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ABSTRACT
Consider a large-scale wireless sensor network measuring
compressible data, where n distributed data values can be
well-approximated using only k � n coefficients of some
known transform. We address the problem of recovering an
approximation of the n data values by querying any L sen-
sors, so that the reconstruction error is comparable to the
optimal k-term approximation. To solve this problem, we
present a novel distributed algorithm based on sparse ran-
dom projections, which requires no global coordination or
knowledge. The key idea is that the sparsity of the ran-
dom projections greatly reduces the communication cost of
pre-processing the data. Our algorithm allows the collec-
tor to choose the number of sensors to query according to
the desired approximation error. The reconstruction qual-
ity depends only on the number of sensors queried, enabling
robust refinable approximation.

Categories and Subject Descriptors: G.1.2, C.2.4
General Terms: Algorithms
Keywords: sparse random projections, wireless sensor net-
works, refinable approximation, compressed sensing, AMS
sketching

1. INTRODUCTION

Suppose a wireless sensor network measures data which
is compressible in an appropriate transform domain, so that
n data values can be well-approximated using only k � n
transform coefficients. In order to reduce power consump-
tion and query latency, we want to pre-process the data
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in the network so that only k values need to be collected
to recover the data with an acceptable approximation er-
ror. Computing the deterministic transform in a distributed
manner is difficult in an unreliable wireless network, requir-
ing global coordination and knowledge of the network state.
In addition, one must then locate the largest transform co-
efficients in the network to recover the best approximation.

There is a rich literature on using random projections to
approximate functions of data. It is a well-known result from
compressed sensing [1, 2] that O(poly(k, log n)) random pro-
jections of the data are sufficient to recover a representation
very close to the optimal approximation using k transform
coefficients. Similarly, in the AMS sketching literature [7,
8, 9], random projections are used to approximate wavelet
representations of streaming data. Random projections are
also used in the Johnson-Lindenstrauss (JL) embedding the-
orems [10, 11, 12, 13] to estimate pairwise distances of high-
dimensional points in a low-dimensional space. However,
previous results in compressed sensing and AMS sketching
rely on dense random projection matrices. Computing such
matrices in a distributed setting would require Ω(n2) com-
munications, equivalent to flooding the network with data.

Our technical contributions are twofold. First, we show
that O(poly(k, log n)) sparse random projections are suffi-
cient to recover a data approximation which is comparable
to the optimal k-term approximation, with high probabil-
ity. The expected degree of sparsity, that is, the average
number of nonzeros in each random projection vector, can
be O(log n). In fact, there is a trade-off between the spar-
sity of the random projections and the number of random
projections needed.

Second, we present a distributed algorithm, based on sparse
random projections, which guarantees recovery of a near-
optimal approximation by querying any O(poly(k, log n))
sensors. Our algorithm effectively acts as an erasure code
over real numbers, generating n sparse random projection
coefficients out of which any subset of O(poly(k, log n)) is
sufficient to decode. Since sparsity of the random projec-
tions determines the amount of communication, the commu-
nication cost can be reduced to O(log n) packets per sensor,
routed to randomly selected nodes in the network. There is
a corresponding trade-off between the pre-processing com-
munication cost and the number of sensors that need to be
queried to recover an approximation with acceptable error.



Our distributed algorithm has the interesting property
that the decoder can choose how much or how little to
query, depending on the desired approximation error. The
reconstruction error of the optimal k-term approximation
decreases with increasing values of k. The sensors do not
need any knowledge of the data model or the transform nec-
essary for compression, including the value of k. Sensors
simply compute and store sparse random projections, which
they can do in a completely decentralized manner by acting
independently and randomly. Only the decoder chooses k
and the number of sensors to query, along with the appro-
priate transform to recover the approximation. The decoder
can then reconstruct the data by collecting a sufficient num-
ber of projection coefficients, from anywhere in the network.
The approximation error depends only on the number of co-
efficients collected, and not on which sensors are queried.
Therefore, distributed sparse random projections enable ef-
ficient and robust approximation with refinable error.

The remainder of the paper will be organized as follows.
In Section 2, we precisely define the problem setup, the mod-
eling assumptions, and previously known results. Section 3
presents our main results on near-optimal signal approxi-
mation using sparse random projections. In Section 4, we
describe our distributed algorithm based on sparse random
projections. Section 5 contains comparisons and simulation
results. Finally, we give detailed proofs of the main results
in Section 6 and conclude.

2. PROBLEM SETUP

We consider a wireless network of n sensors, each of which
measures a real data value ui. Suppose the aggregate data
u ∈ Rn is compressible, so that it can be well-approximated
using k � n coefficients of some orthonormal transform. For
simplicity, we assume that each sensor stores one real value.
We want to be able to query any L sensors and recover
an approximation of the n data values, with reconstruction
error comparable to the best k-term approximation.

