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ABSTRACT

We propose the first known solution to the problem of cor-
relating, in small space, continuous streams of XML data
through approximate (structure and content) matching, as
defined by a general tree-edit distance metric. The key ele-
ment of our solution is a novel algorithm for obliviously em-
bedding tree-edit distance metrics into an L; vector space
while guaranteeing an upper bound of O(log®nlog*n) on
the distance distortion between any data trees with at most
n nodes. We demonstrate how our embedding algorithm
can be applied in conjunction with known random sketch-
ing techniques to: (1) build a compact synopsis of a mas-
sive, streaming XML data tree that can be used as a concise
surrogate for the full tree in approximate tree-edit distance
computations; and, (2) approximate the result of tree-edit-
distance similarity joins over continuous XML document
streams. To the best of our knowledge, these are the first al-
gorithmic results on low-distortion embeddings for tree-edit
distance metrics, and on correlating (e.g., through similarity
joins) XML data in the streaming model.

1. INTRODUCTION

The Extensible Markup Language (XML) is rapidly emerg-
ing as the new standard for data representation and ex-
change on the Internet. The simple, self-describing nature
of the XML standard promises to enable a broad suite of
next-generation Internet applications, ranging from intelli-
gent web searching and querying to electronic commerce. In
many respects, XML documents are instances of semistruc-
tured data: the underlying data model comprises an ordered,
labeled tree of element nodes, where each element can be ei-
ther an atomic data item or a composite data collection con-
sisting of references (represented as edges) to child elements
in the XML tree. Further, labels (or, tags) stored with XML
data elements describe the actual semantics of the data.

The flexibility of the XML data model makes it a very
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natural and powerful tool for representing data from a wide
variety of Internet data sources. Of course, given the typ-
ical autonomy of such sources, identical or similar data in-
stances can be represented using different XML-document
tree structures. For example, different online news sources
may use distinct Document Type Descriptor (DTD) schemas
to export their news stories, leading to different node labels
and tree structures. Even when the same DTD is used, the
resulting XML trees may not have the same structure, due
to the presence of optional elements and attributes [16].
Given the presence of such structural differences and in-
consistencies, it is obvious that correlating XML data across
different sources needs to rely on approzimate XML-document
matching, where the approximation is quantified through
an appropriate general distance metric between XML data
trees. Such a metric for comparing ordered labeled trees
has been developed by the combinatorial pattern matching
community in the form of tree-edit distance [3]. Briefly, the
tree-edit distance metric is the natural generalization of edit
distance from the string domain; essentially, the tree-edit
distance between two tree structures represents the mini-
mum number of basic edit operations (node inserts, deletes,
and relabels) needed to transform one tree to the other.
Tree-edit distance is a natural metric for correlating and
discovering approximate matches in XML document collec-
tions (e.g., through an appropriately defined similarity-join
operation). The problem becomes particularly challenging
in the context of streaming XML data sources; that is, when
such correlation queries need to be processed over continu-
ous XML data streams that arrive and need to be processed
on a continuous basis, without the benefit of several passes
over a static, persistent data image. Algorithms for correlat-
ing such XML data streams would need to work under very
stringent constraints, typically providing (approximate) re-
sults to user queries while: (a) looking at the relevant XML
data only once and in a fized order (determined by the
stream-arrival pattern); and, (b) using a small amount of
memory (typically, logarithmic or polylogarithmic in the size
of the stream) [1, 2, 10, 13]. Of course, such streaming-XML
techniques are more generally applicable in the context of
huge, Terabyte XML databases, where performing multiple
passes over the data to compute an exact result can be pro-
hibitively expensive. In such scenarios, having single-pass,
space-efficient XML query-processing algorithms that pro-
duce good-quality approximate answers offers a very viable



and attractive alternative [10].

Prior Work. Massive, continuous data streams arise nat-
urally in a variety of different application domains, includ-
ing network monitoring, retail-chain and ATM transaction
processing, Web-server record logging, and so on. As a re-
sult, we are witnessing a recent surge of interest in data-
stream computation, which has led to several (theoretical
and practical) studies proposing novel one-pass algorithms
with limited memory requirements for different problems;
examples include: quantile and order-statistics computa-
tion [15, 14]; distinct-element counting [4, 8]; frequent item-
set counting [6, 21]; estimating frequency moments, join
sizes, and difference norms [1, 2, 11, 17]; and, computing
one- or multi-dimensional histograms or Haar wavelet de-
compositions [13, 22]. All these papers rely on an approxi-
mate query-processing model, typically based on an appro-
priate underlying synopsis data structure. The synopses of
choice for a number of the above-cited papers are based on
the key idea of pseudo-random sketches which, essentially,
can be thought of as simple, randomized linear projections
of the underlying data item(s) (assumed to be points in some
numeric vector space).

Recent work on XML-based publish/subscribe systems
deals with XML document streams, but only in the con-
text of simple, predicate-based filtering of individual docu-
ments [5]; clearly, the problem of efficiently correlating XML
documents across one or more input streams gives rise to a
drastically different set of issues. Guha et al. [16] discuss
several different algorithms for performing tree-edit distance
joins over XML databases. Their work introduce easier-to-
compute bounds on the tree-edit distance metric and other
heuristics that can significantly reduce the computational
cost incurred due to all-pairs tree-edit distance computa-
tions. However, Guha et al. focus solely on ezact join com-
putation and their algorithms require multiple passes over
the data; this obviously renders them inapplicable in a data-
stream setting.

Our Contributions. All earlier work on correlating con-
tinuous data streams (through, e.g., join or norm computa-
tions) in small space has relied on the assumption of flat,
relational data items over some appropriate numeric vec-
tor space; this is certainly the case with the sketch-based
synopsis mechanism (discussed above), which has been the
algorithmic tool of choice for most of these earlier research
efforts. Unfortunately, this limitation renders earlier stream-
ing results useless for directly dealing with streams of struc-
tured objects defined over a complex metric space, such as
XML-document streams with a tree-edit distance metric. As
a more concrete example, consider the problem of estimating
the result size of a similarity-join operation that joins the
trees in two input XML-document streams whose tree-edit
distance is below some user/application-defined threshold.
A space-efficient, one-pass algorithm for approximating such
XML similarity joins would provide an invaluable tool, for
instance, during data integration when we are trying to esti-
mate the “degree of content similarity” between two distinct
XML data sources as their document contents are streaming
in.

In this paper, we propose the first known solution to the
problem of approximating (in small space) the result of cor-
relation queries based on tree-edit distance (like the similar-
ity join described above) over continuous XML data streams.

The centerpiece of our solution is a novel algorithm for ef-
fectively (i.e., “obliviously” [18]) embedding streaming XML
and the tree-edit distance metric into a numeric vector space
equipped with the standard L; distance norm, while guar-
anteeing a worst-case upper bound of O(log® nlog* n) on
the distance distortion between any data trees with at most
n nodes.! Our embedding is completely deterministic and
relies on parsing an XML tree into a hierarchy of special sub-
trees. Our parsing makes use of a deterministic coin-tossing
process recently introduced by Cormode and Muthukrish-
nan [9] for embedding a variant of the string-edit distance
into Li; however, since we are dealing with general trees
rather than flat strings, our embedding algorithm and its
analysis are significantly more complex, and result in differ-
ent bounds on the distance distortion.

