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Abstract: Biological networks are often described as probabilistic graphs in 
the context of gene and protein sequence analysis in molecular biology. 
Microarrays and proteomics technologies facilitate the monitoring of 
expression levels over thousands of biological units over time. Several 
experimental efforts have appeared aiming to unveiling pairwise interactions, 
with many graphical models being introduced in order to discover associations 
from expression-data analysis. However, the small size of samples compared to 
the number of observed genes/proteins makes the inference of the network 
structure quite challenging. In this study, we generate gene–protein networks 
from sparse experimental temporal data using two methods, partial correlations 
and Kernel Density Estimation (KDE), in an attempt to capture genetic 
interactions. Applying KDE method we model the genetic associations as 
Gaussians approximations, while through the dynamic Gaussian analysis we 
aim to identify relationships between genes and proteins at different time 
stages. The statistical results demonstrate valid biological interactions and 
indicate potential new indirect relations that deserve further biological 
examination for validation. 
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1 Introduction 

In recent years, the description of genome sequences has resulted in large amounts  
of gene and protein expression data. The simultaneous examination of thousands 
genomic units gave a new perspective in the field of bioinformatics as it made possible 
the study of biological networks. Common approaches to systems biology are based on 
mathematical representation of biological processes aiming at a deeper understanding of 
biochemical interactions between genes and genes products. 

The latest high-throughput microarray technologies allow the simultaneous 

measurements of expression levels. These technologies have given insight into microbiology 
since its invention (Schena et al., 1995) with large amount of data being generated. The  
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extended study of these data sets has provided a new perspective in gene–gene network 
association studies with the network construction from experimental data being a 
promising approach in modelling functional processes. 

While a variety of computational methods have been considered for constructing 
gene–protein networks from observational expression data, such as linear models (Deng 
et al., 2005), Boolean network models (Huang, 1999; Shmulevich et al., 2002), Bayesian 
networks (Friedman et al., 1999; Friedman et al. 2000; Imoto et al., 2003; Kim et al., 
2003), Gaussian networks (Koller and Friedman, 2009; Schäfer and Strimmer, 2005a), 
which aim to provide suitable mathematical models for describing stochastic network-
like associations and dependence structures in complex high-dimensional data. In addition, 
dynamic graphical approaches have been introduced that model time dependencies and 
reveal an interactive behaviour between different time slices (Cho et al., 2008; Kim et al., 
2003; Zou and Conzen, 2005).  

Although graphical models are promising for interaction analysis, their main 
drawback is their limited performance when the experimental data are insufficient. This 
problem has two aspects: first, the lack of experimental samples (genes/proteins) when 
the number of the features under examination has greatly increased. More precisely, in a 
typical microarray data set the number of genes exceeds by far the number of sample 
points that correspond to a gene. This makes the estimation of a network structure a 
challenging problem due to the uncertainty of calculation of the correlation matrix 
(Schäfer and Strimmer, 2005b; Wong et al., 2003). Second, the information contained  
in expression data is limited by tissue quality, the experimental design, noise, and 
measurement errors. These factors negatively affect the estimation of causal relationships 
in network structure and the derivations of dependencies enclosed between neighboured 
genes/proteins (Wong et al., 2003). 

A common graphical representation scheme is the Gaussian model firstly introduced 
by Waddell and Kishino (2000). However, there is a critical detail in applying Gaussian 
modelling. If the number of samples is far smaller than the number of features, then this 
framework is inefficient. The covariance matrix, embodying the interactions between 
genes/proteins, is often not positive definite, which rendering the computation of the 
partial correlation matrix. 

Given these challenges, it becomes obvious that graphical models need additional 
tools to overcome such obstacles. In this paper, we propose a new methodology for 
modelling dynamic Gaussian Graphical Models (GGM) from sparse data. More 
specifically, we focus on the problem of completing the information loss in time varying 
Gaussian networks through the non-parametric framework of Kernel Density Estimation 
(KDE; Hansen, 2004). Our approach exploits the idea that Gaussian densities describe 
sufficiently biological interactions and that neighbouring gene/proteins can be described 
by conditional probabilities as approximations of Gaussians with non-linear parameters. 
In addition, due to the fact that GGMs are widely known as non-directed graphs,  
we introduce directions based on Bayesian Information Criterion (BIC). This makes 
interactions within the graph conceptually more representative to biological processes. 

The paper is organised as follows. In Section 2, we provide a review of kernel-based 
density estimation and summarise approaches in network construction from experimental 
data. In this section, we also incorporate methodologies for revealing direct associations 
between genes/proteins. We continue in Section 3 by introducing our approach in 
representing non-linear dependencies between genes/proteins using a dynamic Gaussian 
model. In Section 4, we present results in applying the proposed modelling scheme and 
discuss our findings. The final section presents the conclusion and future work. 
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2 Background information 

We explore two approaches for estimating the structure of a gene–protein network. We 
generate two different networks reflecting the different approaches in expressing generic 
interactions between genes and proteins. The first approach focuses on estimating the 
inverse partial correlation matrix through a statistical probabilistic approach of GGM. 
The second approach examines dependency between nodes using a non-parametric 
approximation of the missing experimental data through KDE. After this design step, we 
examine the assignment of directions to the edges of the produced networks using BIC.  

