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Abstract— Knowledge of the up-to-date physical (i.e., layer-2)
topology of an Ethernet network is crucial to a number of critical
network management tasks, including reactive and proactive
resource management, event correlation, and root-cause analysis.
Given the dynamic nature of today’s IP networks, keeping track
of topology information manually is a daunting (if not impossible)
task. Thus, effective algorithms for automatically discovering
physical network topology are necessary. In this paper, we
propose the first complete algorithmic solution for discovering
the physical topology of a large, heterogeneous Ethernet network
comprising multiple subnets as well as (possibly) dumb or un-
cooperative network elements. Our algorithms rely on standard
SNMP MIB information that is widely supported in modern IP
networks and require no modifications to the operating system
software running on elements or hosts. Furthermore, we formally
demonstrate that our solution is complete for the given MIB data;
that is, if the MIB information is sufficient to uniquely identify the
network topology then our algorithm is guaranteed to recover it.
To the best of our knowledge, ours is the first solution to provide
such a strong completeness guarantee.

Index Terms— Layer-2 Topology Discovery, Graph Theory,
Ethernet LAN, Subnets, SNMP MIB, Switches, Hubs.

I. INTRODUCTION

Physical network topology refers to the characterization of
the physical connectivity relationships that exist among entities
in a communication network. Discovering the physical layout
and interconnections of network elements is a prerequisite
to many critical network management tasks, including reac-
tive and proactive resource management, server siting, event
correlation, and root-cause analysis. For example, consider a
fault monitoring and analysis application running on a central
IP network management platform. Typically, a single fault in
the network will cause a flood of alarm signals emanating
from different interrelated network elements. Knowledge of
element interconnections is essential to filter out secondary
alarm signals and correlate primary alarms to pinpoint the
original source of failure in the network [1], [2]. Furthermore,
a full physical map of the network enables a proactive analysis
of the impact of link and device failures.

Despite the critical role of physical topology information in
enhancing the manageability of modern IP networks, obtaining
such information is a very difficult task. The majority of
commercial network-management tools feature an IP mapping
functionality for automatically discovering routers and subnets
and generating a network layer (i.e., ISO layer-3) topol-
ogy showing the router-to-router interconnections and router� Current affiliation: Dept. of Computer Science, Kent State University,
Kent, OH 44242. breitbar@cs.kent.edu

interface-to-subnet relationships. Building a layer-3 topology
is relatively easy because routers must be explicitly aware of
their neighbors in order to perform their basic function. There-
fore, standard routing information is adequate to capture and
represent layer-3 connectivity. Unfortunately, layer-3 topology
covers only a small fraction of the interrelationships in an IP
network, since it fails to capture the complex interconnections
of layer-2 network elements (switches, bridges, and hubs) that
comprise each Ethernet LAN. Hardware providers, like Cisco
and Intel, have designed their own proprietary protocols for
discovering physical interconnections but these tools are of
no use in a heterogeneous, multi-vendor environment. More
recently, the IETF has acknowledged the importance of this
problem by designating a “physical topology” SNMP Man-
agement Information Base (MIB) [3], but the proposal merely
reserves a portion of the MIB space without defining any
protocol or algorithm for obtaining the topology information.
Clearly, as more switches, bridges, and hubs are deployed to
provide more bandwidth through subnet microsegmentation,
the portions of the network infrastructure that are transparent
to current network-management tools will continue to grow.
Under such conditions, it is obvious that the network man-
ager’s ability to troubleshoot end-to-end connectivity or assess
the potential impact of link or device failures in switched
networks will be severely impaired.

Developing effective algorithmic solutions for automatically
discovering the up-to-date physical topology of a large, hetero-
geneous Ethernet network poses several difficult challenges.
More specifically, there are three fundamental sources of
complexity for physical topology discovery.

1) Inherent Transparency of Layer-2 Hardware. Layer-2
network elements (switches, bridges, and hubs) are com-
pletely transparent to endpoints and layer-3 hardware
(routers) in the network. Switches themselves only com-
municate with their neighbors in the limited exchanges
involved in the spanning tree protocol [4], and the
only state maintained is in their Address Forwarding
Tables (AFTs), which are used to direct incoming pack-
ets to the appropriate output port. Fortunately, most
switches/bridges (see (3) below) make this information
available through a standard SNMP MIB [5], [6].

2) Multi-Subnet Organization. Modern switched networks
usually comprise multiple subnets with elements in
the same subnet communicating directly (i.e., without
involving routers) whereas communication between el-
ements in different subnets must traverse through the



routers for the respective subnets. Furthermore, elements
of different subnets are often directly connected to
each other. This obviously introduces serious problems
for physical topology discovery, since it means that
an element can be completely transparent to its direct
physical neighbor(s).

3) Transparency of Dumb or Uncooperative Elements. Be-
sides SNMP-enabled bridges and switches that are able
to provide access to their AFTs, a switched network can
also deploy “dumb” elements like hubs to interconnect
switches with other switches or hosts 1. Hubs do not par-
ticipate in switching protocols and, thus, are essentially
transparent to switches and bridges in the network. Sim-
ilarly, the network may contain switches from which no
address-forwarding information can be obtained either
because they do not speak SNMP or because SNMP
access to the switch is disabled. Clearly, inferring the
physical interconnections of hubs and “uncooperative”
switches based on the limited AFT information obtained
from other elements poses a non-trivial algorithmic
challenge.

Related Work. SNMP-based algorithms for automatically
discovering network layer (i.e., layer-3) topology are fea-
tured in many common network management tools, such as
HP’s OpenView (www.openview.hp.com) and IBM’s Tivoli
(www.tivoli.com). Recognizing the importance of layer-2
topology, a number of vendors have recently developed propri-
etary tools and protocols for discovering physical network con-
nectivity. Examples of such systems include Cisco’s Discov-
ery Protocol (www.cisco.com) and Bay Networks’ Optivity
Enterprise (www.baynetworks.com). Such tools, however,
are typically based on vendor-specific extensions to SNMP
MIBs and are not useful on a heterogeneous network com-
prising elements from multiple vendors. Peregrine’s Infratools
software (www.peregrine.com), Riversoft’s NMOS product
(www.riversoft.com), and Micromuse’s Netcool/Precision
application (www.micromuse.com) claim to support layer-2
topology discovery, but these tools are based on proprietary
technology to which we do not have access.

In our recent work [8], we have proposed an algorithm that
relies solely on standard AFT information collected in SNMP
MIBs to discover the physical topology of heterogeneous
networks comprising switches and bridges organized in mul-
tiple subnets. Unfortunately, our algorithm assumes that AFT
information is available from every node in the underlying
network and, thus, cannot cope with hubs or uncooperative
switches. In a follow-up paper, Lowekamp et al. [7] suggest
techniques for inferring network-element connectivity using
incomplete AFT information and also discussed how to han-
dle dumb/uncooperative elements; however, their algorithm
is designed to work only in the much simpler case of a
single subnet and can easily be shown to fail when multiple
subnets are present. Thus, there is really no earlier work
on physical topology discovery that addresses all three key
research challenges outlined earlier in this section.

Our Contributions. In this paper, we propose a novel,

1Even though properly-designed networks would not use hubs to intercon-
nect multiple switches, this is a scenario that can easily arise in practice [7].

practical algorithmic solution for discovering the physical
topology of large, heterogeneous IP networks comprising
multiple subnets as well as (possibly) dumb or uncooperative
elements; thus, our algorithm is essentially the first to ad-
dress the the physical topology discovery problem in its full
generality. Similar to our earlier work [8], the practicality of
the solutions proposed in this paper stems from the fact that
they rely solely on standard information routinely collected
in the SNMP MIBs [5], [6] of elements and they require
no modifications to the operating system software running
on elements or hosts. Unlike [8], however, our algorithm is
designed to infer connectivity information in the presence of
hubs and/or switches not speaking SNMP; in fact, it can be
shown that the algorithms proposed here completely subsume
the solution proposed in our earlier paper.

Abstractly, our topology-discovery algorithm initially em-
ploys the AFT information supplied by SNMP-enabled el-
ements to produce a partial, coarse view of the underlying
network topology as a collection of skeleton paths. Our
skeleton-path mechanism is a generalization of traditional
paths that basically captures whatever partial knowledge we
have accumulated on the actual network topology. Our algo-
rithm then enters an iterative, skeleton-path refinement process
during which constraints inferred from the overall skeleton-
path collection are exploited to refine the topology information
in individual skeleton paths.2 Finally, once all skeleton paths
have been resolved into complete arrangements of network
elements, our algorithm stitches the paths together to infer
the underlying network topology including the connections of
“invisible” hubs and uncooperative switches.