2.1 Compressible Data
A well-studied phenomenon in signal processing is that

many natural classes of signals, such as smooth signals with
bounded derivatives and bounded variation signals, are com-
pressible in some transform domain [15, 16]. Sensor net-
works measuring a smooth temperature field, for example,
may efficiently represent the data using only a few large
transform coefficients, which record useful structure such as
average temperature and sharp temperature changes. The
remaining small transform coefficients may be discarded with-
out much loss in the total signal energy.

We consider a real data vector u ∈ Rn, and fix an or-
thonormal transform Ψ ∈ Rn×n consisting of a set of or-
thonormal basis vectors {ψ1, . . . ,ψn}. Ψ can be, for ex-
ample, a wavelet or a Fourier transform. The transform
coefficients θ = [ψT

1 u, . . . ,ψT
nu]T of the data can be or-

dered in magnitude, so that |θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(n).
The best k-term approximation keeps the largest k trans-
form coefficients and discards the remaining as zero. The
approximation error is ‖u− û‖22 = ‖θ− θ̂‖22 =

Pn
i=k+1 |θ|

2
(i).

We now specify the model of compressible data as defined
in the compressed sensing literature [1, 2]. We say that
the data is compressible if the magnitude of its transform
coefficients decay like a power law. That is, the ith largest
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Figure 1: The compressible data model assumes that
the largest k transform coefficients of θ in magnitude
captures most of the signal energy.

transform coefficient satisfies

|θ|(i) ≤ R i−1/p (1)

for each 1 ≤ i ≤ n, where R is a constant, and 0 < p ≤ 1.
Note that p controls the compressibility (or rate of decay)
of the transform coefficients (i.e., smaller p implies faster
decay). The approximation error obtained by taking the
k largest transform coefficients and setting the remaining
coefficients to zero, is then

‖u− û‖2 = ‖θ − θ̂‖2 ≤ αp R k−1/p+1/2

where αp is a constant that only depends on p.

2.2 Random Projections
Recent results in compressed sensing [1, 2] have shown

that random projections can guarantee the recovery of a
near-optimal approximation of compressible data, with a
very small hit in performance. Specifically, O(k log n) ran-
dom projections of the data can produce an approximation
with error comparable to the best approximation error using
the k largest transform coefficients.

More concretely, consider the random projection matrix
Φ ∈ Rk×n containing i.i.d. entries

Φij =


+1 with prob. 1

2

−1 with prob. 1
2

(2)

Then the k random projections 1√
n
Φu ∈ Rk produce an

approximation û of the data u with error

‖u− û‖2 ≤ βp R (k/ log n)−1/p+1/2

with probability of failure decaying polynomially in n. The
βp is equal to some function of p. Compressed sensing de-
coding is achieved by solving a linear program, which, in
general, has O(n3) computational complexity [1, 2].

Random projections have also been used to recover ap-
proximate wavelet representations of streaming data in the
AMS sketching literature [7, 8, 9]. The encoding random
projection matrix has entries Φij defined in (2), except only
four-wise independence is required within each row. This re-
laxation allows the matrix to be generated pseudo-randomly
and stored in small space. The decoding process estimates
the largest k wavelet coefficients using random projections
of the data and the wavelet bases. The sketching decoder
requires O(k2 log n) random projections to produce an ap-
proximation with error comparable to the best-k wavelet co-
efficients. However the decoding computational complexity



Figure 2: Sparsity of the random projection matrix
leads to a more efficient distributed algorithm with
fewer communications.

is reduced to O(Ln log n), where L is the number of random
projections used. In some distributed applications, it would
be useful for sensors or other low-powered collectors to be
able to decode a coarse approximation of the data cheaply
and quickly. Meanwhile, collectors with greater resources
can query for more random projections and reconstruct a
good approximation.

Random projections are also used for dimensionality re-
duction in the Johnson-Lindenstrauss (JL) embedding theo-
rems [10, 11, 12, 13]. Any set of n ≥ d points can be mapped
from Rd to Rk while preserving all pairwise distances within
a factor of (1± ε), where k = O

`
log n

ε2

´
. [11, 12, 13] explore

using sparsity for efficient JL embedding.

2.3 Distributed Data Processing
The random projection matrices used in both compressed

sensing and sketching are dense. The key idea of this paper
is that sparse random projections can reduce the compu-
tational complexity, and in our distributed problem setting,
reduce the communication cost. Sparsity in the random pro-
jection matrix may also be exploited to reduce the decoding
complexity.

Distributed compressed sensing schemes have been pro-
posed in [6, 4, 5, 3]. The problem setups in prior works
are very different from our setup. [6, 5] pose the scenario
where all sensors communicate directly to a central fusion
center, without any in-network communication. [6] defines
a joint sparsity model on the data, and uses knowledge of
this correlation structure to reduce communications from
the sensors to the fusion center. [5] uses uncoded coherent
transmissions through an AWGN multiple access channel to
simultaneously communicate and compute random projec-
tions from the sensors to the fusion center. [4] poses the sce-
nario where ultimately every sensor has an approximation
of the network data, by using gossip algorithms to compute
each random projection.

3. SPARSE RANDOM PROJECTIONS

We first summarize our main result that sparse random
projections can be used to reconstruct an approximation of
the data, with error very close to the optimal transform-
based approximation. We then state this result more pre-
cisely in section 3.1, and give proofs in section 6.

