entries
to Ma[j, b, e], where j = (j1, . . . , jk) is a list of error-tree
nodes and e = (e1, . . . , ek) is a list of “incoming” additive
errors corresponding to the nodes in j. The above recurrence
for Ma[(j), b, (e)] then becomes simply

min
0≤b′≤b−|s|

max{ Ma[(j1), b
′, (e1)] ,

Ma[(j2, . . . , jm), b − b′ − |s|, (e2, . . . , em)] },
where ek = roundε(e + � c∈S(j)−s

sign(c, jk) · c), for k = 1,

. . . , m. This generalization comes at a moderate increase of
O(2D) in terms of time and space complexity over the one-
dimensional case, and allows for an O(log B)-time search
for the breakup of a node’s allotment to its children (using
binary search in the above recurrence, as described earlier in



the paper). The final approximate error value Ma[(j), b, (e)]
is computed as the minimum over all possible choices for the
subset s ⊆ S(j) of retained coefficients at node j, giving an

overall time complexity of O(22D−1 log B) for computing the
Ma[(j), b, (e)] entry. (Again, remember that D is a small
constant, typically between 2–5.) The following theorem
summarizes the results of our analysis for our approximate
deterministic-thresholding scheme.

Theorem 3.2. The above-described approximation scheme
for deterministic multi-dimensional wavelet thresholding dis-
covers an approximate solution that is guaranteed to be within
a worst-case additive error of εR (resp., ε R

s
) of the op-

timal (i.e., minimum) maximum absolute (resp., relative)

error in time O(D+log R+log log N

ε
22D+2DN log N B log B)

and with a total space requirement of O( D+log R+log log N

ε

22DN log NB).

Proof (sketch): Clearly, the error in our technique comes
from the repeated rounding of incoming additive-error val-
ues at different nodes of the error tree; thus, the key question
is how bad this incoming-error approximation can become
due to repeated rounding. Fix a specific error-tree node j,
and let et and st denote the true incoming error value and
selected subset of coefficients (respectively) at node j in the
optimal solution. Clearly, from our discussion above, the
search space of our approximation scheme is going to in-
clude the optimal space allotments to each child subtree jk

of j, assuming a rounded incoming error value of

roundε(roundε(et) +
�

c∈S(j)−st

sign(c, jk) · c),

which can be easily shown to be in the range

(et +
�

c∈S(j)−st

sign(c, jk) · c) ± ε · (|et| +
�

c∈S(j)−st

|c|).

(Remember that the values of et and c may very well be neg-
ative.) Thus, based on the properties of the multi-dimensional
error-tree structure, it is easy to see that the worst-case ad-
ditive deviation from the true absolute-error value is going
to be at most εR2D log N . Setting ε′ = ε

2D log N
, gives a

worst-case additive deviation of εR (resp., ε R
s

) from the op-
timal absolute (resp., relative) error. The running-time and
space complexity of our approximation scheme for the above
value of ε′ follow immediately from our earlier discussion.

We should stress here that the bounds in Theorem 3.2
represent a truly pathological worst-case scenario for our
scheme, where all coefficients on a root-to-leaf path are of
maximum absolute value R. In real-life applications, most
of the energy of a data signal (i.e., array) is typically con-
centrated in a few large wavelet coefficients [3, 10, 15, 21],
which implies that most coefficient values in the error tree
will be (much) smaller than R. Thus, for real-life practi-
cal scenarios, we would typically expect our approximation
scheme to be much closer to the optimal solution than the
worst-case deviation bounds asserted in Theorem 3.2.

3.2.2 A (1 + ε) Approximation Scheme for Absolute
Error Minimization

We now consider the special case of minimizing absolute
error for deterministic mult-dimensional wavelet threshold-
ing, and propose a novel, polynomial-time (1+ε)-approximation

scheme. Our discussion here assumes that all wavelet coeffi-
cients are integers – we can always satisfy this assumption by
appropriately scaling the coefficient values. For example, for
integer data values di (e.g., a multi-dimensional frequency
count array), scaling by a factor of O(2D log N ) = O(ND) is
always guaranteed to give integer Haar coefficients. Let RZ

denote the maximum (scaled) coefficient value in the error
tree; as previously, it is easy to see that the additive (integer)
contribution to the absolute reconstruction error from any
possible path in the Haar error tree is guaranteed to lie in
the integer range RZ = [−RZ2D log N, +RZ2D log N ]. This
observation directly leads to an optimal pseudo-polynomial
time algorithm for our maximum absolute-error minimiza-
tion problem. (In fact, this pseudo-polynomial time scheme
directly extends to maximum relative-error minimization as
well.) The key idea of our (1 + ε)-approximation scheme for
absolute error is then to intelligently scale-down the coef-
ficients in the error tree so that the possible range of inte-
ger additive-error values entering a subtree is polynomially-
bounded.

