
Toward Sophisticated Detection With Distributed Triggers

Ling Huang∗ Minos Garofalakis† Joseph Hellerstein∗ Anthony Joseph∗ Nina Taft†
∗UC Berkeley †Intel Research Berkeley

{hling, hellerstein, adj}@cs.berkeley.edu {minos.garofalakis, nina.taft}@intel.com

ABSTRACT
Recent research has proposed efficient protocols for distributed
triggers, which can be used in monitoring infrastructures to
maintain system-wide invariants and detect abnormal events
with minimal communication overhead. To date, however,
the constraints used to flag abnormality have been limited to
simple aggregation functions like sums and counts. In this pa-
per we show how distributed triggers can be extended so as to
support sophisticated detection functions. We first consider
an extension for constraints that involve quadratic aggrega-
tion functions. To do so, we select a particular application,
that of anomaly detection, in which a centralized algorithm
uses quadratic constraints to detect anomalies. We use this
application to provide a detailed illustration of how to ex-
tend our triggers. This example also shows the utility of the
distributed triggering system that essentially converts a cen-
tralized solution into a distributed one, and leads to a more
communication efficient system. We show that this can be
done with little to no sacrifice in detection accuracy. After
the detailed illustration of trigger extensions, we discuss ap-
proaches to build more general extensions to support a broad
range of complex constraints.

Keywords
Distributed Triggers, Anomaly Detection, PCA

1. INTRODUCTION
Distributed monitoring and anomaly detection systems have

been proposed and deployed to aggregate status information
and detect unusual events in large distributed systems such
as server clusters and large networks [4, 13]. In these sys-
tems monitoring sensors are deployed throughout the network
to collect system information from multiple vantage points.
With the coordination of an operation center, monitors col-
laborate with each other to analyze and correlate distributed
data for timely detection of system-wide abnormal events.

Distributed triggers have been proposed as a critical com-
ponent in monitoring architectures [5]. One of the primary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

goals of a monitoring system is to ensure that the target sys-
tem is well behaved. When the target system is distributed,
we typically test for normal behavior of the global system by
monitoring data at the local sites, shipping this data to a
central place, and then checking expected behaviors against
actual ones using the centralized data. The behaviors can be
assessed using a well-defined set of logical predicates. After
processing the data, unusual behavior can be revealed (i.e.,
”triggered”) when some feature of the data exceeds a prede-
fined ”acceptable” threshold.

A key idea behind distributed triggers is to avoid central-
izing all the data, and to do so by engaging the local mon-
itors in part of the detection procedure. If we can reduce
the amount of monitoring data that actually needs to get
shipped to the central decision-making site (called a coor-
dinator), then we can reduce the communication needs of
such a system. There is ample motivation for reducing the
communications needs of such systems. Enterprise networks
typically do not over-provision the connections between office
sites in different cities or countries. Sensor network applica-
tions clearly need to be mindful of power limitations on the
sensor devices. Although ISPs today typically over-provision
their backbone networks, emerging continuous monitoring ap-
plications may require much finer time and data granularities
than what is typically collected today (e.g., SNMP polled on
5 minute time scale). To avoid transferring significant traffic
volumes throughout a network, and also to avoid overwhelm-
ing the operation center, we need communication efficient dis-
tributed triggers. Naive solutions that continuously “push”
the local data streams directly to a collection site simply will
not scale to large distributed systems.

To support this functionality, a set of approaches have been
proposed recently for communication-efficient tracking of dis-
tributed triggers [3, 8]. They aim to detect constraint vio-
lations via threshold functions defined on distributed infor-
mation. However, existing approaches have significant limi-
tations: they only support simple thresholds on distributed
aggregate functions like SUM and COUNT, which are insuffi-
cient for sophisticated detection applications. In this paper,
we present our initial efforts to support more sophisticated
triggering functionality. We give some examples for detec-
tion schemes that may require checking non-linear threshold
constraints, relative triggers, and so on. To illustrate these
ideas more concretely, we use the example of a centralized
PCA-based anomaly detection application [9]. This method
detects anomalies in traffic volume levels by simultaneously
examining the link load levels of all the links in a large net-
work. It works by using a Principal Components Analysis

4, 7, 2, ...

