
Approximating Multidimensional Range Counts with Maximum Error Guarantees

Michael Shekelyan
University of Warwick

Coventry, United Kingdom
michael.shekelyan@warwick.ac.uk

Anton Dignös, Johann Gamper
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy
{dignoes, gamper}@inf.unibz.it

Minos Garofalakis
ATHENA Research Center, Greece

Technical University of Crete, Greece
minos@athenarc.gr

Abstract—We address the problem of compactly approximating
multidimensional range counts with a guaranteed maximum
error and propose a novel histogram-based summary structure,
termed SliceHist. The key idea is to operate a grid histogram
in an approximately rank-transformed space, where the data
points are more uniformly distributed and each grid slice
contains only a small number of points. Then, the points of
each slice are summarised again using the same technique. As
each query box partially intersects only few slices and each
grid slice has few data points, the summary is able to achieve
tight error guarantees. In experiments and through analysis
of non-asymptotic formulas we show that SliceHist is not only
competitive with existing heuristics in terms of performance,
but additionally offers tight error guarantees.

1. Introduction
Motivation. Producing accurate selectivity estimates for
multidimensional range queries based on compact summary
structures (or synopses) plays a crucial role in relational
query optimization, query profiling, and approximate query
processing [1]. Cost-based query optimizers employ such
synopses to obtain accurate estimates of intermediate result
sizes. Similarly, query profilers and approximate query pro-
cessors require compact data synopses in order to provide
users with fast and useful feedback on their original query.
Such query feedback allows OLAP and data-mining appli-
cations to identify the truly interesting regions of the data
and to focus their explorations quickly and effectively.

Since it is difficult to determine how well a summary
technique works for arbitrary queries and datasets, we fo-
cus on multidimensional summary approaches with ε-error
guarantees. Such approaches can construct for any dataset of
size n and dimensionality d, a predictably small summary
that can bound the true count T of any query box to a
range L ≤ T ≤ L + εn for some lower bound L ≤ T .
While it is defined as an additive error guarantee, it implies a
multiplicative error (q-error [2]) guarantee for larger counts
T ≥ 2εn, in which case L ≥ εn and (L+ εn)/L ≤ 2. This
means that summaries with ε-error guarantees have at most
multiplicative error 2 for all query boxes with at least 2εn
points.

One can derive from the Chernoff-Hoeffding bounds
(see also [3], [4]) that a simple random sample of size

2
ε2 (2d lnn + ln 2

1−p) of a d-dimensional multiset of n
points will satisfy the aforementioned ε-error guarantees
with probability p. While confidence intervals for the correct
count can be derived from a random sample, it does not
yield tight deterministic bounds and the question remains
which summaries we should construct to predictably obtain
such bounds. More sophisticated and deterministic sampling
techniques have been studied (from a more theoretical point
of view) in the computational geometry [5], [6], streaming
[7], [8] and discrepancy theory [9], [10], [11], [12] litera-
ture. In these works, sampling-based summary approaches,
termed ε-approximations, with the lowest asymptotic sample
size are sought after. The best asymptotic space bound of
Od(

1
ε log2d−2(1

ε) poly(log log(1
ε)) is currently achieved by

[7], [5], where the subscript d in Od(. . .) indicates that
d is treated as a small constant. While the approaches
scale theoretically very well with ε, practical efficiency of
deterministic sample construction remains a major concern:
existing techniques [7], [6], [8], [11], [12], [5] need at
least 1024 arithmetic operations to construct samples with
ε-error guarantees (ε ≤ 1%), rendering them astronomically
expensive even for simple problem instances.

In contrast, the database literature [1], [13], [14], [15],
[16], [17], [18], [19] focused more on multidimensional
summaries that empirically appear to work well, but do
not possess any formal error guarantees. One exception are
multidimensional equi-depth histograms [20], which with
Od(

1
εd

) buckets can be shown to achieve ε-error guaran-
tees. A better histogram-based technique, termed dyadic
histograms, can be found in the streaming literature [7].
A dyadic histogram is basically an approximate range
tree [21] which does not store any points and omits the
lower levels of the tree. It achieves ε-error guarantees in
Od(

1
ε log2d−2 log(1

ε)

ε) space. Similar to range trees, dyadic
histograms work best for two-dimensional data and begin
to become impractically large and slow to construct in even
just three dimensions.

Our Contributions. To improve ε-approximation perfor-
mance in higher dimensions, we propose a histogram-based
summary structure, termed SliceHist. The basic idea is to
operate multidimensional grid (i.e., equi-width) histograms
in a transformed space, where each slice of a regular grid
contains a bounded number of points. A SliceHist summary

(a) original data (b) rank transformation

Figure 1: Rank transformation for data summarization.

transforms both data points and queries using the same
count-preserving data transformation, which is a variant of
the rank transformation, a well-known tool in statistics and
computational geometry. In statistics (cf. Sklar’s theorem),
the rank transformation allows any multivariate distribution
to be captured by a multivariate distribution (copula) with
uniform marginals [22]. A direct implication of uniform
marginals is that the data space cannot be arbitrarily skewed,
e.g., with arbitrary dense or empty areas. This is illus-
trated in Figure 1, where data points are clearly spread
more uniformly in the rank-transformed space. Another
interesting property is that independently-distributed di-
mensions translate to (multidimensional) uniformity in the
rank-transformed space. For instance, a data set’s mutual
information (an independence measure) can be computed
from the entropy (a uniformity measure) of the copula
space (statistical equivalent to rank space) [23]; that is,
independence between data dimensions is quantified through
uniformity in the rank-transformed space.

In this work, we employ the rank transformation as a
building block for ε-approximate data summarization. A 1-
level SliceHist is simply an equi-width histogram of the
rank-transformed data, i.e., a uniform-grid histogram defined
by splitting each dimension of the rank space into intervals
of equal size (depending on the desired error ε). A k-level
SliceHist is defined recursively, and comprises a 1-level
SliceHist G along with a (k−1)-level SliceHist for each
slice (i.e., “row”, “column”, etc.) of the grid histogram G in
all dimensions. As our analysis demonstrates, this simple re-
cursive ε-approximation construct can achieve O(1

ελ
log(1

ε))
storage costs for any constant λ > 1. However, this requires
a large number of levels k, which also implies large con-
stants (independent of ε) hidden in the O-notation. While
this is a useful reminder that low asymptotic complexity
is not necessarily indicative of performance in practice,
we feel that it also provides a very interesting theoretical
result offering new insights into the complexity of the ε-
approximation problem. Fortunately, for k = 2, SliceHist
offers a near-linear storage complexity of O(ε−d/(2−

1
d))

in low to medium dimensionalities, outperforms existing
quantile-based ε-approximations in practice, and can even
compete with state-of-the-art heuristic solutions, such as
DigitHist histograms [24] (which, of course, cannot offer
any ε-approximation guarantees).

For any reasonable space budget (smaller than an Ex-
abyte), SliceHist achieves the best ε-error guarantees, which
can be seen from the numerical analysis of the exact for-
mulas (cf. Table 1). If the space budget was allowed to be
astronomically large, dyadic histograms could achieve better
ε-error guarantees. Both dyadic histograms and SliceHist
can be constructed in a small number of data passes us-
ing approximate quantile summaries, but dyadic histograms
need to perform Od(logd−1 1

ε) more insertions and binary
searches per point, which makes their construction vastly
more costly. Unlike dyadic histograms, SliceHist offers a
logarithmic query time for any number of dimensions.

Our technical contributions can be summarized as:

• We propose SliceHist, a novel histogram summary
for multidimensional data with ε-error guarantees,
based on δ-rank transformations and equi-width his-
tograms.

• We formally analyze SliceHist, demonstrating that
it offers logarithmic query times and log-linear con-
struction times in any number of dimensions.

• We show that SliceHist achieves the tightest ε-error
guarantees for a given space budget and experi-
mentally competes head-to-head with state-of-the-art
heuristic approaches that lack ε-error guarantees.

2. Count-Preserving δ-rank Transformation

At the core of SliceHist is to transform the data into a
more convenient space for data summarisation. As an exact
rank transformation would require space linear in the size of
the data points, we propose to utilize an δ-approximate rank
transformation that can be obtained with the help of quantile
summaries [25], lexicographic ordering and interpolating
between available quantiles.

Definition 1 (δ-rank transformation). A function φ : Rd →
[0, 1]

d is a δ-rank transformation of a d-dimensional dataset
D if and only if it satisfies the following conditions:

i.) for any point p ∈ D and any box (s× t) ∈ Rd×Rd
it holds that p ∈ (s× t)⇔ φ(p) ∈ (φ(s)× φ(t));

ii.) for any dimension i and interval [a, b] along
that dimension it holds that (b − a) − δ

2 ≤
|{p∈D | a ≤φ(p)i ≤b}|

|D| ≤ (b− a) + δ
2 .

