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1 Introduction

As the Internet has evolved into a valuable and critical ser-
vice platform for business and daily life, the research com-
munity has enthusiastically applied data mining methods to
improve application performance by analyzing and optimiz-
ing the behaviors of the underlying systems (e.g.,datacenter
design, network resource provisioning, network security,etc.)
These data mining procedures often use large-scale widely-
distributed monitoring systems, which continuously generate
numerous distributed data streams, and backhaulall of the
data to a central location (e.g.,a Network Operation Center
or NOC) for data analysis and decision making. This applica-
tion scenario presents both new opportunities and challenges
in efficient data analysis and online decision making, wherea
decision function depends on aggregating and analyzingcon-
tinuousdata streams fromdistributedmonitors.

The statistics and machine learning communities have per-
formed extensive research into decision making methods [1],
including outlier detection, clustering, classification,etc., with
the results being algorithms that mainly assume all data have
been collected at a central point, and focus on post-collection
data analysis and problem diagnosis, with little consideration
of the more general distributed, continuous data collection
and analysis problem. We believe that the machine learning
community should now focus on the design of algorithms that
function well with limited data.

We envision two open problems: efficiently performing on-
line decision makingwith low communication overhead, and
providing fine-grain control over the tradeoff between deci-
sion accuracy and communication overhead. Most existing
research has focused on sampling techniques, however, the
randomness in this type of sampling could discard key infor-
mation needed by decision making algorithms. Instead, we
advocate usingsmart filteringfor data reduction, where the
filtering is designed to carefully select which data tonot ship.
Specifically, the filtered data should be that which has mini-
mal impact on decision making performance or its accuracy.

2 Challenges

Using a centralized model, where all monitored data is peri-
odically pushed to the NOC, simplifies the application of de-
tection and correlation functions to global data. However,a
centralized model introduces significant efficiency, timescale,
and size scalability limitations, especially when attempting to

collect monitoring data and perform detection on sub-second
or smaller time scales; and increase the number of monitors by
an order of magnitude or more. Changes in timescale and size
can massively increase the volume of data sent to the NOC,
potentially overloading its network capacity.

The distributed nature of monitor sites implies important
communication network constraintsdue to either network
bandwidth restrictions or power limitations (e.g.,sensor bat-
tery life). Such limitations are obvious in sensor networks,
but also in large enterprise networks which typically do not
over provision links to remote office sites. Clearly, we
needcommunication-efficient distributed monitoringbecause
naı̈ve solutions that simply continuously “push” completedata
streams to a central collection site will not scale.

The database community has developed approximate data
replication protocols for managing distributed and continuous
data streams [5], that efficiently and effectively enable central-
ized access to distributed streams (data objects whose values
continuously change over time). Because their goal is to ag-
gregate data at the NOC within anε-error bound on accuracy
regardless of actual system conditions, stream processing ap-
proaches suffer from excessive query overhead in the presence
of bursty data and are ill suited for efficient decision making.

Our key insight in the efficient decision making problem
is thatexact data is often not a requirement— the important
metric is notε-error approximation of system state, rather it is
ε-error decision making. In other words, we care about how
accurately monitoring detects a violation, not how accurately
it determines overall system state.

With this insight we can use approximate replication tech-
niques to reduce communication costs and study fundamental
tradeoffs between central site synchronization communication
costs and decision making accuracy. Using machine learning
and statistics, thiscost-accuracy tradeoffcan be codified in
a system that lets users specify a minimum allowable accu-
racy level, and then it minimizes communication costs while
meeting the specified accuracy requirement.

3 The Problem Space

In Figure 1, we show the three axes of the design space for the
online decision making and detection problem:

Time Scales of detection represent at least three detection condition
types. Instantaneoustriggers fire when an aggregate threshold
value is violated at any single instant [4, 6], whilefixed-window
and cumulativetriggers detect persistent threshold violations
over fixed andany sizewindows of time, respectively [2].
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Detection Functions include simple linear (e.g.,SUM) and more so-
phisticated ones (e.g.,Top-k, PCA, and SVM) enabling a wide
range of detection applications (e.g., botnet attacks, volume
anomalies in ISP network, and electric power grid anomalies).

Communication Architectures include a one-level tree where ev-
ery monitor directly communicates with the NOC, multi-level
tree structures where monitors have a parent-child relationship,
and pure distributed topologies.

Our research has explored a slice of the problem space: var-
ious detection functions defined on a one-level tree topology
(the shaded area in Figure 1). The rest of the space represents
an interesting opportunity for the research community.

4 Towards Efficient Decision Making

As an exploratory step, we propose, D-Trigger, a general
framework for efficient online detection that gracefully inte-
grates a variety of decision making, online machine learning,
approximation, and optimization algorithms. Our key goals
and accomplishments are to: enable real-time detection where
a system’s state is tracked continuously, so even small abnor-
mal events are detected; significantly reduce the data collected
for detection, thus reducing communication overhead; guar-
antee desired detection accuracy even with a reduced amount
of data. D-Trigger combines very high detection accuracy and
low communication overhead for the detection of various un-
usual events (e.g.,detecting botnet attacks, network traffic vol-
ume anomalies, and electric power grid anomalies).

We have developed two specific approaches for security
applications: a queueing-based approach for botnet detec-
tion [2] and a Principal Components Analysis-based approach
for network-wide anomaly detection [3]. A common theme
in both approaches is collaborative anomaly detection across
many widely distributed monitors, and a key lesson we have
learned is that data can be intelligently filtered by controlling
or bounding detection errors. In our approaches, distributed
monitors perform local information processing and only send
approximate (filtered) data to the NOC. Because the NOC has
imperfect knowledge of the monitored data, it may make mis-
takes in the detection, but we leverage machine learning and
statistics to design monitor and NOC protocols that bound
detection error (providing high accuracy), while simultane-
ously minimizing communication — yielding the desired fine-
grained tradeoff between detection accuracy and communica-
tion cost.

Our research shows that often 80 to 90% of monitor data
can be filtered – a result of our focus on accurate anomaly
detection, instead of accurate state approximation. In a well-
performing system (the common case), anomalies are rare
events and the NOC does not need an accurate view of sys-
tem state. It is only when system state approaches the deci-
sion making threshold that the NOC needs a more accurate
view (i.e., more detailed data from monitors). This is where
we apply machine learning and statistics techniques to provide
monitors with dynamic feedback for adaptive data filtering.
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SUM, AVG, MIN, ...

Comm. Arch.

Top−k, PCA, K−Mean, SVM, ...
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Cumulative

Fixed−window

Instantaneous

Figure 1:The whole problem space.

Providing efficient decision making in large-scale dis-
tributed systems remains an open problem, however our initial
results from leveraging machine learning demonstrate the fea-
sibility of balancing accurate decision making with minimized
communication needs. Based on the applications we have ex-
amined so far, we believe that our framework and approach
are broadly applicable and a basis for exploring a wide spec-
trum of algorithms that deal with anomaly detection. There
are several research directions for further exploration, includ-
ing using multi-level tree or pure distributed communication
architectures to further reduce the processing and communica-
tion burden at the NOC; supporting more sophisticated types
of detection algorithms (e.g.,wavelet decomposition, entropy
analysis, clustering, classification, and sequential hypothesis
methods); and developing resilient monitoring infrastructures
that can tolerate data losses.
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