2.1 Gaussian graphical model 

GGMs (Dobra et al., 2004; Wu et al., 2003) are undirected probabilistic graphical 
frameworks also known as covariance selection models. In a GGM network, the 
identification of conditional independence between nodes is based on the assumption that 
nodes follow a Gaussian distribution. In this case, interactions between two variables are  
reduced in estimating the covariance matrix S. Each element in Sik, via ik ik i kS     and 

2 ,ii iS   represents the correlation coefficient ik  between nodes Xi and Xk and 

indicates an association. A good notion of the strength for these interactions is the partial 
correlation matrix (PC) ( )ik  . Its coefficients describe the correlation between nodes 

i and k conditioned on all remaining nodes of the network. In the GGMs, this property is 
reflected in the inverse covariance matrix S, S–1, with elements: 

1

1 1
  ik

ik

ii kk

S

S S




 
   (1) 

Given the experimental data, the covariance matrix is computed and then it is inverted. 
From equation (1) the partial correlations, πik can be easily computed. Significantly small 
values of |πik| indicate conditional independence between i and k given the remaining 
variables in graph. On the contrary, high values of |πik| indicate dependence between i 
and k which contributes to adding an edge between these nodes. 

However, this approach is only applicable if the sample number in data set is larger 
than the number of genes/proteins. Otherwise, the inversion of S is unstable making  
the estimation of S a non-trivial task. To overcome this obstacle, we invert S through 
Moore–Penrose pseudo-inverse (Wu et al., 2003), an approximation of the standard 
matrix inverse, based on the Singular Value Decomposition (SVD). 

2.2 Kernel density estimation 

KDE (Cai, 2001; Hansen, 2004) is a non-parametric framework that can predict the 
Probability Density Function (PDF) of a random variable. Given a limited genomic 
independent identically distributed data set X = (x1,,xn), KDE allows to simulate the 
PDF of X as follows: 

1
)ˆ (
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x x1
f x K
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K(.) is a symmetric positive definite Gaussian function  
21

2
1

2

u
K u = e

π



, n is data set’s 

size of the gene/protein X and h > 0 is a smoothing parameter, the bandwidth that 
controls the extent of the kernel (Wang and Mirota, 2010).  

Under the assumption that gene and gene-products share similarities in data sets, the 
problem of network construction is reduced to examination of independence between 
nodes Xi and Xk through the cross correlation test: 

     h i k h i h kf X ,X = f X * f X  (3) 

The smaller the absolute difference between two members of the equation, the more 
independent the corresponding nodes are. In contrast, high absolute difference indicates 
dependence between Xi and Xk, thus connection between candidate nodes. This means Xi 
and Xk share common information characteristics that imply interaction. 

2.3 Edge orientation 

Up to this point, we have reviewed two approaches in revealing the network structure, 
thus providing an intuition on whether two nodes interact. Nevertheless, they do not 
imply anything about causality, denoting which node is the cause and which is the result. 
In order to determine the edge orientation for the above networks, we have to examine 
the causality between pairs of nodes. For instance, between two nodes there are two 
models, i.e. model M1 where node Xi is the parent of node Xk, or the opposite, model M2. 

Model selection procedures cannot distinguish the above-described models because 
their distribution or likelihood is equivalent. In other words, the variation in the level of 
node Xi causing a variation on node Xk yields the same joint density as the reverse 
situation (Chaibub Neto et al., 2008; Chen et al., 2006). 

       k i i i k k i kf X | X f X = f X ,X = f(X )f X | X  (4) 

Therefore, the distinction between models M1 and M2 is made by inferring direction of 
causation between nodes using a scoring function, the BIC criterion. 

ˆ2 log logBIC L K N    (5) 

where L̂  is the maximum likelihood, K is the number of parameters to be estimated in 
the model, and N is the sample size. A model is better than another if it has a smaller BIC 
value. Thus, for each edge the BIC score is evaluated comparing the two possible 
orientations and the edge direction is decided in favour the lowest value. 

For instance, if we assume that an initial direction between four nodes is 1234, 
we start by computing the BIC score for edge (2–3) including node 1. The process is 
performed in one direction including node 1 and is repeated for the opposite direction for 
edge (2–3) including node 4. If the BIC score is smaller in the latter case the direction 
changes for edge (2–3) and deriving the structure 1234. Furthermore, the BIC 
score is recomputed for the edge (3–4) including node 2.  

In more complex networks’ edges are oriented by splitting the graph structure into 
smaller sub-networks. For each node, the number of its connected edges is counted.  
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Nodes are then arranged in descending order in terms of the number of connected nodes. 
A node and all the nodes that are directly connected to it form a sub-network. For each 
sub-network, the BIC score is computed for each edge that connects a pair of nodes, 
containing all other causative nodes to that pair.  

2.4 Linear Gaussian graphical model 

Linear Gaussian Graphical Model (LGGM) (Werhli et al., 2006) is a classical approach 
in GGMs that models dependencies between nodes as linear combination of means. Each  

node Xi is distributed depending on its parents as 
iki k

k

X ~ N x ,σ .w
 
  
 
  Here N(.) 

denotes the normal distribution, whereas the sum extends to all parental nodes of node i 
with xk denoting the value of node k. 

Apparently, LGGM focuses on modelling linear dependencies with parental nodes 
estimating the mean of a node as a combination of means. In addition, its variance 
depends only on the experimental data. In the following section, we introduce another 
approach where non-linear characteristics are given to the parameters of distribution.  