A δ-rank transformation maps any point to a point in a
unit space where each dimension is a normalized rank. By
transforming any two opposite corners of boxes, one can
also obtain transformed boxes in the normalized rank space.
The first property of a δ-rank transformation ensures that
for any point inside (resp. outside) a box, the transformed
point is also inside (resp. outside) the transformed box. The
second property quantifies the precision of the approximate
ranks in each dimension. Ideally, an interval covering half of
the space should contain exactly 1

2 of the ranks, but instead
it is allowed to contain between 1−δ

2 and 1+δ
2 of the ranks,

where δ ∈ [0, 1] is the approximation precision.
Next, we describe how a δ-rank transformation storing

O(dδ) values can be obtained using quantile summaries [25].

Definition 2 (quantile-based δ-rank transformation). Let D
be a d-dimensional dataset and Si denote a sequence of
points q1, . . . , qm representing the approximate quantiles in
dimension i for 1 ≤ i ≤ d, where m = d 3

δ e and qj is
the δ

6 -approximate quantile of the rank j
m along dimension

i. Then the transformation function is defined as φ(p) =
(φ(p)1, . . . , φ(p)d) with

φ(p)i =


j
m p = qj ∈ Si
j
m + (km −

j
m)

pi−((qj)i−∆)
((qk)i+∆)−((qj)i−∆) p /∈ Si

where 0 < ∆ < 1 is a real-valued constant and qj , qk are
the closest neighbours of p in the total order over D ∪ {p}
in dimension i s.t. q1 <i . . . <i qj <i p <i qk <i . . . <i
qm where <i orders points first by dimension i and then
lexicographically by the remaining dimensions.

A quantile-based transformation builds a δ
6 -approximate

quantile summary for each dimension to obtain the quantiles
[q1, . . . , qm] at the ranks { 1

m , . . . ,
m
m} with m = d 3

δ e. It
then (approximately) answers a rank query for a point p by
finding the neighbouring quantiles in each dimension and
reporting the interpolated rank between those two quantiles,
except when the point lies on a quantile, in which case the
quantile’s rank is reported instead.

Such a transformation satisfies the δ-approximation
property, because an interval [a, b] in the exact rank space
contains around (b−a) ranks and the quantile summaries can
displace at most a fraction of δ

6 + δ
3 = δ

2 ranks into (or out
of) the interval [a, b]. It also satisfies the count preservation
property of δ-rank approximations, because the interpolation
preserves the order in each dimension and does not allow
values to coincide with ranks of neighbouring quantiles. The
latter property is achieved through a constant ∆ close to 0,
e.g., ∆ = 10−6 (choosing a small ∆ is advantageous due to
finite numerical precision, but in principle any value greater
than 0 and smaller than 1 is valid).

3. SliceHist: ε-Approximate Grid Histogram

The core idea of SliceHist is to first transform the data
(using an approximate rank transformation) into a space
where the data is more uniformly distributed, and then to
construct a grid histogram in the transformed space (1A
and 1B in Figure 2). This requires at least two scans over
the data. In the first pass an approximate quantile summary
for each dimension is constructed for the approximate rank
transformation. In the second pass the points are rank-
transformed before they are passed on to the grid histogram.
To improve precision, each grid slice of the grid histogram
can be summarised again (2A and 2B in Figure 2), which
will require further passes over the data, one of which can
be done in parallel with the second pass.

To query the SliceHist summary, the corners of the
query rectangle Q are first transformed using the same rank
transformation, yielding a transformed query box R (1B in
Figure 3). Then, the precise count for the grid cells that
are completely covered by the transformed box R can be

retrieved, whereas the edges of the query are passed to the
next level of SliceHist (2B in Figure 3).

3.1. Definition

We start by introducing 1-level SliceHist, a simple his-
togram summary that combines a δ-rank transformation with
a multi-dimensional equi-width partitioning. It achieves ε-
error guarantees by limiting the number of points in each
slice of a grid. A slice is a generalization of rows and
columns to more dimensions, i.e., all the grid cells that share
the same coordinate in some dimension.

Definition 3 (1-level ε1-SliceHist). A 1-level ε1-SliceHist,
SH (D) = (φ,G), of a multiset of points D is a δ-rank
transformation φ of D, paired with a d-dimensional regular
grid histogram G over the transformed points Dφ. The
parameter ε1 determines that the transformation function
φ has approximation parameter δ = (α−1

α ε1) and G has
a grid resolution of d αε1 e slices per dimension. The real
1 < α ≤ 2 is chosen such that the total number of summary
values d2d(α

α−1) 3
ε1
e+ d αε1 e

d is minimized.

A 1-level SliceHist operates a grid histogram in a δ-rank
transformed space. It transforms each data point, determines
in which grid cell the transformed point is contained, and
increments the count of that cell. In order to answer queries
over the original space, it transforms the end points of the
query box and then uses the grid histogram to answer the
query. By choosing the right values for δ and the grid
resolution, it can be guaranteed that at most ε1n transformed
points fall into each slice of the grid. The variable α > 1
allows to balance the precision of the grid histogram and
the δ-rank transformation. While it is difficult to express
the optimal value for α analytically, for a given data di-
mensionality d and ε1 it is very easy to numerically find
the optimal value that minimises the number of summary
values comprised of dd(α

α−1) 3
ε1
e quantile points (from φ)

and d αε1 e
d grid counts (from G).

Example 1. In Figure 2, the gray parts of 1A and 1B form
the 1-level ε-SliceHist (φ,G) for a dataset D. The trans-
formation function φ is represented by two one-dimensional
histograms with 20 buckets in 1A (acting as stand-ins for
quantile summaries that are difficult to visualize), and the
two-dimensional grid histogram G in 1B with 5 slices along
each dimension. Notice that the transformed data is more
uniformly spread. To better illustrate the transformation,
three random points are depicted as a triangle, diamond
and square. For instance, the triangle point is transformed
from (0.47, 0.48) to its approximate rank (0.26, 0.41), i.e.,
according to the histograms 26% of the points have lower
x-coordinates and 41% lower y-coordinates.

Lemma 1. Let G be the grid histogram of a 1-level ε1-
SliceHist summarising n points. Each grid slice of G counts
at most ε1n points.

Proof. Due to the second property in Definition 1 and
δ = α−1

α ε1, each slice of width w in the transformed space

1A

r

G

1B

2A

2B

1-level SliceHist
2-level SliceHist

1111111111

1111111111

3333333333

3333333333

2222222222

1111111111

1111111111

3333333333

4444444444

1111111111

5555555555

1111111111

1111111111

1111111111

2222222222

3333333333

4444444444

1111111111

2222222222

3333333333

3333333333

1111111111

3333333333

. . .

3333333333

3333333333

3333333333

1111111111

2222222222

1111111111 2222222222

1111111111

1111111111

1111111111

2222222222

...

1111111111

2222222222

1111111111

1111111111

2222222222

1111111111

1111111111

1111111111

1111111111

1111111111

1111111111

2222222222

1111111111

2222222222

1111111111

1111111111

D
!

Figure 2: 2-Level SliceHist summary comprised of eleven
1-level SliceHist summaries (only five are depicted): the 1-
level SliceHist of the original data D (1A and 1B) and a
1-level SliceHist for each slice (row and column) in the
grid G of the φ-transformed data.

contains at most (w + α−1
α ε1)n points. A grid resolution

of d αε1 e slices per dimension ensures that each slice has at
most width w = ε1

α . Taken together it follows that each slice
contains at most 1

αε1n+ α−1
α ε1n = ε1n points.

Lemma 2. A 1-level (ε12d)-SliceHist of a point multiset D
can determine the count of any box query with additive error
≤ ε1|D|.

Proof. In order to summarise a multiset of points, it first
transforms each point using φ and then counts the number
of transformed points along a regular grid. Box queries
of the shape (s × t) can then be answered by posing the
query (φ(s)× φ(t)) to the grid histogram. Each box query
partially intersects at most 2 slices of the grid histogram
per dimension, and each slice of the grid contains at most
ε1|Dφ| = ε1|D| points (cf. Lemma 1).

Lemma 3. Any 1-level (ε12d)-SliceHist has O(d
3+dd

εd1
) sum-

mary values.

Proof. As α is chosen such that it minimises the number
of summary values, an arbitrary choice of α is an upper
bound for the actual summary size. Thus, picking α = 2,
we obtain that the number of summary values is at most
d2d 6d

ε1
e+ d 2d

ε1
ed = O(d

3

ε1
+ dd

εd1
).