For data in Rn, we want to find the minimum number
of sparse random projections L to recover an approxima-
tion with error comparable to the best k-term approxima-

tion. We consider an L-by-n sparse random matrix with
entries that have a probability 1/s of being nonzero, so that
on average there are n/s nonzeros per row. We show that
L = O(sM2k2 log n) sparse random projections are suffi-
cient, if the data satisfies a peak-to-total energy condition
‖data‖∞/‖data‖2 ≤ M . This condition bounds the largest
component of the data, and guarantees that the energy of
the signal is not concentrated in a few elements. Intuitively,
sparse random projections will not work well when the data
is also very sparse. Interestingly, we can relate M to the
compressibility of the data, as defined in (1). Our sparse ran-
dom projections algorithm uses the low-complexity sketch-
ing decoder.

Sparsity of the random projection matrix produces an ex-
tra factor of sM2 in the number of random projections.
Therefore, there is an interesting trade-off between the num-
ber of random projections L, the average number of nonzeros
n/s in the random projections, and the peak-to-total energy
ratio (or compressibility) of the data M . For data compress-
ible in the discrete Fourier transform (as in (1)) with p = 1,
if the sparsity is n

s
= log2 n, then sM2 = O(1). In this case,

there is no hit in the number of sparse random projections
needed for approximation. If the sparsity is n

s
= log n, there

is a hit of sM2 = O(log n) in the number of sparse random
projections. If n

s
= 1, then the hit in the number of projec-

tions is sM2 = O(log2 n). For more compressible data with
0 < p < 1, if n

s
= 1, then the hit in the number of sparse

random projections is sM2 = O(1).
We shall see in Section 4 that this trade-off, between the

sparsity of the random projections and the number of projec-
tions, will have a corresponding trade-off in pre-processing
communication cost and querying latency.

3.1 Main Results
The intuition for our analysis is that sparse random pro-

jections preserve inner products within a small error, and
hence we can use random projections of the data and the
orthonormal bases to estimate the orthonormal transform
coefficients. Thus, we can estimate all the transform coeffi-
cients to within a small error given only the sparse random
projections of the data. However, we need to bound the
sum squared error of our approximation over all the trans-
form coefficients. If the data is compressible, and k of the
transform coefficients are large and the others are close to
zero, then we only need to accurately estimate k coefficients.
The remaining small transform coefficients can be approxi-
mated as zero, incurring the same error as the best k-term
approximation.

Consider the sparse random projection matrix Φ ∈ RL×n

(where L < n), containing entries [11]

Φij =
√

s

8<: +1 with prob. 1
2s

0 with prob. 1− 1
s

−1 with prob. 1
2s

(3)

We assume the entries within each row are four-wise in-
dependent, while the entries across different rows are fully
independent. This limited independence assumption allows
each random projection vector to be pseudo-randomly gen-
erated and stored in small space [7].

The parameter s controls the degree of sparsity of the
random projections. Thus if 1

s
= 1, the random matrix

has no sparsity; and if 1
s

= log n
n

, the expected number of
nonzeros in each row of the random matrix is log n.



We want to first show that, with high probability, sparse
random projections preserve inner products within a small
error. To do this, we demonstrate that inner products are
preserved in expectation, and we show concentration about
the mean using a standard Chernoff-type argument. Lemma
1 states that an estimate of the inner product between two
vectors, using only the random projections of those vectors,
are correct in expectation and have bounded variance.

Lemma 1. [12] Consider a random matrix Φ ∈ RL×n

with entries Φij satisfying the following conditions:

Φij are 4-wise indep. in rows, indep. across rows
E[Φij ] = 0, E[Φ2

ij ] = 1, E[Φ4
ij ] = s

(4)

For any two vectors u,v ∈ Rn, denote the random projec-
tions of these vectors as x = 1√

L
Φu, y = 1√

L
Φv ∈ RL.

E
h
xT y

i
= uT v

Var
“
xT y

”
=

1

L

 
(uT v)2 + ‖u‖22‖v‖22 + (s− 3)

nX
j=1

u2
jv

2
j

!

Note that Lemma 1 and all subsequent results require
only the sufficient condtions (4) on the random projection
matrix. The sparse random projection matrix Φ defined
in equation (3) satisfies the conditions (4), with the fourth
moment E[Φ4

ij ] corresponding to the sparsity parameter of
the matrix s. It is interesting to note that these conditions
also hold for other random projection matrices. For exam-
ple, the non-sparse matrix containing Gaussian i.i.d. en-
tries Φij ∼ N (0, 1) satisfies (4) with E[Φ4

ij ] = 3. Similarly,

E[Φ4
ij ] = 1 for the non-sparse random projection matrix con-

taining i.i.d. entries Φij = ±1 as defined in equation (2).
Theorem 1 now states that sparse random projections of

the data vector and any set of n vectors can produce esti-
mates of their inner products to within a small error. Thus,
sparse random projections can produce accurate estimates
for the transform coefficients of the data, which are inner
products between the data and the set of orthonormal bases.

