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Abstract— Biological networks in living organisms can be seen 

as the ultimate means of understanding the underlying 

mechanisms in complex diseases, such as oral cancer. During the 

last decade, many algorithms based on high-throughput genomic 

data have been developed to unravel the complexity of gene 

network construction and their progression in time. However, the 

small size of samples compared to the number of observed genes 

makes the inference of the network structure quite challenging. 

In this study, we propose a framework for constructing and 

analyzing gene-networks from sparse experimental temporal 

data and investigate its potential in oral cancer. We use two 

network models based on Partial Correlations and Kernel 

Density Estimation, in order to capture the genetic interactions. 

Using this network construction framework on real clinical data 

of tissue and blood at different time stages, we identified common 

disease-related structures that may decipher the association 

between disease state and biological processes in oral cancer. Our 

study emphasizes an altered MET (hepatocyte growth factor 

receptor) network during oral cancer progression. In addition, 

we demonstrate that the functional changes of gene interactions 

during oral cancer progression might be particularly useful for 

patient categorization at the time of diagnosis and/or at follow-up 

periods. 

 
Index Terms— Kernel density estimation, partial correlation, 

gene network construction, oral cancer 

 

I. INTRODUCTION 

ral carcinogenesis is a multistep process implicating 

numerous genetic events such as changes of oncogenes 

and tumour suppressor genes[1], justifying that oral cancer can 

be conceptualized by means of networks of molecular 

interactions. Moreover, functional associations between 

different genes within molecular networks that organize 

specific biological processes could reveal possible 

aetiopathological mechanisms of various diseases, including 

oral cancer. A variety of high-throughput experimental data, 

such as DNA microarray andChIP-chip technology allow the 

simultaneous measurements of expression levels and generate 

large datasets associated with various cellular procedures [2].   

The extended study of such datasets has provided a new 

 
1K. Kalantzaki, E. S. Bei, M. Garofalakis and M. Zervakis are with the 

Department of Electronic and Computer Engineering, TUC, Chania 73100, 

Greece (kkalantzaki@isc.tuc.gr, abei@isc.tuc.gr, michalis@display.tuc.gr 

minos@acm.org). 
2K. P. Exarchos and D. I. Fotiadis are with the Department of Materials 

Science and Engineering, University of Ioannina, Ioannina, 45110, Greece 

(kexarcho@gmail.com, fotiadis@cc.uoi.gr). 

perspective in gene-gene network association studies, with the 

network construction from experimental data being a 

promising approach in modeling functional processes. Gene 

regulatory networks (GRN) [3] have provided insight in 

understanding the working mechanisms of the cell in 

pathophysiological conditions, as their structure allows the 

modeling of causal associations. Understanding molecular 

pathways at the whole-genome level, however, remains a 

major challenge. Thus, the study of GRNs from diseased 

tissue is crucial to understanding complex cancer phenotypes 

and inventing effective therapeutic regimens [4]. 

Several computational methodologies have been applied to 

construct biological networks using different data sources [5]. 

The main focus of networking approaches is to build target-

independent networks that describe the pair-wise relations 

between molecules. Within the last few years, several advanced 

approaches to address the construction of biological networks 

from gene-expression data have emerged. These include linear 

and nonlinear models [6], [7], Boolean network models [8], 

Bayesian networks[9], [10], Pearson‟s correlation-based 

approaches[11], [12], clustering and classification 

algorithms[13]-[15]. Although these methods have been 

successfully used to elucidate the functional relationship 

between genes and pathways, they are unlikely to directly 

output the specific gene networks in response to abnormal 

physiological conditions such as diseases, due to experimental 

errors and the genetic complexity [5], [6], [16]. Their main 

drawback is their limited performance when the experimental 

data is insufficient, especially when the number of the features 

under examination exceeds the number of samples. This makes 

the estimation of a network structure a challenging problem 

due to the uncertainty in thecomputationof the correlation 

matrix. The information contained in the expression data is 

limited by the tissue quality, the experimental design, noise, 

and measurement errors. These factors negatively affect the 

estimation of causal relationships in network structure and the 

derivations of dependencies enclosed between neighbored 

genes [12]. 

Kernel-based models have demonstrated very competitive 

computational performance due to their ability to model 

nonlinear systems and high-dimension data [19]. Support 

vector machines and relevance vector machines [17] have 

been applied in prototype organisms and protein-protein 

networks. In this context, the problem of data scarcity is 

addressed as a kernel-approximation problem for network 

estimation. Kernel regression model [18] is also a promising 
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technique for gene network analysis with high-throughput 

genomic data, which could be effectively used for detecting 

possible altered associations of modules at various disease 

states. Moreover, in order to identify gene modules associated 

with diseases or changing conditions, several methods [18] 

have been developed by integrating gene expression data. A 

disease-associated active module can be considered as a 

connected subnetwork or dysfunctional pathway in an 

interaction network, which has close relationship with a 

specific disease. Similarly, there exist studies [19] that analyze 

the underlying mechanisms of differential pathways and 

molecules responsible for abnormalities of a specific disease. 