3, 6, 1, ...

2, 5, 8, ...

1, 3, 5, ...

Alarm
Data Flow

Result

M1 M3M2
Mn

Figure 1: The system setup.

(PCA) technique to decompose network traffic into normal
and residual components, and then detects anomalies by ap-
plying a threshold function on the residual components. One
of our contributions is to illustrate how to redesign this ap-
plication in a distributed fashion, with far less communica-
tion overhead, by using distributed triggers as an underlying
paradigm. Abstractly, this requires distributed triggers that
support complex threshold functions, and can be composed
to lend support to sophisticated distributed detection appli-
cations. We describe, for example, a simple approximation to
a non-linear threshold constraint that works well in our exam-
ple application: our method achieves roughly the same level
of accuracy as the centralized scheme, while communicating
only around 20% of the underlying data.

Prior Work. The database community has extensively ex-
plored centralized triggering mechanisms [2, 14]. However,
the goal of minimizing communication overhead in widely
distributed Internet environments introduces new challenges.
Keralapura et al . [8], formalized the thresholded counting
problem and proposed solutions based on either static or adap-
tive algorithms, as well as a detailed optimality analysis of
the solution. Our approach in [3] goes further by defining dis-
tributed triggers with general (zero, fixed, or varying) time
windows, along with novel algorithms for these variants with
firm detection guarantees. Both [3] and [8] solved the prob-
lem of detecting threshold violations with specified accuracy
while minimizing communication overhead, as well as provid-
ing the flexibility for users to trade off communication over-
head with detection accuracy. Recent progress in distributed
monitoring, profiling and anomaly detection [12, 15, 16] aims
to share information and foster collaboration between widely
distributed monitoring boxes to offer improvements over iso-
lated systems. These systems are examples of distributed
monitoring systems for which a triggering tool such as ours
would be useful. Lakhina et al . [9], carried out the pioneering
work in detecting network-wide anomalies. Zhang et al . [17],
extended it further and proposed a general “anomography”
framework to infer anomalies at network level in both spatial
and temporal domains.

2. DISTRIBUTED TRIGGERING SYSTEMS
As shown in Fig. 1, a typical distributed triggering system

consists of a set of n widely distributed monitoring nodes M1,

M2, . . . , Mn and a coordinator node X. Each monitor contin-
uously produces time series signals ri(t) on the variable(s) or
condition(s) selected for monitoring. These time series signals
are sent to coordinator X which acts as an aggregation and
detection point. The purpose of the coordinator is to track

?
rn(t)

?
r1(t)

?
r1(t)

Slacks

Adaptive

?

C

?

ε

-

-

-

-

J
J

J
J
J

J
Ĵ

PPPPPq

�
�
�
�
�
�
���

HHHHj

6

�
�

��>

?

Filter/
Predict

Filter/
Predict

Filter/
Predict

δ1

δ2

δn

R1(t)

R2(t)

Rn(t)

Checking

Constraint

Aggreg.

AlarmsCoordinator

Distr. Monitors

Correlation

Figure 2: The distributed trigger tracking framework.

conditions across its monitors and to fire a trigger whenever
some limitation on the aggregate behavior of a subset of nodes
is violated.

We assume all communication happens only between moni-
toring nodes and the coordinator, and no communication hap-
pens among monitoring nodes. To avoid sending all their
data, the monitors filter their time series so as to only send
update information to the coordinator ”when necessary”. Be-
cause the coordinator has imperfect knowledge of the moni-
tored data, it can make mistakes such as false alarms and/or
missed detections. Our design goal is ensuring the coordinator
accurately fires the trigger, while simultaneously minimizing
the communication between the monitors and coordinator.
The heart of the problem is thus to determine how the mon-
itors should do their filtering.

In [3], we provided a mathematical definition of the dis-
tributed triggering problem with three distinct types of con-
straint violations: instantaneous, fixed-window, and varying-
window triggers. Instantaneous triggers fire when the value of
the aggregate function violates the threshold value within a
single time instance. Fixed-window and varying-window trig-
gers aim to catch persistent threshold violations over a fixed
or variable window of time, respectively. With these three
types of violations, we allow the notion of a constraint vio-
lation to have an associated time period, and thus enable a
broad range of triggering conditions. For the purposes of this
paper, we will focus on instantaneous triggers only.