If we create a 1-level ε1-SliceHist of the original data
and summarise each slice of its grid histogram again with
a 1-level ε2-SliceHist, we obtain a summary with ε-error
of (2d)(2d − 1)ε1ε2n. This is because each slice at the
lowest level contains at most ε1ε2n points and at most
(2d)(2d−1) such slices are partially intersected by a query.
The number (2d)(2d − 1) of partially intersected slices
is derived as follows: at the top-level the query partially
intersects 2d slices, and each of the 2d sub-queries along
each slice is passed on to the bottom-level, where each sub-
query intersects at most 2d − 1 slices (it is one slice less
because the sub-queries always completely contain the slice
on one side, as the sub-query “hugs” that side). For the
choice ε1 = ε2 =

√
ε

(2d)(2d−1) we only have to store on
the top level one 1-level ε1-SliceHist with O(1√

εd
) values

and on the lower level a 1-level ε2-SliceHist with O(1√
εd

)

values for each of the Od(1√
ε
) top-level slices, which totals

to O(1√
εd+1

) values.
If we would recursively continue this idea, we would

obtain for k levels and ε1 = . . . = εk =
k
√
ε

(2d)(2d)k−1 a
summary with ε-error and size Od(1

k√
εd+k−1

). If we would
like to achieve Od(1

ελ
) for an arbitrarily small λ, we could

pick the smallest k such that d+k−1
k ≤ λ, i.e., k = d d−1

λ−1e.
This asymptotic analysis omits constants that grow ex-

ponentially with k, such that in practice a 1-level or 2-level
SliceHist has generally the smallest size (and in some rarer
cases a 3-level SliceHist).

Definition 4 (k-level [ε1, . . . , εk]-SliceHist). A k-level
[ε1, . . . , εk]-SliceHist of a data set D with k > 1 is a
recursive data structure comprised of a 1-level ε1-SliceHist
SH (D) = (r,G) and, for each slice of the grid histogram
G, a (k−1)-level [ε2, . . . , εk]-SliceHist of the points in the
slice.

The ε1, . . . , εk values specify the precision for each level
of the hierarchical structure, where ε1 specifies the precision
of the 1-level SliceHist at the top level. Lemma 7 shows how
to choose the optimal values for ε1, . . . , εk, given an error
guarantee ε.

Adding a recursive structure to SliceHist benefits it
more than simply increasing the grid resolution and thereby
enables more precise and compact summaries.

Example 2. Figure 2 shows a 2-level SliceHist (gray parts).
It is comprised of a 1-level SliceHist on the original data
(gray parts in 1A and 1B) and, for each slice in the grid
histogram G, another 1-level SliceHist that summarizes the
data points in the corresponding slice. For instance, the gray
parts in 2A and 2B represent the 1-level SliceHist of the
first vertical slice. In total, this yields ten sub-summaries,

five in each dimension. For the ε-rank transformations, one-
dimensional histograms are used with 20 buckets in 1A and
10 buckets in 2A.

3.2. Constructing SliceHist

The construction of a SliceHist is outlined in Algo-
rithm 1. In the initialization step, the optimal parameters
are determined to minimize the summary size formula from
Theorem 1. From a numerical evaluation of Theorem 1,
we know that the optimal choice of k is between 1 and
4 for summary sizes below one exabyte. We therefore try
out all four values and pick the best one. Once we fix a
k ∈ {1, 2, 3, 4} we get specific values for ε1, . . . , εk ac-
cording to Lemma 7 and can determine the arbitrarily close
to optimal α1, . . . , αk parameters. As the optimal choice
of αj , . . . , αk is independent of α1, . . . , αj−1, first αk is
determined, then αk−1 and so on, until α1 is computed.
The next step is to construct a 1-level SliceHist. For this,
line 6 constructs a δ1-rank transformation for the multiset of
points D. In line 7, the grid histogram G1 is constructed by
transforming the data points and counting the transformed
points (1B in Figure 2). Finally, the algorithm iterates in
a breadth-first manner through all levels from 2 to k and
constructs a (k−1)-level SliceHist for each slice in each
dimension of the grid histogram G.

Algorithm 1: SLICEHIST CONSTRUCTION
Input: Data set D, precision ε
Result: k-level [ε1, . . . , εk]-SliceHist for D

1 Repeat lines 2–4 for k ∈ {1, . . . , 4} and use k, s.t., the expression in
line 4 is minimized.

2 Compute [ε1, . . . , εk] from ε and k according to Lemma 7;
3 foreach ` ∈ {k, . . . , 1} do
4 Find 1 < α` ≤ 2 minimising∑k

i=`

(∏i−1
j=1 d

⌈
αi
εj

⌉)(⌈
αi
εi

⌉d
+ d2

⌈ αi
αi−1

3

εi

⌉)
5 Let δ1 =

α1−1
α1

ε1;
6 φ1 ← δ1-rank transformation of D;
7 G1 ← grid histogram of Dφ1 with dα1

ε1
ed cells;

8 SH ← (φ1, G1);
9 foreach level ` ∈ {2, . . . , k} do

10 Let δ` =
α`−1

α`
ε`;

11 foreach grid histogram G on level `−1 do
12 foreach slice S of G do
13 Let X be the transformed data points in S;
14 φ← δ`-rank transformation of X;
15 G← grid histogram of Xφ with dα`ε` e

d cells;
16 SH ← SH ◦ (r,G);

17 return SH ;

Lemma 4. The SliceHist summary structure with k levels of
a data set with n points is constructed in O(dk−1n log(n))
time in (k + 1) passes over the data.

Proof. In the first data scan, each point is added to the
rank transformation of the 1-level grid histogram. In the
j-th data scan, each point is rank transformed (j− 1) times
and counted by dj−2 different (j−1)-level grid histograms,

and if j < k it is additionally added to dj−1 rank trans-
formations of j-level grid histograms. Let A = O(log(n))
be the cost of adding a point to a rank transformation,
R = O(log(n)) be the cost of rank transforming a point
and C = O(1) be the cost of adding the point to the (equi-
width) grid histogram. Then, the construction costs are equal
to n(

∑k
j=2(j−1)R)+n(

∑k−1
j=1 d

j−1A)+n(
∑k

j=2 d
j−2C),

which is in O(dk−1n log(n)).

3.3. Querying SliceHist

The SliceHist summary structure for a d-dimensional
data set is queried by first rank transforming the query
and then splitting the rank-transformed query rectangle into
(2d+1) parts. This is illustrated in Figure 3. Hatching indi-
cates different parts of the query range, which are processed
by different parts of SliceHist. The query in the original data
space is shown on the bottom right, the rank-transformed
query in the rank space on the top left. One part of the
rank-transformed query range is grid-aligned (union of grid
cells) in the grid histogram G of the current level (gray area
on the top left). The remaining 2d parts are passed on to
the next level, i.e., the twice rank-transformed space (2B).

2B

2B

D
Q

R

1B

Figure 3: Query split and transformation.

Querying SliceHist is outlined in Algorithm 2. First,
the query box is rank transformed by transforming its two
corner points (line 2). Then, the query range R in the rank-
transformed space is conceptually split into 2d + 1 parts.
One part is grid-aligned with the higher-level histogram
(processed in line 12). The other 2d parts are processed
in the loop at line 4. It iterates through all dimensions
and processes in each iteration the two slices that contain
Rmin and Rmax in that dimension (A and B in line 5). If
the SliceHist summary has k > 1, the algorithm proceeds
recursively to compute the estimates of A ∩ R and B ∩ R
using the k−1-SliceHist (line 7). When the last level of the
summary is reached, the queries are eventually answered by
querying the grid histogram (lines 9 and 10). The counts of
the grid histograms are stored as cumulative sums (or prefix
sums/cubes) to enable constant-time querying. In line 11,
the processed parts of the query are subtracted from the
query range R. After terminating this loop, R contains the
grid-aligned part of the query range, which is processed on
the grid histogram of the 1-level SliceHist (line 12).

Algorithm 2: SLICEHIST QUERYING
Input: k-level [ε1, . . . , εk]-SliceHist SH and query range (s× t)
Output: approximate count of points C in box spanned by s and t

1 Let G be the 1-level grid histogram of SH at the top-level;
2 R← (φ(s)× φ(t));
3 C ← 0;
4 foreach dimension i do
5 Let A and B be the slices of G containing, resp., φ(s) and φ(t);
6 if k > 1 then
7 s← s+µA(A∩R) +µB(B ∩R), where µA and µB are

estimates of the (k−1)-SliceHist of A and B, respectively;
8 else
9 Let C and D be the grid-aligned bounding box of,

respectively, A ∩ R and B ∩ R in G;
10 C ← C +

vol(A∩R)
vol(C)

· µ(C) +
vol(B∩R)
vol(D)

· µ(D);

11 R← R \ (A ∪ B);

12 C ← C + µ(R);
13 return s

3.4. Complexity Analysis

We treat k in the following as a small constant, because
the construction algorithm always picks k ∈ {1, 2, 3, 4}.
Lemma 5. The query complexity of a k-level SliceHist with
precision ε is O

(
dk log 1

ε2d(1 + (2d)
k−1
)

and Od(log 1
ε)

when d and k are treated as constants.