The analysis reported herein is an effort in revealing and 

modeling the inter-relationships of molecules in oral cancer 

that participate in many different pathways incriminated for 

this disease. The proposed method for network construction is 

based on Kernel density estimation (KDE), as an attempt to 

model the nonlinear effect of gene interactions and fill the 

information loss from the data samples. The novelty of our 

approach relates to the use of kernels for identifying the 

genetic dependencies in the network structure, instead of using 

estimators as in previous studies. Our framework is applied on 

experimental blood data of oral cancer patients received from 

four successive follow-ups. The goal is to reveal the 

differences in network structure between different time stages, 

in addition to conspicuous genes that play a central role in all 

stages of the disease. Furthermore, by applying our framework 

to tissue dataset we successively identify common disease 

related structures which are known as molecular modules 

responsible for oral cancer. Importantly, our framework can be 

extended to other data types, besides gene expression.  

According to ROC curves, KDE outperforms PC with the area 

under the curve (AUC) reaching 83% and 77%, respectively. 

Our study exemplifies the central role of MET proto-oncogene 

and MET network in oral cancer, as well as its interactions 

with EGFR, HIF1A and MAGEA6, which may be of 

importance in oral cancer progression. 

II.    METHODS AND PROCEDURES 

A. Proposed Framework 

A generic framework for gene network construction 

composed of three parts is employed, i.e. network formation 

based on direct relations, enhancement with indirect 

interactions and edge orientation. The first two parts referring 

to network construction are focusing on partial correlations 

(PC) and KDE approaches, but any other network construction 

method can be applied. The third part is enforcing genetic 

causality according to the Bayesian Information Criterion 

(BIC). One of the novelties of our framework is the 

exploitation of not only direct but also indirect genetic 

interaction. Furthermore, the framework emphasizes the use of 

the cross correlation metric, as demonstrated in the KDE 

approach, as well as the exploitation of causality, by means of 

the BIC criterion. The application of our framework to 

specific datasets provides insight into its effectiveness and 

reliability, as presented in the results section. 

1) Partial Correlation Estimation 

Pairwise associations of coexpressed molecules can be 

modeled through Pearson‟s correlation. The interaction 

identification between two variables is reduced to estimating 

the covariance matrix S. Each element in Sik, via 

Sik=ρ
ik

σiσkandSii=σi
2,represents the correlation coefficient ρ

ik
 

between nodes Xiand Xk and indicates an association, while σi
2 

denotes the variance of node Xi. A high correlation coefficient 

between any two genes may be indicative of either direct 

interaction, or indirect interaction or regulation by a common 

gene. However, for the construction of a gene association 

network only the direct interactions are of interest as only these 

correspond to edges between two nodes (genes) in the resulting 

graph. 

The method of partial correlations [20] measures the 

correlation between two variables after the common effects of 

all other variables are removed. An appropriate notion of the 

strength for these interactions is the partial correlation matrix 

Π=(π
ik

). Its coefficientsπik, describe the correlation between 

genes iand k conditioned on all remaining genes of the 

network. This property is reflected in the inverse covariance 

matrix S-1, with elements: 

πik=-
Sik

-1

 Sii
-1S

kk

-1

 .                                       (1) 

Given the experimental data, the covariance matrix is 

computed and then it is inverted. Indeed, using Eqn. (1) the 

partial correlations, πik,,can be easily computed. Significantly 

small values of |πik| indicate conditional independence between 

i and k given the remaining variables in graph. On the contrary, 

high values of |πik| indicate dependence between i 

andk,suggesting the addition of an edge between thesenodes. 

Despite its straightforward nature, this approach is only 

applicable if the sample number in the dataset is larger than the 

number of genes/proteins. Otherwise, the inversion of S is 

unstable making the estimation of S-1a non-trivial task. To 

overcome this obstacle we invert S using the Moore-Penrose 

pseudo inverse [11], an approximation of the standard matrix 

inverse, based on the singular value decomposition (SVD). 

2) Kernel Density Estimation 

Kernel density estimation[17], [18], [21], [22] is a non-

parametric approach that estimates the probability density 

function (pdf) of a random variable. Assume that a generic 

network is developed based on a limited genomic independent 

identically distributed (i.i.d) dataset X=(x1,..xn),where xi denotes 

the sample iof gene X. KDE allows the estimation of X as 

follows: 

fh
 = 

1

nh
 K(

x-xi

h

n

i=1

)  ,                        (2) 

where K(u)=
1

2π
e

-1

2
u2

 is a symmetric positive definite Gaussian 

function, n is dataset‟s size of the gene X and h>0 is a 

smoothing parameter, the bandwidth that controls the extent of 

the kernel [21].  

Genes interacting with each other can be expressed as a 
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network. The gene expression data provides valuable 

information on a gene‟s activity, which can be represented by 

weights of genes and interactions in the network. Formally, an 

interaction network with weighted nodes and weighted edges 

can be expressed as G=(V, E), where node set V represents 

genes, edge set E represents interactions. Under the assumption 

that gene and gene-products share similarities in datasets, the 

problem of network construction is reduced to the examination 

of independence between nodes Xi and Xk, through the  

Pearson‟s cross correlation test: 

fh Xi,Xk =fh(Xi)*fh(Xk) .                        (3) 

The smaller the absolute difference between the two sides of 

the equation, the more independent the corresponding nodes 

are. In contrast, high absolute difference indicates dependence 

between Xi and Xk, and, thus, connection betweenthe candidate 

nodes. This means that Xiand Xk, share common information 

characteristics that imply interaction. Reducing this scheme to 

correlations tests, the more correlated the two sides of the 

above equation, the more independent genes Xiand Xkare. 

Otherwise, the candidate genes share dependencies which 

implies association. 