Our distributed triggering system has the notion of an error
tolerance, denoted by ε. Let C denote the trigger threshold
at the coordinator. Our goal is to track an instantaneous
violation approximately to within the specified error tolerance
ε around C. For example, if the aggregation function is a SUM

function, then the trigger fires for any time instant t where
Pn

i
ri(t) > C + ε, for nodes i = 1, . . . , n.

Our distributed triggering system is illustrated in Fig. 2.
The global trigger threshold, C, and error tolerance, ε are user
specified inputs. The time series data collected at monitor i is
given by ri(t), while Ri(t) denotes the filtered version of this
data sent to the coordinator. The idea behind the filtering
is to send a summary of ri(t) at some time t and then not
to send anything at all until it is deemed necessary. From
the point of view of the coordinator, Ri(t) can be viewed
as a prediction of ri(t) because when the coordinator is not
receiving any data from monitor i, it assumes that its most
recently received value of Ri(t) accurately predicts ri(t) [6].

Each monitor Mi continuously tracks the (instantaneous)
difference di(t) = |ri(t)− Ri(t)| between the true local signal
and its (most recent) prediction. In order to upper bound this
drift, monitor i uses a parameter δi and checks if di(t) > δi.

never fires

may fire

definitely fires

t

Value

∑
n

i=1
ri(t)

C + ε

C − ε

∑
n

i=1
ri(t) ≤ C − ε,

∑
n

i=1
ri(t) > C + ε,

Figure 3: Instantaneous trigger tracking guarantees.

If this occurs at a time t, then Mi updates the coordinator by
sending it the latest ri(t) value. Although in general, Ri(t)
can be any prediction function of ri(t), in our examples herein
we simply use Ri(t) = ri(t). The parameter δi is called the
local monitor slack, and intuitively this parameter indicates
that no communication is needed as long as the prediction
captures ri(t) to within a δi bound.

The coordinator has two jobs. The first is to continuously
track the value of the aggregation function based on the pre-
dictions it has received. Using the SUM as an aggregation
function, this means tracking

P

Ri(t). A violation occurs
whenever

Pn

i=1
Ri(t) > C + ε. The coordinator’s second job

is to continuously estimate a parameter ∆(t), called the total
slack, according to ∆(t) = max(ε, C + ε −

Pn

i=1
Ri(t)). Intu-

itively, ∆(t) captures how far away the system is from firing
the trigger. The coordinator partitions this total slack into
individual monitor slacks δi, such that

P

i δi = ∆ and each δi

is proportion to the variance of the local stream. These values
are then sent to each of the monitors. When ∆ is small, con-
sequently the δi’s will be small. This is intuitive because this
means that when we are close to firing a trigger, the allowed
drift between the coordinator’s view and the monitor’s view
must remain small, and thus more updates will be sent to
the coordinator so it can fire accurately1. Conversely, when
the aggregation condition is far from the trigger threshold,
little data needs to be sent to the coordinator. This scheme
naturally adapts to the time series data.

A highly desirable feature of a distributed triggering system
is to provide guarantees on its performance. The following
theorem shows that our adaptive scheme indeed guarantees
ε-approximate instantaneous trigger tracking.

Theorem 1 Employing an adaptive global monitor slack equal
to ∆(t) = C + ε−

Pn

i=1
Ri(t), where Ri(t) denotes the up-

to-date prediction from monitor mi (for all i) ensures that
the coordinator check

Pn

i=1
Ri(t) > C: (1) always fires if

P

i
ri(t) > C + ε; and, (2) never fires if

P

i
ri(t) < C − ε.