Theorem 1. Consider a data vector u ∈ Rn which satis-
fies the condition

‖u‖∞
‖u‖2

≤ M. (5)

In addition, let V be any set of n vectors {v1, . . . ,vn} ⊂ Rn.
Suppose a sparse random matrix Φ ∈ RL×n satisfies the
conditions (4), with sparsity parameter s. Let

L =

8<: O
“

(1+γ)

ε2
sM2 log n

”
if sM2 ≥ Ω(1)

O
“

(1+γ)

ε2
log n

”
if sM2 ≤ O(1)

Then, with probability at least 1 − n−γ , the random pro-
jections 1√

L
Φu and 1√

L
Φvi can produce an estimate âi for

uT vi satisfying

|âi − uT vi| ≤ ε‖u‖2‖vi‖2

for all i = 1, . . . , n.

Theorem 2 states our main result, namely, that sparse ran-
dom projections can produce a data approximation with er-
ror comparable to the best k-term approximation with high
probabiliy.

Theorem 2. Suppose data u ∈ Rn satisfies condition
(5), and a sparse random matrix Φ ∈ RL×n satisfies condi-
tions (4), with

L =

8<: O
“

(1+γ)

ε2η2 sM2k2 log n
”

if sM2 ≥ Ω(1)

O
“

(1+γ)

ε2η2 k2 log n
”

if sM2 ≤ O(1)
(6)

Let x = 1√
L
Φu. Consider an orthonormal transform Ψ ∈

Rn×n and the corresponding transform coefficients θ = Ψu.
If the k largest transform coefficients in magnitude gives an
approximation with error ‖u − ûopt‖22 ≤ η‖u‖22, then given
only x, Φ, and Ψ, one can produce an approximation with
error

‖u− û‖22 ≤ (1 + ε)η‖u‖22
with probability at least 1− n−γ .

The sufficient condition we place on the data (5) is to
bound the peak-to-total energy of the data. This guarantees
that the signal energy is not concentrated in a small number
of components. Intuitively, if the data is smooth in the
spatial domain, then it will be compressible in the transform
domain. As the following lemma shows, we can precisely
relate condition (5) on the data to the compressibility of the
data as defined in (1).

Lemma 2. If data u is compressible in the discrete Fourier
transform as in (1) with compressibility parameter p, then

‖u‖∞
‖u‖2

≤ M =

(
O( log n√

n
) if p = 1

O( 1√
n
) if 0 < p < 1

(7)

4. DISTRIBUTED ALGORITHM

We now describe an algorithm by which the n sensors of
a wireless network each measures a data value ui, and each
computes and stores one sparse random projection of the
aggregate data u. Consider an n× n sparse random matrix
Φ with entries as defined in (3). For concreteness, let the
probability of a nonzero entry be 1

s
= log n

n
. Each sensor will

compute and store the inner product
Pn

j=1 Φijuj between
the aggregate data u and one row of Φ. We think of this as
generating a bipartite graph between the n data nodes and
the n encoding nodes (see Figure 3).

When the entries of Φ are independent and identically dis-
tributed, they can be generated at different sensor locations
without any coordination between the sensors. To compute
one random projection coefficient, every sensor j locally gen-
erates a random variable Φij . If that random variable is zero
the sensor does nothing, and if it’s nonzero the sensor sends
the product of Φij with its own data uj to one receiver sen-
sor i. The receiver simply stores the sum of everything it
receives, which is equal to the random projection coefficientPn

j=1 Φijuj . This process is repeated until every sensor has
stored a random projection coefficient. Thus, computation
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Figure 3: Every sensor stores a sparse random pro-
jection, so that a data approximation can be recon-
structed by collecting coefficients from any k out of
n sensors.

of the sparse random projections can be achieved in a de-
centralized manner with the following push-based algorithm.

Distributed Algorithm I:

• Each data node j generates a set of independent ran-
dom variables {Φ1j , . . . , Φnj}. For each i, if Φij 6= 0,
then data node j sends to encoding node i the value
Φijuj . Repeat for all 1 ≤ j ≤ n.

• Each encoding node i computes and stores the sum of
the values it receives, which is equal to

Pn
j=1 Φijuj .

Repeat for all 1 ≤ i ≤ n.

Since the probability that Φij 6= 0 is 1
s

= log n
n

, each sensor
independently and randomly sends its data to on average
O(log n) sensors. Now, the decoder can query any L =
O(poly(k, log n)) sensors in the network and obtain ΦL×nu,
where ΦL×n is the matrix containing L rows of Φ ∈ Rn×n.
By Theorem 2, the decoder can then use x = 1√

L
ΦL×nu,

ΦL×n, and Ψ to recover a near-optimal approximation of
the data u. The decoding algorithm proceeds as described
in the proofs of Theorems 1 and 2.