Proof. The query is rank transformed dk times in O(log 1
ε)

and runs (1 + (2d)
k−1

) grid-aligned queries, which are
answered in O(2d) as the grid histograms are stored as prefix
cubes/sums.

We start by demonstrating that a multi-level SliceHist
indeed provides ε-approximation guarantees that depend on
the granularity parameters of the per-level grid histograms.

Lemma 6. A k-level [ε1, . . . , εk]-SliceHist in d dimensions
is an ε-histogram with ε = (2d)k ·∏k

i=1 εi.

Proof. The only error in querying a k-level SliceHist results
from partially intersected grid slices at the lowest level k of
SliceHist; all other buckets are fully contained in the query
and, thus, cannot introduce an error. By the construction of
SliceHist, each such level k slice contains at most a fraction∏k
i=1 εi of the data points, while the recursive querying

process ensures that the number of partially intersected
slices is at most (2d)k, which proves the result.

Given a desired approximation accuracy ε, the following
Lemma 7 shows how to determine the per-level parameters
ε1, . . . , εk that minimize the overall SliceHist storage costs.

Lemma 7. Given a desired accuracy guarantee ε and a
number of levels k, the minimal storage costs are achieved
by picking the vector ε1, . . . , εk such that

εi =


(

ε
(2d)(2d−1)k−1

) 1
Ak

(
1∏k−1

j=1 (d−1)Aj

) 1
Ak

for i = 1,

ε
(1− 1

d)
i−1 (d− 1)1/d for i > 1,

where Aj = 1− (1− 1
d)j .

Proof. The storage costs of a k-level SliceHist are
determined by the total space required by the grid
histograms for all slices across all levels of the summary. It
is not difficult to see that, at a given level i ∈ {1, . . . , k},
the total number of slice histograms (for slices created
at the previous level) is exactly di−1

ε1···εi−1
, which implies

that the total storage cost (i.e., number of grid histogram
buckets) at level i is di−1

εdi
∏i−1
l=1 εl

. Thus, minimizing storage
costs for our synopsis can be formalised as the following
(non-linear) optimization problem:

Minimize
S(ε1, . . . , εk) =

∑k
i=1

di−1

εdi
∏i−1
l=1 εl

under the constraint ε1 · · · εk = C (= ε/(2d)k, constant).
The objective function can easily be rewritten as

S(ε1, . . . , εk) =
∑k
i=1 d

i−1(ε1···εi−1)d−1(εi+1···εk)d

(ε1···εk)d
,

and as the denominator is constant, we seek to minimize

S′(ε1, . . . , εk) =
∑k

i=1 d
i−1Cd−1

−{i}(εi+1 · · · εk)

under the constraint
∏
i εi = C, where for notational

convenience we define C−{i,j} =
∏k
l=1,l/∈{i,j} εl. We can

now write out the Lagrangian function:

L(ε1, . . . , εk, λ) = S′(ε1, . . . , εk) + λ(C −∏k
i=1 εi)

and its partial derivative with respect to εi:

∂L

∂εi
= −λC−{i} + dεd−1

i

i−1∑
j=1

dj−1Cd−1
−{i,j}

k∏
l=j+1,l 6=i

εl

+ (d− 1)εd−2
i

k∑
j=i+1

dj−1Cd−1
−{i,j}

k∏
l=j+1

εl

At the optimal solution point, we have ∂L
∂εi

= ∂L
∂εi+1

= 0 for
all i. Solving this equation (with some symbol manipulation)
gives εi+1 = ε

(1−1/d)
i (d− 1)1/d.

The result follows by combining the above expression
with the expression for the overall error ε in Lemma 6.

We can now define a k-level ε-SliceHist as an (ε-
approximate) [ε1, . . . , εk]-SliceHist with ε = (2d)k ·∏k
i=1 εi, where the εi’s are defined based on Lemma 7.

4. Analysis of ε-error Summaries

In this section, we analytically investigate existing data
summarization approaches with respect to the offered ε-
error guarantees for a limited space budget. Formally, a
summary approach has ε-error guarantees if a summary can
be created for any multiset of n points that approximates
the multiset’s counts along all axis-aligned boxes with at
at most additive error εn. As the error guarantees depend
only on the data size, summary size and data dimensionality,

we can predict the practical performance through formulas
and do not need to run experiments for this purpose. In our
analysis, space budget numbers are assumed to be in bytes,
and the summary values/counts are assumed to be stored in
64bit = 8byte words.

4.1. Histogram-based ε-Approximations

Theorem 1 (SliceHist properties). A k-level SliceHist sum-
mary with parameters ε1, . . . , εk has size in bytes:

min
α1,...,αk∈(1,2]

k∑
i=1

(
i−1∏
j=1

d

⌈
αj
εj

⌉)(⌈
αi
εi

⌉d
+d2

⌈ αi
αi−13

εi

⌉)
8

It can be constructed in (k + 1) passes over an or-
dered stream of multipoints by performing

∑k
i=1 d

i quan-
tile summary insertions and

∑k
i=1 d

i binary searches
per point. It answers any box count query by perform-
ing

∑k
i=1 (2d)

i−1
d ≤ k(2d)

k−1 binary searches and∑k
i=1 (2d)

i−1
2d ≤ kdk−12d+k−1 lookups. It achieves

ε-error guarantees by choosing ε1, . . . , εk according to
Lemma 7 s.t.

∏k
i=1 εi = ε

2d(2d−1)k−1 , which results in a

summary size of Od(1
ε

d/(d−d(d−1
d)

k
)
) for a fixed dimension-

ality and a summary size of Oε(O(d)
O(d)

) for a fixed ε.

Proof. A 1-level ε1-SliceHist summary with α1 of n points
is constructed in two data passes by performing d quantile
summary insertions and d binary searches per data point. In
the first data pass, α1−1

α1

ε1
6 -approximate quantile summaries

q1, . . . , qd are created for each dimension. Additionally, a
grid histogram G1 with

⌈
α1

ε1

⌉
grid slices per dimension

is created, whose counts will remain zero until the second
iteration. Then each data point is inserted in each of the d
quantile summaries, which performs d quantile operations
per point (insertions). At the end of the first iteration, each of
the quantile summaries q1, . . . , qd are queried for dα1−1

α1
ε1e

quantiles, which totals to ddα1−1
α1

ε1e quantile operations
(in this case quantile queries), which are negligibly few
compared to the quantile operations performed per data
point. The obtained quantile points then comprise a δ-rank-
transformation φ1 with δ = α1−1

α1
ε1. In a second data pass,

each point is transformed using φ1 by performing d quantile
operations (in this case quantile queries). Then the slice
containing the point can be determined for each dimension
in O(1) arithmetic operations and the count at the grid cell
of G1 is incremented.

A k-level SliceHist summary with ε1, . . . , εk and
α1, . . . , αk is created by first creating a 1-level ε1-SliceHist
summary (φ1, G1) and then creating a (k − 1) SliceHist
summary of the φ1-transformed points for each grid slice
of G1. Naively, this would result in 2k + 1 data passes,
but since nothing depends on the grid counts obtained in
the second iteration of the 1-level construction, the second
iterations of the 1-level SliceHist can be all moved to a last
pass over the data. Thus, only k + 1 data passes have to
be performed. In the first data pass, d quantile summary

insertions are performed per point, . . . , in the `-th data pass
d`−1 binary searches, and d` quantile summary insertions
are performed per point. In the (k + 1)-th data pass, dk
binary searches are performed per data point. Thus, the total
number of quantile summary insertions and binary searches
is (d+ d2 + . . .+ dk).

Let Ax = 1−(1−1/d)
x. From d ≥ 1 follows 1

d ≤ Ax <
1 for any x. It is also easy to see that Ax/Ay ≤ 1 for x < y.

From picking α` = 2 for any 1 ≤ ` ≤ k we obtain
summary size O(

∑k
i=1

2d+i−1di−1(2d)(2d−1)k−1

εid
∏i−1
j=1 εj

+ di−1d2∏i
j=1 εj

).
εi can be written as

εi =
ε

(2d)k
∏k−1
j=1 (d− 1)

Aj

(1−1/d)i−1

dAk

i−2∏
j=0

d
√
d− 1

1−(1/d)j

,

and by inserting the formulas for εi into the initial formula,
we obtain

O(
∑k

i=1 2d+i−1
(

d
d−1

)i−1

(d− 1)

∑k−1
j=1

Aj

Ak
2d(2d−1)k−1

ε

1
Ak +

di+2(d−1)
(
∑i−1
j=0 (1−1/d)j−1)+(

∑k−1
j=1 Aj)

Ai
Ak

(
2d(2d−1)k−1

ε

) Ai
Ak)

By upper bounding any d-related terms by 2d and
by exploiting that for any 1 ≤ i ≤ k it holds that
Ai
Ak
≤ 1, 1 ≤ 1

Ai
≤ d and (1 − 1/d) < 1, we

can reduce it to Oε(2
(d+2dk+4k)d(2kd+3k+2)) which is in

Oε(O(d)
O(d)

).