We also demonstrate how our vector-space embedding
construction can be combined with earlier sketching tech-
niques [1, 10, 17] to obtain novel algorithms for: (1) con-
structing a small sketch synopsis of a massive, streaming
XML data tree that can be used as a concise surrogate for
the full tree in tree-edit distance computations; and, (2) esti-
mating the result size of a tree-edit-distance similarity join
over two streams of XML documents. To the best of our
knowledge, our are the first algorithmic results on oblivious
tree-edit distance embeddings, and on effectively correlat-
ing continuous, massive streams of XML data. We believe
that our embedding algorithm also has other important ap-
plications; as an example, compared to an expensive, exact
tree-edit distance computation algorithm that can require
up to O(n*) time [3], our embedding can be used to pro-
vide an approzimate distance (to within a O(log? nlog* n)
factor) in near-linear, i.e., O(nlog™ n) time.

2. PRELIMINARIES

XML Data Model and Tree-Edit Distance. An XML
document is essentially an ordered, labeled tree T, where
each node in T represents an XML element and is char-
acterized by a label taken from a fixed alphabet of string
literals 0. Node labels capture the semantics of XML ele-
ments, and edges in T capture element nesting in the XML
data. Without loss of generality, we assume that the alpha-
bet o captures all node labels, literals, and atomic values
that can appear in an XML tree (e.g., based on the under-
lying DTD(s)); we also focus on the ordered, labeled tree
structure of the XML data and ignore the raw-character
data content inside nodes with string labels (PCDATA, CDATA,
etc.). We use |T'| and |o| to denote the number of nodes in
T and the number of symbols in o, respectively.

Given two XML document trees 71 and T, the tree-edit
distance between Ty and T (denoted by d(T1,T>)) is defined
as the minimum number of tree-edit operations to transform
one tree into another. The standard set of tree-edit oper-
ations [3] includes: (1) relabeling (i.e., changing the label)
of a tree node v; (2) deleting a tree node v (and moving all
of v’s children under its parent); and, (3) inserting a new
node v under a node w and moving a contiguous subsequence
of w’s children (and their descendants) under the new node
v. (Note that the node-insertion operation is essentially the

LAll log’s in this paper denote base-2 logarithms; log* n de-
notes the number of log applications required to reduce n
to a quantity that is < 1, and is a very slowly increasing
function of n.



complement of node deletion.) An example XML tree and
tree-edit operation are depicted in Figure 1. In this pa-
per, we consider a variant of the tree-edit distance metric,
termed tree-edit distance with subtree mowves, that, in addi-
tion to the above three standard edit operations, allows a
subtree to be moved under a new node in the tree in one
step. We believe that subtree moves make sense as a prim-
itive edit operation in the context of XML data — identical
substructures can appear in different locations (for exam-
ple, due to a slight variation of the DTD), and rearranging
such substructures should probably be considered as basic
an operation as node insertion or deletion. In the remain-
der of this paper, the term “tree-edit distance” assumes the
four primitive edit operations described above, namely node
relabelings, deletions, insertions, and subtree moves.

publication q publication
/bo< paper DELETE /bo< paper
title authors title 1}{u£ﬁ&ﬁé? title authors  title // author

‘ author

author author author author author author author author

Figure 1: Example XML Tree and Tree-Edit Operation.

Data Streams and Basic Sketching. In a data-streaming
environment, data-processing algorithms are allowed to see
the incoming data records (e.g., relational tuples or XML
documents) only once as they are streaming in from (possi-
bly) different data sources [1, 2, 10]. Backtracking over the
stream and explicit access to past data records is impossi-
ble. The data-processing algorithm is also allowed a small
amount of memory, typically logarithmic or polylogarithmic
in the data-stream size, in order to maintain concise synop-
sis data structures for the input stream(s). In addition to
their small space requirement, these synopses should also be
easily computable in a single pass over the data and with
small per-record processing time. At any point in time, the
algorithm can combine the maintained collection of synopses
to produce an approximate result.

We focus on one particular type of stream synopses, namely
pseudo-random sketches; sketches have provided effective so-
lutions for several streaming problems, including join and
multi-join processing [1, 2, 10], norm computation [11, 17],
distinct-element counting [8], and histogram or Haar-wavelet
construction [13, 22]. We describe the basics of sketching
using a simple binary-join cardinality estimation query [1].
More specifically, assume that we want to estimate Q =
COUNT(R: >4 Ra), i.e., the cardinality of the join of two
streaming relations R; and Ry over an attribute (or, set of
attributes) A, whose values we assume (without loss of gen-
erality) to range over {1,...,N}. Letting fr (i) (k = 1,2;
i=1,...,N) denote the frequency of the i** value in Ry, is
is easy to see that Q = Zf\;l f1(3) f2(4); thus, @ can be com-
puted exactly in O(NN) space. In their seminal work, Alon et
al. [1, 2] show how to build a randomized estimate for @ in
small, i.e., O(log N) space. Briefly, the key idea is to build
a sketch (essentially, a randomized linear projection) of the
distribution vector for each input stream. Such a sketch
for Ry is simply defined as X = SN, fi(i)& (k = 1,2),

where {&; : ¢ =1,... N} is a family of uniform, four-wise
independent {—1,+1} random variables. The key here is
that the £ random values can be constructed on-line using a
seed of size only O(log N), and the maintenance of X over
the Rj stream is extremely simple: start with X; = 0 and
just add &; to X whenever the i** value of A is observed
in the stream. It is then easy to show that the product
of the sketches X; - X5 is an unbiased estimate for @, i.e.,
E[X:-X5] = Q. To boost the accuracy and confidence of the
estimate, several independent copies of the above-described
atomic sketching estimate can be maintained and combined
using averaging and median-selection operations [1, 2].

3. OUR APPROACH: AN OVERVIEW

The key element of our methodology for correlating con-
tinuous XML data streams is a novel algorithm that em-
beds ordered, labeled trees and the tree-edit distance met-
ric as points in a (numeric) multi-dimensional vector space
equipped with the standard L vector distance, while guar-
anteeing a small distortion of the distance metric. In other
words, our techniques rely on mapping each XML tree T'
to a numeric vector V(T') such that the tree-edit distances
between the original trees are well-approximated by the L
vector distances of the tree images under the mapping; that
is, for any two XML trees S and T, the L; distance ||V (S) —
V(D) = 3, [V(S)[i] = V(T)[j]| gives a good approxima-
tion of the tree-edit distance d(S,T).

Besides guaranteeing a small bound on the distance dis-
tortion, to be applicable in a data-stream setting, such an
embedding algorithm needs to satisfy two additional require-
ments: (1) the embedding should require small space and
time per data tree; and, (2) the embedding should be oblivi-
ous, that is the vector image V(T") of a tree T’ cannot depend
on other trees in the input stream(s). Our embedding algo-
rithm satisfies all these requirements.

There is an extensive literature on low-distortion embed-
dings of metric spaces into normed vector spaces; for an ex-
cellent survey of the results in this area, please see the recent
paper by Indyk [18]. A key result in this area is Bourgain’s
lemma proving that an arbitrary finite metric space is em-
beddable in an Lo vector space with logarithmic distortion;
unfortunately, Bourgain’s technique is neither small space
nor oblivious (i.e., it requires knowledge of the complete
metric space), so there is no obvious way to apply it in a
data-stream setting [18]. To the best of our knowledge, our
algorithm gives the first oblivious, small space/time vector-
space embedding for a complex tree-edit distance metric.

Given our algorithm for approximately embedding stream-
ing XML trees and tree-edit distance in an L; vector space,
known streaming techniques (like the sketching method dis-
cussed in Section 2) now become relevant. In this paper, we
focus on two important applications of our results in the con-
text of streaming XML, and propose novel algorithms for:
(1) building a small sketch synopsis of a massive, streaming
XML data tree; and, (2) approximating the size of a similar-
ity join over XML streams. Once again, these are the first
results on correlating (in small space) massive XML data
streams based on the tree-edit distance metric.

4. THE EMBEDDING ALGORITHM

In this section, we describe our embedding algorithm for
the tree-edit distance metric in detail and prove its small-



time and distance-distortion guarantees. We start by intro-
ducing some necessary notational conventions.