3)  Effects of External Genes 

The poor performance of biological network reconstruction 

is a well-known problem that has been extensively addressed, 

especially when dealing only with expression data. The 

problem is attributed to the large number of false-positive 

predicted interactions and a dominant idea to address it, is to 

characterize the produced associations according to Gene 

Ontology (GO) terms at a higher level of processes [23], [24]. 

Other approaches [25], [26] introduce new topological metrics 

that justify each molecular connectivity and associate it with a 

biological process. Due to the complicated nature of molecule 

associations, we propose to accept not only known direct 

associations between pairs of genes, but also connections that 

are induced by external molecules [27], which can be identified 

in various available databases [24]. By exploiting this 

knowledge we can examine indirect interactions between the 

studied genes, taking into account all the possible external 

pathways that connect these molecules. Thus, several initially 

assigned false-positive edges can be characterized true positive 

as a result of multiple effects of external molecules.  

Other supporting evidence for revisiting the consideration of 

edges as false positive (FP) is that the actual interactions are 

either physical or genetic, which may not be direct interactions. 

Thus, the computed precision may be lower than the actual 

performance, since links may be missing in the databases of the 

known direct interactions. Similarly, the recall presented may 

be lower than the actual recall, partly because some of the links 

reported in the databases may be indirect [24] and partly 

because some presently unsupported edges in the constructed 

network may find experimental evidence in the near future. 

Therefore, many unsupported edges may not necessarily be 

false positives. 

In order to compare the performance of the proposed 

framework with and without external interactions, we employ 

the receiver operator characteristic (ROC) and precision-recall 

curves, as described in Davis and Goadrich (2006) [28]. For 

this purpose we consider a ground-truth network that 

encompasses the available biological knowledge of many 

public databases and compare it with our network‟s structure. 

We use the following notation: TP is the number of edges 

present in the ground-truth network and in the predicted 

network; FP is the number of edges not present in the ground-

truth network but included in the predicted network; FN is the 

number of edges present in the ground-truth network but not in 

the predicted network; TN is the number of edges not present 

in the ground-truth network and also not included in the 

predicted network. The above definitions are graphically 

illustrated in Fig. 1. We consider TP as the existent edges in 

both networks. Also, when a predicted interaction is verified 

through indirect associations with external factors (triangle 

genes) then the predicted association is set as TP. Finally, we 

consider FN as non-existent in the ground-truth but predicted 

direct and/or indirect interactions, while TN are edges that are 

not present in the constructed and ground-truth networks 

neither as direct nor as indirect connections. With this approach 

we examine if the predicted interactions are verified as indirect 

implications through external genes that participate in different 

pathways. 

4)  Edge Orientation 

Up to this point we have reviewed two approaches in 

revealing the network structure, thus providing an intuition on 

whether two nodes interact. Nevertheless, these approaches do 

not imply anything about directionality, indicating which node 

is the cause and which is the effect. In order to determine the 

edge orientation for the above networks we have to examine 

the causality between pairs of nodes. For instance, considering 

two nodes we can define two models, i.e. model M1, where 

node Xi is the parent of node Xk and model M2, where node Xkis 

the parent of node Xi. 

Model selection procedures cannot distinguish the above 

models because their distributionsf(.) or likelihoodsare 

equivalent. In other words, the variation in the level of node Xi 

 

Fig. 1.Graphical representation of the TP, FP, TN, FN edges according to the 

existent knowledge of the ground-truth network. External genes are 

represented with triangles while studied genes with circles. External pathways 

that indirectly connect studied genes give TP connections. 
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causing a variation on node Xk yields the same joint density as 

the reverse situation [29], [30]: 

f Xk Xi f Xi =f Xi,Xk =f(Xk)f Xi Xk .        (4).                                                     

Therefore, the distinction between models M1 and M2 is 

made by inferring direction of causality between nodes using a 

scoring function, the BIC criterion [29]: 

BIC=-2 log L +K log N ,                            (5) 

whereL  is the maximum likelihood, K the number of 

parameters to be estimated in the model, and N denotesthe 

sample size. A model is better than another if it has a smaller 

BIC value. Thus, for each edge orientation, a BIC score is 

computed and the edge direction is decided in favor of the 

lowest BIC value. 

BIC also offers the advantage of introducing larger penalty 

for the number of parameters, resulting in highly reliable edge 

directions [31].In more complex networks, edges are oriented 

by splitting the graph structure into smaller subnetworks. For 

each node, the number of its connected edges is counted. 

Nodes are then arranged in descending order in terms of the 

number of connected nodes. A node and all the nodes that are 

directly connected to it form a subnetwork. For each 

subnetwork, the BIC score is computed for each edge that 

connects a pair of nodes, containing all other causative nodes to 

that pair. 

B. Oral Cancer Dataset 

The framework is applied on a dataset  related to oral cancer 

[32]  which includes 86 subjects [NeoMark project, FP7-ICT-

2007-224483, ICT enabled prediction of cancer reoccurrence - 

D6.1: Research protocol] that have been enrolled from three 

major clinical centers residing in Italy (University Hospital of 

Parma and National Cancer Center Regina Elena) and Spain 

(MD Anderson Cancer Center). All patients have been 

diagnosed with oral squamous cell carcinoma (OSCC) and 

have reached remission, after successful therapeutic 

intervention (i.e. surgery, chemo/radiotherapy). Thereafter, 

gene expression data were collected both from the primary 

tumor as well as from circulating blood cells, at the baseline 

state of the patient. The clinical data contain standard 

measurements and laboratory markers from the patient's 

medical record as well as pathology and risk factor data 

referring to the organism as a whole. More detailed clinical 

information has been recently described by Exarchos et al. 