4.1 Alternate Algorithm for Limited
Independence

We present an alternate, pull-based, distributed algorithm,
which takes greater advantage of the limited independence
of the sparse random projections. Each sensor i locally gen-
erates a set of four-wise independent random variables, cor-
responding to one row of the sparse random projection ma-
trix. If a random variable Φij is nonzero, sensor i sends a
request for data to the associated data node j. Sensor j
then sends its data uj back to sensor i, who uses all the
data thus collected to compute its random projection coef-
ficient. Therefore, different sensors still act with complete
independence.

Distributed Algorithm II:

• Each encoding node i generates a set of four-wise in-
dependent random variables {Φi1, . . . , Φin}. For each
j, if Φij 6= 0, then encoding node i sends a request for
data to node j.

• If data node j receives a request for data from encoding
node i, node j sends the value uj to node i.

• Encoding node i computes and stores
Pn

j=1 Φijuj us-
ing the values it receives. Repeat for all 1 ≤ i ≤ n.

Since the average number of nonzeros per row of the sparse
random projection matrix Φ is n

s
= log n, the expected com-

munication cost is still O(log n) packets per sensor, routed
to random nodes. Algorithm II has twice the communica-
tion cost of Algorithm I, but the four-wise independence in
Algorithm II allows each sensor to store a sparse random
projection vector in constant rather than poly(log n) space.
This further decreases the querying overhead cost for the
collector seeking to reconstruct an approximation.

Both algorithms we described above perform a completely
decentralized computation of n sparse random projections of
the n distributed data values. In the end, collecting any sub-
set of O(poly(k, log n)) sparse random projections will guar-
antee near-optimal signal recovery. Thus, our algorithms
enables ubiquitous access to a compressed approximation of
the data in a sensor network.

4.2 Trading-off Pre-processing Communication
and Query Latency

In Section 3, we described the trade-off between the spar-
sity of the random projection matrix and the number of
random projections needed for the desired approximation
error. By Theorem 2, when the probability of a nonzero en-
try in the projection matrix is 1

s
, the number of projections

is O(sM2k2 log n). In our distributed algorithms, the aver-
age number of packets transmitted per sensor is O(n

s
), while

the number of sensors that need to be queried to recover an
approximation is O(sM2k2 log n). The average computation
cost per sensor is also O(n

s
). Therefore, there is a trade-off

between the amount of work performed by the sensors to
pre-process the data in the network, and the number of sen-
sors the decoder needs to query. Increasing the sparsity of
the random projections, decreases the pre-processing com-
munication, but potentially increases the latency to recover
a data approximation.

5. COMPARISONS AND SIMULATIONS

In this section, we give a numeric example comparing the
approximation of piecewise polynomial data using wavelet
transforms, sparse random projections, and the non-sparse
schemes of AMS sketching and compressed sensing. We
know analytically that compressed sensing requires only
O(k log n) random projections to obtain an approximation
error comparable to the best k-term approximation, while
sketching requires O(k2 log n). However, the compressed
sensing decoding has O(n3) computational complexity while
the sketching decoding complexity is O(Ln log n), where L is
the number of random projections used. The low decoding



Figure 4: (a) Piecewise polynomial data. (b) Peak-
to-total energy condition on data.

complexity would make it possible for sensors and other low-
powered collectors to query and decode a coarse approxima-
tion of the data cheaply and quickly. Collectors with greater
resources can still query more sensors and recover a better
approximation. Our sparse random projections method uses
the low-complexity sketching decoder.

We have seen theoretically that there is a trade-off be-
tween the sparsity of the random projections and the num-
ber of random projections needed for a good approximation.
The degree of sparsity corresponds to the number of packets
per sensor that must be transmitted in the pre-processing
stage. Sparse random projections can thus reduce the com-
munication cost per sensor from O(n) to O(log n) when com-
pared to the non-sparse schemes.

We now examine experimentally the effect of the sparsity
of the random projections on data approximation. In our
experimental setup, n sensors are placed randomly on a unit
square, and measure piecewise polynomial data with two
second-order polynomials separated by a line discontinuity,
as shown in Figure 4 (a). In Figure 4 (b), we verified that the
peak-to-total energy condition (5) on the data is satisfied.

Figure 5 compares the approximation error of sparse ran-
dom projections to non-sparse AMS sketching and the op-
timal transform-based approximation. The mean approxi-
mation error using sparse random projections is as good as
the non-sparse random projections, and very close to the
optimal k-term approximation. However, the standard de-
viation of the approximation error increases with greater
sparsity.

Figure 6 compares the approximation using sparse ran-
dom projections for varying degrees of sparsity, along with
the non-sparse schemes of sketching and compressed sensing.
Sparse random projections with O(log n) nonzeros perform
as well as non-sparse sketching, while sparse random pro-
jections with O(1) nonzeros perform slightly worse. As we
would expect from the analysis, the compressed sensing de-
coder obtains better approximation error than the sketching
decoder for the same number of random projections. But,
the compressed sensing decoder has a higher computational
complexity, which was appreciable in our simulations.

Figure 5: A comparison of the approximation error
of piecewise polynomial data using sparse random
projections, non-sparse AMS sketching, and optimal
Haar wavelet based approximation. The relative ap-

proximation error of the data
‖u−û‖22
‖u‖22

is plotted ver-

sus the number of random projections L = k2 log n,
for n = 2048 sensors. The error bars show the stan-
dard deviation of the approximation error.

