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Wavelet-Based Approximation Techniques 
in Database Systems

growing number of data-
base applications require
online, interactive access
to very large volumes of
data to perform a variety

of data analysis tasks. As an example, large
Internet service providers (ISPs) typically
collect and store terabytes of detailed
usage information (NetFlow/SNMP flow
statistics and packet-header information)
from the underlying network to satisfy the
requirements of various network-manage-
ment tasks, including billing, fraud/anom-
aly detection, and strategic planning. This
data gives rise to massive, multidimen-
sional relational data tables typically
stored and queried/analyzed using com-
mercial database engines (e.g., Oracle,
SQL Server, DB2). To handle the huge
data volumes, high query complexities,
and interactive response-time require-
ments characterizing these modern data
analysis applications, the idea of effective,
easy-to-compute approximate query
answers over precomputed, compact data
synopses has recently emerged as a viable
solution. Due to the exploratory nature of
most target applications, there are a num-
ber of scenarios in which a reasonably
accurate, fast approximate answer over a
small-footprint summary of the database
is actually preferable over an exact answer
that takes hours or days to compute. For
example, during a drill-down query
sequence in ad-hoc data mining, initial
queries in the sequence frequently have
the sole purpose of determining the truly
interesting queries and regions of the
database. Providing fast approximate
answers to these initial queries gives users
the ability to focus their explorations
quickly and effectively, without consum-
ing inordinate amounts of valuable sys-
tem resources. Of course, the key behind
such approximate techniques for dealing

with massive data sets lies in the use of
appropriate data-reduction techniques for
constructing compact synopses that can
accurately approximate the important fea-
tures of the underlying data distribution.

Wavelets are a useful mathematical
tool for hierarchically decomposing
functions in ways that are both efficient
and theoretically sound. Broadly speak-
ing, the wavelet transform of a function
consists of a coarse overall approxima-
tion together with detail coefficients that
influence the function at various scales.
The wavelet transform has a long history
of successful applications in signal and
image processing [9], [10]. Several
recent studies have also demonstrated
the effectiveness of the wavelet transform
(and Haar wavelets, in particular) as a
tool for approximate query processing
over massive relational tables [2], [5], [6]
and continuous data streams [3], [7].
Briefly, the idea is to apply wavelet trans-
form to the input relation to obtain a
compact data synopsis that comprises a
select small collection of wavelet coeffi-
cients. The excellent energy compaction
and decorrelation properties of the
wavelet transform allow for concise and
effective approximate representations
that exploit the structure of the data.
Furthermore, wavelet transforms can
generally be computed in linear time,
thus allowing for very efficient algo-
rithms. In this column, we provide a
brief overview of recent work and results
on wavelet-based approximation tech-
niques for relational database systems.

HAAR WAVELET BASICS
Consider a one-dimensional (1-D) data
vector A containing the N = 8 data val-
ues A = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar
wavelet transform of A can be computed
as follows. We first average the values

together pairwise to get a new lower-reso-
lution representation of the data with the
average values [2, 1, 4, 4]. To be able to
restore the original values of the data
array, we need to store some detail coeffi-
cients, which capture the information
lost due to this averaging. In Haar
wavelets, these detail coefficients are sim-
ply the differences of the second of the
averaged values from the computed pair-
wise average, i.e., [2 − 2, 1 − 2,

4 − 5, 4 − 4] = [0,−1,−1, 0]. No infor-
mation has been lost in this process—it is
simple to reconstruct the eight values of
the original data array from the lower-res-
olution array containing the four averages
and the four detail coefficients. Recursively
applying the above pairwise averaging and
differencing process on the lower-resolu-
tion array containing the averages, we get
the following full transform:

Resolution Averages Detail 
Coefficients

3 [2, 2, 0, 2, 3, 
5, 4, 4] —

2 [2, 1, 4, 4] [0, −1, −1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [−5/4]

The wavelet transform WA of A is the
single coefficient representing the overall
average of the data values followed by the
detail coefficients in the order of increas-
ing resolution, i.e.,  W A = [11/4,−5/4,

1/2, 0, 0,−1,−1, 0] (each entry is called
a wavelet coefficient). For vectors con-
taining similar values, most of the detail
coefficients tend to be very small; thus,
eliminating them from the wavelet
transform (i.e., treating them as zeros)
introduces only small errors when
reconstructing the original data, result-
ing in a very effective form of lossy data
compression [10].
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A helpful tool for conceptualizing the
recursive Haar wavelet transform process
is the error tree structure (shown in
Figure 1 for our example array A). Each
internal node ci(i = 0, . . . , 7) is associ-
ated with a wavelet coefficient value, and
each leaf di(i = 0, . . . , 7) is associated
with a value in the original data array; in
both cases, the index i denotes the posi-
tions in the data or wavelet transform
array. For instance, c0 corresponds to the
overall average of A. The resolution lev-
els l for the coefficients (cor-
responding to levels in the
tree) are also depicted. 