It is well known that even complete AFT information from
all network nodes is often insufficient to uniquely identify
the underlying physical network topology; see, e.g., [8] for
examples of different network topologies generating identical
collections of AFTs. We are able, however, to demonstrate
a strong completeness property for the solution proposed in
this paper. More specifically, we formally prove that if the
AFT information is sufficienct to uniquely identify the network
topology then our algorithm is guaranteed to recover it. To the
best of our knowledge, ours is the first SNMP-based topology-
discovery algorithm to provide such a strong completeness
guarantee. Due to space constraints, some theoretical results
in this paper are presented without a complete proof; the
details can be found in the full paper [9]. Our algorithm
is currently under implementation for Lucent’s NetInventory
topology-discovery tool.

II. DEFINITIONS AND SYSTEM MODEL

In this section, we present necessary background informa-
tion and the system model that we adopt for the physical
topology discovery problem. We refer to the domain over
which topology discovery is to be performed as a switched do-
main, which essentially comprises a maximal set � of switches
such that there is a path between every pair of switches
involving only switches in � . (Switches are essentially bridges
with many ports, so the terms “switch” and “bridge” can be

2To the best of our knowledge, existing constraint-solving tools cannot
handle or solve the type of constraints considered here in order to identify
the underlying network topology.



used interchangeably; we will primarily use “switch” in the
remainder of this paper.) More specifically, we model the
target switched domain as an undirected tree �����
	����� ,
where each node in 	 represents a network element and
each edge in  represents a physical connection between
two element ports. The set 	 comprises both labeled and
unlabeled nodes. Labeled nodes basically represent switches,
routers, and hosts that have a unique identifying MAC address
and can provide AFT information through SNMP queries to
the appropriate parts of their MIB; unlabeled nodes, on the
other hand, represent both “dumb” hub devices or switching
elements with no SNMP support3. To simplify the discussion,
we refer to labeled and unlabeled nodes simply as switches
and hubs (respectively) in the remainder of the paper.

Note that the graph � essentially captures the (tree) topol-
ogy of unique active forwarding paths for elements within a
switched domain as determined by the spanning tree proto-
col [4]. Our topology discovery algorithm is based on using
the MAC addresses learned through backward learning on
ports that are part of the switched-domain spanning tree (and
stored at the port AFTs of labeled network nodes). We use the
notation ��������� to identify the ����� port of node ����	 , and ���! "
to denote the set AFT entries at port ���#�$��� (i.e., the set of MAC
addresses that have been seen as source addresses on frames
received at ���#�$��� ). (To simplify notation, we will often omit
the parentheses and comma from our port-id notation when
referring to a specific port of � , e.g., �#% , �'& , and so on.) Since� is a tree, we obviously have a unique path in � between
every pair of nodes ()�+*,�-	 , and we use the symbol .0/  � to
identify the set of port-ids along the path from ( to * (also
referred to as the “ (213* path”). We also use the notation ����45�
to denote the port of node � that (the address of) node 4 is
found off of (i.e., the port of � leading to 4 in � ). Table I
summarizes the key notation used throughout the paper with
a brief description of its semantics. Additional notation will
be introduced when necessary.

Symbol Semantics687:9<;#=?>A@
Switched-domain network graph (tree)9CBD=FED@ EHG<I

port of node
BKJL;

(
BDM

,
BON

, ...)PRQTS U
AFT entries at (i.e., nodes reachable from)

9CBV=?ED@BD9CWX@
Port of node

B
leading to node

W
in
6Y Q

Subnets in
6

containing
B

in their spanning subtreeZR[ S G Set of switch ports along the path from \ to ] in
6^ [ S G Skeleton path from \ to ] in

6_ [ S G` S a Set of ports at the intersection of
Z�[ S G and

Z ` S a^ [ S G` S a Projection of path
^ ` S a onto path

^ [ S G
TABLE I

NOTATION.

Every labeled node in our switched domain � is associated
with one or more subnets. A subnet is a maximal set of
network elements b�cd	 such that any two elements in b
can communicate directly with each other without involving
a router, while communication across different subnets must
go through a router. Thus, a packet from node ( to node *
in the same subnet b will traverse exactly along the set of

3Note that end-hosts and routers in the network are represented as leaf
nodes in

6
, and are practically indistinguishable for the purposes of layer-2

topology discovery.

ports .�/  � in � . Typically, every network element within a
switched domain is identified with a single IP address and a
subnet mask that defines the IP address space corresponding
to the element’s subnet. For example, IP address %!e)f�gC%!hVijg i)kjgC%
along with mask &lf)fRgm&lflf�g &)flf�g h identifies a subnet of network
elements with IP addresses of the form %neXfRgo%nhlijg i)k�g p , wherep is any integer between % and &)fDi . Let q be the collection
of subnets of the graph � . Every subnet br�sq defines a
connecting subtree in � ; that is, a tree subgraph of � that is
essentially spanned by the nodes in subnet b , and contains
all nodes and edges of � that lie on paths between any pair
of nodes in b . Let q8�tc-q denote the collection of subnets
containing node �-�u	 in their connecting subtrees; clearly,
the AFTs at the ports of node � contain node-reachability
information only for the subnets in q8� . We say that the AFT� �! " of � is complete if, for all b��vq � , � �! " contains the
MAC addresses of all nodes in b that are reachable by port�������j� .

Similar to [8], our physical topology discovery algorithms
rely on the assumption that the AFT information obtained from
labeled nodes in the network is complete. This completeness
requirement can be enforced using techniques similar to those
in [8] (e.g., using “spoofed” ICMP-echo packets to force
switch communication). A second possibility (also proposed
in [8]) is to relax this completeness requirement and allow our
schemes to make “approximate” decisions while working with
only partial AFT information.

III. OVERVIEW OF OUR TOPOLOGY DISCOVERY
ALGORITHM

The goal of our proposed algorithm is to discover the
physical topology of the underlying multi-subnet network
represented by the switched domain graph � � �
	���w�
as accurately as possible using only the AFT information
provided by labeled nodes in � . Thus, our topology-discovery
algorithm uses the AFT information provided to (1) discover
the direct physical connections between labeled element (i.e.,
switch) ports, and (2) infer the existence of unlabeled nodes
(i.e., hubs) in � as well as the set of switch ports that
are connected to each hub. A key concept in our topology
discovery algorithm is the concept of skeleton paths defined
formally below.

Definition 3.1: A skeleton path from node ( to node * in� is defined as a sequence x /  � �wy{zA|H�}z2~V�ngOgngO�$z0��� of
non-empty port-id sets z�|H�ngOgngT�$z0� forming a partition of . /  �
( z2�#�:z��t�d� , ����z2����.�/  � ) such that: (1) Each z�� contains
the port-ids of a contiguous segment of the (�1�* path; and,
(2) For each �Ayv� , all the port-ids in z � precede those in z �
on the (�1:* path.

Intuitively, an (�1u* skeleton path describes some partial
knowledge (i.e., port ordering information) that we have about
the actual (�1�* path in the network graph � . This partial
knowledge basically describes subsets of ports z � that we
know to be contiguous in the path from ( to * in � , as well
as the ordering of these subsets as we traverse � from ( to* . Thus, the “coarsest” (�1�* skeleton path comprises a single
large subset z0� between nodes ( and * with essentially no port-
ordering information, whereas in the “finest” (�1u* skeleton
path each z � is a singleton (a single port-id) and the complete
ordering of the ports on the (�1v* path is specified.
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Fig. 1. Example network graph and its decomposition in skeleton paths.

Note that determining the set of switch port-ids to be
included in an (L1�* skeleton path using AFT information is
fairly straightforward when ( and * belong to the same subnet.
The key observation is that a node � is on the path from (
to * in � if and only if there are two distinct ports ���?(H� and����*+� of � such that � “sees” node ( ( * ) at port �5�
(H� (resp.,����*+� ) (i.e., (��:� �! �!� /�� and *,�v� �! �!� � � ). Also note that, since
our skeleton-path definition assumes that the path is oriented
from ( to * , port �5�
(H� will always precede port ����*+� on the(�1�* path; thus, we will always denote �5�
(H� before ����*+� in
the skeleton path x�/  � (even when these ports are in the samez � subset). Obviously, this simple port-ordering rule for each
node is easily obtained from the AFT information at � .

Example 3.1: Consider the network depicted in Figure 1,
where the numbers near the links represent the port-ids. Nodes4����#���t�+p��+� are in one subnet, nodes �v�+� in another subnet,
and every one of the nodes ���$�H�� D��¡j��¢X��£ defines a separate
subnet (with only one node). One possible skeleton path from
node 4 to node p is: xt¤) ¥t�¦y¨§!4�%l©)��§H��%l���R&����H%)���T&R©)�R§!�t%V©X�§n�,&R©)�0§H D%V© , §! O&R© , §np�%V©:� . Clearly, this skeleton path only
provides partial information on the the topology of the true4ª1�p path in � . More specifically, xt¤) ¥ specifies that the
ports p«% and  O& are directly connected or they are connected
to the same hub. Similarly, x ¤) ¥ also indicates that port � | is
connected (either directly or through a hub) to one of �R& or�T& . (Note that, since port ��% ( �D% ) precedes �R& (resp., �T& ) on
the 431�p path and ��% succeeds nodes � and � in x ¤) ¥ , ��%
can only be connected to �R& or �T& .)