2.5 Dynamic Gaussian model 

Dynamic Gaussian Networks (DGN) (Kim et al., 2003; Murphy and Mian, 1999) can be 
viewed as extensions of GGMs. In contrast to GGMs that are based on static data, DGNs 
use time series data for constructing causal relationships among random variables. 

For p microarrays sets and expression levels of n genes/proteins, the data matrix can 

be summarised as p n   1, ,
T

pX X X   whose i-th row vector  1, ,
T

i i inX x x   

corresponds to a gene/protein expression level vector measured at time t. Under the 
concept that the state vector time i depends only by i – 1 and that each node has the same 
parents at all states, the joint distribution and conditional probability are composed as: 

       11 1 2 1 1,.. | .. |pn p pf X X f X f X X f X X   (6) 

       11 1 ,1 1 ,| | *..* |
ni i i ia i a i nf X X f X P f X P    (7) 

where  1 , a i jP   are the parents of gene/protein j at time slice i – 1. 

Thus, in DGNs transition between different time slices is modelled as a product of 
conditional probabilities where the parents of node Xi–1 are bequeathed to Xi. 

3 Proposed method 

Exploiting the above tools, two networks are generated each following a different 
approach in revealing genetic associations (namely, PC and KDE). In this section,  
we augment these networks with a novel framework for estimating dependencies  
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between genes/proteins by enforcing a non-linear structure in modelling the parameters 
of their conditional probability distributions. More specifically, we represent conditional 
probabilities as Gaussian distributions through KDE. 

3.1 Conditional probability distribution 

GGMs are types of graphical models for representing complex associations among 
Gaussian random variables. In this context, a gene/protein corresponds to a random 
variable shown as a node, while gene/protein interactions are shown by directed  
edges. Consequently, interactions with parental nodes are modelled by the conditional 
distribution of each gene. We use KDE as a non-parametric framework in order to 
capture the dependencies from parental nodes in the experimental data. 

Suppose we have p sets of microarrays and n genes/proteins where 1( , , )T
i i ipX x x   

is a p dimensional expression vector obtained for i-th gene/protein. Let 
iaP  be the parents 

of gene/protein Xi then direct dependencies are encoded according to Bayes’ theorem as: 

   
 

i

i

i

i a

i a

a

f X ,P
 f X  | P =   

f P
 (8) 

In order to model these relations with a coherent mathematical framework based on 
genomic expressions, we compute the joint distributions of equation (8) with Standard 
Gaussian Kernel (SGK) as follows: 

 
11 2

1ˆ
n

=

ii
h x,y

i hn
y yx xf = K  K   

h
  
  

   

  (9) 

Replacing equation (8) with equation (9) we obtain 

 
   

 
2

2

1

1

1 i ij

i

i ij

h ij h a a

i a

h a a

p

j

p

j

K x x  K p p

 f X  | P =

K p  p





 






  (10) 

where K(.) is a Gaussian kernel function described as equation (2), p is data set’s size and 
1/6

1 1h c n , 1/6
2 2h c n  for 1 2, 0c c   are the smoothing parameters selected as optimal 

approximations of Gaussians basis functions (Davis, 1998; Yu et al., 2010). 
Equation (10) implies that the conditional density estimate is an asymptotic 

approximation of Gaussian (Fan et al., 1996; Hansen, 2004)  2
1 1,N    with    2R K = K u du  

and parameters as follows: 

         
2

22 2 2 (1)
1 1 2 (2) 2 (1)

1 2

( |  |  2 |  |  
2 i i i ii a i a i a i ac f X P c f X P c f X P f X P

c c
     (11) 

   
 

2
1

1 2

2
i

i

i a

a

K  |R f X P
σ

c c f P
  (12) 
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Hence, equations (11) and (12) encode a Gaussian model that captures non-linear 
dependencies of network parameters. If a gene/protein has no parents, the mean and 
variance are taken from KDE.  

The main innovation of this model is that it captures non-linear relationships between 
molecular units based on expression data. In addition, there is no information loss. In 
fact, through KDE missing data are no longer an obstacle due to estimation from the 
remaining samples. 

4 Results and discussion 

In order to investigate the statistical properties of the proposed framework, we start by 
revealing the network structure using the PC and KDE approaches. After this step,  
and for each generated network, the conditional probabilities are found based on our 
proposed algorithm, as well as using the LGGM approach. Finally, through network 
inference we compute the direct and indirect implications of certain factors in the 
network and compare with known significant biological relations. We perform 
comparisons on the inference results based on our algorithm and LGGM. The same 
framework is applied for different time slices in order to examine time dependencies. 