Consider an ordered, labeled tree T over alphabet o, and
let n = |T'|. Also, let v be a node in T, and let s denote
a contiguous subsequence of children of node v in T. If the
nodes in s are all leaves, then we refer to s as a contiguous
leaf-child subsequence of v. (A leaf child of v that is not
adjacent to any other leaf child of v is called a lone leaf child
of v.) We use T'[v,s] to denote the subtree of T obtained
as the union of all subtrees rooted at nodes in s and node
v itself, retaining all node labels. We also use the notation
T'[v, s] to denote exactly the same subtree as T'[v, s|, except
that we do not associate any label with the root node v of
the subtree. We define a valid subtree of T as any subtree
of the form T[v, s], T'[v, s], or a path of degree-2 nodes (i.e.,
a chain) in T. Finally, we assume a hash function h() that
maps the set of all valid subtrees of T to new labels in a
one-to-one fashion with high probability; such a function
can be computed in small space/time, for example, using a
simple modification of the Karp-Rabin string fingerprinting
algorithm [19].

At a high level, our algorithm produces a hierarchical pars-
ing of T into a multiset 7 (T") of special valid subtrees. The
vector image V' (T") of T is essentially the “characteristic vec-
tor” for the multiset 7(T') (over the space of all possible
valid subtrees). Even though the dimensionality of V (T') is,
in general, exponential in n, our construction will guarantee
that V(T') is also very sparse: the total number of non-zero
components in V(T') is only O(n).

Thus, the technical crux lies in the details of our hierar-
chical parsing process for T' that produces the valid-subtree
multiset 7(T"). We make use of a string-processing sub-
routine presented by Cormode and Muthukrishnan [9] that
uses deterministic coin-tossing to find landmarks in an input
string S, which are then used to split S into groups of 2 or
3 consecutive characters. A key property of their landmark-
based grouping technique (termed CM-Group in this paper)
is that, given a string of length k, the choice of a specific
character z as a landmark (and, consequently, the chosen
group of characters that contains z) depends only on the
characters lying in a radius of log™ k+ 5 to the left and right
of z [9]. Thus, a string-edit operation occurring outside this
local neighborhood of a character z is guaranteed not to
affect the group formed containing . As we will see, this
property is crucial in proving the distance-distortion bounds
for our embedding algorithm.

Our algorithm constructs a hierarchical parsing of T in
several phases. In phase i, the algorithm builds an ordered,
labeled tree T* that is obtained from tree of the previous
phase T~ by contracting certain edges. (The initial tree
T is exactly the original input tree T.) Thus, each node v €
T* corresponds to a connected subtree of T — in fact, our
algorithm guarantees that this subtree will be a valid subtree
of T. Let v(T) denote the valid subtree of T corresponding
to node v € T%; the node label for v is determined by the
hash-function value h(v(T')), where h() is the valid-subtree
naming function defined above.

The pseudo-code description of our embedding algorithm
(termed TREEEMBED) is depicted in Figure 2. As described
above, our algorithm builds a hierarchical parsing structure
(i.e., a hierarchy of contracted trees T*) over the input tree
T, until the tree is contracted to a single node (|T*| = 1).
The multi-set 7 (T") of valid subtrees produced by our pars-

procedure TREEEMBED( T' )

Input: Ordered, labeled tree T.

Output: Vector embedding V(T') of T

begin

1. i:=0;T°:=T

2. while ( |T?| > 1) do

3. for each ( maximal chain of degree-2 nodes in 7% ) do
4 Use CM-Group to divide the chain into groups of 2 or

3 nodes
5. Contract each node group to form a new node of T¢+!
6. endfor
7. for each ( node v € T* with > 2 children ) do
8. for each ( maximal contiguous leaf-child subsequence
sofv ) do
9. if (|s| > 2) then
10. Consider s as a string and run CM-Group to divide s
into groups of 2 or 3 nodes
11. Contract each node group to form a new node of T*¢+!

12. else if ( |s| = 1 and s = {w} is the leftmost such leaf
subsequence under v) then

13. Merge this leaf-child w into v to form a new node
of T*+!

14. endfor

15. endfor

16. ¢:=1¢+1

17. endwhile

18. T(T) := {< v(T*),i >: v € T" for all phases i }

19. V(T) := “characteristic vector” of T (T) (see definition
in text)

end

Figure 2: Our Tree-Embedding Algorithm.

ing for T contains all valid subtrees corresponding to all
nodes of the final hierarchical parsing structure tagged with
a phase label to distinguish between subtrees in different
phases; that is, 7(T) comprises all < v(T"*),i > for all nodes
v € T? over all phases i (Step 18). Finally, we define the L;
vector image V(T') of T to be the “characteristic vector” of
the multi-set 7(T"); in other words,

V(T)[< t,i>] := number of times the < ¢,7 > subtree-

phase combination appears in 7 (7).

(We use the notation V;(T') to denote the restriction of V(T')
to only subtrees occurring at phase i.) A small example
execution of our embedding algorithm is depicted pictorially
in Figure 3.

The L; distance between the vector images of two trees
S and T is defined in the standard manner, i.e., ||V (T) —
VI = zmeT(T)UT(S) [V(T)[z] — V(S)[z]|- In the re-
mainder of this section, we prove our main theorem on the
near-linear time complexity of our L; embedding algorithm
and the logarithmic distortion bounds that our embedding
guarantees for the tree-edit distance metric.

THEOREM 4.1. The TREEEMBED algorithm constructs the
vector image V(T') of an input tree T in time O(|T'|log™ |T|);
further, the vector V(T') contains at most O(|T|) non-zero
components. Finally, given two trees S and T with n =
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Figure 3: Example Hierarchical Tree Parsing.

max{|S|, |T|}, we have
d(S,T) <5 |IV(T) = V($)lli = Olog” nlog™ n) - d(S, T).
1

We first prove the following lemma, which bounds the
number of parsing phases; the key here is to show that the
number of tree nodes goes down by a constant factor during
each contraction phase. The detailed proof can be found in
Appendix A.

LEMMA 4.2. The number of phases for our TREEEMBED
algorithm on an input tree T is O(log |T|). |

Lemma 4.2 immediately implies that the total number
of nodes in the entire hierarchical parsing structure for T is
only O(|T|). Thus, the vector image V(T') built by our algo-
rithm is a very sparse vector. To see this, note that the num-
ber of all possible ordered, labeled trees of size at most n that
can be built using the label alphabet o is O((4]c|)"™) (see,
e.g., [20]); thus, by Lemma 4.2, the dimensionality needed
for our vector image V() to capture input trees of size n is
O((4|a|)™ log n). However, for a given tree T, only O(|T|) of
these dimensions can contain non-zero counts. Lemma 4.2,
in conjunction with the fact that the CM-Group procedure
runs in time O(klog* k) for a string of size k [9], also im-
plies that our TREEEMBED algorithm runs in O(|T|log™ |T'|)
time on input 7.2 The following two subsections establish
the distance-distortion bounds stated in Theorem 4.1.

4.1 Upper Bound Proof

Suppose we are given a tree T with n nodes and let A
denote the quantity log™ n + 5. Consider a (valid) subtree

2 An immediate implication of these results is that we can use
our embedding algorithm to compute the approximate (to
within a O(log” nlog™ n) factor) tree-edit distance between
T and S in O(nlog® n) (i.e., near-linear) time. The time
complexity of exact tree-edit distance computation (without
subtree moves) is significantly higher: O(|T||S|drds), where
dr (ds) is the depth of T (S) [3].

of T the form T'[v,s] for some contiguous set of children s
of v (recall that the root of T"[v,s] has no label). Let us
delete T'[v, s] from T. Let the resulting tree be T», and let
T denote T'[v,s]. Thus, we have broken T into Ti and To.