At a high level, our proposed topology-discovery algorithm
(depicted in Figure 2) represents the underlying network by
a collection of skeleton paths, ¬ , between pairs of nodes
belonging to the same subnet, and proceeds by iteratively
refining ¬ to provide more accurate topology information
for � . The initial input to our algorithm is the collection of
subnets q in the network � as well as the AFT information
from all labeled nodes (switches) in � . As a first step, our
algorithm computes an initial collection of skeleton paths¬ that, essentially, captures the given AFT information by
identifying the set of port-ids between selected pairs of nodes
that “cover” all paths in � (procedure INITSKELETONPATHS).
Our algorithm then enters an iterative skeleton-path refinement
process, that tries to determine a complete port order for each
skeleton path in ¬ . The key idea here is to use the aggregate
information in ¬ to further divide the internal zA� subsets
of each skeleton-path x /  � �¬ into smaller subsets, until
either a complete order is obtained or no further refinement
is possible. This path-refinement task for skeleton path x�/  �

is accomplished with the help of two key procedures. First,
procedure COMPUTECONSTRAINTS exploits the information
in ¬ (more specifically, the intersections of xw/  � with other
skeleton paths in ¬ ) to obtain a collection ® of additional
constraints (termed path constraints) on the port order in x /  � .
Second, procedure REFINEPATH uses the discovered set of
path constraints ® to further refine xw/  � . When no further
skeleton-path refinements are possible, our algorithm invokes
a FINDCONNECTIONS procedure that uses the refined paths
to output the switch and hub connections discovered in � .

procedure TOPOLOGYDISCOVERY(̄ , AFTs)
1. °-± INITSKELETONPATHS ²³¯�´¶µ�·�¸�¹
2. do
3. ºD»O¼j½ = true
4. for each ¾ [ S G�¿ ° do
5. À [ S G ±�Á�ÂHÃ!ÄDÅ#ÆÈÇ É�Ê U
6. Ë =COMPUTECONSTRAINTS( ¾ [ S G , ° )
7. ¾KÌnÍFÎ[ S G = REFINEPATH( À [ S G , Ë )
8. if ²�¾KÌ!Í?Î[ S GÐÏ±�¾ [ S G ¹ then
9. replace ¾ [ S G by ¾KÌnÍFÎ[ S G in °
10. ºD»n¼j½ = false
11. endif
12. endfor
13. while (not ºD»n¼j½ )
14. FINDCONNECTIONS( ° )

Fig. 2. Our Topology Discovery Algorithm.

One of the main challenges in our work lies in determining
the most complete set of path constraints for each skeleton pathxt/  � , so that we maximize the amount of port-ordering knowl-
edge incorporated in x /  � during future iterative-refinement
steps. As we show later in this paper, such path constraints can
result from rather complicated intersection patterns of several
skeleton paths in ¬ . Thus, it is very hard to directly obtain
the “full” set of path constraints that would allow us to refine
an initial xt/  � skeleton path into a complete port order in a
single step. However, even partial-order information obtained
through a subset of the constraints imposed on x /  � can be
used to further refine other skeleton paths in ¬ during future
iterations. Thus, our topology-discovery algorithm may require
several iterative-refinement steps, during which skeleton paths
in ¬ are further refined from iteration to iteration, until the
algorithm eventually converges to the maximal possible port-
ordering information for each path in � for the given set of
inputs. We discuss the key algorithmic components of our
topology-discovery algorithm in detail in the sections that
follow.

IV. THE INITIAL SKELETON-PATH COLLECTION

The first task faced by our algorithm is to “translate” the
input AFT and subnet information into an initial collection of
skeleton paths. The key observation here (already discussed in
Section III) is that, for nodes ( and * belonging to the same
subnet, we can easily use the AFT information to determine
the set of switch ports . /  � on the (t1Ñ* path in � : if, for
a node ��Ò�Ó()�+* , there exist two distinct ports ���?(!�-Ò�{�5��*+�
such that (3��� �! �!� /�� and *t��� �! �!� � � then �5�
(H�}������*+�w��.�/  � ;
otherwise, � cannot be on the (�1u* path in � . (Of course,
the source and destination ports on nodes ( and * can also be
simply determined from their AFT information.)



Thus, a simple solution to the initial skeleton-path con-
struction problem is to build a skeleton path x /  � for each
pair ( , * of distinct nodes belonging to the same subnet,
for each of the underlying subnets. The problem with such
a simplistic approach is that it results in very significant
overlap between the resulting paths in ¬ ; this, in turn, implies
that our algorithm may need to compute the port order for
the same path segment several times, resulting in significant
computation-time overheads. Instead, our solution relies on
constructing a concise collection of skeleton paths for each
subnet b such that paths between nodes of b in ¬ : (a) are
not contained in other paths between b ’s nodes, and (b) cannot
be broken into smaller paths between b ’s nodes. Intuitively,
the resulting skeleton paths for subnet b “minimally” cover
all nodes of b using the smallest possible segments between
such nodes. Our INITSKELETONPATHS procedure (depicted in
Figure 3) builds this concise collection by simply considering,
for each subnet b , all possible (�1ª* paths with ()�+*��3b and
adding an initial x�/  � skeleton path to ¬ only if the collection
of intermediate nodes on the (�1Ô* path (denoted by Õ in
Figure 3) does not contain another b node. As an example,
Figure 1 depicts the six initial skeleton paths in ¬ for the
network in Example 3.1.

procedure INITSKELETONPATHS(̄ , AFTs)
1. °�±�Ö
2. for each × ¿ ¯ do
3. for each

�nØ ´FÙÈ� ¿ × do
4. Úd± �TÛ�Ü Û ¿�Ý�Þ �nØ ´�ÙÈ��ß�à Û ² Ø ¹ Ï± Û ²<ÙÈ¹�´

such that
Ø ¿ · QTS QOá [�â ßtÙ ¿ · QOS QOá G â �

5. if ( Úäã�×¨±�å ) then
6. ¾ [ S G ±,æ �OØ ²<ÙÈ¹È�D´ �TÛ ² Ø ¹�´ Û ²<ÙÈ¹ Ü Û ¿ Úç�D´ � Ù$² Ø ¹È��è
7. °�±�°�é � ¾ [ S G � .
8. endif
9. endfor
10. endfor
11. return( ° )

Fig. 3. The INITSKELETONPATHS Procedure.

V. COMPUTING SKELETON-PATH CONSTRAINTS

In this section, we address the problem of discovering a
collection of constraints that will allow our algorithm to refine
the port order for a given skeleton path xw/  � �-¬ . Abstractly,
these constraints follow (either explicitly or implicitly) from
the intersections of x�/  � with other skeleton paths in the ¬
collection. We begin by presenting some useful definitions and
notational conventions.

A. Skeleton-Path Constraints: Definitions and Notation
We say that a skeleton path xt¥l êd��¬ intersects x /  �

if .�/  �jë . ¥l ê Ò�ì� . Our skeleton-path collection ¬ can be
partitioned into two subsets ¬í��¬Lî/  � �ï¬,ðñî/  � , where ¬,î/  �
( ¬ ðñî/  � ) contains all the paths in ¬ that intersect (resp., do not
intersect) path x�/  � . (Note that, trivially, x�/  � �ò¬ î/  � .) For
any skeleton path xt¥l êw��¬,î/  � , let ó /  �¥l ê denote the collection
of port-ids in the intersection of the (K1ª* and pô1võ skeleton
paths, i.e., ó /  �¥l ê �Ô.�/  ��ë . ¥l ê . To simplify the exposition, we
assume that all paths xt¥l ê��Ñ¬ î/  � have the same orientation
as xt/  � ; that is, any port in their intersection ó /  �¥l ê faces either

( and p , or * and õ (the starting and ending points of the
paths are on the same “side” of the network graph). Of course,
either x ¥V ê or x ên ¥ must have the same orientation as xw/  � ,
and this can be easily resolved from the AFTs of ports inó /  �¥l ê . Constraints on the port order in x /  � can result from the
projection of another path x ¥l ê �d¬ î/  � onto xt/  � , which is
formally defined below.

Definition 5.1: The projection of x ¥l ê �ö¬ î/  � onto xt/  � ,
denoted by x /  �¥V ê , is the skeleton path that results by taking
the intersection of every subset z " ��x ¥l ê with the set .�/  �
and omitting empty sets; that is, x /  �¥V ê �wy�z�|)��. /  � �OgngOgT�}z2�ç�. /  �T÷ z � �8xt¥V ê and z � �3. /  � Ò�ï�ª� .