4.1 Network construction and direct relations 

The data samples we used for testing concern the developing Arabidopsis thaliana seeds 
(Hajduch et al., 2010; Wille et al., 2004) harvested at 5, 7, 9, 11, and 13 days after 
flowering using Affymetrix ATH1 chips. We isolated the carbohydrate metabolism 
pathway including 7 ‘significant’ and 6 ‘unrelated’ genes and studies the network 
associated with this pathway. Genes that encode invertases (At1g35580, At5g22510) or 
sucrose synthases (At3g43190, At4g02280, At5g20830, At5g37180, and At5g49190), 
both being important enzymes in the metabolism of sucrose, were designated as 
‘significant’ genes (Koch, 2004). In order to test our proposed algorithm, we included 
more than one sucrose synthase genes as internal controls. As ‘unrelated’ genes we 
designated six genes that are involved in other biological processes (intracellular traffic, 
energy, protein destination and storage, disease/defence) in carbohydrate metabolism 
(Hajduch et al., 2010; Lamesch et al., 2012). These ‘unrelated’ genes are either expressed 
in seeds (At1g54050 and At3g17520) or not expressed in seeds (At1g13140, At2g39470, 
At4g14630, At4g15010) and are identified as biomarkers for specific organs  
(flowers, leaves, roots, siliques) in Arabidopsis. Overall, we studied 113 genes and 27 
gene–protein pairs, for all stages of growth. Our goal was to verify known gene–protein 
interactions, direct associations between genes as well as to highlight how the pathway is 
affected by significant factors. 

Table 1 presents the number of verified gene–protein pairs. The first column 
describes different thresholds on partial correlation set on PC for (1), while the second 
column provides the thresholds of absolute difference of (3) for KDE. The third and 
fourth columns summarise for both approaches the verified number of gene–protein 
interactions. The fifth and sixth columns present the number of new edges that have 
occurred for each threshold while the two last columns describe the number of edges that 
changed orientation according to BIC criterion. 
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Table 1 Network structure for various thresholds with PC and KDE algorithms 

Threshold Verified Pairs New Edges Oriented Edges 

PC KDE PC KDE PC KDE PC KDE 

≥0.1 ≤0.1 19/27 1/27 5594 421 192 51 

≥0.2 ≤0.2 15/27 7/27 4852 1075 181 95 

≥0.3 ≤0.3 8/27 14/27 4097 1969 159 83 

≥0.4 ≤0.4 9/27 15/27 3357 2741 140 82 

≥0.5 ≤0.5 8/27 17/27 2618 3995 165 93 

≥0.6 ≤0.6 6/27 17/27 1942 5224 133 77 

≥0.7 ≤0.7 4/27 17/27 1300 5682 124 66 

≥0.8 ≤0.8 4/27 23/27 753 6100 111 70 

≥0.9 ≤0.9 0/27 22/27 286 6327 58 60 

The results indicate that as thresholds increase for the inferred networks with the PC 
algorithm, the graph becomes sparser with less interactions being verified. This is due to 
the lack of strong partial correlations between molecular units. On the contrary, as 
thresholds of KDE increase, the correlation also increases implying that genes–proteins 
are found to be less independent. Thus, more interactions are identified in KDE and the 
graph becomes more cohesive. 

Table 2 shows the verified interactions between genes as well as interactions of 
proteins. We compared the performance of the two approaches taking into account the 
existent information on gene–gene and protein–protein interactions from two related 
databases, namely ATTED-II, the Arabidopsis gene co-expression database (Obayashi  
et al., 2009) and AtPIN, A. thaliana Protein Interaction Network (Brandão et al., 2009). 
The former provides 3321 genes (interacting directly or indirectly), while the latter 
provides 1092 protein–protein interactions, when all examined genes are used as input 
queries for known gene or protein interactions in A. thaliana, respectively. For the 
examined pathway, we retrieved 62 known gene interactions and 729 protein interactions 
(Liu et al., 2009). The high number of protein interactions may be relevant to a number 
of physically interacting proteins, but also to a number of interacting proteins that are not 
physically (directly) connected. 

Table 2 Gene–gene and protein–protein interactions for various thresholds 

Threshold Verified Gene Interactions Verified Protein Interactions 

PC KDE PC KDE PC KDE 

≥0.1 ≤0.1 58/62 0/62 240/729 46/729 

≥0.2 ≤0.2 52/62 3/62 212/729 76/729 

≥0.3 ≤0.3 48/62 6/62 182/729 108/729 

≥0.4 ≤0.4 44/62 19/62 158/729 148/729 

≥0.5 ≤0.5 39/62 34/62 130/729 184/729 
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Tables 1 and 2 provide a notion of the identified number of verified interactions. 
Comparing the performance of two methodologies, KDE appears to behave better in  
capturing the above biological associations. More precisely, KDE identifies up to 81%  
of known gene/protein interactions, up to 96% known gene–gene interactions and up  
to 36% existent protein–protein interactions. These percentages for PC are 70%, 93%  
and 33%, respectively. Finally, to assess the network reconstruction ability, we counted 
true positives TP (correctly identified true edges), false positives FP (spurious edges), 
true negatives TN (correctly identified zero-edges) and false negatives FN (not 
recognised true edges) edges. In order to assess the number of TP, FP edges, we 
employed the q-value approach (Storey and Tibshirani, 2003) that establishes the 
statistically significant edges to be marked as false positives. Applying the two-sample t-
test (Huber et al., 2002) on the extracted network edges, we found the amount of TP, FP, 
TN and FN edges of the predicted network structure. Figure 1 summarises the true 
positive rate for both algorithms, meaning framework’s ability to detect existent 
interactions. 