[32]. 

The oral cancer dataset consists of a) tissue genomic data 

from diagnosis (86 samples), b) blood genomic data (23 

samples), and c) blood genomic follow-up data (maximum 23 

samples) [32]. Four different time stages were analyzed, 

corresponding to the first, third, sixth, and ninth months after 

the initial diagnosis. Notice that, during the follow-up periods 

the sample numbers were reduced (from 23 at 1st to 10 at 3rd, 

13 at 6th, and 4 at 9th month). The network constructed from 

blood samples is considered for all temporal stages, and is also 

compared with the one produced by the tissue samples at the 

point of the first diagnosis.  

The proposed framework is applied on both blood and tissue 

datasets. In order to discover functional associations between 

genes in the constructed networks and possible network 

changes during disease progression from a large amount of 

genomic expression data, we generated gene interaction 

networks by entering specific genes as input in the graphical 

model. These genes are selected based on literature and 

particularly on a set of previously implicated genes for oral 

cancer [NeoMark project, FP7-ICT-2007-224483, ICT enabled 

prediction of cancer reoccurrence], [32]. The final gene list 

consists of 110 genes that are related to oral cancer disease and 

5 control genes that are not related to oral cancer 

(Supplementary (S) Table I). Control genes are included in this 

list in order to test the algorithm correctness (ERBB4) and as 

positive (FGFR1) or negative (BRCA1, MBNL1, PARK7) 

reference for oral cancer (STable I). The estimated network 

structure from blood samples is compared with all temporal 

stages, as well as with the network produced from tissue 

samples at the first diagnosis. 

In order to perform functional enrichment tests of the 

selected genes of each molecular network, we used WebGestalt 

(WEB-based GEneSeTAnaLysisToolkit) for Gene Ontology 

(GO) term analysis. WebGestalt (Version 2.0) applies the 

hypergeometric test for the enrichment of GO terms in the 

selected genes, and the Benjamini& Hochberg (BH) method 

for the multiple test adjustment (adjP) [33]. 

III. RESULTS  

A. Statistical Results 

In order to investigate the statistical properties of the 

proposed methodology, we apply PC and KDE approaches to 

reveal network structure from gene expression data. In a 

previous work [34],our framework was applied on the 

prototype organism Arabidopsis thaliana on developing seeds 

harvested at 5, 7, 9, 11, and 13 days after flowering. This 

analysis gave a clear advantage for KDE over PC in revealing 

gene-gene and gene and/or protein associations. For pdf 

estimation we follow the Parzen approach with a Gaussian 

kernel function, since the histogram of genes in the 

preprocessing stage approximate Gaussian characteristics. In 

this study, we examine the biological performance on the 

human organism for the oral cancer disease. We compare the 

performance of both algorithms and investigate the biological 

implications of our results.  

1) Direct Interactions 

Table I presents the number of gene interactions on blood 

samples, for the first follow-up. Accordingly, Table II presents 

the gene associations on tissue samples. Both tables present the 

number of TP edges that PC and KDE identified among a set of 

experimentally known genetic interactions[35]. The first 

column describes different thresholds th for partial correlation 

set on PC for Eqn. (1) (πik≥th), while the second column 

provides the thresholds of correlation r between the two 

members of Eqn. (3) for KDE (𝑟≤th). The 3 to 4 columns 

summarize the verified numbers of direct and indirect gene to 

gene interactions for both approaches. The fifth and sixth 

columns present the number of new edges that have occurred 
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for each threshold, respectively, while the last two columns 

describe the number of edges that changed orientation 

according to the BIC criterion. 

We compared the performance of the two approaches, taking 

into account existing information on molecular interactions 

from the BioGRID (Biological General Repository for 

Interaction Datasets) public database (version 3.2.95), an 

interaction repository with data from model organisms and 

humans. BioGRID is a database that archives and provides 

both genetic and protein interactions from humans (150,273 

protein and 1,622 gene interaction data) curated from high-

throughput datasets as well as individual focused studies, as 

derived from over 19,000 primary publications [36]. For the 

115 selected genes (110 oral cancer related genes and five 

control genes) BioGRID database derived 3,380 direct and 

indirect interactions (65 genetic and 3,315 protein interactions; 

accessed on December 2012) among them and at most three 

external genes. Notice that the currently available information 

provided 63 direct interactions between the examined 

molecules. In addition, we validated all new interactions 

created from our network-construction framework using 

HIPPIE (Human Integrated Protein-Protein Interaction 

rEference) and we discovered that only these 63 direct 

interactions have protein interaction annotations in the current 

human interactome reference [35].  

Thus, the goal of our study at this stage was to examine how 

many of these available associations can be verified from 

expression data. The results for the inferred networks with PC 

algorithm indicate that, as thresholds increase, the graph 

becomes sparser with fewer interactions verified. This is due to 

the lack of strong partial correlations between molecular units. 

However, as the thresholds of KDE increase, correlation also 

increases. This implies that genes are found to be less 

independent, more interactions are identified and the graph 

becomes more cohesive. 