Clearly, any path projection onto x /  � is essentially a valid
skeleton representation for a segment of the true (018* path in� and, as such, can enforce additional constraints on the port
order in x /  � . Such constraints can be broadly classified into
two types: (1) Contiguity constraints forcing a given subset�søs. /  � of port-ids to define a contiguous segment of the (R1L*
path (e.g., any ���äz � �3. /  � Ò�ä� in Definition 5.1); and, (2)
Order constraints forcing all port-ids in a subset � | øÑ.�/  � to
precede those of another subset � ~ øu. /  � (e.g., � | �ùz � �A. /  �
and � ~ �úz �oû |ñ��. /  � in Definition 5.1). We give a generic
definition of path constraints that captures both contiguity and
order constraints.

Definition 5.2: A path constraint � � �wyü� |� ��� ~� � for
skeleton path x /  � is an ordered pair of two disjoint subsets
of port-ids � |� ��� ~� c�.�/  � such that: (1) � |� , � ~� , and � |� ��� ~�
define contiguous segments of ports on the (213* path, and (2)
the ports in � |� precede those in � ~� in the path from ( to * in� .
Note that a simple contiguity constraint � can be simply
represented as yÑ�����ª� .

B. Computing Skeleton Path Constraints
We now turn to our algorithm for computing a collection of

path constraints ® on the skeleton path x /  � using other paths
in ¬ (i.e., procedure COMPUTECONSTRAINTS in Figure 2).
We first consider the discovery of explicit path constraints,
i.e., constraints that can be inferred directly from the AFT
information and the projections of other skeleton paths in ¬ýî/  �onto x�/  � . We then discuss the more subtle case of implicit
path constraints.
Explicit Path Constraints. Consider any switch � on thex /  � skeleton path. Using the AFT information from � we
can readily define the path constraint yþ§n�5�
(H�}©)�T§!����*+�$©ù� ,
basically stating that the two ports of � on the path from ( to* must be contiguous and the port facing ( must precede that
facing * . We add these constraints to ® for all nodes ��Ò�ä()�+*
on the x /  � path.

Further, consider any (intersecting) skeleton path x�¥l ê��¬ î/  � and its projection x /  �¥l ê onto x /  � . As mentioned earlier,
such a projection defines a valid skeleton representation for a
segment of the true (j1L* path in � and, thus, defines additional
contiguity and order constraints on x /  � . More specifically, for
all projections x /  �¥V ê �ú§Dz | �$z ~ �OÿnÿOÿn�$z � © , we augment ® by
adding the path constraints y�z � �}z �oû |L� for all ��� %l�OgngOgn� �
(where, we assume z0� û |��ä� to cover the case

� �¨% ).
Implicit Path Constraints. Abstractly, implicit path con-
straints on x�/  � are obtained through the intersection of two



or more paths with x�/  � as well as other parts of the network
graph � . More specifically, consider the subgraph of � that
is obtained by removing all ports in .2/  � from our network.
Since � is a tree, it is easy to see that this subgraph is
essentially a collection of subtrees � /  � of � such that each� ����/  � is attached to a single connection point (i.e., switch or
hub) on the x�/  � skeleton path. Implicit path constraints result
from the intersection of paths in ¬ î /  � with a given subtree� ����/  � taking advantage of the above “single-connection-
point” observation.

Of course, a problem here is that our algorithm needs
to employ some knowledge about the set of port-ids within
different subtrees in � /  � without knowing their exact topology.
Our algorithm collects this knowledge using a port-aggregation
technique that partitions the ports not included in .0/  � into a
collection � of maximal, disjoint “bins”, such that the ports
in each bin � ��� are guaranteed to be included in a single
subtree of

� �	�j/  � of � . Note that this is only a sufficient
condition, so that port-ids belonging to the same subtree in��/  � can in fact end up in different bins of � in our algorithm.
Nevertheless, this condition still (conservatively) guarantees
that paths in ¬ î /  � intersecting with the same bin � �
�
share a single connection point on xw/  � and, therefore, can
enforce implicit path constraints on xw/  � . Our technique for
aggregating ports into bins relies on the following property,
which follows directly from the fact that our network graph� is a tree.

Property 5.1: Any pair of paths x ¥V ê , x ¤l � not intersectingxt/  � (i.e., x ¥V ê ��x ¤) � ��¬ ð�î/  � ) with . ¥l ê ��. ¤l � Ò�ï� belong to
the same subtree

� ��� /  � .
Thus, all ports on any two intersecting paths in ¬ ðñî/  � can be

safely placed in the same bin in � . Our algorithm works by ini-
tially defining: (1) for every node ��Ò��.2/  � , a bin � � containing
all of � ’s ports, i.e., �ý�Ó� §'��������� ÷ ���#�$��� is a port of �#© ;
and, (2) for every path xt¤) �ï�{¬ ðñî/  � , a bin �L¤) �u� .�¤) � .
The algorithm then forms the final collection of bins � by
iteratively merging any two bins whose intersection is non-
empty until all bins are disjoint (based on Property 5.1).

Given that the port bins � computed above are guaranteed
to connect to a single point of the x /  � skeleton path, we
can use them in a manner equivalent to subtrees in ��/  � for
computing implicit path constraints on x /  � . Consider two
(intersecting) paths xt¥l êl�$x�¤) �t��¬ î/  � that also intersect with a
single bin � ��� , and let ó /  �¥l ê and ó /  �¤) � denote their respective
intersections with . /  � . Since � has a single connection point
to x /  � , the segments of . /  � defined by ó /  �¥V ê and ó /  �¤l � have a
common end-point (switch or hub) on the x /  � path. If ó /  �¥V ê
and ó /  �¤) � are disjoint then they are on opposite sides of the
common connection point (Figure 4(a)), so their union ó /  �¥V ê �ó /  �¤) � , defines a contiguity constraint on xw/  � . If, on the other
hand, ó /  �¥V ê and ó /  �¤l � intersect, then they are on the same side
of their common end-point (Figure 4(b)), and one of them
contains the other. Suppose that ó /  �¥V ê� ó /  �¤) � ; then, clearly,ó /  �¥V ê 1äó /  �¤) � also defines a contiguity constraint on x /  � . In
general, given x ¥l ê �$x ¤) � �ò¬ î/  � intersecting with a single
port bin �ö��� , all the implicit contiguity constraints added to
our path constraint set ® are: ó /  �¥l ê �ñó /  �¤) � , ó /  �¥l ê �ñó /  �¤l � , ó /  �¥l ê 1tó /  �¤) � ,
and ó /  �¤l � 1-ó /  �¥V ê (where, of course, empty sets are ignored).

The computed port bins and the single connection point
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Fig. 4. Computing implicit path constraints using bin � .

property can also be exploited to infer order constraints on
the xt/  � skeleton path. Consider two paths x ¥l ê �$x ¤) � ��¬ î/  �intersecting with bin �ö��� , and assume that ó /  �¥l ê and ó /  �¤) � are
disjoint (Figure 4(a)) (the case of intersecting ó /  �¥V ê , ó /  �¤) � can be
handled similarly). The key to determining the order of ó /  �¥l ê
and ó /  �¤) � on the (�1ç* path lies in discovering if one of the two
path segments precedes or succeeds the connection point of the� bin. To describe the two scenarios succinctly, we define the
functions FIRST �
x��$�0� and LAST �?x������ that receive as input a
skeleton path x and a set of ports � , and return the index � of
the first and last (respectively) subset z � ��x that intersects� . It is easy to see that if FIRST �
x ¥l ê ��ó /  �¥l ê ��y LAST �?x ¥l ê ����� ,
then (since the (51w* and pñ1�õ paths have the same orientation)
the segment ó /  �¥l ê precedes the connecting point of bin � and
we can conclude the path constraint yÑó /  �¥V ê ��ó /  �¤) � � . Otherwise,
if LAST �?x ¥l ê ��ó /  �¥V ê �ý� FIRST �
x ¥V ê ����� , then the segment ó /  �¥l ê
succeeds the connecting point of � , giving the path constraintysó /  �¤l � ��ó /  �¥l ê � . (Note that at most one of the above conditions
can hold since, by definition, ���,ó /  �¥l ê �ä� .) If both conditions
are false, then we also check the corresponding FIRST/LAST
conditions for xt¤) � to see if they can determine an ordering
for the two path segments.