This theorem was proved independently both in [3] and [8].
Theorem 1 asserts a “band of uncertainty” (of size 2ε) around
the trigger threshold C, where our tracking algorithm may or
may not fire a trigger violation (see Fig. 3). The key observa-
tion is that both global and local slacks vary over time, and

1
Our experience shows that even though the communications traf-

fic increases near the time of violation, the actual amount of traffic
is far below a system that does not use filtering and simply pushes
all the data to coordinator

can be allocated in an adaptive manner that maximizes the
effect of local filtering, and thus minimizes overall commu-
nication. Unlike earlier data-streaming work [6, 11], we are
not interested in continuously guaranteeing that the coordina-
tor’s estimate of the aggregate function is within an ε-error.
Our focus instead is highly accurate trigger firing: we care
about accurate aggregate signal estimation only if its value
is close to the trigger threshold C. Our adaptive slack alloca-
tion schemes exploit the trigger condition to yield significant
communication reductions by allowing for much “looser” (and
thus, more effective) filters at monitors when the signal is well
below the C threshold.

In [3], we designed schemes for adaptively partitioning the
global slack into individual monitor slacks and analytically
showed that our schemes deterministically guarantee that the
trigger fires with ε-accuracy. Our method enables users to
tradeoff desired detection performance with communication
overhead. Testing using real-life data streams from PlanetLab
Intrusion Detection System showed our algorithms’ significant
communication-efficiency gains — a reduction in monitor data
sent to the coordinator of more than 80% [3].

Our triggering protocols currently support simple linear
functions (e.g., SUM and COUNT) and not advanced queries
such as top-k, histogram, join, etc. In this paper we show
how our distributed triggers can be extended so as to sup-
port sophisticated detection functions. We first consider an
extension to support constraints that involve quadratic aggre-
gation functions. To do so, we select a particular application,
that of anomaly detection, in which a centralized algorithm
uses quadratic constraints to detect anomalies. We use this
application to provide a detailed illustration of how to ex-
tend our triggers. This example also shows the utility of the
distributed triggering system that essentially converts a cen-
tralized solution into a distributed one, and also leads to a
more communication efficient system. We show that this can
be done with little to no sacrifice in detection accuracy. After
the detailed illustration of trigger extensions, we discuss them
more generally in Section 4.

3. EXTENDED TRIGGERS FOR NETWORK-
WIDE TRAFFIC ANOMALY DETECTION

In this section, we first summarize a centralized algorithm
[9] for doing volume anomaly detection. Network volume
anomalies are unusual and significant changes in end-to-end
traffic flows typically caused by worms, DoS attacks, device
failures, misconfigurations, etc. We then show how this prob-
lem can be mapped onto a distributed triggering system and
explain the functionality required at our monitors and coor-
dinator to implement this approach.

3.1 Using PCA for Centralized Detection
Detecting anomalies is the first, critical step for network di-

agnostics, however they are usually hidden in large amounts
of high-dimensional, noisy data. Volume anomalies usually
propagate through the network and are observable on all links
they traverse. Lakhina et al . [9] proposed a solution to un-
covering such anomalies within a network by examining the
traffic on all links inside a network simultaneously. Their
approach assumes a protocol such as SNMP is available to
collect link counts on every link and ship these statistics to
a central network operations center (NOC). Their technique
performs PCA on these link traffic measurements, and decom-

poses the high-dimensional space occupied by a set of network
traffic measurements into disjoint subspaces corresponding to
normal and anomalous network conditions. By performing
statistical analysis on traffic signals in anomalous subspaces,
they can effectively detect, identify, and quantify network-
wide traffic anomalies.

Their method is summarized as follows. Consider a net-
work with n links each of which has a monitor, Mi, where
i = 1, ..., n, that measures the traffic load every measurement
interval. After T measurement intervals, the monitor effec-
tively has a time series of link counts for its link. The times
series data from all of the monitors is sent to the NOC where
it is assembled in a matrix Y, in which each column i de-
notes the timeseries measurements of the i-th link and each
row t represents an instance of all the links at time t (where
t = 1, ..., T). We use y to denote a vector of measurements of
all the links from a single timestep, which is an arbitrary row
of Y, transposed to a column vector,

y =
ˆ

r1 r2 . . . rn

˜T

where ri = ri(t), link i’s value at time t, for i = 1, . . . , n.
PCA is a coordinate transformation method that maps a

given set of data points onto principal components, which are
ordered by the amount of data variance that they capture.
Applying PCA to Y yields a set of n principal components,
{vi}