Given an error tree T and
an internal node t of T, t �= c0,
we let leftleaves(t)
(rightleaves(t)) denote the
set of leaf (i.e., data) nodes in
the subtree rooted at t ’s left
(respectively, right) child. Also,
given any internal or leaf node
u, we let path(u) be the set of
all internal nodes in T that are
proper ancestors of u (i.e., the
nodes on the path from u to the
root of T, including the root
but not u) with nonzero coeffi-
cients. Finally, for any two leaf
nodes dl and dh, we let d(l : h)

denote the range sum 
∑h

i=l di.
Using the error tree representa-
tion T, we can outline the fol-
lowing important reconstruction properties
of the Haar wavelet transform.

■ (P1) The reconstruction of any
data value di depends only on the
values of the nodes in path(di) .
More specifically, we have
di = ∑

cj∈ path(di)δi j · cj , where
δi j = +1 if di ∈ leftleaves(cj) or
j = 0, and δi j = −1 otherwise; for
example, d4 = c0− c1 + c6 = (11/4)

−(−5/4) + (−1) = 3.
■ (P2) An internal node cj contributes
to the range sum d(l : h) only if cj ∈
path(dl)∪ path(dh). More specifical-
ly, d(l : h) = ∑

cj∈path(dl)∪path(dh)xj,
where

xj =




(h − l + 1) · cj, if j = 0
(|leftleaves(cj, l : h)|

−|rightleaves(cj, l : h)|)
×cj, otherwise.

where leftleaves(cj, l : h) = left-

leaves(cj) ∩ {dl, dl+1, . . . , dh} (i.e.,
the intersection of leftleaves(cj)

with the summation range) and
rightleaves(cj, l : h) is defined simi-
larly. (Clearly, coefficients whose subtree
is completely contained within the sum-
mation range have a net contribution of
zero, and can be safely ignored.) For
example, d(2 : 6) = 5c0 + (2 − 3)c1−
2c2 = 5 × (11/4) − (−5/4) − 1 = 14.
Thus, reconstructing a single data value

involves summing at most log N + 1
coefficients and reconstructing a range
sum involves summing at most
2 log N + 1 coefficients, regardless of the
width of the range. The support region
for a coefficient ci is defined as the set of
(contiguous) data values that ci is used
to reconstruct.

The Haar wavelet transform can be
naturally extended to multidimensional
data arrays using two distinct methods,
namely the standard and nonstandard
Haar transform [10]. As in the 1-D case,
the Haar transform of a d-dimensional
data array A results in a d-dimensional
wavelet-coefficient array WA with the
same dimension ranges and number of
entries. Consider a d-dimensional
wavelet coefficient W in the (standard or
nonstandard) wavelet-coefficient array
WA. W contributes to the reconstruction

of a d-dimensional rectangular region of
cells in the original data array A (i.e.,
W ’s support region). Further, the sign of
W ’s contribution (+W or −W) can vary
along the quadrants of W ’s support
region in A.

As an example, Figure 2 depicts the
support regions and signs of the 16 non-
standard, two-dimensional (2-D) Haar
coefficients in the corresponding loca-
tions of a 4 × 4 wavelet-coefficient array
WA. The blank areas for each coefficient

correspond to regions of A
whose reconstruction is inde-
pendent of the coefficient, i.e.,
the coefficient’s contribution
is 0. Thus, WA[0, 0] is the
overall average that con-
tributes positively (i.e.,
+WA[0, 0]) to the reconstruc-
tion of all values in A, whereas
WA[3, 3] is a detail coefficient
that contributes (with the
signs shown) only to values in
A ’s upper-right quadrant.
Each data cell in A can be
accurately reconstructed by
adding up the contributions
(with the appropriate signs) of
those coefficients whose sup-
port regions include the cell.
Error-tree structures for d-
dimensional Haar coefficients
are essentially d-dimensional

quadtrees, where each internal node t
corresponds to a set of (at most) 2d − 1
Haar coefficients, and has 2d children
corresponding to the quadrants of the
common support region of all coeffi-
cients in t; furthermore, properties (P1)
and (P2) can also be naturally extended
to the multidimensional case [2], [5], [6].