Example 5.1: Consider the network depicted in Figure 5(a),
where hosts (i.e., leaf nodes) comprise four different subnets,§n4��+�#© , §H()�+*$© , §np«��õ�© , and §��D���X© , and each switch (i.e., internal
node) comprises a single-element subnet. The complete ele-
ment AFTs are given in Figure 5(b) and the initial collection
of skeleton paths, ¬ , is shown in Figure 5(c). Consider
the path constraints imposed by ¬ on the x ¤l � path. From
the AFT information, we directly conclude the constraintsy§H¡��V©)�O§!¡R|!©�� and yÓ§! !|!©)�O§! T~D©-� . Also, .�¤l � intersects
both .�/  � and . ¥l ê with ó ¤) �¥V ê � §!¡ | © and ó ¤) �/  � �í§!  | ��  ~ © .
Further, since both . /  � and .�¥l ê intersect with the bin ���� �ñ�§��D|H���R|D���'~V�$�O|H�$�}~V���!|H© (resulting from .��� �ç�ä¬,ð�î¤l � ), we have
the implicit contiguity constraint yÔ§!¡ � ��  | ��  ~ ©)����� . It is easy
to see that the only 401L� path arrangement satisfying the above
constraints is xt¤) �L�wyï§!4 |H©)�O§!¡��H©)�O§!¡R|n©)�O§! n|n©X�T§H T~D©X�T§n�)|!©t� .

Now, consider path x /  � . Through the intersection of . /  �
and . �� � , we conclude the (explicit) contiguity constraintyï§H��|H���'~l���O|D���}~V©)����� . Also, through the intersection of .2¤l �
and .�¥l ê with both . /  � and the bin ���,� §!¡R|H��¡)~l��¡��D© , we in-
fer the (implicit) contiguity constraint yä§D� | ��� ~ ��  | ��  ~ ©)�$�ª� .
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Fa1={r,s} Fa2={q,t}
Fb1={s,x} Fb2={t,z}
Fc1={s,u} Fc2={t,v}
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Fr1={q} Fq1={r}

(a) The considered network. (b) The complete AFTs.
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Fig. 5. An example of implicit contiguity and order constraints.

These two constraints are not sufficient to define the port order
on . /  � since both (L1s��1s�K1s �1�* and (ý1s ,1s��1��ô1�*
satisfy them. However, with the knowledge of the complete4 1�� path (above) we can infer an additional implicit order
constraint; specifically, since ó /  �¤) � and ó /  �¥V ê are disjoint and
LAST �
x ¤) � ��ó /  �¤) � �2�Ôfw� FIRST �
x ¤) � ��� � �0�Ô& , the connection
point of ��� must precede the   node on the (K1-* path. This
implies the constraint yÑó /  �¥V ê ��ó /  �¤l � �ä�¦yä§H�O|H���}~V©)�T§H n|!�� T~D©t�
which, in turn, uniquely identifies the underlying (�1�* path as(�1-��1��A1v �1v* .

The detailed pseudo-code for our COMPUTECONSTRAINTS
procedure is depicted in Figure 6. As is also clear from the
discussion in Example 5.1, it may be impossible to use our
path constraints to infer the complete path topology for a
given skeleton path in ¬ unless some other path(s) in ¬ have
been appropriately refined (e.g., consider xw/  � and x ¤l � in
our example). A key problem here stems from our partial
knowledge of the ports that lie in the “single-connection-point”
bins used to infer implicit constraints. Thus, our solution
(Figure 2) needs to employ iterative-refinement passes over
all skeleton-paths in ¬ until no further path refinements are
possible.

VI. THE SKELETON-PATH REFINEMENT ALGORITHM

Once our topology-discovery algorithm has computed the
set of path constraints ® imposed on the xw/  � skeleton path,
it invokes the REFINEPATH procedure (Step 7 in Figure 2)
to “refine” the ordering of the port-ids in the . /  � set using
the newly-discovered constraints. Our REFINEPATH algorithm
(described in detail in this section) is a recursive procedure
that receives as input the collection of port-ids . along the
network path being considered, as well as a collection of path
constraints ® on the arrangement of those ports. Its output is
a skeleton path x �wyÐzA|D�$z2~l�OgngOgT�}z2�í� over the ports in. that satisfies all the constraints in ® . Furthermore, as we
demonstrate analytically later in this section, if the constraint
collection ® uniquely defines the port order for . then every
subset z0� in the output path x comprises a single port in

procedure COMPUTECONSTRAINTS( ¾ [ S G , ° )
1. °��[ S G ± � ¾ ` S a Ü ¾ ` S a ¿ ° and À ` S a ã�À [ S G Ï±�å#�
2. ° �!�[ S G ±ï° Þ ° �[ S G
3. Ëª± � æ �}Û ² Ø ¹È�D´ �TÛ ²<Ù�¹È�Kè Ü "RÛ Ï± Ø ´FÙ on the

Ø Þ Ù path �
4. for each ¾ ` S a ¿ ° �[ S G do // Note that ¾ [ S G ¿ ° �[ S G
5. Compute the projection ¾ [ S G` S a ± � Ê$#T´&%�%&%$´�Ê('��
6. Ë�±�Ëçé � æ-Ê # ´Èå�è��
7. for )�±+* to , do
8. Ë�±-Ë�é � æ-Ê.-0/ # ´+Ê1-�è��
9. endfor
10. // Compute the port-bin collection 2
11. 2 =

�!� À43 S Q � Ü ¾53 S Q ¿ ° �!�[ S G �ýé�n�
all ports ² Û ´76)¹È� Ü Û ¿ôÝ�Þ À [ S G �

12. while there are 89#$´78;: ¿ 2 s.t. ( 85# ã<8;: Ï±�å ) do
13. 2�±=2 Þ � 85#}´78;:T��é �!� 85# é>8;:}�n�
14. // Discover implicit path constraints on ¾ [ S G
15. for each ¾ ` S a ´+¾ 3 S Q ¿ ° �[ S G and 8 ¿ 2 s.t. [ ( ? [ S G` S @ Ï±A? [ S G3 S Q )

and ( À ` S @ ãB8 Ï±�å ) and ( À43 S Q ãB8 Ï±�å ) ] do
16. Ë�±ÑË�é � æC? [ S G` S a é<? [ S G3 S Q ´�å�è�´$æ�? [ S G` S a ã>? [ S G3 S Q ´Èåôè�´æ�? [ S G` S a Þ ? [ S G3 S Q ´�å�è�´$æ�? [ S G3 S Q Þ ? [ S G` S a ´Èå�è��
17. if ( ? [ S G` S a ã<? [ S G3 S Q ±�å ) then
18. if [ FIRST ²�¾ ` S a ´D? [ S G` S a ¹�æ LAST ²�¾ ` S a ´78L¹ or

LAST ²�¾53 S Q ´D? [ S G3 S Q ¹�è FIRST ²�¾93 S Q ´78,¹ ] then
19. Ë�±-Ë�é � æC? [ S G` S a ´E? [ S G3 S Q è��
20. else if [ FIRST ²�¾53 S Q ´7? [ S G3 S Q ¹ñæ LAST ²�¾53 S Q ´78,¹ or

LAST ²�¾ ` S a ´E? [ S G3 S Q ¹�è FIRST ²�¾ ` S a ´78L¹ ] then
21. Ë�±-Ë�é � æC? [ S G3 S Q ´D? [ S G` S a è��
22. endif
23. else // i.e., ? [ S G` S @ ã<? [ S G3 S Q Ï±�å , assume ? [ S G` S @5F ? [ S G3 S Q
24. if [ FIRST ²�¾ ` S a ´D? [ S G` S a ¹�æ LAST ²�¾ ` S a ´78L¹ or

FIRST ²�¾ 3 S Q ´D? [ S G3 S Q ¹�æ LAST ²�¾ 3 S Q ´78,¹ ] then
25. Ë�±-Ë�é � æs²G? [ S G` S a Þ ? [ S G3 S Q ¹�´E? [ S G3 S Q è��
26. else if [ LAST ²�¾ ` S a ´D? [ S G` S a ¹ñè FIRST ²�¾ ` S a ´H8L¹ or

LAST ²�¾ 3 S Q ´D? [ S G3 S Q ¹�è FIRST ²�¾ 3 S Q ´78,¹ ] then
27. Ë�±-Ë�é � æC? [ S G3 S Q ´}²G? [ S G` S a Þ ? [ S G3 S Q ¹�è��
28. endif
29. endif
30. endfor
31. return Ë

Fig. 6. The COMPUTECONSTRAINTS Procedure.

. (i.e., x defines the complete port order for the considered
network path).