The two approaches reveal that the molecules under 

examination do not present high association. This is deduced 

by the extracted interactions for the various thresholds. For PC 

at high thresholds there are only few strong associations; for 

KDE at lower thresholds of similarity there is some indication 

of dependence. However, for these thresholds the actual 

number of intense associations is small. The above observation 

indicates that molecules from various pathways are not likely 

to directly interact. This is also verified by the small number of 

TABLE I 

GENE-GENE INTERACTIONS FOR THE FIRST FOLLOW-UP ON BLOOD SAMPLES
A 

Threshold 
Verified Gene 

Interactions 
New Edges 

Oriented 

Edges 

PC KDE PC KDE PC KDE PC KDE 

≥0.1 ≤0.6 1167(42/63) 1(0/63) 3166 1 279 1 

≥0.15 ≤0.7 957(34/63) 75(4/63) 2551 108 185 70 

≥0.175 ≤0.75 848(30/63) 129(5/63) 2234 202 181 85 

≥0.2 ≤0.8 738(27/63) 167(7/63) 1968 347 172 92 

≥0.3 ≤0.85 394(17/63) 423(18/63) 1068 1081 187 158 

≥0.4 ≤0.875 181(6/63) 711(33/63) 474 1678 157 204 

≥0.5 ≤0.9 71(4/63) 1225(54/63) 172 2813 67 321 
aBold columns of PC and KDE indicate the gene interactions considering the external 

genes.  Threshold th is defined as πik≥th for PC and 𝑟≤th for KDE. 

 
Fig. 2.True positive rate for all time stages on blood samples. 

TABLE IIGENE-GENE INTERACTIONS ON TISSUE SAMPLES
A

 

Threshold Verified Gene Interactions New Edges 
Oriented 

Edges 

PC KDE PC KDE PC KDE PC KDE 

≥0.1 ≤0.6 1060(41/63) 41(0/63) 3005 95 222 65 

≥0.15 ≤0.7 854(33/63) 79(0/63) 2379 164 189 83 

≥0.175 ≤0.75 735(29/63) 145(1/63) 2069 330 185 116 

≥0.2 ≤0.8 627(25/63) 287(4/63) 1797 590 183 183 

≥0.3 ≤0.85 316(14/63) 616(21/63) 927 1278 151 186 

≥0.4 ≤0.875 122(3/63) 934(34/63) 397 1979 92 231 

≥0.5 ≤0.9 41(1/63) 1328(50/63) 135 3000 46 210 
aBold columns of PC and KDE indicate the gene interactions considering the external 

genes.  Threshold th is defined as πik≥th for PC and 𝑟≤th for KDE. 
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the direct genetic interactions. Thus, in addition to direct 

interactions it would be of great interest to take into 

consideration the external influence of additional molecules, 

for which we expect indirect associations with the 115 genes 

under examination. 

Tables I and II provide the numbers of verified direct 

interactions. Comparing the performance of the two 

methodologies, KDE appears to behave better in capturing the 

biological associations. More precisely, KDE identifies up to 

86% of known genetic direct interactions for the blood 

constructed network and up to 79% of known direct 

interactions for the tissue network. These percentages for PC 

are 66% and 65%, respectively. To further reinforce this 

statement, we present in Fig.2 the true positive rate for the 

networks constructed from all monthly follow-ups. This figure 

(Fig. 2) justify KDE‟s superiority in detecting existent 

interactions over PC for all oral cancer stages. Surprisingly, for 

the last follow-up (Fig. 2d), PC was unable to generate a 

reliable network due to small patients‟ attendance at that time. 

In fact, for this stage, PC gave for all different thresholds 

almost 6500 new connections due to instabilities of the 

correlation matrix inversion. 

To assess the network reconstruction ability, we counted true 

positives-TP (correctly identified true edges), false positives-

FP (spurious edges), true negatives-TN (correctly identified 

zero-edges) and false negatives-FN (not recognized true edges) 

edges. In order to specify the optimal threshold for each 

algorithm, the size of the graph has to be taken into 

consideration. This is necessitated by the fact that as the graph 

becomes denser, more interactions are generated. Thus, the 

probability of capturing pre-existingassociations increases. Fig. 

3 presents the performance of the two methodologies for all 

thresholds, according to the F-score metric [28]: 

F=
2*precision*recall

precision+recall
.                             (6) 

For each temporal instant, the F-score analysis derives the 

thresholds 0.7, 0.9, 0.75 and 0.75for KDE and 0.5, 0.6 and 0.15 

for PC, respectively. We note that the 4th instant does not 

provide a reliable network for PC. Similarly, the appropriate 

thresholds for both algorithms on the tissue network are 0.88 

and 0.3, respectively. 

From a statistical perspective, many false positive edges 

were found (leading to low F-score). However, this aspect 

needs further discussion to reveal its valid implications. The 

false positive rate of connections becomes large due to the fact 

that we consider only the direct interactions that have been 

biologically confirmed. In practice, the majority of molecules 

participate in a variety of biological processes. As a 

consequence, they affect (or, are affected)by many external 

factors participating in pathways that connect indirectly with 

the molecules under examination. Therefore, we expect that 

external factors define many more interactions that have not 

been established yet. This inclusion of direct connections 

through external pathways is a valid assumption that 

contributes to the consideration of relevant false positives and 

the correct interpretation of the performance metric.  

2)  Indirect Interactions using External Genes 

In section II.A.3 we stressed the need to examine the indirect 

associations through external genes that connect molecules in 

other pathways, to justify interactions between the analyzed 

genes. However, it is too expensive to validate the full set of 

predictions experimentally [27]. During the last decade, 

interaction databases have grown exponentially. More than 230 

web-accessible biological pathway and network databases have 

been created. In order to integrate molecular interactions and 

other types of high-throughput data from different public 

databases towards automatically building biological networks, 

we used BioNetBuilder[24] which is an open- source client-

server Cytoscape plug-in and offers a user-friendly interface to 

create biological networks integrated from several databases. 