We start by describing our optimal pseudo-polynomial
time scheme. Briefly, our scheme is again based on dynamic-
programming over the error tree of integer coefficient values,
and follows along similar lines as our additive-error approxi-
mation algorithm presented in Section 3.2.1, but without do-
ing any “rounding” of incoming error values. Briefly, our DP
scheme constructs a table M [j, b, e] for every node j, space
budget b ≤ B and error value e, e ∈ RZ , where M [j, b, e]
denotes the minimum possible maximum absolute error in
the Tj subtree, assuming a space budget of b coefficients in
Tj and an error contribution of e due to ancestors of node
j. As earlier, we define M [j, 0, e] = |e| for a leaf/data node
j, whereas for an internal node j (with children j1, . . . ,
jm) and assuming that a subset s ⊆ S(j) of coefficients is
retained in the synopsis, we compute M [j, b, e] as

min
0≤b1+...+bm≤b−|s|

max
1≤i≤m

{ M [ji, bi, e +
�

c∈S(j)−s

sign(c, ji) · c] },

where sign(c, ji) is the sign of c’s contribution to the ji child

subtree (as in Section 3.2.1). Once again, the O(B2D

) factor
needed to cycle through all the b1, . . . , bm allotments can
be avoided using the generalization described earlier; thus,
we have an optimal DP algorithm that runs in time O(RZ

22D+2D N log N B log B). The key observation here is that,
if RZ is polynomially bounded, then the above-described DP
scheme is also a polynomial-time algorithm. We use this idea
to devise a polynomial-time (1 + ε)-approximation scheme.

Given a threshold parameter τ > 0, we define a trun-
cated DP algorithm as follows. Let S>τ denote the set of
coefficients with absolute value greater than τ , i.e., S>τ =
{c ∈ coeff(T0) : |c| > τ}, and define Kτ as the quan-
tity Kτ = ετ

2D log N
. Our truncated DP algorithm replaces

each coefficient c in the error tree with a scaled-down coef-
ficient value cτ = b c

Kτ
c, and works with these scaled (inte-

ger) coefficients; furthermore, our algorithm always retains
all coefficients in S>τ in the synopsis. More formally, we
build a DP array Mτ [j, b, e] using the scaled coefficient val-
ues as follows. As previously, for a leaf node j, we define
Mτ [j, 0, e] = |e|. For an internal node j, our algorithm cy-
cles through only those subsets s ⊆ S(j) such that s contains
all coefficients in S(j) ∩ S>τ (the Mτ [j, b, e] entry is unde-
fined if b < |S(j)∩S>τ |). The DP recurrence for computing



Mτ [j, b, e] is identical to the one for our pseudo-polynomial
scheme above, except for the fact that c is replaced by its
scaled version cτ .

We claim that the above truncated dynamic program is
a polynomial-time algorithm for any value of the thresh-
old parameter τ . Indeed, since we always retain all coef-
ficients in S>τ , a coefficient c is dropped from the synop-
sis only if its scaled version cτ satisfies |cτ | ≤ 2D log N/ε.
This, of course, implies that the absolute additive error that
can enter any subtree in our truncated DP algorithm is
at most 22D log2 N/ε; in other words, the range of possi-
ble (integer) incoming error values e for our truncated DP
array Mτ [] is guaranteed to be only RZ

τ = [− 1
ε
22D log2 N,

+ 1
ε
22D log2 N ]. Thus, based on our earlier analysis, the run-

ning time of our truncated DP algorithm for a fixed param-

eter τ is only O( 1
ε
22D+3D N log2 N B log B).

Given a threshold parameter τ , our truncated DP algo-
rithm selects a subset Cτ of coefficients to retain in the
synopsis (note that this set is not defined if B < |S>τ |).
Our absolute-error approximation scheme employs the trun-
cated DP algorithm for each value τ ∈ {2k : k = 0, . . . ,
dlog RZe}, and finally selects the synopsis Cτ that minimizes
the maximum absolute error in the data-value reconstruc-
tion. Clearly, since we only try O(log RZ) different values for
τ , the running time of our approximation algorithm remains
polynomial.