Abstractly, our REFINEPATH algorithm consists of three
key steps: (1) Mapping the path-constraint collection ® to a
collection of contiguity constraints I ; (2) Using I and ® to
construct an auxiliary skeleton path J ; and, (3) Recursing the
refinement process on each subset of the auxiliary skeleton
path J to obtain the output skeleton path x . Intuitively,
the set of contiguity constraints I enable us to identify
segments of port-ids on the target path that are “connected”
through the given set of constraints; these are basically the
only (sub)paths for which we stand a chance to recover a
complete port order (using the given constraints). The subsets
in the auxiliary skeleton path J are then constructed using the
derived contiguity constraints I : the goal here is to ensure
that our refinement algorithm can safely recurse within each
individual subset of J while only considering the constraints
“local” to this subset. Further, the path constraints in ® are
used to determine the order of subsets in J . Finally, we recurse
on each subset of J and concatenate the skeleton (sub)paths
returned to obtain the final skeleton path x .

In the remainder of this section, we first describe the con-



struction of the contiguity constraint set I and the auxiliary
skeleton path J . Then, we discuss our overall REFINEPATH
algorithm in detail.
The Contiguity Constraint Set I and Connected Port
Groups. The set of contiguity constraints I essentially con-
tains all the contiguity constraints that can be directly inferred
from the input set of path constraints ® . (To simplify the
exposition, we will treat I as a set of port-id sets, i.e., eachK �LI is a set of ports.) To ensure that I covers all ports
in . we add singleton constraints for each port in . ; we also
exclude from I the “trivial” contiguity constraints . and � .
Thus, we define:

Iò�ù§D� |� �$� ~� �$� |� �8� ~� ÷ M yÑ� |� ��� ~� ��� ®K©��§l§H�5© ÷ M ����.�©K1s§!.ñ���«©Xg
We say that two sets

K � KON �PI are connected in I if
there exists a sequence of sets

K |:� K � K ~l�OÿOÿnÿT� K "s� K N
in I such that

K �0Q | intersects
K � for every �u�Ó&��OgOgngT��� .

A sub-collection RucSI is called a connected group in I if
every pair

K � K N �TR is connected in R and any
K ��R is not

connected with any set in I�1UR . We also define Vù� Á>W�XZY K ,
i.e., the union set of the collection R . It is easy to see that the
union sets of all connected groups of I are disjoint and form
a partition of . . The following lemma uses the concept of
connected port groups to describe a necessary condition for
the given set of path constraints to define a unique port order
over . .

Lemma 6.1: If the path constraints ® uniquely determine
the arrangement of ports in . then the derived contiguity
constraints I satisfy one of the following two conditions: (a)I comprises a single connected group; or, (b) I contains
two connected groups R | �HR ~ ø[I and ® contains the path
constraint y\V�|D��V�~�� or y]V�~)��V�|,� , where V � is the union
set for group R � .

Intuitively, the above theorem states that, in order for ®
to determine a unique arrangement of . , the contiguity and
order constraints in ® should span the entire set of ports in. ; otherwise, there would certainly be segments of the path
where the port arrangement cannot be determined based on
the constraints. Note that Case (b) in Theorem 6.1 could only
arise when V�| �BV�~L�Ô. , since we have excluded the (trivial)
contiguity constraint . from I .
The Auxiliary Skeleton Path J . Consider a connected groupR in I , and let V�c . denote its union set. Our goal is
to construct a valid port arrangement for the ports in V using
the given set of path constraints. Intuitively, our algorithm will
accomplish this by building a (coarse) auxiliary skeleton pathJä�wy�z | �ngOgngO�$z5^ _(^�� and then recursing on each subset zA�
of J , concatenating the results of the recursive calls. However,
to be able to recurse independently on each z � subset using
only its “local” set of path constraints, this auxiliary skeleton
path J needs to be constructed carefully. Our construction is
based on the concept of Intersecting, Non-Containing (INC)
port sets that we formally define here.

Definition 6.1: Two port sets
K �+� K �Óø . are said to

be Intersecting, Non-Containing (INC) if and only if they
intersect and neither one of them contains the other, i.e.,K �j� K ��Ò�ä� ,

K ��Òc K � , and
K ��Òc K � .

It is easy to see that having a contiguity constraint
K

in R
that is INC with one of the subsets z � in our skeleton pathJ essentially means that we cannot independently recurse on
that z2� subset. The problem, of course, is that

K
would also

intersect neighbors of z � in J and the ports in these sets inter-
sected by

K
cannot be arranged independently since that would

not guarantee that
K

is satisfied in the final (concatenated)
arrangement. On the other hand, recursing on z � is simple ifK

is fully contained in or contains z�� : in the former case,K
is simply passed as an argument to the recursive call and

in the latter
K

has no effect on the arrangement of z � sincez � is already required to be contiguous (by the skeleton path
definition). Thus, we would like to build an auxiliary path J
that is INC-free for R as defined below.

Definition 6.2: We say that the skeleton path J �wyz | �OgngOgT�}z`^ _(^�� is INC-free for R if and only if for every
contiguity constraint

K �aR either (a)
K

is contained in a singlez � �+J (i.e.,
K c�z � for some � ); or, (b)

K
is equal to the

union of a (sub)sequence of subsets in J (i.e.,
K � Á "&b��c "0d z��

for some %Oeu�'|feÑ�l~Oe ÷ J ÷ ).
The method we use for building a skeleton path J that is

INC-free for R is as follows. Initially, we find the largest port
set

K � �AR and any set
K � � K that is INC with

K � . (Note
that two such sets must exist since R is a single connected
group and the trivial contiguity constraint V is ignored.) From
these two sets, we construct an initial skeleton path with three
subsets JÔ�wy K ��1 K �l� K ��� K �l� K ��1 K ��� . (At this point,
the orientation of the J path is arbitrary; it is resolved using
the given path constraints ® after the whole INC-free path has
been built.) Let J��wyïz | �ngOgOgO�$z`^ _g^R� denote the current state
of our skeleton path and let . _ be the set of all ports in J .
While there exists a set

K ��R that is INC with . _ or one of
the subsets z��ý��J (e.g., Figure 7(a)) our algorithm performs
the following operations. First, every z�����J that is INC withK

is replaced by the two subsets z � 1 K and z � � K . The order
of these two subsets in J is determined as follows. If �ôy ÷ J ÷
and

K
intersects z���û | , or �ª� ÷ J ÷ and

K
does not intersectz �0Q | , then z � 1 K precedes z � � K in J (e.g., the split of z0~

into z N~ and z N� in Figure 7); otherwise, the two subsets are
inserted in the opposite order in J . Second, suppose that

K
and . _ are INC; this implies that

K
contains nodes that are

not included in the current skeleton path J . After the above
splitting of z�� ’s based on

K
, it is easy to see that

K
must

completely contain either the first or the last subset of J . Ifz�|,ø K then we insert the set
K 1�. _ as the first set of J , i.e.,J��wy K 1�. _ �ShiJ (where “ h ” denotes path concatenation);

otherwise, we set J��SJ;hty K 1ª. _ � (e.g., attaching z Nj toJ in Figure 7). Finally, we update the set . _ �Ô. _ � K , and
return to select a new contiguity constraint

K
.

Lemma 6.2: Given a single connected group of contiguity
constraints RsckI , the above-described procedure constructs
a skeleton path for V that is INC-free for R .

Remember that we built the INC-free path J without paying
attention to its orientation. Thus, at this point, either J or
REVERSE( J ) is the correct skeleton path for V (where the
REVERSE function simply reverses the subset order in a given
skeleton path). As will become clear in the description of our
refinement algorithm, we resolve the orientation for J using
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contiguity constraint R

s t
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(a)

(b)

Fig. 7. Building an INC-free auxiliary skeleton path l .

the input set of path constraints ® .

The REFINEPATH Algorithm. The detailed pseudo-code for
our REFINEPATH procedure is depicted in Figure 8. In its
first phase (Steps 2-6), REFINEPATH builds the collection
of inferred contiguity constraints I on . and the resulting
connected port groups, and applies Lemma 6.1 to decide if ®
can define a unique port arrangement for . . If we discover
more than & connected groups then, by Theorem 6.1, our
algorithm cannot hope to build a skeleton path with ordered
subsets of . so it simply returns the trivial skeleton pathJ��wyd. � . If we find exactly two connected groups (with
union sets V�| and V�~ ) in I then procedure ORIENTPATH
(described in detail below) is invoked to determine the correct
ordering of V | and V ~ in the skeleton path using ® ; then,
in Steps 30-37 our algorithm recurses on the two union setsV | and V ~ to determine their internal port arrangements and
appropriately concatenates the resulting subpaths. Finally, ifI comprises a single connected port group then REFINEPATH
builds the auxiliary INC-free skeleton path J as described
earlier in this section (Steps 11-26) and uses the ORIENTPATH
procedure to determine the correct orientation for J ; then,
again using Steps 30-37, REFINEPATH recurses on each (non-
singleton) subset z�� in the J path using only the constraints
local to that subset (i.e., constraints yu� |� �$� ~� ��� ® such that� |� �:� ~� cdz � ) and concatenates the results of the recursive
calls to build the final output path x .