In order to find the optimal threshold for each algorithm, the size of the graph has to  
be taken into consideration. This is necessitated by the fact that as graph becomes  
denser, more interactions are generated. Thus, the probability of capturing pre-existent 

associations increases. We use the F-score metric, 
2*precision*recall

F=
precision+recall

 (Davis and 

Goadrich, 2006). The beta parameter is set to 2, as to represent the metrics of recall and 
precision evenly weighted. These results reveal appropriate threshold th = 0.3 for KDE 
and th = 0.5 for PC. For the selected thresholds we present in Figure 2 the Receiver 
Operating Characteristic (ROC) curves for both algorithms (Davis and Goadrich, 2006). 
KDE outperforms PC with the Areas under the Curve (AUC) reaching 84% and 77%, 
respectively. 

Figure 1 True positive rate for the verified gene or/and protein interactions for KDE and PC 
algorithms 
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Figure 2 Receiver Operating Characteristic (ROC) of KDE and PC algorithms 

 

In studies associated with the biological relevance of molecule interactions, one 
intriguing issue is the consideration of false positive associations in the definition of the 
‘ground truth’ network (Brandão et al., 2009; Obayashi et al., 2009; Wang et al., 2012). 
Traditionally, true positive or negative associations involve only biologically well-
established interactions. Nevertheless, such a consideration can only assess a very  
small number of interactions, leaving the vast majority of unidentified interactions as 
potentially false positive generators. Under this consideration, the false positive number 
is typically large, since we can only consider as ground-truth positives the direct 
interactions that have been biologically confirmed (Brandão et al., 2009; Hajduch et al., 
2010; Obayashi et al., 2009). In practice, however, the majority of molecules in the 
neighbour of a gene or protein participate in similar biological processes and, as such, the 
entire neighbourhood may trigger many more direct interactions, which have not been 
experimentally established yet. Thus, an alternative consideration in the definition of 
ground-truth positives would include indirect associations stemming from all connections 
in the neighbourhood of established ones, as a valid assumption that also affects the 
determination of relevant false positive interactions. The validity of false positives can 
then be supported by statistical measures, such as q-values. Based on this rationale, we 
adopted the use of q-values in our study, enabling the use of many experimentally 
verified indirect edges as TP associations and drastically limiting the number of false 
positive interactions. 

Addressing these aspects in more detail, Figure 3 presents a snapshot of the 
constructed KDE network where the At3g55650 (a) and At3g03250 (b) genes are directly 
connected to their neighbours. The central gene is associated with biologically verified 
genes (indicated by green squares), whereas triangle and circular elements indicate false 
positive associations including possible unidentified interactions. For gene At3g55650, 
KDE has successfully captured all known biological interactions. Alternatively, apart 
from all known associations of gene At3g03250, KDE derives many data-driven 
interactions, which traditionally would be considered as false positives (brown circles). 
With our approach, these interactions deserve closer attention, since some of them could 
indeed be encountered as true positives as their molecules participate in the same 
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processes as their neighbouring genes (green squares). The use of the statistical q-value 
measure supports the validity of this consideration, as it does not reject any molecule as 
false positives. The proposed consideration (with its associated assumptions) is further 
supported by recent studies, since some interacting molecules may be the result of 
indirect connections (not physically interacting proteins) with At3g03250 (Kim et al., 
2006). Similarly, At1g13440, At3g12780, At2g36580 and the At3g03250 in Figure 3 are 
all identified as 14-3-3 client and binding proteins (Swatek et al., 2011). Recent studies 
report that the 14-3-3 proteins interact dynamically with proteins engaged in plant 
nitrogen and carbon metabolism, and appear to possess a modulatory role in Arabidopsis 
seed development. They also suggest an important role for 14-3-3 proteins in the 
homeostatic control of crucial glycolytic intermediates, such as the phosphoenolpyruvate 
(PEP) (Swatek et al., 2011). Thus, it can be argued that the central molecule At3g03250 
might indeed be interacting with At1g13440, At3g12780 and At2g36580 through  
14-3-3 proteins that are involved in carbohydrate metabolic process, including  
glycolysis of developing A. thaliana seed. Furthermore, due to the verification of the 
interaction between the central gene At3g03250 and the At1g09780 gene that encodes a 
phosphoglycerate mutase isozyme, we expected that the observed interactions with two 
other isozymes of phosphoglycerate mutase (At3g08590, At4g09520) could also be 
considered as true positives, as they all catalyse the same reversible reaction (3-phospho-
D-glycerate to 2-phospho-D-glycerate). In addition to indirect relations within the 
pathway, there exist indirect interactions across related pathways, which affect the 
carbohydrate metabolism and need to be taken into similar consideration. In this form, 
the statistically derived interactions could substantiate valid assumptions for biological 
consideration.  

Figure 3 Snapshot of direct connected genes/proteins in the KDE (0.3) network for selected 
(central) genes. Square green molecules indicate true positive relations; brown triangles 
reflect false positives and brown ellipses denote controversial false positives. Grey and 
orange edges show genetic and proteomic associations, respectively  
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Figure 3 Snapshot of direct connected genes/proteins in the KDE (0.3) network for selected 
(central) genes. Square green molecules indicate true positive relations; brown triangles 
reflect false positives and brown ellipses denote controversial false positives. Grey and 
orange edges show genetic and proteomic associations, respectively (continued) 

 

4.2 Direct and indirect implications of activation 

For studying the algorithmic implications on network associations, we first examine the 
direct and indirect genetic implications for different time stages. For this purpose,  
we included in the studied carbohydrate pathway a set of carefully selected genes  
(7 ‘significant’, 6 ‘unrelated’ genes); a total number of 113 genes is examined. From this 
the total set we select a sub-group of genes whose expression is a priori known to affect 
the rest of genes/proteins involved in the pathway. Then, based on the experimental 
values of those few genes, we predict other genes/proteins amendable to be overexpressed 
(activated) or underexpressed (inhibited). We further examine if those predicted associations 
are verified according to Hajduch et al.’s (2010). 