Figure 6: Effect of the sparsity of the random pro-
jections on approximation error. Varying degrees of
sparsity in the sparse random projections are com-
pared against the non-sparse projections in AMS
sketching and compressed sensing. The relative ap-

proximation error of the data
‖u−û‖22
‖u‖22

is plotted ver-

sus the number of random projections L, for n = 2048
sensors. The average number of nonzeros in the
sparse random projections is n/s.



Figure 7: Communication cost for sparse random
projections with varying degrees of sparsity. In com-
parison, compressed sensing and sketching both re-
quire O(n) packets per sensor.

Finally, Figure 7 shows the communication cost of dis-
tributed sparse random projections for varying degrees of
sparsity. Both compressed sensing and sketching require
O(n) packets per sensor to compute the dense random pro-
jections in a network of size n. Sparse random projections
greatly reduce the overall communication cost.

6. PROOFS

Proof Lemma 1. Let Φij satisfy the conditions in (4),
and define the random variables

wi =

 
nX

j=1

ujΦij

! 
nX

j=1

vjΦij

!

so that w1, . . . , wL are independent. Further, define the ran-
dom variable z = xT y = 1

L

PL
i=1 wi.

E[wi] = E

24 nX
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ujvjΦ
2
ij +

X
l6=m

ulvmΦilΦim

35
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nX
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ujvjE[Φ2
ij ] +

X
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ulvmE[Φil]E[Φim]

= uT v

Thus E[z] = uT v. Similarly, we can compute the second

moments,

E[w2
i ] = E
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ujvjΦ
2
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Proof Theorem 1. Fix any two vectors u,v ∈ Rn, with
‖u‖∞/‖u‖2 ≤ M . Define positive integers L1 and L2, which
we will determine, and set L = L1L2. Partition the L ×
n matrix Φ into L2 matrices {Φ1, . . . , ΦL2}, each of size
L1 × n. The corresponding random projections are {x1 =

1√
L1

Φ1u, . . . , xL2 = 1√
L1

ΦL2u}, and

{y1 = 1√
L1

Φ1v, . . . , yL2 = 1√
L1

ΦL2v}.
Define the independent random variables z1, . . . , zL2 , where

zl = xT
l yl. Applying Lemma 1 to each zl, we find that

E[zl] = uT v and

V ar(zl) =
1

L1

 
(uT v)2 + ‖u‖22‖v‖22 + (s− 3)

nX
j=1

u2
jv

2
j

!
.



Thus, by the Chebyshev inequality

P (|zl − uT v| ≥ ε‖u‖2‖v‖2)

≤ V ar(zl)

ε2‖u‖22‖v‖22

=
1

ε2L1

 
(uT v)2

‖u‖22‖v‖22
+
‖u‖22‖v‖22
‖u‖22‖v‖22

+ (s− 3)

Pn
j=1 u2
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2
j
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≤ 1

ε2L1

 
1 + 1 + s

M2‖u‖22
Pn

j=1 v2
j

‖u‖22‖v‖22

!

=
1

ε2L1

`
2 + sM2´ 4

= p

where in line 3 we used the fact that the data is component-
wise upper bounded ‖u‖∞ ≤ M‖u‖2. Thus we can obtain

a constant probability p by setting L1 = O( 2+sM2

ε2
).

Now we define the estimate â as the median of the inde-
pendent random variables z1, . . . , zL2 , each of which lies out-
side of the tolerable approximation interval with probability
p. If the event that at least half of the zl’s are outside the
tolerable interval occurs with arbitrarily small probability,
then the median â is within the tolerable interval. Formally,
let ζl be the indicator random variable of the event that
{|zl −uT v| ≥ ε‖u‖2‖v‖2}, which occurs with probability p.

Furthermore let ζ =
PL2

l=1 ζl be the number of zl’s that lie
outside the tolerable interval, where E[ζ] = L2p. So, we can
set p to be a constant less than 1/2, say p = 1/4, and apply
the Chernoff bound

P

„
ζ > (1 + c)

L2

4

«
< e−c2L2/12

where 0 < c < 1 is some constant.
Thus, for any pair of vectors u and vi ∈ {v1, . . . ,vn} ⊂

Rn, the random projections 1
L
Φu and 1

L
Φvi produce an

estimate âi for uT vi that lies outside the tolerable approxi-

mation interval with probability at most e−c2L2/12. Taking
the union bound over all such of vectors, the probability that
at least one estimate âi lies outside the tolerable interval is

upper bounded by pe ≤ ne−c2L2/12. Setting L1 = O( 2+sM2

ε2
)

obtains p = 1/4, and setting L2 = O((1 + γ) log n) ob-
tains pe ≤ n−γ for some constant γ > 0. Therefore for

L = L1L2 = O
“

(1+γ)

ε2
(2 + sM2) log n

”
, the random projec-

tion Φ : Rn → RL can preserve all pairwise inner products
within an approximation error ε, with probability at least