The ancillary ORIENTPATH procedure (shown in Figure 9)
uses the original set of path constraints ® in order to identify
the correct direction for an input skeleton path J . ORIENT-
PATH relies on the two functions FIRST �mJK�$�0� and LAST �nJK�$�0�
introduced in Section V for identifying the index of the
first/last occurrence of an element of � in the J path. More
specifically, consider a path constraint y � |� �$� ~� ���ü®
such that FIRST( JK�$� |� ) y LAST( JK��� ~� ); then, clearly, since
the constraints in ® characterize a true network path, the
ports in � |� should precede those in � ~� and, thus, J is the
correct skeleton path. Similarly, if there is a path constraintyÔ� |� �$� ~� ����® such that FIRST( JK�$� ~� ) y LAST( J���� |� ), then
the correct path is REVERSE( J ). Otherwise, if no constraint in® can determine the direction of the J path then ORIENTPATH
simply returns a trivial single-set skeleton path.

The following theorem establishes the correctness of our al-
gorithm, demonstrating analytically that REFINEPATH always
recovers the correct topology for the input ports . as long
as it can be identified uniquely from the given set of path
constraints ® .

Theorem 6.1: The REFINEPATH algorithm returns a fea-
sible skeleton path for the port collection . . Further, if® uniquely defines the port arrangement in . , then the

procedure REFINEPATH( À , Ë )
1. o3±,ævÀÑè
2. p =

�rq #s ´ q :s ´ q #s é q :s Ü " æ q #s ´ q :s è ¿ Ë0�é �!� 6'� Ü " 6 ¿ À�� Þ � À2´+å#�
3. t = p
4. while there exist u s Ï±Au - ¿ t s.t. u s ã<u - Ï±�å do
5. t = t Þ � u s ´7u - ��é � u s é<u - �
6. endwhile
7. if

Ü t Ü èv* then return( o )
8. else if ²wt�± ��x # ´ x : �O¹ then
9. o = ORIENTPATH( æ x # ´ x : è , Ë )
10. else // p comprises a single connected group
11. u s = the largest set in p
12. u�- = set in p that is INC with u s .
13. o = æCu s Þ u$-H´7u s ë u�-D´7u�- Þ u s è ; Àzy = u s Á+u�-
14. while there exist u ¿ p s.t. [ ( u and À(y are INC) or

( u and some Ê1- ¿ o are INC) ] do
15. for each Ê - ¿ o that is INC with u do
16. if [ ()ýæ Ü o Ü and Ê -�{ # ã<u Ï±�å ) or

()�± Ü o Ü and Ê -|/ #5ã>u�±�å ) ] then
17. replace Ê - with æ�Ê - Þ u,´+Ê - ã<uuè .
18. else replace Ê1- with æ�Ê.-2ã>u�´�Ê1- Þ uuè .
19. endif
20. endfor
21. if u and Àzy are INC then
22. À4y�±�ÀzyLé<u
23. if ( Ê�#~}Cu ) then o = ævu Þ À y èv�ro
24. else o = o��,æCu Þ À y è
25. endif
26. endwhile
27. o = ORIENTPATH( o , Ë )
28. endif
29. if

Ü o Ü ±]� then return( æªÀÑè )
30. ¾s±A� // the empty path
31. for )�±]� to

Ü o Ü do
32. if (

Ü Ê1- Ü ±]� ) then ¾ = ¾9��æ-Ê1-�è
33. else
34. Ë�- =

� æ q #s ´ q :s è ¿ Ë such that
q #s é q :sf� Ê.-H�

35. ¾ = ¾9� REFINEPATH ²
Ê1-T´FË�-O¹
36. endif
37. endfor
38. return( ¾ )

Fig. 8. The REFINEPATH Procedure.

REFINEPATH algorithm is guaranteed to return the (unique)
correct path topology.

VII. INFERRING THE NETWORK TOPOLOGY

The final step of our topology-discovery algorithm is to use
the data in the resolved skeleton paths in order to infer the con-
nectivity information for switches and hubs in the underlying
network (procedure FINDCONNECTIONS in Figure 2). Given a
set of resolved skeleton paths (i.e., path for which a complete
port arrangement has been determined), the procedure for
inferring element connectivities is fairly straightforward: Ports
that are adjacent on some path are directly connected; and, if a
port has more than one neighbor in the resolved paths, then a
hub is placed to interconnect that port with all its neighboring
ports (as well as all other ports connected to ports already on
the hub).

The following theorem identifies a strong completeness
property of our proposed topology-discovery algorithm and
is the main theoretical result of this paper. Due to space
constraints, a sketch of the proof can be found in the appendix;
the complete details can be found in the full version of this



procedure ORIENTPATH( o0´¶Ë )
1. for each æ q #s ´ q :s è ¿ Ë do
2. if ( FIRST( o2´ q #s ) æ LAST( o2´ q :s ) ) then return( o )
3. else if ( FIRST( o2´ q :s ) æ LAST( o0´ q #s ) ) then
4. return(REVERSE( o ))
5. endif
6. endfor
7. return( ævÁ Â��}Ä y Ê1-�è )

Fig. 9. The ORIENTPATH Procedure.
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Fig. 10. An example execution of our algorithm.

paper [9]. To the best of our knowledge, this is the first result
of this type in the area of SNMP-based physical topology
discovery.

Theorem 7.1: Our topology-discovery algorithm (depicted
in Figure 2) runs in time that is polynomial in the number
of network nodes and is complete for the given AFT and
subnet information. That is, if the input SNMP and subnet
data is sufficient to uniquely identify the physical topology of
the underlying network, then our algorithm is guaranteed to
recover that (unique) topology.

VIII. AN EXAMPLE EXECUTION

In this section, we present some key steps of our topology-
discovery algorithm in inferring the topology of the example
network depicted in Figure 10(a), where we assume that the
hosts comprise four different subnets §H()��*$© , §!p«���#© , §n4��+�#©
and §��D���X© , and each switch � , � ,   , ¡ , ¢ belongs to a
different subnet. Our goal is to demonstrate how our algorithm
accumulates partial topology information during skeleton-path
refinement iterations until the complete network topology is
recovered. Let ¬ � denote the skeleton-path collection at the
end of the � -th iteration ( ¬9� is the initial set). To simplify
our discussion, we assume that refinements during the � -th
iteration only use skeleton paths in ¬ �nQ | .

The initial skeleton path collection ¬U�ï� §�x�� /  � �Kx�� ¥l � �x�� ¤) � �jx���� � © is shown in Figure 10(b). Suppose that our paths
are refined in the order .�/  � ��. ¥V � ��. ¤) � , and . �� � . For x�� /  �we compute the collection of path constraints ® |/  � :

® |/  � �
������� ������

q # ±,æ �OØ �T�D´ �|� �!´ � *V´D�r�!´D�&*V´7�r�!´7�|*D´�º��!´Èº�*!�5è�´q : ±,æ �|� �!´ � *V´E���!´E�|*V´7�r�!´7�&*V´�º��n´Èº�*H�D´ � Ù��T�5è�´q.� ±,æ � �r�!´D�&*V´D�r�!´7�&*V´Èº��!´Fº�*H�D´+å�è�´q.� ±,æ � ���n´D�|*D´D���n´7�|*!�D´+å�è�´q1� ±,æ �0� �n´ � *V´7�r�!´D�&*H�D´+å�è�´q.� ±,æ �0� �T�D´ �|� *!�5è�´ q�� ±,æ � ���O�H´ � �&*H��è�´q.� ±,æ � �r�O�D´ � �|*!�5è�´ q.� ±,æ � º��T�D´ � º�*H��è

� ������
������
�

where � | 1w� j follow from the intersections of xw/  � with paths
in ¬5� (including x�/  � itself), and �z�«1��z� come from the AFT
information at intermediate nodes.