We now proceed with the verification of expression profiles for the studied genes  
and proteins for the five stages of growth in association with the related study of  
Hajduch et al. (2010) presented in the pathway in Figure 4. In fact, we consider 
alterations/associations of expression caused by the fixed initial expression of a sub-
group of genes, a priori known to affect the rest. For this purpose, we isolated the genes 
At2g01140, At3g03250, At5g52920, At1g73370, At5g47810, At5g56630, At3g55650, 
At4g29220 and At5g22510, which show different expressions during the five stages of 
growth. Furthermore, they hold an important role in carbohydrate metabolism and their 
study is expected to reveal an impact on the genes/proteins involved in the pathway. To 
determine the impact of expression levels, we pose inference queries conditioned on the 
observation of each of the above genes. For instance, the probability of gene At3g26650 
to be inhibited when At2g01140 gene is activated that is summarised as the conditional 
probability of the first given the expression level of the latter. In order to model the 



   

 

   

   
 

   

   

 

   

   396 K.D. Kalantzaki et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

activation and inhibition, we set a threshold as a mean of the experimental values for 
each gene. We mention here that in our consideration, a gene can either be activated or 
inhibited. Thus, a gene/protein is considered inhibited if its expression is lower than the 
experimental mean of this gene/protein in the data set; otherwise, it is labelled as 
activated. In order to also account for uncertainties in the close region of the threshold, 
the computation of the conditional probability takes soft bounds on activation/inhibition, 
considering the mean plus/minus one standard deviation, respectively. 

Figure 4 Schematic view of carbohydrate metabolism during seed filling of Arabidopsis. 
Expression (heat) maps of individual protein (P) and transcript (T) expression based on 
proteomics and microarray experiments as relative value to 5 DAF are shown. 
Protein/transcript pairs are under one ATG number. Asterisks in red and bold depict the 
nine observed genes. At5g22510 (top) is external to the pathway and considered as 
‘significant’ gene  

*

* *

*

*

*  

* 

*

AT5G22510*

 

Source: Hajduch et al. (2010) 
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Table 3 summarises the predicted expression levels from our proposed method on the 
KDE network. The first column shows the targeted genes for inference. The rest columns 
show the predicted expression profiles for the other involved genes/proteins in the 
pathway for all stages of growth. The presented expression profiles were selected as the 
most significant with the highest probability to occur. The ‘unrelated’ gene At5g22510 
appears in many cases to have opposite expression compared to At1g73370. Both genes 
encode enzymes that catalyse the sucrose cleavage in plants but the final products of their 
enzymatic pathways are different in important aspects (Koch, 2004). Additionally, Table 
3 presents the outcome of the predicted associations when At1g73370 and At3g03250 are 
simultaneously observed as activated and inhibited, respectively. There are many reasons 
for posing this query. We want to examine the robustness of the proposed method for a 
complex of important genes. Furthermore, queries with opposite genetic behaviours 
correspond to a more realistic interpretation. Finally, we observe that genes At1g73370 
and At3g03250 have particular biological significance in A. thaliana carbohydrate 
metabolism. More specifically, At1g73370 encodes a sucrose synthase, which is 
implicated in sucrose metabolism and is vital for homeostatic regulation between 
metabolic pathways and sucrose signals. In addition, genes that encode sucrose synthase 
enzymes are responsive to the action of their own enzyme products (Koch, 2004). The 
At3g03250 gene encodes the UDP-glucose pyrophosphorylase, a key enzyme for 
carbohydrate metabolism that is essential in Arabidopsis (Meng et al., 2009). It is 
reported that the At3g03250 gene is co-regulated with genes implicated in carbohydrate 
metabolism, late embryogenesis and seed loading (Meng et al., 2009). Despite the sparse 
available data, our proposed method detects correctly the expression variability of many 
genes and/or proteins which is presented in Table 3 (e.g. At1g13440, p512; At2g21170, 
p2392). 

Our analysis of sparse experimental data in Table 3 allows the generation of gene–
protein networks and illustrates three key points focusing on the outcome interactions of 
the ‘significant’ genes associated with the KDE method. First, we observe that the target 
genes from the 1st column interact with genes from other columns, most of which are 
involved in carbohydrate metabolism. These gene-pairs are indirectly interconnected 
according to ATTED-II (Obayashi et al., 2009). Second, we highlight new gene–protein 
interactions between the ‘significant’ genes and proteins (3rd, 5th, 7th, 9th, 11th 
columns). We highlight two indicative examples: (a) fructose 1,6-biphosphate aldolase 6 
(AtFBA6), which is a key enzyme in glycolysis and gluconeogenesis in plant cytoplasm 
and may have crucial role in stress and sugar signalling (Lu et al., 2012) and (b) plastidial 
glyceraldehyde 3-phosphate dehydrogenase, a subunit (GAPA) that participates in the 
reductive carbon cycle and also is involved in response to sucrose stimulus (Muñoz-
Bertomeu et al., 2009). Third, we reveal potentially useful, new gene–gene (direct or 
indirect) interactions between the target genes and the genes showed in other columns, 
including interactions with the seemingly ‘unrelated’ genes. Interestingly, the ‘unrelated’ 
gene At3g17520 has inference significance and is a member of the group 4 late 
embryogenesis abundant (LEA) protein genes (Lamesch et al., 2012). The presence of 
their encoded LEA proteins is related to the adaptive response of higher plants caused by 
adverse conditions to maintain normal metabolism (Hong-Bo et al., 2005). The observed 
gene–gene and gene–protein interactions between the various ‘significant’ genes with 
LEA gene or GAPA and FBA protein should be experimentally analysed in order to find 
their possible associations or cross-talks between carbohydrate metabolism and other 
pathways during seed development in A. thaliana. 