1 − n−γ . If sM2 ≥ Ω(1), then L = O
“

(1+γ)

ε2
sM2 log n

”
. If

sM2 ≤ O(1), then L = O
“

(1+γ)

ε2
log n

”

Proof Theorem 2. Fix an orthonormal transform Ψ
consisting of n basis vectors {ψ1, . . . ,ψn} ⊂ Rn. Let θ =
[uTψ1, . . . ,u

Tψn]T . If we order the transform coefficients
θ in decreasing magnitude, |θ|(1) ≥ |θ|(2) ≥ · · · ≥ |θ|(n),
then the approximation error by taking the largest k co-
efficients in magnitude, and setting the remaining coeffi-
cients to zero, is ‖θ − θ̂opt‖22 =

Pn
i=k+1 |θ|

2
(i). Assume that

‖θ − θ̂opt‖22 ≤ η‖θ‖22.
Suppose data u satisfies condition (5), and a random ma-

trix Φ satisfies conditions (4), with positive integer L =

O
“

(1+γ)

α2 sM2 log n
”

if sM2 ≥ Ω(1), L = O
“

(1+γ)

α2 log n
”

otherwise. Then by Theorem 1, the random projections
1√
L
Φu and { 1√

L
Φψ1, . . . ,

1√
L
Φψn} produces (w.h.p.) es-

timates {θ̂1, . . . , θ̂n}, each satisfying

|θ̂i − θi| ≤ α‖θ‖2

where we plugged in ‖ψi‖2 = 1 and ‖u‖2 = ‖θ‖2 by or-

thonormality. By triangle inequality,
˛̨̨
|θ̂i| − |θi|

˛̨̨
≤ |θ̂i − θi|,

so the above condition implies that

|θi| − α‖θ‖2 ≤ |θ̂i| ≤ |θi|+ α‖θ‖2 ∀i. (8)

Order the estimates θ̂ in decreasing magnitude |θ̂|(1) ≥
|θ̂|(2) ≥ · · · ≥ |θ̂|(n). We define our approximation θ̃ as

keeping the k largest components of θ̂ in magnitude, and
setting the remaining components to zero. Let Ω̃ be the
index set of the k largest estimates θ̂i’s which we keep (and

thus Ω̃C is the index set of the estimates we set to zero).
Let Ω be the index set of the k largest transform coefficients
θi’s.

‖θ − θ̃‖22 =
X
i∈Ω̃

|θi − θ̂i|2 +
X

i∈Ω̃C

|θi|2

≤ kα2‖θ‖22 +
X

i∈Ω̃C

|θi|2

In the ideal case, Ω̃ = Ω (or equivalently Ω̃C = ΩC), in

which event
P

i∈Ω̃C |θi|2 =
P

i∈ΩC |θi|2. If Ω̃ 6= Ω, that
means that we chose to keep the estimate of a transform co-
efficient which was not one of the k largest, and consequently
we set to zero the estimate of a coefficient which was in the
k largest. So there exists some i ∈ Ω̃, i 6∈ Ω, j 6∈ Ω̃, j ∈ Ω.
This implies that |θ̂i| > |θ̂j |, but |θi| < |θj |. Since the
estimates are within a ±α‖θ‖2 interval around the trans-
form coefficients (by (8)), this confusion can only happen
if |θj | − |θi| ≤ 2α‖θ‖2. Furthermore, |θj |2 + |θi|2 ≤ ‖θ‖22
implies that |θj | + |θi| ≤

√
3‖θ‖2. Thus |θj |2 − |θi|2 =

(|θj | − |θi|)(|θj |+ |θi|) ≤ 2
√

3α‖θ‖22. For each time this con-
fusion happens, we get an additional error of +|θj |2 − |θi|2,
and this confusion can happen at most k times. Therefore,X

i∈Ω̃C

|θi|2 ≤
X

i∈ΩC

|θi|2 + k(2
√

3α‖θ‖22)

‖θ − θ̃‖22 ≤ kα2‖θ‖22 + 2
√

3kα‖θ‖22 +
X

i∈ΩC

|θi|2

= kα2‖θ‖22 + 2
√

3kα‖θ‖22 + ‖θ − θ̂opt‖22
≤ kα2‖θ‖22 + 2

√
3kα‖θ‖22 + η‖θ‖22

Setting kα2‖θ‖22 + 2
√

3kα‖θ‖22 = δ‖θ‖22 and solving for the

positive root, we find that α = −
√

3 +
q

3 + δ
k

= O( δ
k
).

‖θ − θ̃‖22 ≤ δ‖θ‖22 + η‖θ‖22

=

„
1 +

δ

η

«
η‖θ‖22

Let ε = δ
η
, so that α = O( εη

k
). Therefore, the number of

random projections we need is L = O
“

(1+γ)

α2 sM2 log n
”

=

O
“

(1+γ)

ε2η2 sM2k2 log n
”

if sM2 ≥ Ω(1), and

L = O
“

(1+γ)

ε2η2 k2 log n
”

if sM2 ≤ O(1).