Theorem 2 (Equi-depth summary complexity). An equi-
depth summary achieves ε-error guarantees with parameter
B chosen as the smallest integer s.t.

∑d−1
i=0 (2(B−2)

B)
i

4
B ≤

ε, which leads to B = O(dε) and a summary size
in O(O(d)d+2

εd
). It answers queries with time complexity

O(1
εd−1 log(1

ε)) and can be constructed in (d + 1) passes
over an ordered stream of multipoints by performing in total
O(d) quantile operations per point.

Proof. A (1, B) summary can be constructed in one pass
over the stream. In the first pass, a 1

2B -approximate quantile
summary is created and each data point is inserted into
it. After the first pass, B approximate quantile points are
obtained, such that there are at most 2

B points between
two approximate quantiles. A (d,B) summary can be con-
structed in d passes over the stream. It first constructs a
(1, B) equi-depth summary and then constructs for each
bucket a (d− 1, B) summary.

A d-dimensional equi-depth summary creates first a
(d,B)-summary and then does another data pass to count the
number of points in each bucket, so that no error is accumu-
lated over buckets completely contained in the query region.
Thus, the summary consists of d

∑d
i=1B

i−1(B−1) ≤ d2Bd

quantile point coordinates and
∑d

i=1B
i ≤ dBd counts.

A 1-dimensional equi-depth summary has a maximum
error of f1(B) = 2 2

B and a d-dimensional summary a maxi-
mum error of fd(B) = f1(B)+(B−2) 2

B fd1(B). Unraveling

the recursion yields fd(B) =
∑d−1

i=0 (2(B−2)
B)

i
4
B = O(dB).

Thus, equi-depth achieves ε-error guarantees for a summary
size O(O(d)d+2

Bd
).

Dyadic histograms [7] can be described as a recursive
data structure as follows. A (p, d)-dyadic histogram operates
in d dimensions and divides the space along the first di-
mension into 2p space regions r1, . . . , r2p , each containing
at most 1

2p points. An interesting observation here is that
a query box might partially intersect all of these regions,
but then completely contains all but two regions along the
first dimension. This can be exploited by constructing a
binary tree over the regions and maintaining for each node
a (q, d− 1)-dyadic histogram that operates only in the last
d − 1 dimensions. In the worst case the query box can be
split into 4 + 2(p − 2) parts of which 2 can be handed off
to a node with 2 regions, 2 to a node with 4 regions, . . ., 2
to a node with 2p−1 regions and 4 are handled directly.

Theorem 3 (Dyadic histogram complexity). Let
errd(p, n) = 2 err1(p, n) + 2

∑p−2
q=1 errd−1(q, 2q n2p) ≤ n

be the recursively defined maximal error of (p, d)-dyadic
histograms with base case err1(p, n) = 2

2pn. A dyadic
histogram achieves ε-error guarantees with parameter
p = O(log

(
1
ε logd−1 2d

ε

)
) chosen as the smallest integer

s.t. errd(p, n) ≤ εn, for which it has a summary size of
O(logd−1

(
1
ε logd−1 2d

ε

)
1
ε logd−1 2d

ε).

Proof. The complexity of the error is errd(p, n) =

O(p
d−1

2p n), because each expanded error formula for d ≥ 2

contains the sum
∑p−1

i=1 P (i) with a polynomial P (i) =
O(pd−2) of degree d− 2. By applying Faulhaber’s formula∑p−1

i=1 P (i) can be rewritten as one polynomial P(p) =
O(pd−1). For instance, err2(p, n) = max(n, (4p − 4) n2p)
and err3(p, n) = max(n, (4p2 − 20p+ 32) n2p). In order to
achieve errd(p, n) < εn, we need to satisfy P(p) n2p ≤ εn.
The minimal value for p to provide ε-error guarantees
can be obtained by first upper bounding p using a crude
analysis and then refining it through the inequality. A crude
analysis exploits that a (p, d)-dyadic histogram is comprised
of an equi-depth histogram with 2p buckets, which guar-
antees that ε ≤ O(1

2p/d
). Thus, p ≥ O(d log 1

ε) ensures
ε-error guarantees. Substituting p with the crude upper
bound in the second part of the inequality pd−1 1

2p ≤ ε

results in dd−1 logd−1 1
ε

1
2p ≤ ε, which solved for p yields

p ≥ O(log
(
dd−1

ε logd−1 1
ε

)
) = O(log

(
1
ε logd−1 2d

ε

)
).

A (p, d)-dyadic histogram of n points stores s(1, p) = 2p

bucket boundaries for d = 1 and s(d, p) = s(1, p) +∑p−1
q=1 2p−q s(d − 1, q) bucket boundaries for d ≥ 2. The

total number of bucket boundaries is in O(pd−12p), because
each expanded size formula for d ≥ 2 contains the sum∑p−1

i=1 P (i) with a polynomial P of degree d − 2, and
using Faulhaber’s formula the sum can be reformulated as
a polynomial of degree d− 1. For instance, s(2, p) = p(2p)
for d = 2 and s(3, p) = (p2 − 3p + 2)2p for d = 3.
Inserting the complexity of p = O(log

(
1
ε logd−1 2d

ε

)
) as a

function of ε into the size formula, we obtain the size bound
O(pd−12p) = O(logd−1

(
1
ε logd−1 2d

ε

)
1
ε logd−1 2d

ε) =

O(log2d−2 2d

ε logd−1
(
log 1

ε

)
), which is Oε(O(d)

O(d)
).

4.2. Deterministic ε-approximation Sampling

Existing ε-approximation approaches [7], [6], [8], [11],
[12], [5] to create samples with ε-error guarantees for
multidimensional range queries are either astronomically
expensive to construct or do not offer non-trivial guarantees.
As this is not directly evident from the asymptotic formulas,
we take a deeper look in the next Theorem.

Theorem 4. Existing deterministic ε-approximation sam-
pling approaches [7], [6], [8], [11], [12], [5] require
at least 1024 arithmetic operations to construct an ε-
approximation sample with error guarantee ε ≤ 1%.

Proof. All noted approaches are based on applying a halving
procedure that splits the data into two halves such that one
half is an ε-approximation of the data. Clearly, an approach
solely based on cleverly applying the halving procedure
cannot be more precise than the halving procedure itself.
The approaches can be split into two groups. They are
either based on (a) a halving procedure related to Spencer’s
discrepancy bounds [26] or (b) a halving procedure using the
Beck-Fiala [27] theorem and dyadic range decomposition
[7].

(a) Approaches related to Spencer’s discrepancy bounds
such as [6], [8], [11], [12] require in two dimensions at least
1024 arithmetic operations and 1032 in three dimensions
(which is a very optimistic lower bound) to construct an
ε-sample of size O(1

ε2) with ε ≤ 1% for axis-aligned range
queries. The halving procedure outlined in Proposition 3.1
of [11] performs more than n2d+1/4d arithmetic operations

to achieve ε ≥
√

16d log(4n)+4
n for arbitrary range queries.

For d = 2, in order to achieve ε ≤ 1% the data size n
has to be larger than a million, which leads to construction
costs beyond 1028 arithmetic operations. Exploiting the fact
that each axis-aligned query can be substituted with 2d

anchored queries (i.e., min-corner has to be the origin)
in combination with the inclusion-exclusion-principle, the
number of arithmetic operations can be improved to nd+1

and ε ≥ 2d
√

16d log(4n)+4
n , but then from ε ≤ 1% follows

that n > 108 which still results in construction costs beyond
1024 arithmetic operations for two dimensions and more
than 1032 in three dimensions.