   

 

   

   
 

   

   

 

   

   398 K.D. Kalantzaki et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 Predicted interactions from inference. Interactions of observed with other genes in the 
KDE network at different time points. The observed genes are selected based on their 
inference significance 
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Table 3 Predicted interactions from inference. Interactions of observed with other genes in the 
KDE network at different time points. The observed genes are selected based on their 
inference significance (continued) 
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Table 3 Predicted interactions from inference. Interactions of observed with other genes in the 
KDE network at different time points. The observed genes are selected based on their 
inference significance (continued) 
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In a related attempt of Hajduch et al. (2010) to examine the behaviour of genes and 
corresponding proteins, the expressions from 2nd to 5th stages of seed development is 
compared to the corresponding 1st stage (Figure 4). In the associated colour map, red 
regions imply concentration increase compared to 1st stage, green regions indicate 
decrease, while black regions reflect no change in concentration. These activation/ 
inhibition results are also checked through Figure 4 and the verified associations are 
organised in terms of correctly predicted activations (red triangles), inhibitions (green 
diamonds) and no significant activations (light-green circles). The resulting network  
from our formulation is shown in Figure 5 illustrating these gene associations caused  
by the selected nine genes and which are consistently observed for all five stages of 
development. Regarding the expression of pairs in Figure 4 (26 pairs), the study of 
Hajduch et al. (2010) based on linear regression, reveals disagreement with the heat-map 
in some gene–protein pairs with opposite expression profiles. This effect is also derived 
from our approach for the gene–protein pairs At2g21330, At3g52930, At3g26650, 
At2g36460, At1g13440 and At1g76550, as presented in Table 3. For the remaining 
gene–protein pairs, the predicted expressions from our model attain low probabilities, 
with one exception of the At2g21170 pair that expresses discordance of expressions in 
time and is attributed to post transcriptional regulation. 

In the remaining sections we compare the performance of our proposed method with 
LGGM applied on the KDE and PC networks. The genes At2g01140, At3g03250, 
At5g52920, At1g73370, At5g47810, At5g56630, At3g55650, At4g29220 and At5g22510 
are simultaneous observed due to their importance in the involved biological processes 
into the pathway. Figure 5 presents the predicted expressions of our proposed method on 
KDE network. The predicted outcomes indicate high probabilities and same expression 
profiles for all stages of development. 

Figure 6a and 6b shows how the heat-maps of the predicted expression profiles for all 
five days applying our proposed method on the networks produced by KDE and PC. 
Figure 6c and 6d presents the results after applying the LGGM approach on the 
respective networks. Regions on the heat-maps marked as red represent the predicted 
activation, while green regions illustrate the predicted inhibition. The intensities for both 
cases reflect signed probabilities with the inhibited predictions set as negative values. All 
predicted outcomes were chosen with probabilities higher than 0.4, while black regions 
in the heat-maps indicate cases with probabilities smaller than the above threshold. All 
cases represent predicted results conditioned on the observation of the nine above 
mentioned genes. Clearly, the proposed method enables both networks (constructed by 
KDE and PC) to achieve higher numbers of predicted interactions compared to the 
LGGM approach. Moreover, while our model captures inhibited in addition to activated 
expressions, the LGGM approach fails in identifying expressions with high probabilities 
for both types of networks. This illustrates another aspect of the proposed method as it 
predicts expression of genes for both activation and inhibition with high probabilities. 

In order to validate the above observations, we compare the four derived heat-maps 
with the results of Hajduch et al. (2010). More specifically, we compute the precision of 
our outcome in relation to the results presented in Figure 4 and set each predicted 
expression as true (false) positive if it agrees (disagrees) with the corresponding 
prediction of Figure 4. However, the true positive relations are difficult to define in the 
entire data set. In our consideration, they involve only the direct connections in Figure 4 
to the observed genes/proteins, in addition to their neighbouring molecules. The main 
rationale for this assumption is that adjacent molecules are expected to engage in similar 
biological processes and interact with the observed ones. 
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Figure 5  Predicted expressions for the nine observed genes (blue squares) for all stages of 
development. Inhibited molecules are marked as green diamonds and activated as  
red triangles. Genetic interactions are presented as grey and proteomic as orange  

 

Note: Created by Cytoscape Platform. 
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Figure 6 Heat maps of the predicted expressions for all stages of seed development. White 
regions imply inhibition, grey regions imply activation, and black regions reflect  
none predicted expression. The horizontal axes represent the five stages of seed 
development. (a) Proposed method on KDE network; (b) LGGM method on KDE 
network; (c) Proposed method on PC network; (d) LGGM method on PC network 