We now demonstrate that the above-described scheme
gives a (1 + ε)-approximation algorithm for maximum ab-
solute error minimization. Consider the optimal maximum
absolute error synopsis COPT, and let absErr(COPT) denote
the corresponding maximum absolute error value. Also, let
C denote the maximum absolute coefficient value not re-
tained in COPT. Clearly, our approximation algorithm is
going to try a threshold parameter, say τ ′, such that τ ′ ∈
[C, 2C). Our goal is to show that the maximum absolute
error achieved by Cτ ′ (i.e., absErr(Cτ ′)) is very close to that
achieved by the optimal solution COPT.

First, note that, by the definition of C and τ ′, the optimal
solution is also guaranteed to retain all coefficients greater
that τ ′, i.e., S>τ ′ ⊆ COPT. Thus, COPT is obviously a fea-
sible solution to our truncated DP instance (with threshold
= τ ′). Now, let absErrτ ′(Cτ ′), absErrτ ′(COPT) denote the
maximum absolute errors in the Kτ ′-scaled instance for the
Cτ ′ synopsis (obtained by our truncated DP scheme) and the
optimal COPT synopsis, respectively. Given the optimality
of our truncated dynamic program for the scaled instance,
clearly

absErrτ ′(Cτ ′) ≤ absErrτ ′ (COPT). (4)

Let C be any subset of Haar coefficients. Obviously, in a
Kτ ′ -scaled instance, any coefficient c ∈ C is represented by

cτ ′

= b c
K

τ′

c which differs by at most 1 from c
K

τ′

; thus,

it is easy to see that the scaled and non-scaled maximum
absolute errors for C are related as follows

absErr(C) ∈ � Kτ ′absErrτ ′(C) ± Kτ ′2D log N � . (5)

Applying the above formula for C = COPT and combining
with Equation (4), we have

absErr(COPT) ≥ Kτ ′absErrτ ′ (COPT) − Kτ ′2D log N

≥ Kτ ′absErrτ ′ (Cτ ′) − Kτ ′2D log N,

and using Equation (5) once again with C = Cτ ′ , we get

absErr(Cτ ′) ≤ Kτ ′absErrτ ′ (Cτ ′) + Kτ ′2D log N.

Now, simply combining the last two formulas and substitut-

ing Kτ ′ = ετ ′

2D log N
, we have

absErr(Cτ ′) ≤ absErr(COPT) + 2Kτ ′2D log N

≤ absErr(COPT) + 2ετ ′. (6)

Proposition 3.3. Let COPT and τ ′ be as defined above.

Then, absErr(COPT) > τ ′

2
.

Proof (sketch): Our key claim here is that if an absolute
coefficient value C is dropped from the optimal synopsis
COPT, then there exists some data value di in the under-
lying data domain such that the absolute error in the re-
construction of di is at least C; that is, absErri ≥ C. To
see this, observe that for any coefficient c in the Haar error
tree, there exist non-empty subsets of child subtrees where
c contributes with either possible sign (i.e., a “+” subset as
well as a “-” subset). Thus, given a dropped coefficient with
an absolute value of C, we can always appropriately “navi-
gate” the signs through the error-tree structure to discover
a path from the coefficient to a leaf/data node di where the
absolute error contribution of the coefficient is C (regard-
less of whether other coefficients in the path have also been
dropped). The detailed argument can be found in the full
paper [9]. Thus, absErr(COPT) ≥ C. But, by our choice of

τ ′, we have τ ′ ∈ [C, 2C), or C > τ ′

2
. The result follows.

Combining Inequality (6) with Proposition 3.3, we have

absErr(Cτ ′) ≤ (1 + 4ε) absErr(COPT).

Thus, simply setting ε′ = ε/4, we have a (1 + ε)-approx-
imation scheme for maximum absolute error minization in
multiple dimensions. The following theorem summarizes our
analysis.

Theorem 3.4. The above-described approximation scheme
for deterministic multi-dimensional wavelet thresholding dis-
covers an approximate solution that is guaranteed to be within
(1+ε) of the optimal (i.e., minimum) maximum absolute er-

ror in time O( log RZ

ε
22D+3D N log2 N B log B) and with a

total space requirement of O( 1
ε
23D N log2 N B).