n
i=1, which are computed as:

vk = arg max
‖x‖=1

‖(Y −

k−1
X

j=1

Yvjv
T
j)x‖

As studied in [10], the PCA technique reveals that OD flows
of backbone networks have low intrinsic dimensionality. For
the Abilene network with 41 links, the vast majority of the
variance in each link timeseries can be captured by the first
k = 4 principal components. This reveals that the underly-
ing OD flows themselves effectively reside in an k-dimensional
subspace of R

n, referred to as the normal subspace S. The
remaining (n−k) principal components constitute the anoma-

lous subspace S̃.
Detecting volume anomalies relies on the decomposition of

link traffic y at any timestep into normal and anomalous com-
ponents, y = ŷ + ỹ, such that: a) ŷ corresponds to modeled
traffic (the projection of y onto S); b) ỹ corresponds to resid-

ual traffic (the projection of y onto S̃). Mathematically, ŷ(t)
and ỹ(t) can be computed by

ŷ = PP
T
y = Cy and ỹ = (I − PP

T)y = C̃y

where P = [v1,v2, . . . ,vk], is formed by the first k principle
components which capture the dominant variance in the data.
The matrix C = PPT represents the linear operator that per-
forms projection onto the normal subspace S, and C̃ likewise
projects onto the anomaly subspace S̃.

In general, a volume anomaly will tend to result in a large
change to ỹ. A useful statistic for detecting abnormal changes
in ỹ is the squared prediction error (SPE): SPE ≡ ‖ỹ‖2 =

‖C̃y‖2, which is a quadratic residual function. We may con-
sider network traffic to be abnormal and fire an alarm if

SPE = ‖C̃y‖2
> δ

2

α (1)

where δ2

α denotes the threshold for the SPE at the 1 − α

confidence level. This trigger condition comes from the Q-
statistic, (derived in [7]), that is a well known statistical test
and is applied here to the residual vector. It can be computed
by the principle eigenvalues.

3.2 Distributed Detection
Shifting from a centralized to a distributed anomaly detec-

tion algorithm raises some important issues. First, we want
to understand which functionality can be pushed from the
coordinator to the monitors, so as to engage them more ac-
tively in the detection process. In our system, this will involve
”smart” filtering. The second issue is to ensure that even in
this distributed system, and with a discrepancy between its
view and the true network state, the coordinator can still fire
the trigger on the global system aggregate accurately. There
are at least two significant obstacles to extending the subspace
method to a distributed setting:

1. With minimal communication overhead, maintain pro-
jection matrix C̃ while matrix Y (formed by distributed
link measurements) evolves over time.

2. With minimal communication overhead, track and fire
triggers to indicate anomalies when ‖C̃y‖2 > δ2

α

Maintaining the subspace projection matrix C̃ in a dis-
tributed way is difficult, because computing C̃ = I − PPT

is equivalent to solving the symmetric eigenvalue problem for
the covariance matrix YT Y, which involves quadratic terms
of measurement data from all links. The stability of matrix
P is a function of the stability of the network’s traffic matrix,
and impacts how often C̃ needs to be updated. There is some
indication that traffic matrices are stable for up to 5 day pe-
riods (weekdays) [10]. However, in general, it is assumed that
the matrix P will need to be updated frequently (although the
exact frequency is unclear). In this work, we assume a stable
P and choose to focus on obstacle 2. We leave as future work
the design of a method for maintaining matrix C̃.

Given a relatively stable projection matrix C̃, it is still not
easy to compute the distributed function ‖C̃y‖2 and check
whether it is above the threshold δ2

α in a communication-
efficient way. This is because ‖C̃y‖2 is a quadratic function
and involves the cross-product of measurements from different
links (i.e., it has terms like ri · rj for i 6= j). It is unclear how

local link measurement ri impacts ‖C̃y‖2 without knowing
the measurements from other links. Our way to tackle this
issue is to use the first order approximation of the quadratic
function. One can compute the partial derivative of ‖C̃y‖2

w.r.t. ri, which is the marginal factor of ri on ‖C̃y‖2

gi :=
∂‖C̃y‖2

∂ri

=
∂

“

Pn

j=1

`

yTc̃j

´2
”

∂ri

= 2yT
C̃c̃i (2)

where c̃i is the i-th column of matrix C̃. If we ignore second
order terms, we can see that if ri changes by 1 unit, then
‖C̃y‖2 would change by a factor of gi = 2yTC̃c̃i units. The
coordinator can compute these derivatives gi, because it has
all information needed to do so. The coordinator sends each
monitor i, its partial derivative gi at the same time it sends
the local slack δi. We can now describe the functionality at
the monitors and coordinator as follows.