(b) Approaches using the Beck-Fiala theorem such as
[7], [5] require at least 1036 arithmetic operations to con-
struct an ε-sample of size O(1

ε log2d 1
ε polylog(log 1

ε)) with
ε ≤ 1% for axis-aligned range queries. The halving proce-
dure of these methods constructs for a data set of size n a
sample of size n

2 by solving n linear equation systems of
size n×n, which requires at least n4 arithmetic operations.
The resulting sample is an ε-approximation with ε ≤ 2t−1

n ,
where t is the maximal number of distinct queries in which a
data point appears. This requires the value t and the number
of queries to be smaller than n. In general t = O(nd), and
the total number of queries is O(n2d). To reduce these two
numbers, the query set can be limited to dyadic (canonical)
ranges. Dyadic ranges are simply cross products of dyadic
intervals. We can think of dyadic intervals as buckets of

Dyad. Histograms SliceHist (k = O(1)) Equi-depth Dyad. Sketches

size for d = O(1) Od(1
ε log2d−2 log 1

ε
ε) Od(1

ε
d/(d−d(d−1

d
)
k
)) Od(1

εd
) Od(1

ε (log2d n) log 1
p)

size for ε = O(1) Oε(O(d)O(d)) Oε(O(d)O(d)) Oε(O(d)d+2) Oε(O(d)O(d) log 1
p)

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
size for ε = 5% 152.0KB 36.4MB 3.4GB 79.6KB 736.7KB 8.1MB 96.9KB 37.4MB 18.0GB 89.5GB 437TB 2.1EB
size for ε = 1% 1.6MB 430.5MB 102.2GB 463.8KB 7.4MB 193.5MB 2.4MB 4.8GB 11.7TB 447GB 2.2 PB 10.4EB

size for ε = 0.1% 15.5MB 10.3GB 2.7TB 5.6MB 271.1MB 27.7GB 244.0MB 4.7TB 116.2 PB 4.5TB 21.9 PB 103.9EB
size for ε = 0.01% 312.0MB 233.6GB 66.4TB 83.8MB 11.5GB 1.2TB 23.8GB 4.6 PB ≥ 1EB 44.7TB 219 PB 1ZB
size for ε = 1

1000 % 5.9GB 2.3TB 1.5 PB 1.3GB 225.0GB 56.0TB 2.3TB ≥ 1EB ≥ 1EB 447TB 2.19EB 10.4ZB
size for ε = 1

10000 % 53.0GB 47.9TB 34.2 PB 23.2GB 4.8TB 1.7 PB 232.8TB ≥ 1EB ≥ 1EB 4.47PB 21.9EB 103.9ZB

construction time Od(n logd 1
ε) Od(n log 1

ε) Od(n log 1
ε) Od(n logd n log 1

p)

passes over data stream d k + 1 d+ 1 1
query time Od(logd−1 1

ε) Od(log 1
ε) Od(1

εd
) Od(logd n log 1

p)

TABLE 1: Comparison of approaches with error guarantees using asymptotic complexities and exact summary sizes (cf.
Theorem 1, Theorem 2 and Theorem 3), and dyadic sketches that fail to provide ε-guarantees with probability p, where
we use p = 5% and log n = 32 for summary sizes; best approaches are highlighted. Existing ε-approximation sampling
approaches [7], [6], [8], [11], [12], [5] are not featured due to astronomical construction costs (cf. Theorem 4).

one-dimensional equi-depth histograms with 2x buckets for
x ∈ N. In computational geometry literature it is commonly
known that any axis-aligned range can be built from the
union of m = (2 log2(n) − 2)d dyadic ranges and each
point is contained in at most t = log2(n + 1)d dyadic
ranges. Thus, an ε

m -approximation over the dyadic ranges
is an ε-approximation over all ranges. There are in total
O(nd) dyadic ranges, but since each point is contained
in at most t ranges, it follows that only O(n) of the
dyadic ranges can contain more than ε

m points. Taken all
together, the Beck-Fiala theorem applied to canonical ranges
results in a halving procedure with εn ≤ m(2t − 1) =
(2 log2(n)− 2)

d
(2(log2(n+ 1))

d − 1).

4.3. Summary of Results

As Theorems 1–3 provide exact summary sizes to
achieve ε-error guarantees, we can directly compare how
compact the summaries are for a given summary size. The
results are shown in Table 1. As an additional comparison,
we also report the results for dyadic sketches [28], [1] that
provide probabilistic ε-guarantees as discussed in the related
work section. While Table 1 is just a snapshot, the formulas
stipulate that SliceHist offers the tightest ε-error guarantees
for summary sizes up to exabytes and is vastly smaller for
a fixed precision, especially in more dimensions.

While dyadic histograms asymptotically scale better
with ε, SliceHist offers the best query time complexity. Both
Equi-depth and SliceHist offer very fast construction, which
is comparable to sorting the data, while dyadic histograms
are much more expensive to construct. From the formulas
it is not clear which approach scales best with dimension-
ality, but from the exact sizes only SliceHist appears to be
functional up to four dimensions.

SliceHist, equi-depth and dyadic histograms can be con-
structed by performing for each point a number of quantile
operations (insertions into quantile summaries, or binary
searches). Dyadic histograms perform Od(logd−1(1

ε)) oper-
ations whereas SliceHist and equi-depth only perform O(1).

We therefore expect SliceHist’s and equi-depth’s construc-
tion time to be much smaller than of dyadic histograms,
especially in more dimensions.

5. Experimental Evaluation

In this section, we present experimental results on the
performance of SliceHist to support the theoretical analyses
of Section 4 (cf. Table 1). We use the term “selectivity of a
query box” as the fraction of all points contained in it.

Setup and Datasets. We use a machine with an Intel(R)
Xeon(R) W-2145 CPU @ 3.70GHz with 16 cores and
512GB RAM. The proposed approach only has access to
4GB of RAM and all approaches use only one core. All
algorithms are implemented by the same author in C++ and
compiled with GCC 7.4.0 using -O3.

We use four different real-world datasets. OSM2D: a
46GB spatial dataset from the OpenStreetMap project that
records 2.9 billion two-dimensional GPS-coordinates [29].
CLOUD3D: a point cloud of 15GB based on laser scans
of a public street comprised of 429 million points.
GAIA3D and GAIA4D: a scientific dataset with 1.7 bil-
lion multi-dimensional entries from the European Space
Agency Mission Gaia to detect celestial objects and map
the universe [30]. GAIA3D has dimensions “right ascen-
sion”,“declination” and “G flux”, and a size of 40GB.
GAIA4D additionally has “G magnitude” and a size of
54GB. The attributes relate to the location, energy, and
brightness of celestial bodies.

We create for each dataset 5000 queries, with 1000
queries for each of the targeted selectivities 0.01%, 0.1%,
1%, 5% and 10%. Each query box is created as described
in the following. The shape of the box is determined by
drawing two uniform points as opposing corners of a box
and only using its proportions (ignoring size and position).
The center of the box is determined by drawing a random
data point. After fixing the proportions and position, the
size of the box is chosen such that it contains roughly as
many points as the targeted selectivity (tolerating a 0.5x

measure 75th percentile q-error 75th percentile q-bounds
selectivity [%] 0.01 0.1 1 5 10 0.01 0.1 1 5 10

summary size OSM2D (46 GB)

1 MB 1.64 RS 1.16 RS 1.035 DH 1.011 DH 1.0086 DH no winner 0.81 DY 0.96 DY 0.99 DY 0.99 DY
10 MB 1.16 DH 1.045 DH 1.0083 DH 1.0025 DH 1.0016 DH 67977 DH 1.062 DH 0.98 DH 0.98 DH 0.99 DH

100 MB 1.03 DH 1.0051 DH 1.00081 DH 1.00027 DH 1.00017 DH 1.067 DH 0.99 DY 0.99 DY 0.99 DY 0.99 DY
1000 MB 1.0073 DH 1.00094 DH 1.00015 DH 1.000056 DH 1.000033 DH 1.029 DH 0.99 DH 0.99 DH 0.99 DH 0.99 DH

summary size CLOUD3D (15 GB)

1 MB 2 RS 2 RS 1.38 RS 1.16 RS 1.1 RS no winner no winner 1.11 DH 1.14 DH 1.11 DH
10 MB 1.86 RS 1.49 RS 1.11 RS 1.039 DH 1.026 DH no winner 5.9 DH 1.21 DH 1.058 DH 1.03 DH

100 MB 1.96 RS 1.12 RS 1.022 RS 1.0078 DH 1.0055 DH no winner 1.37 DH 1.015 DH 0.99 DH 0.99 DH
1000 MB 1.26 RS 1.035 RS 1.005 RS 1.0016 RS 1.001 RS 4 DH 1.17 DH 1.011 DH 1.0014 DH 1.00028 DH

summary size GAIA3D (40 GB)

1 MB 1.81 RS 1.42 RS 1.3 RS 1.14 RS 1.1 RS no winner no winner <0.1 ALL 0.38 ED 0.58 ED
10 MB 1.13 RS 1.21 RS 1.11 RS 1.038 RS 1.026 RS no winner <0.0001 ALL 0.11 ED 0.52 ED 0.69 ED

100 MB 1.068 RS 1.08 RS 1.015 RS 1.0057 RS 1.0042 RS <0.1 ALL 0.31 DY 0.87 DY 0.97 DY 0.98 DY
1000 MB 1.049 RS 1.05 RS 1.0048 RS 1.0016 RS 1.0011 RS 0.041 DH 0.24 DY 0.82 DY 0.95 DY 0.97 DY

summary size GAIA4D (54 GB)

1 MB 5.7 RS 2.2 RS 2.6 RS 1.85 RS 1.55 RS no winner no winner no winner <0.0001 ALL <0.0001 ALL
10 MB 1.61 RS 3 RS 1.5 RS 1.21 RS 1.12 RS no winner no winner <0.0001 ALL 0.052 ED 0.22 ED

100 MB 3.8 RS 1.38 RS 1.17 RS 1.05 RS 1.033 RS no winner <0.0001 ALL 0.053 ED 0.38 ED 0.56 ED
1000 MB 2.3 RS 1.2 RS 1.076 RS 1.02 RS 1.014 RS no winner <0.0001 ALL 0.11 ED 0.48 ED 0.66 ED

TABLE 2: Comparison of precision for SliceHist (SH), Dyadic Histograms (DY), Random Sampling (RS), Equi-Depth (ED),
Dyadic Sketches, and DigitHist (DH). The numbers indicate the error of SH as a factor of the indicated best competitor’s
error. Cells where SH is the best approach are highlighted in yellow. If all competitors have q-bounds > 100 we reference
the best competitor by the wildcard “ALL”. If all approaches have q-bounds > 100 we declare “no winner”.

smaller and 1.5x larger selectivity). Each box is stored with
the correct count to evaluate how precisely the summaries
approximate the counts.