RELATIONAL DATA REDUCTION AND
APPROXIMATE QUERY PROCESSING
Consider a relational table R with d data
attributes X1, X2, . . . Xd . We can repre-
sent the information in R as a d-dimen-
sional array AR, whose jth dimension is
indexed by the values of attribute Xj and
whose cells contain the count of tuples
in R having the corresponding combina-
tion of attribute values. AR is essentially
the joint frequency distribution of all the
data attributes of R. Given a limited
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[FIG1] Error-tree structure for our example data array A (N = 8).
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amount of storage for building a wavelet
synopsis of an input relation R, a thresh-
olding procedure retains a certain num-
ber B << N of the coefficients in the
wavelet transform of AR as a highly com-
pressed approximate representation of
the original data (the remaining coeffi-
cients are implicitly set to 0). (The full
details as well as efficient transform algo-
rithms can be found in [2], [11].) The
goal of coefficient thresholding is to
determine the best subset of B coeffi-
cients to retain, so that some overall
error measure in the approximation is
minimized—in the next subsection, we
discuss different thresholding strategies
proposed in the database literature. 

The construction of wavelet synopses
typically takes place during the statistics
collection process, whose goal is to cre-
ate concise statistical approximations for
the value distributions of either individ-
ual attributes or combinations of attrib-
utes in the relations of a database
management system (DBMS). Once cre-
ated, a wavelet synopsis is typically
stored (as a collection of B wavelet coef-
ficients) as part of the DBMS-catalog
information, and can be exploited for
several different purposes. The primary
(and more conventional) use of such
summaries is as a tool for enabling effec-
tive (compile-time) estimates of the
result sizes of relational operators for
the purpose of cost-based query opti-
mization. (Accurate estimates of such
result sizes play a critical role in choos-

ing an effective physical exe-
cution plan for an input SQL
query.) For instance, esti-
mating the number of data
tuples that satisfy a range-
predicate selection like
l ≤ X ≤ h is equivalent to
estimating the range sum-
mation f(l : h) = ∑h

i=l fi ,
where f is the frequency dis-
tribution array for attribute
X . As mentioned earlier,
given a B-coefficient synop-
sis of the f array, computing
f(l : h) only involves
retained coefficients in
path( fl)∪ path( fh) and,
thus, can be estimated by

summing only min{B, 2 log N + 1} syn-
opsis coefficients [11]. A B-coefficient
wavelet synopsis can also be easily
expanded (in O(B) time) into an O(B)-
bucket histogram (i.e., piecewise-con-
stant) approximation of the underlying
data distribution with several possible
uses (e.g., as a data visualization/approx-
imation tool).

More generally, wavelet synopses can
enable very fast and accurate approxi-
mate query answers during interactive
data-exploration sessions. As demon-
strated in [2], an approximate query pro-
cessing algebra (which includes all
conventional aggregate and nonaggre-
gate SQL operators, such as select,
project, join, sumz, and average)
can operate directly over the wavelet syn-
opses of relations, while guaranteeing
the correct relational operator seman-
tics. Query processing algorithms for
these operators work entirely in the
wavelet-coefficient domain. This allows
for extremely fast response times, since
the approximate query execution engine
can do the bulk of its processing over
compact wavelet synopses, essentially
postponing the (expensive) expansion
step into relational tuples until the end-
result of the query.

CONVENTIONAL AND ADVANCED
WAVELET THRESHOLDING SCHEMES
Recall that coefficient thresholding
achieves data reduction by retaining
B << N of the coefficients in the wavelet

transform of AR as a highly compressed,
lossy representation of the original rela-
tional data. The goal, of course, is to
minimize the amount of loss quantified
through some overall approximation
error metric. Conventional wavelet
thresholding (the method of choice for
most studies on wavelet-based data
reduction) greedily retains the B largest
Haar-wavelet coefficients in absolute
value after a simple normalization step.
It is a well-known fact that this thresh-
olding method is in fact provably optimal
with respect to minimizing the overall
root-mean-squared error (i.e., L2-norm
average error) in the data compression
[10]. More formally, letting d̂i denote the
approximate reconstructed data value for
cell i, retaining the B largest normalized
coefficients implies that the resulting
synopsis minimizes 

√
1
N

∑
i(d̂i − di)

2 for
the given amount of space B.