We now compare the following two vectors. The first vec-
tor V(T') is obtained by applying our parsing procedure to
T. For the second vector, we apply our procedure to each
of the trees T1 and T» separately and then add the corre-
sponding vectors V(T1) and V(T:) component-wise — call
this vector V(11 + T>). Our goal is to prove the following
theorem.

THEOREM 4.3. The L; distance between V(T') and V (T1+
T») is at most O(log® nlog* n). |

Let us first see how this result implies the upper bound
stated in Theorem 4.1.

Proof of the Upper Bound in Theorem 4.1: It is suf-
ficient to consider the case when the tree-edit distance be-
tween S and T is 1. First, assume that 7' is obtained from S
by deleting a leaf node v. Let the parent of v be w. Define
s = {v}. Delete S'[w,s] from S. This splits S into T’ and
S'[w,s] — call this S;. Theorem 4.3 implies that ||V(S) —
(V(T) +V(51))||1 < O(log® nlog* n). But, it is easy to see
that the vector V(S1) has only two non-zero components,
both equal to 1. Thus, ||(V(T)+ V(S1)) — V(T)||: < 2. By
the triangle inequality, ||V (S) — V(T)||1 is O(log® nlog* n).

Since insertion of a leaf node is the inverse of a leaf-node
deletion, the same holds for this case as well. Let w be a node
in S and s be a contiguous set of children of w. Suppose T is
obtained from S by moving the subtree S’[v, s], i.e., delete
this subtree and make it a child of another node « in S.3

Let S1 denote S’[v,s]. Let S> denote the tree obtained
by deleting Si from S. The theorem above implies that
[[V(S) — (V(S1 + S2))||1 is O(log®nlog*n). But we can
picture S1 U S> also as the forest obtained by deleting Si
from T. Thus, ||V(T)—V(S1+52)|1 is also O(log? nlog™ n).
Triangle inequality now implies the result.

Finally, suppose we delete a node v from S. Let the parent
of v be w. All children of v now become children of w. We
can think of this process as follows. Let s be the children of
v. First we move S'[v,s] and make it a child of w. Now, v is
a leaf node, so we are just deleting a leaf node now. Thus,
the result for this case follows from the arguments above for
deleting a leaf node and moving a subtree. |

Thus, it suffices to prove Theorem 4.3. Our proof proceeds
along the following lines. We define an influence region for
each tree T* in our hierarchical parsing. Initially (i.e., phase
0), this region is just the node v at which we deleted the
T: subtree. But, this region grows as we proceed to next
phases. We then argue that if we ignore this influence region
and the corresponding region in T1 + T5, then the two trees
look very similar (in any phase). Thus, if we can bound
the rate at which this region grows we can also bound the
L, distance between the two vectors. The reason why this

3This is a slightly “generalized” subtree move, since it al-
lows for a contiguous (sub)sequence of sibling subtrees to
be moved in one step. However, it is easy to see that it
can be simulated with only three simpler edit operations,
namely, a node insertion, a single-subtree move, and a node
deletion. Thus, our results trivially carry over to the case of
“single-subtree move” edit operations.



approach should work is the following : when we change T at
some point, nodes far away from it remain unaffected in the
following sense — the set of nodes in which a particular node
in phase  will be grouped when parsing the tree T remains
unchanged. This is a direct consequence of the properties
of the CM-Group procedure used for grouping nodes in each
phase.

We now proceed with the proof. Define (T + T»)® as the
tree corresponding to (71 + T2) at the beginning of phase 3.
We say that a node « € T+ contains a node &' € T if the
set of nodes in T* which were merged to form z contains z’.
Any node w in T* corresponds to a subgraph w(T) in T. Tt
is clear that w(T') is always a connected subgraph of T. It
is also clear that if w and w’ are two different nodes in T7,
then w(T) and w'(T) are disjoint.

(a) (b)

Figure 4: (a) The subtree induced by the bold edges
corresponds to the nodes in M?. (b) Node 2z becomes the
center of N*.

For each tree T¢, we shall mark certain nodes. This in-
tuitively corresponds to the influence region we mentioned
above. Let M® be the set of marked nodes in 7" (see Fig-
ure 4(a) for an example). M’ has the following structure:
There is a central node v'. M* will always contain the node
v, i.e., the node in T which contains v is in M¢. M* may
contain some ancestors A‘ of v* — but all these nodes (ex-
cept perhaps v*) must be of degree 2 only and should form
a connected path. M® may also contain some descendants
of v'.

Certain nodes of T* will be denoted as corner nodes —
intuitively, these are nodes whose parsing will be affected
when they are shrunk down to a leaf node.

The key idea here is that M’ captures the set of those
nodes in 7% which have been influenced by the change we
made at node v. Now, in the next phase, the changes in M?
will affect some more nodes. Thus, we now try to determine
which nodes M can affect, i.e., if the change at v has in-
fluenced all nodes in M in phase i, which are the nodes in
T? whose parsing can change as a result of this. In order to
capture this, we define another set of nodes N¢ in T — these
will intuitively correspond to the set of nodes whose parsing
can be affected by the changes in M°.

First add all nodes in M* to N*. Let w be the highest
node in M® (so it is an ancestor of the center vf). If M®
contains all descendants of w, then add the parent of node
w, call it z, to N? (see Figure 4(b)). Otherwise, if some
descendants of w are not in M?, then define z to be same

as v*. (The idea here is that the grouping of w’s parent in
the next phase can only change if the entire subtree under
w has changed, e.g., the subtree has just been moved there;
otherwise, w’s parent cannot be grouped in the next phase
in any case.) Node z will be the center of the “extended”
influence region N*. We also add the following nodes to N°
(see Figure 5 for examples) :

(i) Suppose u is a leaf child of (the center) z and there is
another child u’ of z such that the following conditions
are satisfied : u' € M® or v is a corner leaf node, the
set of nodes s(u,u’) between u and u’ are leaves, and
|s(u,2’)] < A. Then, add u to N*. (In particular,
note that any leaf child of z which is a corner node
gets added to N°.)

(ii) Let u be the leftmost lone leaf child of z which is not
already in M* (if such a child exists). Then, add u to
N*.

(iii) Let w be the highest node in M* (so it is an ancestor
of the center v). Let u be an ancestor of w. Suppose
it is the case that all nodes between u and w, except
perhaps w, have degree 2, and the length of the path
joining u and w is at most A. Then, add u to N*.

(iv) Suppose there is a child u of 2z such that all descendants
of siblings of u (other than u itself) are already in M".
Let u' be the lowest descendant of u which is in M*. If
u' is any descendant of u’' such that the path joining
them contains degree-2 nodes only (including the end-
points), and has length at most A, then we add u" to

N*.

() (b)

Figure 5: (a) The nodes in dotted circles get added
to N? due to rules (i), (ii), and (iii). (b) The nodes in
dotted circle get added to N’ due to rule (iv) — note that
all descendants of v’ which are not descendants of u are
in M*.

Let us briefly describe why we need these four rules. We
basically want to include all those nodes in N* whose parsing
can be affected if we delete or modify the nodes in M*. The



first three rules, in conjunction with the properties of our
parsing, are easily seen to capture this fact. The last rule
is a little more subtle. Suppose u is a child of z. Further,
assume all descendants of z except perhaps those of u are
in M*. Remember that all nodes in M* have been modified,
so they may not have been present at all in the original
tree. But, if we just ignore M?, then z becomes a node of
degree 2 only, which means that it would affect how u and
its degree-2 descendants are parsed . This fact is captured
by rule (iv).