Proof Lemma 2. By the definition of the (orthonor-
mal) inverse discrete Fourier transform

|ui| ≤
1√
n

n−1X
m=0

|θm|
˛̨̨
ej 2πmi

n

˛̨̨
=

1√
n

n−1X
m=0

|θm| =
1√
n
‖θ‖1

for i = 0, . . . , n−1. Thus ‖u‖∞ ≤ 1√
n
‖θ‖1. For p-compressible

signals, the DFT coefficients obey a power law decay as in
(1), then ‖θ‖1 ≤ R

Pn
i=1 i−1/p. For p = 1, the summation is

a Harmonic series, which diverges slowly like O(log n). For
0 < p < 1, the summation is a p-series (or Riemann zeta

function) which converges.
Pn

i=1 i−1/p ≤ 1 +
R n

1
x−1/p dx =

1 +
“

1
1/p−1

”“
1− 1

n1/p−1

”
, which is upper bounded by a

constant that depends only on p. Therefore, if the data
is compressible with p = 1, then ‖θ‖1 = O(log n), and

‖u‖∞ = O
“

log n√
n

”
. If 0 < p < 1, then ‖θ‖1 = O(1), and

‖u‖∞ = O( 1√
n
). Similarly, we can verify that compress-

ible signals have finite energy. By orthonormality, ‖u‖22 =

‖θ‖22 ≤ R2Pn
i=1 i−2/p, and

R n+1

1
x−2/p dx ≤

Pn
i=1 i−2/p

≤ 1 +
R n

1
x−2/p dx.

7. CONCLUSIONS AND FUTURE WORK
We have proposed distributed sparse random projections

and shown how they can enable reliable and refinable access
to data approximations. Sensors store sparse random pro-
jections of the data, which allows the collector to recover
a data approximation by querying a sufficient number of
sensors from anywhere in the network. The sensors oper-
ate without coordination to compute independent random
projections. The decoder has control over the approxima-
tion error by choosing the number of sensors it queries. We
presented a trade-off between the communication cost to
pre-process the data in the network, and the query latency
to obtain the desired approximation error. We have shown
that this trade-off can be controlled by the sparsity of the
random projections.

As future work, our scheme can be applied to a nested
tiling of geographic areas in a multiresolution manner, so
that an approximation of a local region can be recovered
by querying any sensors in that region. We will also study
scenarios where information is queried only from a set of
boundary sensors or collector nodes. Finally, the ideas pre-
sented in this paper can be extended to jointly compress
data along both the spatial and temporal dimensions.

8. REFERENCES
[1] E. Candes and T. Tao. Near Optimal Signal Recovery

From Random Projections: Universal Encoding
Strategies. IEEE Transactions on Information Theory,
52(12), pp. 5406-5425, December 2006.

[2] D. Donoho. Compressed Sensing. IEEE Transactions
on Information Theory, 52(4), pp. 1289-1306, April
2006.

[3] http://www.dsp.ece.rice.edu/CS/

[4] M. Rabbat, J. Haupt, A. Singh, and R. Nowak.
Decentralized Compression and Predistribution via
Randomized Gossiping. Proceedings of the
International Conference on Information Processing in
Sensor Networks (IPSN), 2006.

[5] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak.
Compressive Wireless Sensing. Proceedings of the
International Conference on Information Processing in
Sensor Networks (IPSN), 2006.

[6] D. Baron, M.F. Duarte, S. Sarvotham, M.B. Wakin,
and R. Baraniuk. An Information-Theoretic Approach
to Distributed Compressed Sensing. Proceedings of the
43rd Allerton Conference on Communication, Control,
and Computing, 2005.

[7] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
Proceedings of the ACM Symposium on Theory of
Computing (STOC), 1996.

[8] A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M.J. Strauss. One-Pass Wavelet Decompositions of
Data Streams. IEEE Transactions on Knowledge and
Data Engineering, 15(3), pp. 541-554, May 2003.

[9] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast
Approximate Wavelet Tracking on Streams.
Proceedings of the International Conference on
Extending Database Technology (EDBT), 2006.

[10] W.B. Johnson and J. Lindenstrauss. Extensions of
Lipschitz mappings into a Hilbert space. Proceedings
of the Conference in Modern Analysis and Probability,
1984.

[11] D. Achlioptas. Database-friendly random projections:
Johnson-Lindenstrauss with binary coins. Journal of
Computer and System Sciences, 66(4), pp. 671-687,
2003.

[12] P. Li, T.J. Hastie, and K.W. Church. Very Sparse
Random Projections. Proceedings of the ACM
International Conference on Knowledge Discovery and
Data Mining (KDD), 2006.

[13] N. Ailon and B. Chazelle. Approximate Nearest
Neighbors and the Fast Johnson-Lindenstrauss
Transform. Proceedings of the ACM Symposium on
Theory of Computing (STOC), 2006.

[14] R.A. Horn and C.R. Johnson. Matrix Analysis.
Cambridge University Press, New York, NY, 1985.

[15] M. Vetterli and J. Kovačević. Wavelets and Subband
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