We compare the following summary techniques. Sam-
pling takes a simple random sample (which is what AQP
systems commonly do). SliceHist is a SliceHist summary
with ε large enough such that the predicted summary size is
within the given space budget, while parameter k is chosen
s.t. the summary size is minimized. Dyad. Hist. [7] is the
state-of-the-art technique for histogram-based summaries
with ε-error guarantees and implemented using the same
quantile summaries as SliceHist. Equi-depth is an equi-depth
histogram [20] constructed using (d+1) passes and the same
quantile summaries as SliceHist. DigitHist [24] is a state-
of-the-art multidimensional histogram that offers per query
bounds, but no ε-error guarantees. Sketch reduces range
queries to point queries through dyadic ranges as proposed
in [28] and supports point queries using CM-sketches [31].

Results. For each of the datasets with sizes ranging from
15GB to 54GB we create a summary of different sizes
(1MB, 10MB, 100MB, 1000MB) using the five different
summary techniques. We evaluate the count estimates and
count bounds provided by the techniques for 5000 box
queries (1000 for each selectivity 0.01%, 0.1%, 1.0%, 5%
and 10%), and compute how much these estimates deviate
from the correct count (q-error) and how tight the bounds
are (q-bounds). We aggregate the 75th percentiles of the q-
errors/q-bounds and then compare the summaries over the
same datasets and summary size with each other. The q-error
is the multiplicative error between estimates and correct
counts max(T/E,E/T), and q-bounds are the quotient
between upper and lower bounds U/L, where T is the

correct count, E is the summary’s estimate and L ≤ T ≤ U
are the count bounds. Table 2 shows the results. We can see
that SliceHist is the best approach in 32% of the settings
with a winner. Interestingly, it fills the niche of being precise
for difficult problems, e.g., tight bounds for the GAIA4D
dataset. This is predicted by its theoretical properties, as it
is guaranteed to do well for any data or query distribution.

For the next experiment we fix the summary size to
approximately 100MB and use a query selectivity of 1%
and 0.1%. Table 3 reports the results in terms of achieved
ε-error guarantee, construction time, average query time,
75th percentile q-error, and 75th percentile q-bounds. As
it is difficult to construct competitor summaries for exact
sizes, we make sure that SliceHist uses less space than the
competitors to achieve a fair comparison. We can see that
dyadic histograms and dyadic sketches are very expensive
to construct, where as a timeout we use two days. Slice-
Hist is more expensive to construct compared to heuristic
approaches that do not provide ε-error guarantees, and also
more expensive than Equi-depth, but in turn provides by
far the best ε-error guarantees in all cases. This is reflected
by its tight q-bounds, as a ε-error guarantee translates to
q-bounds and q-error < 2 for any queries with at most
2ε selectivity. In terms of query times, SliceHist is always
among the best approaches, while Sampling is by far the
slowest. When comparing the ε-error guarantees of the
techniques for the dataset with different dimensionalites, we
see that DyadicHist and Equi-depth become significantly
worse with increasing dimensionality for a limited space
budget. SliceHist is the only approach that offers ε-error
guarantees less than 1% for a 4-dimensional dataset using a
summary with at most 128MB. It is also the only approach

SliceHist Dy.Hist. Sampling Eq.Depth DigitHist Sketch

OSM2D (46 GB)

summary size 85MB 126MB 143MB 237MB 101MB 123MB
ε-err. guarantee 0.005% 0.025% 100% 0.22% 100% 100%
constr. time 2.1h 9h 1.33min 32min 2h 18h
avg query time <1ms <1ms 665ms 1.8ms 349ms 14ms

75-th percentile of q-error
selectivity 0.1 % 1.007 1.0059 1.011 1.04 1.0018 80
selectivity 1 % 1.001 1.00068 1.0036 1.0082 1.00023 9.2

75-th percentile of q-bounds
selectivity 0.1 % 1.046 1.053 >100 1.66 1.075 >100
selectivity 1 % 1.0047 1.0059 >100 1.063 1.014 >100

CLOUD3D (15 GB)

summary size 70MB 157MB 143MB 105MB 124MB 131MB
ε-err. guarantee 0.13% 1.92% 100% 7.8% 100% 100%
constr. time 1.11h 16h 14sec 5.3min 47min 1.2day
avg query time <1ms <1ms 492ms 14ms 282ms 6ms

75-th percentile of q-error
selectivity 0.1 % 1.14 1.26 1.014 1.53 1.036 >100
selectivity 1 % 1.027 1.04 1.0046 1.11 1.0055 63

75-th percentile of q-bounds
selectivity 0.1 % 2.1 2.8 >100 26 1.53 >100
selectivity 1 % 1.12 1.22 >100 3.1 1.11 >100

GAIA3D (40 GB)

summary size 107MB 142MB 143MB 247MB 135MB -
ε-err. guarantee 0.1% 1.92% 100% 5.8% 100% -
constr. time 2.4h 1.75day 46sec 13min 1.38h timeout
avg query time 0.2ms 0.2ms 505ms 27ms 426ms -

75-th percentile of q-error
selectivity 0.1 % 1.096 1.32 1.015 1.89 1.81 -
selectivity 1 % 1.02 1.058 1.0045 1.15 2.4 -

75-th percentile of q-bounds
selectivity 0.1 % 1.58 5 >100 >100 >100 -
selectivity 1 % 1.1 1.25 >100 3.2 >100 -

GAIA4D (54 GB)

summary size 128MB - 143MB - 179MB -
ε-err. guarantee 0.85% - 100% - 100% -
constr. time 2.3h timeout 46sec timeout 1.84h timeout
avg query time <1ms - 398ms - 421ms -

75-th percentile of q-error
selectivity 0.1 % 1.41 - 1.017 - >100 -
selectivity 1 % 1.18 - 1.0054 - 31 -

75-th percentile of q-bounds
selectivity 0.1 % 7.2 - >100 - >100 -
selectivity 1 % 1.72 - >100 - >100 -

TABLE 3: Comparison of ≈ 100MB summaries.

to obtain q-bounds < 10 for both query selectivities and
q-bounds < 2 for 1% selectivity.

6. Related Work

ε-approximations are samples that approximate the se-
lectivity in any range query with at most εn absolute error,
where ε is a precision parameter and n is the data size.
The concept is widely used in the discrepancy and com-
putational geometry literature [9], [10]. Similarly, relative
ε-approximations guarantee a limited multiplicative error
for sufficiently selective queries [32], [33]. We extend the
notion of bounding the maximal absolute error to εn to non-
sampling structures and refer to it as ε-error guarantees.
Existing deterministic sampling approaches [7], [6], [8],
[11], [12], [5] are based either (a) on a halving proce-

dure related to Spencer’s discrepancy bounds [26] or (b) a
halving procedure using the Beck-Fiala [27] theorem and
dyadic range decomposition [7]. The techniques do not
offer non-trivial guarantees for smaller data sizes and are
too slow for larger data sizes, i.e., in order to obtain non-
trivial guarantees such as ε = 1% it requires at least 1024

arithmetic operations. The attempted workaround to split the
data into smaller chunks only leads to improvements in the
asymptotic formulas at the cost of increased constants.

One-dimensional ε-approximations, such as equi-depth
histograms or the GK summary [25], only require
O(1

ε log(εn)) storage and can be efficiently constructed
either by sorting the data or by incrementally constructing
the summary while reading the data (see also Q-digest [34]).
They are used as a building block for multi-dimensional
summaries, such as dyadic histograms [7] or our approach.