4. RELATED WORK
Wavelets have a long history of successes in the signal and

image processing arena [14, 19, 20] and, recently, they have
also found their way into data-management applications.
Matias et al. [15] first proposed the use of Haar-wavelet co-
efficients as synopses for accurately estimating the selectiv-
ities of range queries. Vitter and Wang [21] describe I/O-
efficient algorithms for building multi-dimensional Haar wa-
velets from large relational data sets and show that a small
set of wavelet coefficients can efficiently provide accurate ap-
proximate answers to range aggregates over OLAP cubes.
Chakrabarti et al. [3] demonstrate the effectiveness of Haar
wavelets as a general-purpose approximate query processing
tool by designing efficient algorithms that can process com-
plex relational queries (with joins, selections, etc.) entirely
in the wavelet-coefficient domain. Matias et al. [16] con-
sider the problem of on-line maintenance for coefficient syn-
opses and propose a probabilistic-counting technique that



approximately maintains the largest normalized-value coef-
ficients in the presence of updates. Gilbert et al. [10] pro-
pose algorithms for building approximate one-dimensional
Haar-wavelet synopses over numeric data streams. Deli-
giannakis and Roussopoulos [4] introduce time- and space-
efficient techniques for constructing Haar-wavelet synopses
for data sets with multiple measures (such as those typically
found in OLAP applications).

All the above papers rely on conventional, L2-error-based
thresholding schemes that typically decide the significance
of a coefficient based on its absolute normalized value. Garo-
falakis and Gibbons [7, 8] have shown that such conventional
wavelet synopses can suffer from several important prob-
lems, including the introduction of severe bias in the data
reconstruction and wide variance in the quality of the data
approximation, as well as the lack of non-trivial guarantees
for individual approximate answers. In contrast, their pro-
posed probabilistic wavelet synopses rely on a a probabilis-
tic thresholding process based on randomized rounding [17],
that tries to probabilistically control the maximum relative
error in the synopsis by minizing appropriate probabilistic
metrics (like, normalized standard error or normalized bias).
The problem addressed in this paper, namely the design of
efficient deterministic thresholding schemes for maximum
error metrics, is one of the main open problems posed by
their study [8].

There is a rich mathematics literature on m-term approx-
imations using wavelets (m is the number of coefficients in
the synopsis). Some prior work has studied thresholding
approaches for meeting a target upper bound for an Lp-
error metric [6, 20]. We are not aware of work addressing
the deterministic minimization of relative errors with sanity
bounds (arguably the most important scenario for approx-
imate query processing in databases) and, to the best of
our knowledge, ours are the first results on computationally-
efficient (optimal and near-optimal) deterministic threshold-
ing schemes for minimizing maximum-error metrics for one-
and multi-dimensional wavelet summaries.

5. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

In this paper, we have proposed novel, computationally-
efficient schemes for deterministic maximum-error wavelet
thresholding in one and multiple dimensions. For one-di-
mensional wavelets, we have introduced an optimal, low
polynomial-time thresholding algorithm based on a new Dy-
namic-Programming formulation that can be used to min-
imize either the maximum relative error or the maximum
absolute error in the data approximation. For the multi-
dimensional case, we have designed novel, polynomial-time
approximation schemes (with tunable ε-approximation guar-
antees for the target metric) for maximum-error threshold-
ing based on approximate dynamic programs.

There are several interesting directions for future research
in this area. As demonstrated in this paper, deterministic
Haar-wavelet thresholding for maximum-error metrics be-
comes significantly more difficult as the data dimensionality
increases (similar observations have also been made for the
related problem of histogram construction [18]); however, a
formal NP-hardness proof for our multi-dimensional wave-
let thresholding problem still eludes our efforts. The ques-
tion of designing an efficient (1 + ε)-approximation scheme

for maximum relative error in multiple dimensions is also
left open. Another interesting direction involves studying
the relative average-case performance of the schemes pre-
sented in this paper and the probabilistic synopses of [7, 8]
over real-life data sets; we are currently implementing our
techniques and hope to report our experimental findings in
the near future. Finally, an important question in this realm
concerns the general suitability of the Haar-wavelet trans-
form as a data-summarization and approximate query pro-
cessing tool when it comes to error metrics other than L2.
Could there be other (existing or new) wavelet bases that
are better suited for optimizing, for example, relative-error
metrics in the data approximation?

6. REFERENCES
[1] Swarup Acharya, Phillip B. Gibbons, Viswanath

Poosala, and Sridhar Ramaswamy. “Join Synopses for
Approximate Query Answering”. In Proceedings of the
1999 ACM SIGMOD International Conference on
Management of Data, pages 275–286, Philadelphia,
Pennsylvania, May 1999.