For the studied genes, BioNetBuilder retrieved more than 

300,000 interactions with more than 25.000 genes from the 

following databases: (BIND, 11631); (BioGrid, 24313); (DIP, 

 
Fig. 3.F-score metric for all follow-ups on blood samples. 
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1387); (IntAct, 20201); (Interologger, 24136); (KEGG, 

112230); (MINT, 11411); (MPPI, 469); (Prolinks, 136770). 

The resulting network through extensive consideration of 

available biological knowledge is considered as the ground-

truth, against which we compare our analysis. 

Bolded columns in Tables I and II present the results 

according to the above analysis for the blood and tissue 

samples, respectively. According to ground-truth network, 

apart from the 63 direct edges there are 1558 indirect 

implications; these result when a maximum of three external 

genes is considered (Fig. 1). Furthermore, from the 115 

analyzed genes, there are 22 uncharacterized, for which 

BioNetBuilder resulted in none association; in our framework 

we did not take into account edges connecting these genes. 

Notice that for this reason the number of new edges (columns 

5, 6) in Table II differs from Table I, which include all edges. 

In order to specify the number of TN associations we found all 

the possible interactions between the 115 studied genes and 

from this set we omitted the TP interactions (direct, indirect). 

In total, the set of TN associations comprised of 2657 edges. 

Fig. 4 presents the ROC curves for the blood samples 

associated with the 4 follow-ups (Fig. 4a-4d), while Fig.4e 

presents the ROC curve for the tissue network. For all listed 

cases, KDE outperforms PC as the area under the curve (AUC) 

is larger compared to PC.  Furthermore, both algorithms show 

improvement in performance after taking the external genetic 

influence into consideration. In fact, the equivalent plots of 

precision and recall, Figs. 5a-5d and 4f, show significant 

improvement for all studied cases. The diagrams show the 

levels of precision comparing the initial approach based on the 

63 direct interactions, with the proposed idea based on the 

1558 indirect external interactions. In fact, the latter approach 

considers many more edges for which there exists an indirect 

pathway through external molecules. Considering these edges, 

precision greatly improves for all network cases, reaching quite 

high levels, to support of the conclusion that expression data 

enclose dependencies from a variety of sources. Therefore, 

when dealing with expression data, direct associations obtained 

from statistical analysis should be interpreted as possible 

indirect influences of external factors and not as spurious 

edges. In fact, the MET-CD44 interaction that was found as TP 

external association is also verified by the updated HIPPIE 

version as direct association. 

B. Biological Discussion 

After the basic gene structure, we first analyze the global 

organization of the gene network by examining the major gene 

clusters. Groups of genes that are densely connected to each 

other in the network may represent functional modules in 

which the genes are highly related in function and/or cooperate 

in some biological processes. We performed k-means cluster 

analysis [37] on the primary gene expression data and 

recovered five major clusters (Fig. 6a, b). As shown in Figs. 6a 

and b, the content and structure of blood and tissue networks 

based on gene interactions are different at the first visit to the 

doctor. For the remaining time stages, the network on blood 

samples preserves a similar structure, with small variations 

among the peripheral genes.To explore whether the selected 

genes share specific functional features, we performed GO 

enrichment analysis using WebGestalt[33]. The genes in the 

same cluster are densely connected with each other (Fig. 6b), 

and GO analysis indicates that these five gene-clusters are 

enriched in certain GO annotation terms (STable II).  

The enriched GO terms support the current knowledge about 

the multiple functional roles of the implicated genes in oral 

cancer as well as in the disease progression [1], [38]. 

Regardless of GO terms in the category of biological process, 

we found that cell proliferation (adjP=6.94×10-9), regulation of 

cell proliferation (adjP=2.58×10-7), and regulation of cell cycle 

(adjP=4.48×10-7) are significantly enriched in these gene 

clusters of both blood and tissue samples, as well as in blood 

follow up samples (Fig. 6a, b; SFigs. 1a, b, 2a, b; STable 

 
Fig. 4.ROC comparison between KDE and PC for the blood samples (a-d). For the ninth month, PC cannot derive a reliable network structure. Apparently 

KDE results in larger AUC for all cases. (e) ROC curve comparison between KDE and PC for the tissue network. KDE outperforms PC as it covers larger 

AUC; (f) Precision vs Recall comparison between KDE and PC for the tissue network. The precision has been significantly improved from the initial approach, 

which considers only 63 interconnections as TP. 
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II).Overall, each cluster is dominated by distinct GO terms, a 

number of which is also present in other clusters, however with 

varying statistical significance. More importantly, the 

enrichment significance of specific GO terms varies between 

blood and tissue samples and/or time stages (e.g. cell cycle, 

regulation of cell cycle, regulation of apoptosis, positive 

regulation of locomotion), accompanied by the reorganization 

of many genes (e.g. TP53, EGFR, MET, HIF1A, CDH1, 

MMP2, MMP9, MMP11, CD44) in these five clusters (STable 

I, II). Furthermore, OSCC development depends on the 

accumulation of multiple genetic changes. During the multistep 

process of oral tumorigenesis, the normal functions of proto-

oncogenes and tumor suppressor genes are modified, thus 

affecting regulation of cell cycle, cell proliferation and death, 

DNA repair, cell differentiation and immunity [36], [38], 

cellular processes which are reflected by the above enriched 

GO terms but also by less significant GO terms (SFigs. 1a, b,  

2a, b; STable II). 