Each monitor Mi tracks the change of its ri(t) and sends

the coordinator updates whenever |ri(t)−Ri(t)| > δi

|gi|
. Even

though each monitor cannot see the data from other monitors,
in this way, it can filter its traffic not only based upon how
far the data is from its own most recent prediction (as in
earlier triggers), but also according to the relative impact of a
particular monitor’s data on the aggregation function, relative

ε Missed Detections False Alarms Comm. Overhead
week a week b week a week b week a week b

0.00 0 0 0 0 0.13 0.30
0.05 0 1 1 0 0.12 0.24
0.10 0 1 0 0 0.10 0.21
0.15 0 1 0 0 0.10 0.19

Table 1: Detection error vs. communication overhead. Week

a has 6 anomalies and week b has 15 anomalies.

to other monitors.

The coordinator computes ‖C̃y‖2 and triggers an alarm

indicating an anomaly if ‖C̃y‖2 > δ2

α. Second, it continuously

computes ∆ = max(ε, δ2

α + ε − ‖C̃y‖2), based on which it
computes δi’s. Third, it computes the partial derivatives gi’s
according to Eqn.2, and disseminates the parameters (δi, gi)
the monitors. To maintain system stability, the coordinator
uses low-pass filtering techniques (e.g., based on discretization
intervals) to avoid disseminating new parameters for small,
transient changes in ∆ [3].

We justify using a first order approximation as follows: 1)

‖C̃y‖2 is a quadratic function of ri(t)’s and has terms only
up to the second order; 2) the approximation is only used to
determine when to send ri(t) values to the coordinator, thus
bounding the difference between ri(t) and Ri(t). Once ri(t)

is updated, the coordinator uses ‖C̃y‖2 for calculations; 3)

when δi is small, which is the case as ‖C̃y‖2 approaches the
threshold, |ri(t) − Ri(t)| is small and its high order is even
smaller. Thus, the accuracy is sufficient for our detection
purposes when using only the first order of ‖C̃y‖2 to control
updates. Our experiments show that this approximation is
accurate and does not introduce detection errors.

3.3 Evaluation
For a preliminary validation for our approach, we used two

one-week long Abilene network traffic matrices, collected in
10 minute intervals on 41 individually monitored links. We
set the threshold δ2

α to a 1 − α = 99.5% confidence level,
and set ε = 0. The results are shown in Figure 4. The solid
curve is SPE, the timeseries of ‖C̃y‖2, and the dashed line
is the threshold δ2

α. Note that our distributed algorithm (star
points) detects all anomalies (6 in week a and 15 in week b)
that are detected by the centralized algorithm (circle points).

Examining the timeseries values of ‖C̃y‖2, we find that the
signal values of anomalies computed by our distributed algo-
rithm are exactly the same as those computed by the central-
ized algorithm, when setting ε = 0. These results demonstrate
that our approximation up to the first order of the SPE func-
tion is accurate.

Table 1 shows the tradeoff between triggering accuracy ε,
and missed detections, false alarms, and communication over-
head (including messages from monitors to coordinator and
from coordinator to monitors). When varying ε from 0.00
to 0.15, our distributed algorithm has low detection error (at
most 1 missed detection/false alarm), and incurs modest com-
munication overhead, ranging from 13% to 10% of original
data for week a, and 30% to 19% of original data for week
b. While using only 13% (or 30%) of original data, our dis-
tributed algorithm is as equally effective as the centralized
algorithm. We hypothesize that this per-node communica-
tion overhead remains stable as the network size increases.

4. OTHER EXTENSIONS

We believe that more general constraints, that include var-
ied aggregation functions, threshold functions, that use sub-
sets of monitors, and that are defined over varying time pe-
riod, can all be incorporated into a more general triggering
protocol. We briefly introduce these ideas here.