We now consider the case of corner nodes. Suppose z has
at least two children. When we parse T¢, we may merge a
leaf child w of z into z. If so, then we mark the two imme-
diate siblings of u as corner nodes (see Figure 6). Again,
the idea here is that the merging of u into z can affect the
parsing of these sibling nodes when they are shrunk down
to leaves.

Figure 6: Because node u moves up to v%, nodes a and
b become corner nodes.

Having described N?, let us now define M**! i.e., the
influence region at the next level of our parsing. M®*! is
the set of those nodes in T°T! which contain a node of N°.
The center of M is the node which contains the center of
Nt i.e., z. Furthermore, any node in 7°" which contains a
corner node will again be a corner node.

Initially, define M° = {v}. The children of v which are
immediately on the left and on the right of the removed
subsequence s are marked as corner nodes. Based on the
above rules, it is easy to see that M i and N' are always
connected subtrees of T°.

It is important to note that the “extended” influence re-
gion N°* is defined in such a manner that the parsing of all
nodes in T¢ — N* will not be affected by the changes in M?*.
This fact will become clear as we proceed with the proofs
in this section. We now define a corresponding set, P?, in
(T1 +T»)*. The remainder of the section is devoted to prov-
ing that the nodes in T* — M* and (T + T>)" — P* can
be matched in some manner, so that each pair of matched
nodes correspond to identical subtrees in T and (T1 + 1),
respectively.

The set P’ in (T1 + T»)" is defined as follows. P’ always
contains the root of Ti’. Further, a node uw € (T + T»)"
is in P?, if and only if there exists a ' € M?® such that

u(Ty + T2) N/ (T) is non-empty (u(T1 + T2), as expected,
denotes the subtree corresponding to u in T} U T%).
We maintain the following invariant : Given any node

Figure 7: f maps from T*

— M? to (Ty + T»)? — P.

x € T* — M", there will be a node y € (T} + T»)" — P* such
that z(T") and y(T1 + T>) are identical subtrees. We denote
y by f(x). Conversely, given a node y € (T1 + T»)* — P?,
there is a node z € T* — M* such that =(T) = y(Ti + T>).
Thus, f is a one-to-one, onto mapping from 7% — M* to
(Th + T2)" — P* (Figure 7). In other words, if we ignore M*
and P! from T and (T} + T»)" respectively, then the two
remaining forests are identical.

Clearly, our invariant is true in the beginning. Suppose
the hypothesis is true for T* and (T1 +T2)*. We now need to
prove it for T and (T +T2)". Fix a node w in Ti —N¥,
and let w’ be the corresponding node in (71 4+ T3)* — P* (i.e.,
w = f(w)). Suppose wis contalned in a node g in T+ and
w' in node ¢’ € (Th +T2)

LEMMA 4.4. Ifq(T) and ¢’ (T1 +T>) are identical subtrees
for any node w € T* — N*, then the invariant holds for T+
and (T1 + T2)"*" as well. |

Proof: We have to show the following facts. If z is a node in
T+ _ M*+1| then there exists anodey € (T1+T3)" ! —Pi*!
such that y(T1 + T>) = z(T). Conversely, given a node
y € (Th + T»)**' — P! there is a node ¢ € T+ — M+t
such that (T) = y(T1 + Tz).

Suppose the condition in the lemma holds. Let x be a
node in Tt — M1, Let 2’ be a node in T such that = con-
tains 2’. Clearly, ' ¢ N*, otherwise z will be in M**!. Let
y' = f(z'). Let y be the node in (T3 +T»)*! which contains
y’. By the hypothesis of the lemma, z(T) and y(T1 + T>)
are identical trees. It remains to check that y ¢ P*™'. Since

y(Th + Tz) =z(T), y(Th + Tz) is disjoint from z(T') for any
z €T 2 # . Since x ¢ MV y € (Th + Tp) ! — P2,

Let us prove the converse now. Suppose y € (T1+T3) ! —
P! Let 3 be a node in (T1 + T»)* such that y contains
y'. If 4 € P’ then there is a node ' € M’ such that
o' (T) Ny'(T1 + T2) # B. Let  be the node in T which
contains z’. Since ' € N*, x € M**!. Now, z(T) Ny(T1 +
T2) D «'(T) Ny (T1 + T2) # 0. But then y should be in
P+ a contradiction. Therefore, 3 ¢ P*. By the invariant
for T, there is a node &' € T* — M? such that 4’ = f(z').

Let = be the node in T**! containing z’. Again, if 2’ € N?,
then € M**'. But then w(T)ﬂy(T1+T2) D' (T)ny'(Th +
T>), which is non-empty because z "(T) = y'(Ty + T2). This
would imply that y € P**'. So &' ¢ N’. But then, by the
hypothesis of the lemma, z(T) = y(T1 + T»). Further, z
cannot be in M'T! otherwise y will be in P**!. Thus, the
lemma is true. |



It is, therefore, sufficient to prove that q(T') = ¢’ (T1 + T2).
This is what we seek to do next. Our proof uses a case-by-
case analysis of how node w gets parsed in T°. For each
case, we demonstrate that w’ will also get parsed in exactly
the same manner in the tree (71 + T»)". In the interest of
space and continuity, we defer the details of this proof to
the full version of this paper [12].

Thus, we have established the fact that, if we look at the
vectors V(T') and V(T1 + T2), the nodes corresponding to
phase i of V(T') which are not present in V(71 + Tb) are a
subset of M*. Our next step is to bound the size of M".

LEMMA 4.5. The influence region M* for phase i consists
of O(ilog™ n) nodes. |

Proof: Note that the number of nodes of degree 2 that are
added to M (rules (iii) and (iv)) are at most 2A. So, adding
over first ¢ stages of our algorithm the number of such nodes
in M" can be at most O(ilog” n). So, we need to bound the
number of nodes that get added due to rules (i) and (ii).

We now want to count the number of leaf children of the
center node v® which are in M*. Let k; be the number of
children of v* which become leaves for the first time in T°
and are marked as corner nodes. Let C° be the nodes in
M which were added as the leaf children of the center node
of Til, for some 7' < i. Then, we claim that C* can be
partitioned into at most Z;;ll k;j + 1 contiguous sets such
that each set has at most 4A elements. We prove this by
induction on i. So, suppose it is true for T°.

Consider such a contiguous set of leaves in C* - call it C%,
|C%| < 4A. We may add A leaves of v® on either side of C?
which are contiguous with Ci to the set N°. Thus, this set
may grow to a size of 6A contiguous leaves. But when we
parse this set, we will reduce it by at least half. Thus, this
set will now contain at most 3A leaves (which is at most
4A).

Therefore, each of the E;;ll k; + 1 contiguous sets in C*

correspond to a contiguous set in T°F* of size at most 4A.

Now, we may add other leaves of v® to N'. This can
happen only if a corner node becomes a leaf. A consecutive
leaves on either side of this node will be added to N?. Thus,
we may add k; more such sets of consecutive leaves to N*.
This completes our inductive argument.

But note that each phase adds at most 2 corner nodes.
So, E;.ZI kj < 2i. This shows that the number of nodes in

C* is O(ilog* n). This proves the result. |

We now need to bound the nodes in (T} + T3)" which are
not in 7. But this can be done in exactly analogous manner
if we switch the roles of T' and 71 + T>» in the proofs above.
Thus, we can define a subset Q° of (T} +T5)* and a 1-1 map
g from (T1 +T2)* — Q" to a subset of T such that g(w)(T) =
w(Ty + T>») for every w € (T1 + T»)* — Q'. Further we can
show in a similar manner that |Q°| < O(log® nlog* n).

We are now ready to complete the proof of Theorem 4.3.