Conventional wavelet synopses opti-
mized for overall L2 error may not always
be the best choice for approximate query
processing systems. The quality of the
approximate answers such synopses pro-
vide can vary widely, and users have no
way of knowing the accuracy of any par-
ticular answer. Even for the simplest case
of approximating a value in the original
data set, the absolute and relative errors
can show wide variation. Consider the
example depicted in Table 1. The first line
shows the 16 original data values (the
exact answer), whereas the second line
shows the 16 approximate answers
returned when using conventional
wavelet synopses and storing eight coeffi-
cients. Although the first half of the values
is basically a mirror image of the second
half, all the approximate answers for the
first half are 65, whereas all the approxi-
mate answers for the second half are
exact! Similar data values have widely dif-
ferent approximations, e.g., 30 and 31
have approximations 30 and 65, respec-
tively. The approximate answers make the
first half appear as a uniform distribution
with widely different values, e.g., 3 and
127, having the same approximate answer
65. Moreover, the results do not improve
when one considers the presumably easier
problem of approximating the sum over a
range of values—for all possible ranges

[FIG2] Support regions and signs for the 16
nonstandard 2-D Haar basis functions.
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within the first half involving x = 2 to 7
of the values, the approximate answer will
be 65 · x, while the actual answers vary
widely. For example, for both the range d0

to d2 and the range d3 to d5, the approxi-
mate answer is 195, while the actual
answer is 285 and 93, respectively. On the
other hand, exact answers are provided for
all possible ranges within the second half. 

Our simple example illustrates that
conventional wavelet synopses suffer
from several important problems,
including the introduction of severe bias
in the data reconstruction and wide vari-
ance in the quality of the data approxi-
mation, as well as the lack of nontrivial
guarantees for individual approximate
answers. To address these shortcomings,
recent work has proposed novel thresh-
olding schemes for building wavelet syn-
opses that try to minimize different
approximation-error metrics, such as the
maximum relative error (with an appro-
priate sanity bound s) in the approxima-
tion of individual data values based on
the synopsis; i.e., minimize

max
i

{
|d̂i − di|

max{|di|, s}

}
.

Such relative-error metrics are arguably
the most important quality measures for
approximate query answers. Note that
the role of the sanity bound is to ensure
that relative-error numbers are not
unduly dominated by small data values.

More specifically, [5] introduces prob-
abilistic thresholding schemes based on
ideas from randomized rounding, that
probabilistically round coefficients either
up to a larger rounding value (to be
retained in the synopsis) or down to zero.
Intuitively, their probabilistic schemes
assign each nonzero coefficient fractional
storage y ∈ (0, 1) equal to its retention
probability, and then flip independent,
appropriately biased coins to construct
the synopsis. Their thresholding algo-
rithms are based on dynamic-program-
ming (DP) formulations that explicitly
minimize appropriate probabilistic met-

rics (such as the maximum normalized
standard error or the maximum normal-
ized bias) in the randomized synopsis
construction; these formulations are then
combined with a quantization of the
potential fractional-storage allotments to
give combinatorial techniques [5]. In
more recent work, [6] shows that the pit-
falls of randomization can be avoided by
introducing efficient schemes for deter-
ministic wavelet thresholding with the
objective of optimizing a general class of
error metrics (e.g., maximum or mean
relative error). Their optimal and approx-
imate thresholding algorithms are based
on novel DP techniques that take advan-
tage of the Haar transform error-tree
structure, and can handle a broad, natu-
ral class of distributive error metrics; this
class includes several useful error meas-
ures for approximate query answers, such
as maximum or mean weighted relative
error and weighted Lp-norm error [6].