Multi-dimensional data summaries in the database liter-
ature [1], [13], [14], [15], [16], [17], [18], [19] generally do
not have error guarantees and, while working well on many
datasets, cannot guarantee good precision for all datasets
and queries. An exception are equi-depth histograms [20],
where a very large histogram with O(1

εd
) buckets has an

ε-error guarantee as each query partially intersects at most
1

ε(d−1) buckets, each containing at most εd of all points.
In more recent works, histogram-based summaries with

ε-error have been proposed [7], [35] in the streaming litera-
ture, which can provide deterministic guarantees in practice.
We will refer to them as dyadic histograms, because they
share the basic idea of decomposing ranges along dyadic
intervals, which is also the key idea behind range trees
[36] and how to utilize sketches for range queries [1].
Dyadic histograms can be thought of as approximate vari-
ants of range trees. They are composed of O(logd−1 1

ε) equi-
depth histograms with varying numbers of space divisions
(that are powers of two) per dimension. The knowledge
of the equi-depth histograms is combined during querying
to improve error bounds. Examples of dyadic histograms
are GK-Multipass [7] that can obtain in d data scans
a summary with O(1

ε log(εn) log2d−2(1
ε log(εn))) storage,

O(logd 1
ε) querying complexity and O(n logd 1

ε) construc-
tion time. Making some trivial changes it can be improved to
O(1

ε log2d−2 log(ε)
ε) storage and O(logd−1 1

ε) querying time
using ideas from range trees and [35]. For two dimensions,
there exists a specialized approach that offers O(1

ε (log2 1
ε +

log n)) storage and O(log 1
ε) querying time [35].

Sketch-based summaries [1] that offer probabilistic error
guarantees have been applied to one-dimensional ranges
through dyadic ranges, and some works [28], [1] hint at
possible multidimensional generalisations. In principle, a
sketch-based summary is very desirable as it can be con-
structed in one data pass, supports updates and can provide
deterministic upper bounds by using CM-sketches [31] and
deterministic lower bounds by issuing 2d range queries that
form the complement. Since a continuous domain is at
least as large as the data size n, a sketch-based summary
that offers ε-error guarantees with probability 1 − p has
size O(2d

ε (log2d n) log 1
p), query time O(logd n log 1

p) and

construction time O(n(logd n) log 1
p). Due to the log2d n

factor, the technique is not competitive for more than one
dimension which is confirmed by our numerical evaluation
(cf. Table 1) and experiments (cf. Table 2 and Table 3).
The factor is rooted in the decomposition into dyadic ranges
that adds for each dimension a log n factor not just to the
number of sketches but also to their size (to counteract
error accumulation). As evidenced by empirical results in
[28], even spatial joins pose a much simpler problem to
sketches, because they do not require such a troublesome
range decomposition.

7. Conclusion

In this work, we have proposed a novel histogram-
based summary for multisets of multidimensional points,
termed SliceHist, that offers the best ε-error guarantees for
a limited space budget (up to exabytes). It offers meaningful
error guarantees up to four dimensions, whereas previous
approaches already struggled with three dimensions. While
it offers more reliable empirical performance than other
approaches, it comes at a cost of a larger construction time,
which could be improved by faster quantile summaries.

Acknowledgement

The work is supported by European Research Council
grant ERC-2014-CoG 647557. We also thank Graham Cor-
mode for sharing his expertise on sketching-related matters.

References

[1] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine, “Syn-
opses for massive data: Samples, histograms, wavelets, sketches,”
Foundations and Trends in Databases, vol. 4, no. 1-3, pp. 1–294,
2012.

[2] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by
bounding the impact of cardinality estimation errors,” PVLDB, vol. 2,
no. 1, pp. 982–993, 2009.

[3] J. M. Phillips, “Chernoff-hoeffding inequality and applications,”
CoRR, vol. abs/1209.6396, 2012.

[4] S. Har-Peled, Geometric approximation algorithms. American Math-
ematical Soc., 2011, no. 173.

[5] J. M. Phillips, “Algorithms for epsilon-approximations of terrains,”
in ICALP (1), ser. LNCS, vol. 5125. Springer, 2008, pp. 447–458.

[6] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and
K. Yi, “Mergeable summaries,” ACM Trans. Database Syst., vol. 38,
no. 4, pp. 26:1–26:28, 2013.

[7] S. Suri, C. D. Tóth, and Y. Zhou, “Range counting over multidimen-
sional data streams,” Discrete & Computational Geometry, vol. 36,
no. 4, pp. 633–655, 2006.

[8] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich, “De-
terministic sampling and range counting in geometric data streams,”
ACM Trans. Algorithms, vol. 3, no. 2, p. 16, 2007.

[9] B. Chazelle, “The discrepancy method in computational geometry,” in
Handbook of Discrete and Computational Geometry, Second Edition.,
2004, pp. 983–996.

[10] ——, The discrepancy method: randomness and complexity. Cam-
bridge University Press, 2001.

[11] J. Matoušek, “Approximations and optimal geometric divide-an-
conquer,” J. Comput. Syst. Sci., vol. 50, no. 2, pp. 203–208, 1995.

[12] B. Chazelle and J. Matoušek, “On linear-time deterministic algorithms
for optimization problems in fixed dimension,” J. Algorithms, vol. 21,
no. 3, pp. 579–597, 1996.

[13] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Ap-
proximating multi-dimensional aggregate range queries over real at-
tributes,” in SIGMOD, 2000, pp. 463–474.

[14] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the
attribute value independence assumption,” in VLDB, 1997, pp. 486–
495.

[15] S. Acharya, V. Poosala, and S. Ramaswamy, “Selectivity estimation
in spatial databases,” in SIGMOD, 1999, pp. 13–24.

[16] J. Lee, D. Kim, and C. Chung, “Multi-dimensional selectivity esti-
mation using compressed histogram information,” in SIGMOD, 1999,
pp. 205–214.

[17] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based histograms for
selectivity estimation,” in SIGMOD, 1998, pp. 448–459.

[18] N. Bruno, S. Chaudhuri, and L. Gravano, “Stholes: A multidimen-
sional workload-aware histogram,” in SIGMOD, 2001, pp. 211–222.

[19] L. Getoor, B. Taskar, and D. Koller, “Selectivity estimation using
probabilistic models,” in SIGMOD, 2001, pp. 461–472.

[20] M. Muralikrishna and D. J. DeWitt, “Equi-depth histograms for esti-
mating selectivity factors for multi-dimensional queries,” in SIGMOD,
1988, pp. 28–36.

[21] J. L. Bentley and J. H. Friedman, “Data structures for range search-
ing,” ACM Comput. Surv., vol. 11, no. 4, pp. 397–409, 1979.

[22] P. Jaworski, F. Durante, W. K. Hardle, and T. Rychlik, Copula theory
and its applications. Springer, 2010, vol. 198.

[23] J. Ma and Z. Sun, “Mutual information is copula entropy,” Tsinghua
Science & Technology, vol. 16, no. 1, pp. 51–54, 2011.

[24] M. Shekelyan, A. Dignös, and J. Gamper, “Digithist: a histogram-
based data summary with tight error bounds,” PVLDB, vol. 10, no. 11,
pp. 1514–1525, 2017.

[25] M. Greenwald and S. Khanna, “Space-efficient online computation
of quantile summaries,” in SIGMOD, 2001, pp. 58–66.

[26] J. Spencer, “Six standard deviations suffice,” Transactions of the
American mathematical society, vol. 289, no. 2, pp. 679–706, 1985.

[27] J. Beck and T. Fiala, “”Integer-making” theorems,” Discrete Applied
Mathematics, vol. 3, no. 1, pp. 1–8, 1981.

[28] A. Das, J. Gehrke, and M. Riedewald, “Approximation techniques for
spatial data,” in SIGMOD, 2004, pp. 695–706.

[29] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org , 2017.

[30] A. G. Brown et al., “Gaia data release 1-summary of the astrometric,
photometric, and survey properties,” Astronomy & Astrophysics, vol.
595, p. A2, 2016.

[31] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” J. Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[32] S. Har-Peled and M. Sharir, “Relative (p, ε)-approximations in ge-
ometry,” Discrete & Computational Geometry, vol. 45, no. 3, pp.
462–496, 2011.

[33] Y. Li, P. M. Long, and A. Srinivasan, “Improved bounds on the sample
complexity of learning,” J. Comput. Syst. Sci., vol. 62, no. 3, pp. 516–
527, 2001.

[34] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and
beyond: new aggregation techniques for sensor networks,” in SenSys,
2004, pp. 239–249.

[35] Z. Wei and K. Yi, “Tight space bounds for two-dimensional approx-
imate range counting,” ACM Trans. Algorithms, vol. 14, no. 2, pp.
23:1–23:17, 2018.

[36] J. L. Bentley, “Decomposable searching problems,” Inf. Process. Lett.,
vol. 8, no. 5, pp. 244–251, 1979.