Proof of Theorem 4.3: Fix a phase i. Consider those
subtrees t such that V;(T)[< t,7 >] > Vi(Th + T2)[< t,¢ >].
In other words, ¢ appears more frequently in the parsed tree
T? than in (T1+T2)". Let the set of such subtrees be denoted
by §. We first observe that

|M*| > Vi(T)[< t,i >] = Vi(T1 + To)[< £, >].

Indeed, consider a tree t € S. Let Vi be the set of vertices
u in T* such that u(T) = t. Similarly, define the set V% in
(T1 +T»)". So, [Vi]| — |Vo| = Vi(T)[< t,i >] = Vi(T: + T)[<
t,i >]. Now, the function f must map a vertex in Vi — M"
to a vertex in Va. Since f is 1-1, Vi — M*? can have at most
|V2| nodes. In other words, M’ must contain Vi — V3| nodes
from Vi. Adding this up for all such subtrees in S gives us
the inequality above.

We can write a similar inequality for Q°. Adding these
up, we get

IMI|+1Q7| > ) Vi(T)[< t,i >] = Vi(Tu + To)[< t,i >]],
t

where the sum is over all subtrees. If we add over all values
of i, we get the desired result. |

4.2 Lower Bound Proof

Our proof follows along the lower-bound proof of Cor-
mode and Muthukrishnan [9], in that it does not make use
of any special properties of our hierarchical tree parsing; in-
stead, we only assume that the parsing structure built on
top of the data tree is of bounded degree k (in our case, of
course, k = 3). The idea is then to show how, given two
data trees S and T, we can use the “credit” from the L;
difference of their vector embeddings ||V (T) — V(S)||: to
transform S into T'. As in [9], our proof is constructive and
shows how the overall parsing structure for S (including S
itself at the leaves) can be transformed into that for T'; the
transformation is performed level-by-level in a bottom-up
fashion (starting from the leaves of the parsing structure).
(The distance-distortion lower bound for our embedding is
an immediate consequence of Lemma 4.6 with k£ = 3.)

LEMMA 4.6. Assuming a hierarchical parsing structure with
degree at most k (k > 2), the overall parsing structure for
tree S can be transformed into exactly that of tree T with
at most (2k — D)||V(T) — V(S)||1 tree-edit operations (node
inserts, deletes, relabels, and subtree moves). |

Proof: As in [9], we first perform a top-down pass over the
parsing structure of S, marking all nodes x whose subgraph
appears in the both parse-tree structures, making sure that
the number of marked z nodes at level (i.e., phase) ¢ of
the parse tree does not exceed V;(T)[z] (we use z instead
of v(z) to also denote the valid subtree corresponding to x
in order to simplify the notation). Descendants of marked
nodes are also marked. Marked nodes are “protected” dur-
ing the parse-tree transformation process described below,
in the sense that we do not allow an edit operation to split
a marked node.

We proceed bottom-up over the parsing structure for S in
O(log n) rounds (where n = max{|S|,|T|}), ensuring that
after the end of round ¢ we have created an S; such that
[|[Vi(T) — Vi(Ss)||1 = 0. The base case (i.e., level 0) deals
with simple node labels and creates Sp in a fairly straight-
forward way: for each label a, if V5(S)[a] > Vo(T')[a] then we
delete (Vo(S)[a]— Vo(T')[a]) unmarked copies of a; otherwise,
if Vo(S)[a] < Vo(T)[a], then we add (Vo(T)[a]— Vo(S)[a])
leaf nodes labeled a at some location of S. In each case, we
perform |Vo(S)[a] — Vo(T')[a]| edit operations which is ex-
actly the contribution of label a to |[Vo(T") — Vo(S)||1. It is
easy to see that, at the and of the above process, we have
[Vo(T') — Vo(So)l[1 = 0.



Inductively, assume that, when we start the transforma-
tion at level i, we have enough nodes at level 7 — 1; that
is, ||[Vi—1(T)— Vi=1(Si=1)||l1 = 0. We show how to create
S; using at most (2k — 1)||Vi(T) — Vi(S;)||1 subtree-move
operations. Consider a node z at level ¢ (again, to sim-
plify the notation, we also use z to denote the corresponding
valid subtree). If V;(S)[z] > V;i(T)[z], then we have exactly
Vi(T)[z] marked = nodes at level ¢ of S’s parse tree that
we will not alter; the remaining copies will be split to form
other level-i nodes as described next. If V;(S)[z] < Vi(T)[z],
then we need to build an extra (Vi(T')[z]— Vi(S)[x]) copies
of the £ node at level i. We demonstrate how each such
copy can be built by using < (2k — 1) subtree move oper-
ations in order to bring together < k level-(i — 1) nodes to
form z (note that the existence of these level-(i —1) nodes is
guaranteed by the fact that ||Vi—1(T)— Vi—1(Si—1)||» = 0).
Since (Vi(T)[z]— Vi(S)[z]) is exactly the contribution of x
to ||[Vi(T)— V;i(S:)||1, the overall transformation for level 4
requires at most (2k — 1)||Vi(T)— V;(Si)||:1 edit operations.

Figure 8: Forming a Level-i Node z.

To see how we form the x node at level 7 note that, based
on our embedding algorithm, there are three distinct cases
for the formation of z from level-(i—1) nodes, as depicted in
Figure 8(a-c). In case (a), z is formed by “folding” the (no-
siblings) leftmost leaf child v of a node v; into its parent; we
can create the scenario depicted in Figure 8(a) easily with
two subtree moves: one to remove any potential subtree
rooted at the level-(1 — 1) node v2 (we can place it under
v2’s original parent at the level-(i — 1) tree), and one to
move the (leaf) v2 under the v1 node. Similarly, for the
scenarios depicted in cases (b,c), we basically need at most
k subtree moves to turn the nodes involved into leaves, and
at most k£ — 1 additional moves to move these leaves into
the right formation around one of these < k nodes. Thus,
we can create each copy of x with < (2k — 1) subtree move
operations. At the end of this process, we have ||V;(T)—
Vi(S:)||1 = 0. Note that we do not care where in the level-
i tree we create the x node; the exact placement will be
taken care of at higher levels of the parsing structure. This
completes the proof. |

S. SKETCHING A MASSIVE, STREAMING
XML DATA TREE

In this section, we describe how our tree-edit distance em-
bedding algorithm can be used to obtain a small, pseudo-
random sketch synopsis of a massive XML data tree in the
streaming model. This sketch synopsis requires only small
(logarithmic) space, and it can be used as a much smaller
surrogate for the entire data tree in approximate tree-edit

distance computations with guaranteed error bounds on the
quality of the approximation based on the distortion bounds
guaranteed from our embedding. Most importantly, as we
show in this section, the properties of our embedding algo-
rithm are the key that allows us to build this sketch synopsis
in small space as nodes of the tree are streaming by without
ever backtracking on the data.

More specifically, consider the problem of embedding a
data tree T of size n into a vector space, but this time assume
that 7' is truly massive (i.e., n far exceeds the amount of
available storage). Instead, we assume that we see the nodes
of T as a continuous data stream in some apriori determined
order. In the theorem below, we assume that the nodes of
T arrive in the order of a preorder (i.e., depth-first and left-
to-right) traversal of T. The theorem demonstrates that the
vector V(T') constructed for T by our L1 embedding algo-
rithm can then be constructed in space O(dlog? nlog* n),
where d denotes the depth of T. The sketch of T is essen-
tially a sketch of the V(T') vector (denoted by sketch(V (T)))
that can be used for L; distance calculations in the em-
bedding vector space. Such an L; sketch of V(T) can be
obtained (in small space) using the existing sketching algo-
rithms of Indyk [17].