EXTENDED AND STREAMING
WAVELET SYNOPSES
Complex tabular data sets with multiple
measures (multiple numeric entries for
each table cell) introduce interesting
challenges for wavelet-based data reduc-
tion. Such massive, multimeasure tables
arise naturally in several application
domains, including online analytical pro-
cessing (OLAP) environments and time-
series analysis/correlation systems. As an
example, a corporate sales database may
tabulate, for each available product, 1)
the number of items sold, 2) revenue and
profit numbers for the product, and 3)
costs associated with the product, such as
shipping and storage costs. Similarly,
real-life applications that monitor contin-
uous time-series typically have to deal
with several readings (measures) that
evolve over time; for example, a network-
traffic monitoring system takes readings
on each time-tick from a number of dis-
tinct elements, such as routers and
switches, in the underlying network and
typically several measures of interest

need to be monitored (e.g., input/output
traffic numbers for each router or switch
interface) even for a fixed network ele-
ment. [4] shows that obvious approaches
for building wavelet synopses for such
multimeasure data can lead to poor syn-
opsis-storage utilization and suboptimal
solutions even in very simple cases.
Instead, their proposed solution is based
on 1) extended wavelet coefficients, the
first adaptive, efficient storage scheme for
multimeasure wavelet coefficients and 2)
novel algorithms for selecting the opti-
mal subset of extended coefficients to
retain for minimizing the weighted sum
of L2 errors across all measures under a
given storage constraint.

Traditional database systems and
approximation techniques are typically
based on the ability to make multiple
passes over persistent data sets, that are
stored reliably in stable storage. For sever-
al emerging application domains, howev-
er, data arrives at high rates and needs to
be processed on a continuous (24 × 7)
basis, without the benefit of several passes
over a static, persistent data image. Such
continuous data streams arise naturally,
for example, in the network installations
of large Telecom and ISPs where detailed
usage information [call-detail-records
(CDRs) and SNMP/RMON packet-flow
data] from different parts of the underly-
ing network needs to be continuously col-
lected and monitored for interesting
trends and phenomena (e.g., fraud or
denial-of-service attacks). Efficiently
tracking an accurate wavelet synopsis
over such massive streaming data, using
only small space and time (per streaming
update), poses a host of new challenges.
Recently proposed solutions [3], [7] rely
on maintaining small-space, pseudoran-
dom sketches (essentially, random linear
projections) over the input data stream
[1]. These sketches can then be queried
to efficiently recover the topmost
wavelet coefficients of the underlying
data distribution within provable error
guarantees [3].
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ORIGINAL DATA VALUES 127 71 87 31 59 3 43 99 100 42 0 58 30 88 72 130
WAVELET ANSWERS 65 65 65 65 65 65 65 65 100 42 0 58 30 88 72 130

[TABLE 1]  ERRORS WITH CONVENTIONAL WAVELET SYNOPSES.



CONCLUSIONS
The Darbellay-Vajda algorithm reviewed
here develops a skeletonized approxima-
tion to a joint probability density of sam-
pled data. The approximation is presented
as a collection of nonoverlapping multidi-
mensional cuboids, having varying sizes,
locations, and probabilities in sample
space. It is already known that a mutual
information (or marginal redundancy)
value can be extracted from this collec-
tion. This article demonstrates that the
joint density has a far wider range of
application in exploring Bayesian and
conditional probability distributions
among the observations. The examples
have shown only autonomous data mod-
eling, but categorical data is easily input
as an additional independent variable for
supervised training purposes. Though the
mathematical fundamentals of the algo-

rithm are hardly straightforward, the
associated computation load is low, and
the overall flexibility of the technique
points to the possibility of attractive new
algorithms for statistical signal process-
ing in numerous areas such as machine
learning, pattern recognition, and non-
linear filtering.
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CONCLUSIONS AND FUTURE
DIRECTIONS
Approximate query processing over con-
cise, precomputed synopses is slowly
emerging as an essential tool for numer-
ous data-intensive applications requiring
interactive response times. Recent data-
base research efforts have clearly shown
the effectiveness of the wavelet transform
as a data-reduction tool that enables fast
and accurate approximate query answers
over complex relational data. In addition,
novel algorithmic tools have been pro-
posed for wavelet thresholding under a
variety of different error metrics, han-
dling multimeasure data sets, and main-
taining wavelet summaries over massive
continuous data streams.

An important open question concerns
the general suitability of the Haar
wavelet transform as a data-summariza-
tion and approximate query processing
tool when it comes to error metrics
other than L2 norms. In fact, recent
work [8] shows that considering the
unrestricted version of the problem
(where one is allowed to store any num-

ber as a synopsis coefficient instead of
the standard Haar coefficients), can
result in significant accuracy benefits.
Thus, the question is, are there other
(existing or new) wavelet bases that are
better suited for optimizing different
error metrics (e.g, mean weighted rela-
tive-error) in the data approximation?
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