To investigate the biological meaning of the proposed 

framework we found the intersections of the blood based 

networks for all stages. The appropriate thresholds for each 

stage were chosen according to the F-score metric, as is 

presented in section III.A.1. Fig. 7 presents the “intersection 

genes”, i.e. genes that are induced by the network intersection 

for all time stages for the blood samples (Fig. 7a, STableIIIc), 

as well as the intersection of tissue network with the blood 

from the first time stage (Fig. 7b, STableIIIc). Figs. 7a and b 

depict a number of oncogenes (e.g. EGFR), tumor suppressor 

genes (e.g. TP53), transcription factors (e.g. RUNX3, HIF1A, 

AR) and other important molecules in many aspects of 

multistep tumor development (e.g. KRT8, KRT18, MMP9, 

MMP11, CDH1, CDH3, MAGEA6, ENO1, CDKN1C, SDC1, 

LEPRE1) and highlight the central role of the proto-oncogene 

MET on both tissue and blood/follow-up samples. The MET 

gene product, hepatocyte growth factor receptor,is a proto-

oncogenic receptor tyrosine kinase and its activation elicits cell 

proliferation, cell scattering, survival, invasion, and 

angiogenesis. MET deregulation promotes tumor formation, 

growth, progression and metastasis as well as resistance to 

therapy. Due to its key role in cancer development and 

progression, it is also a potential candidate for therapeutic 

intervention [1], [39].  

In an attempt to investigate the network structure at different 

stages in the oral cancer disease, we compute the intersections 

of sequential follow-ups. Fig. 8 presents the networks in groups 

which have a common degree. The degree as a topology metric 

shows the number of links that a node has with another in the 

network. Especially in biological networks, the degree is an 

important metric that highlights genes with high connectivity 

playing an important role in disease development [26]. The 

temporal development of the network is demonstrated in Fig.8, 

presenting the sequential network-intersections of the blood 

samples.  

By examining the important molecules in Fig. 7 we conclude 

on the following: 

i. For the temporal development of network intersection of 

the blood samples (Fig. 7a, STableIIIa, IIIc): 

 all genes have extremely low degree (1 or 2 or 4) on 

blood samples at the first time slice, with the exception 

of MET (109)  

 all genes  have higher degrees at the 3rd and 6th-month 

follow-up and acquire their highest degree (107 or 114) 

at 9th-month follow-up  

 
Fig. 5.Precision vs Recall comparison between KDE and PC for all cases on blood samples (a-d). KDE(63) and PC(63) represent the networks considering as TP 

the set of 63 direct interactions, while KDE and PC curves represent the performance considering as TP all direct and indirect edges. KDE outperforms PC 

reaching higher levels of precision and recall for all periods. For the ninth month, PC could not result in a reliable network structure. 
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 MET degree is slightly higher (114) at the 3rd and 6th 

month follow-up and very low (13) at 9th month follow-

up, through the loss of genes [26], [40] and possibly as 

a result of disease-causing mutations [41].  

ii. For the intersection of tissue with the blood network for 

the first time-stage(Fig.7b; STableIIIa, IIIc): 

 all genes have extremely low degree (1 or 2) on blood 

samples at the first time-slice, with the exception of 

KRT18 (24) and MET (109)  

 all genes have higher degrees (39 to 114) with the 

exception of MET that has lower degree (38) on tissue 

samples (similar to blood follow-up samples [26], [40], 

[42]). 

iii. For both network intersections (Figs.7, 8; STableIIIa, IIIc): 

 MET interacts with EGFR(epidermal growth factor 

receptor), HIF1A (transcriptional factor hypoxia 

inducible factor 1α) and MAGEA6 (melanoma antigen 

family A, 6) 

 MET interacts with important molecules that are not or 

loosely connected themselves   

 METinteractions with its neighboring moleculesappear 

to change drastically in time and among tissue and 

blood samples compared to all other disease genes; this 

is demonstrated more clearly during disease 

progression, in particular at the last stage considered. 

It is obvious from the above results that MET plays a 

crucial role in oral cancer. Further emphasizing on the 

biological effects of the above intersections, the proposed 

dynamic networks exemplify the following issues: (a) MET 

interacts consistently with EGFR, HIF1A and MAGEA6 at 

both tissue and blood samples and during OSCC progression 

(Figs. 7, 8). Despite the known MET/EGFR association in 

cancer [43], the existence of the MET/HIF1A and 

MET/MAGEA6 associations remain unknown. However, 

previous studies [44]-[47], referring to the functional role of 

these molecules in cancer and to their involvement in OSCC 

further support their potential interaction with MET and their 

relevance to oral cancer initiation and progression. For 

example, the MAGEA6 gene product (MAGEA6 isexpressed 

in OSCC) has been reported to bind to p53 tumor suppressor 

(TP53) and impair its function causing decreased apoptosis 

and increased cell growth [44]. Furthermore, the 

transcriptional activation of MET proto-oncogene during 

hypoxia via HIF1-mediated cascade could possibly explain the 

MET overexpression reported in OSCC specimens [45]. In 

addition, the EGFR increased expression and its ligand (i.e., 

transforming growth factor alpha) can play a critical role in 

oral tumor development and progression; it is recently 

reported that both EGFR and MET mediate cellular responses 

in partly redundant and partly complementary ways [1], [46]. 