THEOREM b5.1. A sketch sketch(V(T)) to allow approwi-
mate tree-edit distance computations can be computed over
the stream of nodes in the preorder traversal of an n-node
XML data tree T using O(dlog® nlog™ n) space and O(logd
logZn (log* n)?) time per node , where d denotes the depth
of T. Then, assuming sketch vectors of size O(log %) and
for an appropriate combining function f(), f(sketch(S),
sketch(T")) gives an estimate of the tree-edit distance d(S,T)
to within a relative error of O(log® nlog* n) with probability
of at least 1 — 4.

The proof of Theorem 5.1 hinges on the fact that, based
on our proof in Section 4.1, given a node v on a root-to-
leaf path of T and for each of the O(logn) levels of the
parsing structure above v, we only need to retain a local
neighborhood (i.e., influence region) of nodes of size at most
O(log nlog* n) to determine the effect of adding an incoming
subtree under T'. The O(d) multiplicative factor is needed
since, as the tree is streaming in in preorder, we do not
really know where a new node will attach itself to T'; thus,
we have to maintain O(d) such influence regions. Given that
most real-life XML data trees are reasonably “bushy”, we
expect that, typically, d << n, or d = O(polylog(n)). The
f() combining function is basically a median-selection over
the absolute component-wise differences of the two sketch
vectors [17]. A detailed proof of Theorem 5.1 can be found
in the full version of this paper [12].

6. APPROXIMATE SIMILARITY JOINS
OVER XML DOCUMENT STREAMS

We now consider the problem of computing (in limited
space) the cardinality of an approximate tree-edit-distance
similarity join over two continuous data streams of XML
documents 81 and S». Note that this is a distinctly differ-
ent streaming problem from the one examined in Section 5:
we now assume massive, continuous streams of short XML
documents that we want to join based on tree-edit distance;
thus, the limiting factor is no longer the size of an individ-
ual data tree (which is assumed small and constant) but



rather the number of trees in the stream(s). The docu-
ments in each S; stream can arrive in any order, and our
goal is to produce an accurate estimate for the similarity-
join cardinality |SimJoin(S1,S2,7)| = |[{(S,T) € 81 x S2 :
d(S,T) < 7}|; that is, the number of pairs in §; X S that are
within a tree-edit distance of 7 of each other (where the sim-
ilarity threshold 7 is a user/application-defined parameter).
Such a space-efficient, one-pass approximate similarity join
algorithm would obviously be very useful in processing huge
XML databases, integrating streaming XML data sources,
and so on.

Once again, the first key step is to utilize our tree-edit
distance embedding algorithm on each streaming document
treeT € S; (¢ =1,...,2) to construct a (low-distortion) im-
age V(T') of T as a point in an appropriate multi-dimensional
vector space. We then obtain a lower-dimensional L;-sketch
of V(T') that approximately preserves L; distances in the
original vector space, as described by Indyk [17]. Our tree-
edit distance similarity join has now essentially been trans-
formed into an L;-distance similarity join in the embedding,
low-dimensional vector space. The final step then performs
an additional level of sketching over the stream of points in
the embedding L; vector space in order to build a random-
ized, sketch-based estimate for |SimJoin(S1,S2,7)|. The fol-
lowing theorem shows how an atomic sketch-based estimate
can be constructed in small space over the streaming XML-
data trees; to boost accuracy and probabilistic confidence,
several independent atomic-estimate instances can be used
(as in [1, 2, 10]).

THEOREM 6.1. Let|SimJoin(S1, S2,7)| denote the the car-
dinality of the tree-edit distance similarity join between two
XML document streams S1 and S2, where document dis-
tances are approzimated to within a factor of O(log? blog™ b)
with constant probability, and b is a (constant) upper bound
on the size of each document tree. An atomic, sketch-based
estimate for |SimJoin(S1, Sz, 7)| can be constructed in O(b+
log + log N) space and O(3 + blog™b) time per document,
where & controls the accuracy of the distance estimates and
N denotes the length of the input stream(s). |

Proof: Our algorithm for producing an atomic sketch esti-
mate for the similarity join cardinality uses two distinct lev-
els of sketching. Assume an input tree T’ (in one of the input
streams). The first level of sketching uses our Li; embedding
algorithm in conjunction with the L;-sketching technique of
Indyk [17] (i.e., with 1-stable (Cauchy) random variates) to
map T to an O(log %)-dimensional vector of sketching val-
ues sketch(V (7)) in a manner similar to that described in
Theorem 5.1. This mapping of an input tree T to a point in
an O(log %)—dimensional vector space can be done in space
O(b + log 3 log N): this covers the O(b) space to store and
parse the tree, and the O(log N) space required to gener-
ate the random variates for each of the O(log 3) sketch-
value computations (and store the sketch values themselves).
(Note that O(log N) space is sufficient since we know that
there are at most O(NNb) non-zero components in all the
V(T) vectors in the entire data stream.) A key property of
this mapping is that the L; distances of the V(T') vectors are
approximately preserved in this new O(log })-dimensional
vector space with constant probability [17].

The second level of sketching in our construction will pro-
duce a pseudo-random sketch of the point-distribution (in

the embedding vector space) for each input data stream. To
deal with an L; 7-similarity join, the basic equi-join sketch-
ing technique discussed in Section 2 needs to be appropri-
ately adapted. The key idea here is to view each incoming
“point” sketch(V(T")) in one of the two data streams, say
&1, as an Ly region of points (i.e., a multi-dimensional hy-
percube) of radius 7 centered around sketch(V(T')) in the
embedding O(log %)—dimensional vector space when building
a sketch synopsis for stream S1. Essentially, this means that
when T (i.e., sketch(V (T"))) is seen in the S; input, instead
of simply adding the random variate & (where, the index 7 =
sketch(V (T"))) to the atomic sketch estimate X, for Sy, we
update Xs, by adding Y5 v, &> where N(3,7) denotes
the L; neighborhood of radius 7 of i = sketch(V (7)) in the
embedding vector space (i.e., N(i,7) = {5 : [|§ — j||» < T}).
Note that this special processing is only carried out on the
S stream; the sketch Xs, for the second XML stream S»
is updated in the standard manner. It is then fairly simple
to prove (as in [1, 10]) that the product Xs, - Xs, gives
an unbiased, atomic sketching estimate for the cardinality
of the L; 7-similarity join of §; and S in the embedding
O(log })-dimensional vector space.

In terms of processing time per document, note that, in
addition to time cost of our embedding process, the first level
of sketching can be done in small time using the techniques
discussed by Indyk [17]. The second level of sketching can
also be implemented using standard sketching techniques,
with the difference that (for one of the two streams) updat-
ing would require summation of £ variates over an L; neigh-
borhood of radius 7 in an O(log 3 )-dimensional vector space.
This basically means that the per-document sketching cost
would increase by a multiplicative factor of O(70(1°8(1/3))) —
O(1/4) in the worst-case (in fact, efficiently range-summable
sketching variables, as in [11], can be used to reduce this
multiplicative factor to O(log(1/4))). |

Theorem 6.1 only guarantees that our estimation algo-
rithm approximates tree-edit distances with constant prob-
ability. This is due to the fact that using the L; sketching
technique of Indyk as a tool for L; dimensionality reduction
can only guarantee a mapping that is approximately non-
expansive with constant probability [17]; in other words,
this means that a constant fraction of the points in the
T-neighborhood of a given point could be missed. (The
high-probability result of Theorem 5.1 relies on median-
selection rather than L; norm computation in the O(log %)—
dimensional space, and median-selection cannot be used ef-
ficiently for similarity-join computations.) Furthermore, the
very recent results of Charikar and Sahai [7] prove that no
sketching method (based on randomized linear projections)
can provide a high-probability dimensionality-reduction tool
for L;; in other words, there is no analogue of the Johnson-
Lindenstrauss (JL) lemma for the L; norm. Thus, there
seems to be no obvious way to strengthen Theorem 6.1 with
high-probability distance estimates.

