
Continuous Fragmented Skylines over
Distributed Streams

Odysseas Papapetrou and Minos Garofalakis

Technical University of Crete
{papapetrou, minos}@softnet.tuc.gr

Abstract—Distributed skyline computation is important for
a wide range of application domains, from distributed and
web-based systems to ISP-network monitoring and distributed
databases. The problem is particularly challenging in dynamic
distributed settings, where the goal is to efficiently monitor a
continuous skyline query over a collection of distributed streams.
All existing work relies on the assumption of a single point of
reference for object attributes/dimensions, i.e., objects may be
vertically or horizontally partitioned, but the accurate value of
each dimension for each object is always maintained by a single
site. This assumption is unrealistic for several distributed moni-
toring applications, where object information is fragmented over
a set of distributed streams (each monitored by a different site)
and needs to be aggregated (e.g., averaged) across several sites.
Furthermore, it is frequently useful to define skyline dimensions
through complex functions over the aggregated objects, which
raises further challenges for dealing with object fragmentation.
In this paper, we present the first known distributed approach for
continuous fragmented skylines, namely distributed monitoring of
skylines over complex functions of fragmented multi-dimensional
objects. We also propose several optimizations, including a new
technique based on random-walk models for adaptively deter-
mining the most efficient monitoring strategy for each object. A
thorough experimental study with synthetic and real-life data sets
verifies the effectiveness of our approach, demonstrating order-
of-magnitude improvements in communication costs compared to
the only available centralized solution.

I. INTRODUCTION
Since the introduction of the skyline operator [1], the

problem of efficiently constructing skylines in distributed
environments (such as, client-server and P2P architectures)
has been widely studied (see [2] for a survey). The bulk of this
work has typically focused on one-shot skyline computation,
proposing CPU- and communication-efficient strategies for
one-time computation of the set of skyline (i.e., dominating,
or, Pareto-optimal) objects across static, distributed multi-
dimensional object collections. Such one-shot techniques over
static data are inadequate for new, rapidly-emerging classes
of large-scale event monitoring applications, which need to
effectively manage, query, and analyze large collections of
distributed data streams. Prototypical examples include ISP
network-monitoring systems (where usage information from a
multitude of monitoring points must be tracked and correlated
in order to quickly react to hot spots, floods, failures, and
attacks), and wireless sensor networks (where multiple remote
sensor measurements must be monitored and analyzed for
trends, patterns, intrusions, or other adverse events). Querying
in such systems is naturally distributed (i.e., over a collection
of remote sites), and also continuous, that is, we require
real-time monitoring of query answers and events, not merely
one-shot responses to sporadic queries.

router target IP #packets vol. target IP #packets vol. target IP #packets Var(vol.) skyline
1 121.11.*.* 134 1226 121.11.*.* 158 1269 121.11.*.* 158 1497 YES
1 110.1.*.* 60 72 110.1.*.* 70 86 110.1.*.* 70 392 NO
2 121.11.*.* 180 1280 201.7.*.* 627 4874 201.7.*.* 627 0 NO
2 110.1.*.* 80 100 117.3.*.* 884 982 117.3.*.* 884 1208 YES
3 121.11.*.* 160 1301 … … … … … … …
4 201.7.*.* 627 4874

… … … … Dimensions: #packets, Var(vol.)
Aggregation (average) Skyline space

Fig. 1. Monitoring an ISP network: (a) the raw-distributed data, (b) the
aggregated data, (c) the skyline space.

The problem of continuous skyline maintenance in such
dynamic distributed settings has also been addressed in recent
work [3]. Still, that work, as well as all existing work in
distributed skyline processing assumes horizontal or vertical
partitioning of the data, i.e, each site maintains a subset
of the complete object vectors, e.g., [4], or a subset of the
dimensions of all objects [5], [6]. As such, all previous
algorithms rely on the fundamental assumption that there exists
a single site in the network maintaining the accurate value
for each object’s dimension. This configuration enables each
site to independently apply local, arbitrarily complex, filtering
techniques on the observed updates, drastically reducing the
network resources. This assumption, however, is unrealistic
for a number of real-world, distributed monitoring applications,
where the vector corresponding to each object is determined by
aggregating (e.g., averaging) partial vector values fragmented
over many sites.

To make matters worse, the skyline dimensions may be
defined through (possibly) complex, non-linear functions over
the aggregated object vectors. For example, an ISP might be
interested in monitoring the skyline of the aggregate packet
volume and the (non-linear) variance of the packet sizes
routed to each subnet through each of the edge routers. Such
complex functional skyline queries are, of course, particularly
challenging in the case of fragmented objects: each site only
has its partial view of the object vector values, and, for
non-linear functions like variance, it is impossible to estimate
the value of the function on the global object vector from the
function values computed locally [7].
Example 1. Consider the problem of monitoring the network
of a large ISP. A typical configuration involves installing
monitoring code at the edge routers of the ISP to collect
workload statistics over sliding windows for a set of IP
addresses served by the ISP. Skyline queries on the data
aggregated over all edge routers are powerful tools for network
administrators, for instance, to quickly identify problematic
IP addresses or interesting network events. For example, the
skyline of the average (over all routers) number of packets
and transfer volume, per target IP (data shown in Fig. 1(b)),
helps an administrator to quickly focus on the IPs under
attack. The skyline dimensions can even be defined through

complex, non-linear functions on the aggregated data, such as
the variance on the workload per IP, collected by the edge
routers (Fig. 1(c)) – a key indicator for sites under a DoS
attack. Even though the industry standard in routers enables
local statistics maintenance, aggregation of the data in order
to maintain the skyline space is a challenging task, due to
the sheer volume and volatility of the traffic update streams.
The problem is only aggravated by the usage of non-linear
functions for the definition of the skyline dimensions (e.g.,
variance), in which case a router observing a local update
cannot even predict the direction of the change at the skyline
space, e.g., a sudden drop in the transfer volume at one edge
router may actually cause an increase of the variance. This
calls for a distributed solution for skyline maintenance, where
each edge-router monitor can react only to its local updates
that potentially invalidate the existing skyline, notifying the
central monitor for further analysis.