[2] Laurent Amsaleg, Philippe Bonnet, Michael J.
Franklin, Anthony Tomasic, and Tolga Urhan.
“Improving Responsiveness for Wide-Area Data
Access”. IEEE Data Engineering Bulletin, 20(3):3–11,
September 1997. (Special Issue on Improving Query
Responsiveness).

[3] Kaushik Chakrabarti, Minos Garofalakis, Rajeev
Rastogi, and Kyuseok Shim. “Approximate Query
Processing Using Wavelets”. In Proceedings of the 26th
International Conference on Very Large Data Bases,
pages 111–122, Cairo, Egypt, September 2000.

[4] Antonios Deligiannakis and Nick Roussopoulos.
“Extended Wavelets for Multiple Measures”. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego,
California, June 2003.

[5] Amol Deshpande, Minos Garofalakis, and Rajeev
Rastogi. “Independence is Good: Dependency-Based
Histogram Synopses for High-Dimensional Data”. In
Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, Santa Barbara,
California, May 2001.

[6] R. A. DeVore. “Nonlinear Approximation”. Acta
Numerica, 7:51–150, 1998.

[7] Minos Garofalakis and Phillip B. Gibbons. “Wavelet
Synopses with Error Guarantees”. In Proceedings of
the 2002 ACM SIGMOD International Conference on
Management of Data, pages 476–487, Madison,
Wisconsin, June 2002.

[8] Minos Garofalakis and Phillip B. Gibbons.
“Probabilistic Wavelet Synopses”. ACM Transactions
on Database Systems, 29(1), March 2004.
(SIGMOD/PODS Special Issue).

[9] Minos Garofalakis and Amit Kumar. “Deterministic
Wavelet Thresholding for Maximum-Error Metrics”.
Bell Labs Technical Memorandum, December 2003.

[10] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan,
and Martin J. Strauss. “Surfing Wavelets on Streams:
One-pass Summaries for Approximate Aggregate
Queries”. In Proceedings of the 27th International
Conference on Very Large Data Bases, Roma, Italy,



September 2001.

[11] Dimitrios Gunopulos, George Kollios, Vassilis J.
Tsotras, and Carlotta Domeniconi. “Approximating
Multi-Dimensional Aggregate Range Queries Over
Real Attributes”. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of
Data, Dallas, Texas, May 2000.

[12] Peter J. Haas and Arun N. Swami. “Sequential
Sampling Procedures for Query Size Estimation”. In
Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, pages 341–350,
San Diego, California, June 1992.

[13] Joseph M. Hellerstein, Peter J. Haas, and Helen J.
Wang. “Online Aggregation”. In Proceedings of the
1997 ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, May 1997.

[14] Björn Jawerth and Wim Sweldens. “An Overview of
Wavelet Based Multiresolution Analyses”. SIAM
Review, 36(3):377–412, 1994.

[15] Yossi Matias, Jeffrey Scott Vitter, and Min Wang.
“Wavelet-Based Histograms for Selectivity
Estimation”. In Proceedings of the 1998 ACM
SIGMOD International Conference on Management of
Data, pages 448–459, Seattle, Washington, June 1998.

[16] Yossi Matias, Jeffrey Scott Vitter, and Min Wang.
“Dynamic Maintenance of Wavelet-Based
Histograms”. In Proceedings of the 26th International
Conference on Very Large Data Bases, Cairo, Egypt,
September 2000.

[17] Rajeev Motwani and Prabhakar Raghavan.
“Randomized Algorithms”. Cambridge University
Press, 1995.

[18] S. Muthukrishnan, Viswanath Poosala, and Torsten
Suel. “On Rectangular Partitionings in Two
Dimensions: Algorithms, Complexity, and
Applications”. In Proceedings of the Seventh
International Conference on Database Theory
(ICDT’99), Jerusalem, Israel, January 1999.

[19] Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim.
“WALRUS: A Similarity Retrieval Algorithm for
Image Databases”. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of
Data, Philadelphia, Pennsylvania, May 1999.

[20] Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin. “Wavelets for Computer Graphics – Theory
and Applications”. Morgan Kaufmann Publishers, San
Francisco, CA, 1996.

[21] Jeffrey Scott Vitter and Min Wang. “Approximate
Computation of Multidimensional Aggregates of
Sparse Data Using Wavelets”. In Proceedings of the
1999 ACM SIGMOD International Conference on
Management of Data, Philadelphia, Pennsylvania,
May 1999.