This counter-balancing activity of MET and EGFR pathways 

may also be viewed as a potential target for oral cancer 

therapeutic intervention [47]. (b) MET interacts with EGFR 

oncogene and TP53 tumor suppressor gene at blood samples 

from all disease stages, partly supporting the existence of a 

large complex consisting of many oncogenes, tumor 

suppressors, and DNA repair proteins [48]. (c) MET loses 

many of its interactions through the loss of genes [26], [40] 

and possibly as a result of disease-causing mutations; 

deranged protein-DNA interactions, disruptions of protein-

protein interactions due to protein misfolding, new undesirable 

protein interactions or pathogen-host protein interactions are 

examples of the impact of such disease-causing mutations 

[41]. 

Finally, from k-means clusteringwe infer that MET clusters 

together with a few other molecules on both tissue and blood 

samples; the clustered molecules are often different at 

different time stages (STableIIIb, IIIc). This aspect illustrates  

the contribution of complex signaling pathways in the 

activation or repression of specific biological processes, which 

are indicative of tumor initiation, promotion and progression 

and result in genetic alterations [49]. This also highlights a 

dynamically functional reprogramming of a number of 

implicated genes and especially MET. 

 
Fig. 6.(a) K-means clustering on the blood samples from the first follow-up and (b) on tissue samples.  Five clusters were identified as presented in the grouped 

areas in both networks. Highlighted are the common “intersection” genes MET, EGFR, HIF1A and MAGEA6. 
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According to a recent study [26], MET could be 

characterizedas “broker” gene, i.e. a disease gene that holds 

acrucial position in the network topology as broker interacting 

with many neighboring molecules that are less or not 

connected with each other. Cai et al. (2010) suggest that 

disease genes are found in especially vulnerable positions in 

networks, which is a reason of identifiable disease phenotypes 

accompanied by their disorganization [26].MET appears as a 

highly connected hub molecule in a central position at the 

onset of cancer initiation; following disease progression, it is 

dynamically reorganized and takes a peripheral position in the 

constructed network. This central position has been reported 

incancer, where disease genes tend to encode hubs, although 

in other pathologies disease genes reside at the periphery of 

the networks [41]. In addition, recent studies [50]support that 

hub proteins displaying modified modularity in the human 

interactome (like MET) could be useful markers for predicting 

oral cancer outcome. 

We suggest that MET is akey molecule with unique 

network-topological features, which are in agreement with its 

biological role as proto-oncogene, so that it may be considered 

vital for oral cancer. Our findings also support the claim that 

the networks of molecular interaction provide information 

about the alterations of gene-gene/gene product and/or gene 

product-gene product interactions in a complex disease, such 

as oral cancer.The consideration of the in vivo METcellular 

network at a specific disease state might be an important guide 

for screening patients at the time of diagnosis, for predicting 

oral cancer progression and for deciding on effective treatment 

plan. 

Although this study attempts a coupling of the mathematical 

or computational model to experimental data, the small sample 

size remains a limiting parameter in estimating the network 

structure. Furthermore, even though it offers potential grounds 

for biological validation, many predicted outcomes of this 

analysis are difficult to be validated for clinical use due to the 

extensive simulation procedures needed for this purpose. 

IV. CONCLUSION 

Clearly, the KDE approach models quite well the verified 

direct and indirect associations among the participating genes 

in oral cancer. On the contrary, the PC approach appears to 

capture fewer of these associations. Thus, our results indicate 

that KDE performs better on the network construction. In 

addition, while PC fails in modeling genetic interactions with 

sparse data, KDE due to sample estimation succeeds in 

capturing biological interactions. This supports the 

aforementioned statement that KDE is resilient in modeling 

the genetic associations with sparse experimental data.  

Perhaps the most important contribution of this study is that 

it gives a different perspective in revealing genetic interactions 

as a result of multiple genetic factors. Within this framework 

we proved that external factors that participate in different 

pathways affect the genetic expression. Thus, when statistical 

analysis gives a large amount of typically false edges, indirect 

pathways should be examined. Moreover, we focused on the 

edge interpretation as existenting or not, solely based on 

expression data. In fact, due to the analyzed obstacles many 

studies resort to characterizing the predicted edges as TP 

according to the biological process they participate. This gives 

an advantage in boosting our framework‟s performance but it 

introduces generality in justifying the genetic association. 

From the biological knowledge point of view, the proposed 

framework of analysis provides strong evidence on the 

importance of MET. More specifically, it suggests an initial 

 

 
Fig. 7.Network intersection for blood and tissue. The left part (a) presents the intersection of all time stages for the blood samples; The Right part (b) presents 

the network intersection between the tissue and the blood from the first follow-up. Highlighted are the common “intersection” genes MET, EGFR, HIF1A and 

MAGEA6. 
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central role of this molecule. This is modified to peripheral 

with time and disease progression, while other significant 

genes like EGFR take the central role(s). It appears that the 

activation of the MET network occurs earlier than the EGFR 

network, at the onset of the disease. Overall, the specific 

interplay of HIF1-MET, MET-EGFR and MET-MAGEA6 and 

their associated signaling cascades may denote key 

mechanisms of oral cancer initiation and progression and may 

carry therapeutic implications.  The provided MET network is 

not only validated by known interactions but also offer 

predictive value of new interactions that should be further 

considered experimentally. 

APPENDIX 

Supplementary (S) information on our work can be found 

on http://www.display.tuc.gr/kalan.osccstudy/. 
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