 

Figure 7 Precision-recall curves for different levels of probability according to the het-maps of 
Figure 6. The rightmost point in each figure reflects probability over 0.4; while the 
leftmost point is for probability 0.9, evenly spaced; (a) Proposed method on KDE 
network; (b) LGGM method on KDE network; (c) Proposed method on PC network; 
(d) LGGM method on PC network 
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Figure 7 Precision-recall curves for different levels of probability according to the het-maps of 
Figure 6. The rightmost point in each figure reflects probability over 0.4; while the 
leftmost point is for probability 0.9, evenly spaced; (a) Proposed method on KDE 
network; (b) LGGM method on KDE network; (c) Proposed method on PC network; 
(d) LGGM method on PC network (continued) 
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Figure 7 describes the precision-recall curves on KDE and PC networks for different 
levels of probability, higher than 0.4. Our goal is to successfully predict the activation/ 
inhibition (246 red/green boxes of Figure 4) of seed development. Moving from right to 
left, the marked points indicate probabilities from 0.4 to 0.9, evenly spaced. Thus, the 
rightmost point indicates probability higher than 0.45, while the leftmost point reflects 
probability higher than 0.9 for the targeted predictions. The proposed method applied on 
the KDE network (Figure 7a) reaches high levels of precision and recall (74% and 70%, 
respectively). It identifies successfully up to 65% of true positives with probability higher 
than 0.9; as the subset of the predicted interactions is augmented (with lower thresholds 
on probability), the precision also rises, reaching its highest score at probability 74%. 
This is an indication that the proposed framework is able to discriminate the expression 
profiles giving high scores to true positives. In addition, it reaches high levels of recall 
for probabilities higher than 0.45, indicating that the model is able to make predictions 
for all different stages. As the level of probabilities increases, the recall is reduced since 
the model becomes stricter and the amount of predicted outcomes is smaller than the 
ideal goal of 246 true positives. In contrast to our framework, the other studied 
approaches can show similar precision scores but they fail in reaching high recall; in fact 
they fail to make predictions for the given data set, even for smaller levels of probability. 
Overall, our method outperforms others in revealing predicted temporal expressions in 
terms of recall and precision, in addition to discriminating activated and inhibited 
genes/proteins. Interestingly, while the LGGM-KDE (Figure 7b) approach has low recall, 
it has higher precision levels compared to LGGM-PC (Figure 7c) and PC (Figure 7d). 
This suggests that the network structure based on KDE has successfully captured  
many biological interactions verifying the superiority of KDE over PC. Moreover, our 
proposed method allows generating gene–protein networks that verify existing 
interactions of genes/proteins and also reveal new gene–gene (direct or indirect) and 
gene–protein interactions within the examined carbohydrate metabolic pathway. In the 
same way, it illustrates interactions with other ‘unrelated’ molecules (e.g. LEA protein 
genes and their encoded LEA proteins), which may indicate a possible cross-talk between 
carbohydrate metabolism and other signalling pathways during seed development in A. 
thaliana. Finally, capturing temporal expressions for all different stages, we achieve to 
recover co-expressed molecules, which in turn might reveal possible functionally related 
genes and give insights about the genetic regulatory systems of the elaborated pathways. 

5 Conclusion 

In this paper, we develop a framework for network creation towards examining gene 
and/or protein associations at different stages of organism development. The associations 
identified by KDE have significant overlap with verified associations between the 
participating genes/proteins, as the majority of the genes/proteins are located close to the 
processes of the carbohydrate metabolism pathway. On the contrary, the PC approach 
appears to capture less of those associations. Thus, ROC and precision-recall curves 
indicate that KDE performs better on network construction. This also supports the claim 
that KDE performs better in modelling the genetic associations with sparse experimental 
data compared to other related algorithms. Considering the modelling of conditional 
dependencies, both heat-maps and precision curves indicate that genetic associations  
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enclose more complex dependencies, whereas linear Gaussian approaches lack the ability 
to model/predict such relations. Ongoing research is under investigation in an attempt to 
reveal the potential benefits of this methodology on human cancer, so as to highlight 
important gene profiles of the participant genes in dysregulated pathways in cancer 
diseases (oral, breast) (Kalantzaki et al., 2013).  

The most important contribution of this study is the provision of a different 
perspective in revealing the identity of genetic interactions. Network construction is 
complex problem, which has been studied with simplifications at the different layers of 
genetic information. Unrealistic assumptions often cause the generation of poor results 
on precision, especially in such complex organisms. The direct interactions are to a large 
extent unknown, especially if we take into account all the possible pathways that affect 
groups of genes. In addition, the available knowledge of direct interactions is established 
under specific conditions, which also seem to change when abnormalities happen. These 
issues imply the need to re-examine the generation mechanism for expression profiles in 
relation to underlying genetic factors and their direct or indirect relevance in specific 
pathways. In this direction, our approach enables the verification of relations in the 
expression profiles from the underlying interactions, and can be used as a first step in 
studying whether indirect effects of important genetic molecules verify to a good extent 
the expression profiles of genes involved in the pathway as well as in uncovering 
regulatory systems of these genes. 
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