4.1 Supporting Complex Constraints
In detection systems, the constraints are typically made

up of an aggregation function, a threshold and a set of nodes
whose data is used to determine whether or not the constraint
has been violated. Our previous work used linear aggregation
functions. In this work, we introduced methods for dealing
with quadratic aggregation functions. We now discuss how a
variety of complex constraints can be built by varying these
elements of the constraint(s). Each of these variations can be
expressed in the terms of our framework, and incorporated
into a generalized triggering protocol.

In our anomaly detector application we used a Taylor series
expansion (for the aggregation function on f [R1, . . . , Rn]),
dropping higher order terms, to deal with a quadratic con-
straint. This approach can be applied more generally. For
any such continuous function f(t) = f [r1(t), . . . , r2(t)], the
Taylor Expansion is

f [R1, . . . , Rn] − f [r1, . . . , rn] =

n
X

i=1

∂f

∂ri

· (Ri − ri)

+ O

"

n
X

i,j=1

(Ri − ri) · (Rj − rj)

#

Then, if (Ri−ri), i = 1, . . . , n, are small and independently,
and we ignore all second and higher order terms, we can lin-
earize this continuous function, and the distributed simple
triggers can track this function based on its first order com-
ponents. We define gi ≡ ∂f

∂ri

as the marginal impact of lo-

cal value ri(t) on the global function. This is incorporated
into our system by the monitor who performs filtering using
|ri(t)−Ri(t)| > δi

|gi|
. Note that the marginal factor gi can be

computed by Mi itself (simple constant) or computed by the
coordinator (time-varying distributed values).

So far we have used a constant trigger threshold C. How-
ever, this threshold could, for example, vary in time. It could
be determined or computed as a user specified input, or be
a function of the data - computed using all the data (as in
our anomaly detector), or using data from only a subset of
the monitors. Other constraints can be built when the set
of monitoring nodes are split into different subsets. Let A

and B be two subsets of monitors of interest, with n1 and n2

monitors, respectively. To denote variables from monitors in
the set, we use set labels in the superscript.

More complex threshold functions and the ideas of using
subsets of monitoring data can be incorporated into the co-
ordinator’s protocol. The coordinator can track one or more
global functions that are defined on subsets of distributed
data streams. For example, let f(t) be the function defined
on set A, and C(t) on set B. The coordinator computes

f(t) = f
h

R
A
1 , . . . , R

A
n1

i

, C(t) = C
h

R
B
1 , . . . , R

B
n2

i

and triggers an alarm if f(t) > C(t). Based on its view of
global information, the coordinator computes a set of param-
eters and sends them to monitors when necessary as:

max(ε, C(t) + ε − f(t)) = δ
A
1 + · · · + δ

A
n1

+ δ
B
1 + · · · + δ

B
n2

g
A
i =

∂f

∂rA
i

, g
B
j =

∂C

∂rB
j

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

x 1016

Time

V
al

ue
s

SPE
Threshold
Centralized Detection
Distributed Detection

(a) Week a

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

x 1016

Time

V
al

ue
s

SPE
Threshold
Centralized Detection
Distributed Detection

(b) Week b

Figure 4: Distributed detection on the timeseries of SPE = ‖C̃y‖2 with ε = 0.

Various optimization algorithms can be used to compute δi’s
that minimize communication, however our protocol remains
applicable regardless of algorithm choice.

It is also possible to incorporate the notion of time, in case
one seeks to detect constraints violations that occur over a
period of time. To support such constraints, we can extend
the form into varying-window triggers, which track the rela-
tionship between f(t) and C(t), and only trigger alarms when
f(t) exceeds C(t) over time. These ideas are discussed in [3].

4.2 Advanced Queries For Load Balancing
We now demonstrate how a generalized triggering protocol

can support advanced queries for hot spot detection in dis-
tributed systems. Consider: 1) relative triggers that alarm
if the total workload of servers in set A is β times more than
that of set B; 2) any-set triggers that alarm if the total
workload of any α% servers is more than C; 3) composite

triggers that alarm if the total workload of any α% servers
is more than β portion of the total system workload.