To refine . /  � , we use ® |/  � to compute the INC-free
auxiliary path J�/  � � y §H()%V©X�T§!��%)���R&R�$�H%l�$�T&R�� D%l�� O&'��¡#%l��¡X&'©)�§n*}%l© � which has the correct orientation (by con-
straints �«| , � ~ ). We then recurse on the subset z�~þ�§!��%)���R&R�$�H%l�$�T&R�� D%l�� O&R��¡j%)��¡'&'©Ô��J , and use the constraints
“local” to z0~ (i.e., �(��1s� j ) to compute the subpath J N �wy§!��%)���R&'©X�T§H�D%l���O&'©)�O§! D%l�� O&R©l�T§H¡j%V��¡X&R©�� . Unfortunately, at this
point, ORIENTPATH cannot use the input constraints to deter-
mine the correct direction for J N , so it siply returns the set z�~ ,
which means that the skeleton path returned by REFINEPATH
is exactly the same as xO� /  � .Next, for xO� ¥l � , we compute the path constraints ® |¥V � :

® |¥l � �
������� ������

q #�±,æ �0� �O�D´ � ���n´D�|*D´7���n´7�|*V´Fº��!´Èº�*V´�½�*D´È½��O��è�´q :0±,æ � �r�!´D�&*V´7���n´D�|*D´Èº��!´�º�*D´+½r*V´È½��O�H´ �0  �O��è�´q.� ±,æ � �r�!´¡�|*V´7�r�!´7�&*V´�º��n´Èº�*H�D´�å�è�´q1� ±,æ � ���n´D�|*D´D���n´7�|*V´+½��T�D´Èå�è�´q�� ±,æ � ���n´E�|*!�D´+å�è�´q � ±,æ � ���T�D´ � �|*!�5è�´ q � ±,æ � �r�O�D´ � �|*!�5è�´q � ±,æ � º��O�H´ � º�*!�5è�´ q � ±,æ � ½r*H�H´ � ½��T�5è

� ������
������
g

To refine .�¥l � , REFINEPATH computes the INC-free aux-
iliary path J ¥V � �wy §np�%V©X�T§H�D%l���O&R�� V%l�� n&R��¡#%l��¡X&���¢D&'��¢)%V©)�§n�5%l©Ó� , and recurses to refine its second subset z ~ �§H�D%l���O&R�� V%l�� n&R��¡#%l��¡X&���¢D&R��¢X%V© � J�¥l � . Using constraints� � ���4¢)��� j and �z� , it computes the subpath J N � yä§!¡#%l��¡X&R©)�§H�D%l���O&R�� V%l�� n&'©)�O§!¢X%V©X�T§n¢D&X©�� . Then, by constraint �(� , ORI-
ENTPATH concludes the reverse direction for J N , returning
the final subpath y�§!¢D&R©)�T§H¢X%V©)�O§H�H%)���T&��� D%l�� O&R©l�T§H¡j%V��¡X&R©�� .
Additional recursive calls resolve the port order for sub-
set §!¡#%l��¡X&R© but not for subset §H�H%)���T&��� D%)�� O&R© ; thus,
the final pö1� skeleton path returned is x |¥l � � y§!¢D&R©)�T§H¢X%V©)�O§H�H%)���T&��� H%)�� O&X©X�T§n¡#%V©)�T§!¡'&'© � . The other two re-
fined skeleton paths x |¤) � and x |�� � are computed similarly,
and the path collection ¬ | is shown in Figure 10(c).

Note that, after the first refinement iteration, none of the
paths in ¬ | specifies a complete arrangement. However, as
we now show, the refined path x |¥V � � ¬ | allows us to
refine x /  � in the second iteration of our algorithm. Consider
the set of path constraints ® ~/  � computed for x /  � during the
second iteration. This set is identical to ® |/  � , with the excep-
tion of constraint � � (resulting from the projection of x ¥l �
onto x /  � ); more specifically, constraint �(� for this second
iteration over x /  � is �z�Ñ�wy §)§H�H%)���T&��� D%)�� O&R©)�T§H¡j%)��¡'&'©�� .
Thus, after REFINEPATH recomputes the subpath J N �y §H��%l���R&R©)�T§D�H%l�$�T&'©X�T§H D%V�� n&'©l�O§!¡#%V��¡'&'© � , constraint �(�
can now be used by ORIENTPATH to determine the cor-
rect direction for J N , and the resulting ( 1�* skele-



ton path returned is x ~ /  � � y §H()%l©)�ù§!��%V©X� §!�R&'©X�§H�H%l©)�T§D�T&'©X�T§H D%V©X�T§! n&X©)�O§n¡j%l©)�}§H¡X&R©l�T§!*}%D©�� (Figure 10(d)).
In its third iteration, our topology-discovery algorithm ac-

tually recovers the complete port arrangement for all skeleton
paths as shown in Figure 10(e). Finally, the FINDCONNEC-
TIONS procedure uses the resolved paths to discover the
element connectivities depicted in Figure 10(f). It is easy to
see that the connections discovered specify exactly the true
network topology shown in Figure 10(a).

IX. CONCLUSIONS

Automatic discovery of physical topology information plays
a crucial role in enhancing the manageability of modern IP
networks. In this paper, we have proposed the first complete
algorithmic solution for discovering the physical topology of
a large, heterogeneous Ethernet network comprising multiple
subnets as well as (possibly) dumb or uncooperative network
elements. Our proposed algorithm relies on standard SNMP
MIB information that is widely supported in modern IP
networks and is the first SNMP-based topology-discovery tool
to offer strong completeness guarantees for recovering the true
network topology from the given MIB data.
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APPENDIX

Proof Sketch for Theorem 7.1. Let ¬U� be the initial collec-
tion of skeleton-paths calculated by the INITSKELETONPATHS
procedure and let ¬ � , �t��h , be the skeleton-path collection
at the end of the � -th iteration. Initially, we prove that the
skeleton-path collection ¬ � , for every ��£h , comprises all
the AFT information. We consider the connecting tree

� ð
of every subnet b and we construct an iterative algorithm
that computes the complete AFTs for subnet b of every node�s� � ð . The algorithm first populates the AFTs of node �
with the end-points of the skeleton-paths comprising � . Then,
iteratively, it finds which port of � leads to the nodes of the
other skeleton-paths in

� ð . As a result, any topology that
satisfies the skeleton-path constraints also satisfies the network
AFT information.

Next, we consider our REFINEPATH procedure and we
prove that if the constraint collection ® uniquely defines
the port order of the path ¤. , then this procedure returns
the correct and complete path topology. This theorem results
from the recursive behavior of the REFINEPATH procedure.
The procedure constructs an auxiliary skeleton path J�wyz | �OgngOgT�}z`^ _(^w� by using only the contiguity constraints in® , such that every pair of z � �$z � �¥J , � Ò� � are INC-
free. Thus, the internal arrangement of the ports in every
set z2�ç�PJ does not affect the port order of any other setz � �CJ . This enables the procedure to recursively refine any
set z � ��J until sets with single port-ids are obtained. At this
point, either J or REVERSE( J ) is the correct skeleton path
for ¤. . By employing the order constraints in ® , the ancillary
ORIENTPATH procedure identifies the correct direction of J
at the end of each invocation of the REFINEPATH procedure.

For completing the proof, we only have to show that our
COMPUTECONSTRAINTS procedure computes all the contigu-
ity and order constraints that are essential for determining the
network topology. We consider first the contiguity constraints.
Since such constraints essentially result from path-intersection
operations, we show that all the contiguity constraints can be
deduced directly from the initial skeleton paths, ¬f� .

Identifying all the required order constraints in more chal-
lenging task. Recall that the order of a skeleton path J | may
be enforced by the order of another skeleton path Jñ~ as a result
of an implicit order constraint (even when the two paths do not
have any port-id in common). In such cases, we can determine
the required order constraints of J�| only after refining the
skeleton-path JA~ . We resolve this problem as follows. For
simplicity, we assume that all the skeleton-paths are computed
in advance without determining their directions and let ¦
denote the collection of computed skeleton-paths. Then, we
divide ¦ into disjoint sets §�¦ | �H¦ ~ ��gngOgn�H¦ §ª© such that: (a) for
every pair Jñ|H��J�~ý��¦�" , �ç�=¨C%l�OgngOgn��©kª , the orderings of pathsJ�| and JA~ are dependent (i.e., ordering one path determines
the order of the other); and, (b) for any pair J | �«¦ " ,J�~ý��¦�"0¬ , �ªÒ�ï� N , paths Jñ| and J�~ are order-independent. We
prove that each such set ¦ñ" has the following two properties:
(a) Every ¦ " induces a connected component; in other words,
for every J N ��J N N �¦�" there is a sequence §®Jñ|-�¯J N ��J�~l�gOgngT��J~°��±J N N © such, that for every �K�	¨C%l�ngOgOgO�n�n²«1Ñ%!�Eª , pathsJ�� and JA�oû | intersect; and, (b) If ® defines a unique network
topology then every ¦�" contains at least one explicit order
constraint. By using these two properties, we can show that
the do-while loop of our TOPOLOGYDISCOVERY algorithm
ensures the inference of all explicit order constraints for each
skeleton-path. Finally, we tie all our deductions together and
conclude that if the AFTs define unique network then our
TOPOLOGYDISCOVERY algorithm will identify it.

Our running-time analysis is based on the observation that
the number of skeleton-paths and path constraints that our
TOPOLOGYDISCOVERY algorithm computes are ³���� ~ � and³���� � � , respectively. The algorithm contains several finite
loops, where set operations are performed on the skeleton-
paths or the constraints. Therefore, our algorithm’s running
time is polynomial and, in fact, it is comparable to that of
existing techniques for layer-2 topology discovery [8], [7].