The following corollary shows that high-probability esti-
mates are possible if we allow for an extra O(v/b) multiplica-
tive factor in the distance distortion. The idea here is to use
Ls vector norms to approximate L; norms exploiting the
fact that each V(T') vector has at most O(b) non-zero com-
ponents, and then use standard, high-probability Lo dimen-
sionality reduction (e.g., through JL). Of course, a different
approach that could give stronger results would be to try to



embed tree-edit distance directly into Lo, but this remains
an open problem.

COROLLARY 6.2. The tree-edit distances for the estima-
tion of |SimJoin(S1,82,7)| in Theorem 6.1 can be estimated
with high probability to within a factor of O(v/blog? blog* b).

1

7. CONCLUSIONS

In this paper, we have presented the first algorithmic
results on the problem of effectively correlating (in small
space) massive XML data streams based on approximate
tree-edit distance computations. Our solution relies on a
novel algorithm for obliviously embedding XML trees as
points in an L; vector space while guaranteeing a loga-
rithmic worst-case upper bound on the distance distortion.
We have combined our embedding algorithm with pseudo-
random sketching techniques to obtain novel, small-space
algorithms for building concise sketch synopses and approx-
imating similarity joins over streaming XML data. Our em-
bedding result also has other important algorithmic appli-
cations, e.g., as a tool for very fast, approximate tree-edit
distance computations.
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APPENDIX

A. BOUNDING THE NUMBER OF PHASES

Proof of Lemma 4.2: For a tree H, we say that a node
v € H is a leaf child of a node u € H if v is a leaf and a child
of u. Suppose v is a leaf child of u. Define s, as the maximal
contiguous set of leaf children of w which contains v. Define
a chain to be a path in H which goes from a node to its
descendant such that all nodes in this path have degree 2.



For a tree H, we partition its vertex set into several sets as
follows. Let A(H) be the non-root nodes which either have
degree two or are leaf children of non-root nodes of degree
two. Observe that the non-leaf nodes in A(H) have only one
child. Define B(H) as the nodes with two or more children.
The root is also added to B(H). So A(H) and B(H) contain
all the non-leaf nodes of T¢. It remains to consider leaves
in H which have at least one sibling or which are children
of the root. Let Di(H) be the set of all such leaves u for
which |sy| > 2. Let D2(H) be the set of all such leaves for
which [s,| =1 and w is the leftmost such child of its parent.
Define D3(H) to be the remaining leaves of H, i.e., leaves
u for which [s,| =1 but u is not the leftmost such child of
its parent. For notational convenience, we shall also denote
|A(H)| by A(H) and similarly for other sets.

We first prove the following ancillary lemma.

LEMMA A.1. For any rooted tree H with at least 2 nodes,
Ds(H)< D(H)+ A(H)/2 - 1. |

Proof: We prove this by induction on the number of nodes
in H. Suppose H has only two nodes. Then D3(H) =
0,D2(H) =1,A(H) = 0. So the lemma is true for the base
case.

Suppose it is true for all rooted trees with less than n
nodes. Suppose H has n nodes. Let r be the root of H.
First consider the case when r has only one child, call it s.
Let H’' be the subtree rooted at s. By induction, D3(H') <
D>(H'Y+A(H')/2—1. Clearly, Ds(H) = D3(H'). Is D2(H)
equal to D2(H') ? The only case when a node u can occur
in D>(H') but not in Dy(H) is when s has only one child,
u, which also happens to be a leaf. Clearly, u € D2(H’)
because its parent is the root. But this is not the case in H.
Sow ¢ Dy(H). But if this is the case then both s and r are in
A(H)— A(H'). So, D2(H) + A(H)/2 = Dy(H') + A(H')/2.
Thus the lemma is true in this case as well.

Now consider the case when r has at least 2 children.
We shall construct several subtrees, each of these will be
rooted at r (but will contain only a subset of the descendants
of r). Let wui,...,ur be the leaf children of r such that
su; = {us}. So, u1 € Dy(H) whereas all other u; € D3(H).
We define subtrees Hi, ..., Hyy1 as follows. H; is the set
of all descendants of r (including r) which lie to the right of
u;—1 but to the left of u; (as special cases, H; is the set of
nodes to the left of u; and Hyyi as the set of nodes to the
right of uy). It may happen that Hy or Hi41 do not contain
any nodes (except the root), but all other subtrees will have
at least one node other than the root r. By induction,

D3(H1) < D2(H1) + A(Hl)/Q -1

for all H; except perhaps Hy and Hyy1 (in case they do not
contain any nodes except the root). Adding these inequali-
ties, we get

ZDa(Hi) < ZD2(H¢) + ZA(Hi)/Z — (k—1).

Note that we have k — 1 only in the right hand side because
H; and Hgy1 may not contribute to this sum.

Now, if u € A(H;), then u € A(H) as well. So, A(H) =
> A(H;). Suppose u € D2(H;). Let the parent of u be
w. Note that w # r. Indeed, suppose w = r. Since s,
contains a leaf node other than u it must be the case that u
is adjacent to one of the nodes u1, ... ,ur. But there can not

be a leaf node adjacent to u1,... ,ux. So w # r. But then
u € Do(H) as well. Conversely, suppose u € D>(H). Either
u = uy or the parent of u is in one of the subtrees H;. In
the latter case uw € Dy(H;). Thus, D2(H) =3, Da(H;) + 1.

Finally, we can argue in a similar manner that Ds(H;) C
Ds(H). Further, if u € D3(H), then either u € {us,... ,ur}
or w € D3(H;). Thus, D3(H) =, D3(H;)+k — 1. Putting
everything together, we see that

D3(H) = > Ds(H)+k—1

INA

> Dy(Hi)+ ) A(H:)/2
= Dx(H)+ A(H)/2-1
This proves the lemma. |

We show that the number of nodes goes down by a con-
stant factor after each phase. Recall that T¢ is the tree at
the beginning of phase i.

We claim that

BT < B(IY), BT+ AT™) < BI')+ A(T")/2.

Indeed all nodes which have degree at least 3 (i.e., at least
2 children) in T°*! must have had degree at least 3 in T*
as well. This proves the first inequality. So any node in
B(T**!) corresponds to a unique node in B(T"). Now con-
sider a node u in A(T**'). Two cases can happen depending
on how u was formed. One case is that u was formed by col-
lapsing some degree 2 nodes from A(Ti)'— in this case u
corresponds to at least 2 nodes from A(T"). The other case
is that there was a vertex w € B(T*) and we collapsed a leaf
child of w into w to get w. In this case u corresponds to a
unique node of B(T"). This proves the second inequality.

In phase i, the leaves in D;(T") will be reduced to at
least half their size. Those in D»(T") will merge with their
parents. The leaves in D3(T") do not change. So we need
to bound their size. The lemma above implies that

D3(T") < Do(T") + A(TY) /2.
From this we get
Ds3(T") < 2/3(D2(T")/2 + Ds(T") + A(T")/4).

Thus, the number of leaves in 71" is at most Dy (T*)/2+
D»(T")/3+2/3D3(T*)/3+A° /6, which is at most 2/3D(T")+
A(T")/6, where D(T") is the number of leaves in T*. So the
total number of nodes in T°*" is at most B(T") +c(A(T*) +

D(T")), where c is some constant less than 1.
Now,

B(T") + ¢(A(T") + D(T")) = 1‘2” iy 1—c¢

B(T*) + 5
+c(A(T?) + D(T"))

)+ 15 (A + D(TY)
2

because B(T?) < A(T") + D(T?) (the number of nodes of
degree more than 2 is at most the number of leaves in any
tree). Thus, the number of nodes in T°*! goes down by a
constant factor. This completes the proof. |

B(T%) +

<

1+cB(