Tracking relative triggers. We view relative triggers as
normal ones with time-varying threshold C(t) as follows: 1)
the coordinator has threshold C(t) = β ·

P

RB
j (t), and 2) it

triggers whenever
P

RA
i (t) > C(t). Monitors and the coordi-

nator have to track both values of
P

rA
i (t) and

P

rB
j (t). One

can easily extend the instantaneous trigger to detect unbal-
anced load and guarantee a “2ε-band” of detection accuracy.

Tracking any-set and composite triggers. One can prove
that detecting whether the workload sum from any subset of k

servers is above a threshold is equivalent to detecting whether
the sum of the top-k workload is above the threshold. So by
composing distributed top-k monitoring [1] with our trigger-
ing protocols, we can efficiently track both any-set and com-
posite triggers with guaranteed accuracy. We leave as future
work to extend and customize triggers for top-k monitoring.

5. CONCLUSIONS AND FUTURE WORK
We have presented our novel approach to extending simple

threshold triggers for sophisticated anomaly detection prob-
lems. We designed a distributed protocol that can perform
online detection of network-wide anomalies with modest com-
munication overhead, and also discussed our general exten-

sions to existing triggering protocols to support wide-range of
detection tasks. Through a set of examples, we have shown
that distributed triggers are an efficient and extensible vehicle
for advanced detection algorithms. We plan to further extend
this line of research, as well as engage in collaborations with
domain experts on new application development.

6. REFERENCES
[1] Babcock, B. and Olston, C. Distributed Top-K Monitoring. In

ACM SIGMOD, (2003).
[2] Hanson, E. N., Bodagala, S., and Chadaga., U. Trigger condition

testing and view maintenance using optimized discrimination
network. IEEE TKDE, 14(2) (2002).

[3] Huang, L., Garofalakis, M., Joseph, A. and Taft, N.
Communication-efficient tracking of distributed triggers. Tech. rep.,
February 2006.

[4] Huebsch, R., Hellerstein, J., Lanham, N., Loo, B.-T., Shenker, S.
and Stoica, I. Querying the internet with pier. In VLDB (2003).

[5] Jain, A., Hellerstein, J. M., Ratnasamy, S., and Wetherall, D.

A wakeup call for internet monitoring systems: The case for
distributed triggers. In HotNets (2004).

[6] Jain, A., Chang, E. Y., and Wang, Y.-F. Adaptive stream resource
management using kalman filters. In ACM SIGMOD (2004).

[7] Jackson, J. E. and Mudholkar, G. S. Control procedures for
residuals associated with principal component analysis. In
Technometrics, pages 341-349, 1979.

[8] Keralapura, R., Cormode, G. and Ramamirtham, J.

Communication-efficient distributed monitoring of thresholded
counts. In ACM SIGMOD (2006).

[9] Lakhina, A., Crovella, M. and Diot, C. Diagnosing network-wide
traffic anomalies. In ACM SIGCOMM , (2004).

[10] Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C.,
Kolaczyk, E. D. and Taft, N. Structural analysis of network traffic
flows. In ACM SIGMETRICS , (2004).

[11] Olston, C., Jiang, J., and Widom, J. Adaptive filters for
continuous queries over distributed data streams. In ACM

SIGMOD (2003).
[12] Padmanabhan, V. N., Ramabhadran, S., and Padhye, J.

Netprofiler: Profiling wide-area networks using peer cooperation. In
IPTPS (2005).

[13] Spring, N., Wetherall, D., and Anderson, T. Scriptroute: A
facility for distributed internet measurement. In USITS (2003).

[14] Widom, J., and S.Ceri. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann, 1996.

[15] Xie, Y., Kim, H.-A., O’Hallaron, D. R., Reiter, M. K., and
Zhang, H. Seurat: A pointillist approach to anomaly detection. In
RAID (2004).

[16] Yegneswaran, V., Barford, P., and Jha, S. Global intrusion
detection in the domino overlay system. In NDSS (2004).

[17] Zhang, Y., Ge, Z.-H., Greenberg, A., and Roughan, M. Network
anomography. In IMC , (2005).