Prior Work. Since the proposal of the skyline operator [1],
several aspects of skyline computation have been explored,
such as, continuous skylines, e.g., [8], [9], [10], functional (or,
dynamic) skylines [9], subspace skylines [11], and skylines
over distributed and P2P networks [2]. Our contribution lies on
the intersection of the areas of distributed, functional and con-
tinuous skyline queries, with a novel data fragmentation model.

Algorithms for efficiently constructing skylines in P2P
and distributed networks have been widely considered in the
recent years (see [2] for a recent survey). These algorithms
typically rely on three key ideas to reduce the network
communication between participants: (1) Additivity of the
Skyline Operator: The skyline over all remote sites is always
a subset of the union of the local skylines computed at
each site, e.g., [4]; (2) Point Filtering: Representative points,
belonging to one or more sites’ local skylines, can help other
sites effectively reduce their local skylines [5], [6]; and, (3)
Site Filtering: Compact local site summaries can be used to
target neighboring sites that can potentially contribute skyline
points [12]. However, at the core of these approaches is the
requirement that the value of each dimension for each object is
always maintained by a single site, i.e., vertical or horizontal
data partitioning, but not fragmentation. Even though
both vertical and horizontal data partitioning models hold
significant interest for real-life applications (and, in fact, they
can also be handled by our work), they are out of the focus of
this work. Instead, our contribution is optimized for the case
of fragmented data objects, as this arises frequently in a wide
range of network-based applications. Furthermore, we focus
on continuous skyline queries, and not on one-shot queries.

Perhaps most similar to ours is the work of Zhang et al.
for distributed continuous skyline monitoring [3], which relies
on installing filters at remote sites to control the updates that
need to be sent to the coordinator. The functionality of filters
is similar to the one of threshold-crossing queries used in this
work. In fact, in the simple case where data is partitioned but
not fragmented, and no functions are used for producing the
skyline space, our algorithms (without the adaptivity extension)
and the one of [3] produce similar types of local constraints,
yet, each one following different optimization strategies. No-
tice however that [3] supports neither fragmented data nor
functional skylines, the combination of which is the main
focus of this work. Still, some of the ideas of [3], i.e., near-
optimal derivation of filters, as well as the sampling-based

extension that trades accuracy for performance, can potentially
be adapted for the case of fragmented functional skylines, and
will be considered in our future work.
Our Contributions. All previous distributed skyline
techniques assume either horizontal or vertical partitioning of
the database at the sites, which implies that the accurate value
of each dimension for each object is known by one of the
sites at any time. In this work, we consider the fundamentally
different problem of continuous fragmented skyline queries,
where: (a) each dimension for each object is fragmented
over a number of sites, i.e., the actual values of each object
are computed by the aggregation (e.g., averaging) of all
object’s vectors across all sites, and, (b) the skyline space
can be further defined through complex arbitrary functions,
parameterized by the aggregate values of the objects. Our
contributions are summarized as follows:
• We formally define the continuous fragmented skyline prob-
lem, and outline the key underlying challenges.
•We present the first known algorithms for efficient processing
of continuous fragmented skyline queries, with dimensions
defined through possibly complex arbitrary functions over the
aggregate vectors. The two algorithms (termed PIVOT and
DIRECT) employ different methodologies for decomposing the
problem to a select set of distributed threshold-crossing queries
that are guaranteed to fire when a change in the skyline occurs.
These queries can then be monitored efficiently using ideas
from the geometric method [13], [7].
• We propose several optimizations that significantly improve
the communication efficiency of our fragmented skyline mon-
itoring algorithms. These include techniques for effectively
reducing the queries, which can result to substantial network
cost reduction, as well as a technique based on random-
walk models for adaptively determining the most efficient
monitoring strategy for different objects in the system.
• We present a thorough experimental study of our algorithms
over both synthetic and real-life data sets. Our experimental
results demonstrate substantial performance benefits compared
to the (only alternative) centralized solution, which often
exceed two orders of magnitude.

II. PROBLEM FORMULATION
System Model. We consider a distributed computing environ-
ment, comprising a collection of N remote processing sites
P = {p1, p2, . . . , pN} and a designated coordinator site. Re-
mote sites receive continuous streams of data updates for a col-
lection of n multi-dimensional objects O = {o1, o2, . . . , on}
that reside in the system (possibly fragmented across multiple
sites), while the coordinator is responsible for maintaining
answers to continuous user queries posed over the union
of remotely-observed streams (across all sites). The (sub)set
of sites monitoring object oj is denoted by P(oj) ⊆ P ,
while O(pi) denotes the (sub)set of objects monitored by
site pi. Following earlier work in the area, e.g., [14], [15],
[16], our distributed stream-processing model does not allow
direct communication between remote sites; instead, a remote
site exchanges messages only with the coordinator, providing
it with state information on its (locally-observed) streams.
Note that such a hierarchical processing model is, in fact,
representative of several application domains, including ISP
network monitoring and sensor networks.

At time t, the local state of each object oj at site
pi is captured by a dynamic d-dimensional local statis-
tics vector ~v(oj , pi, t). The global state of oj is defined
as the average of oj’s local statistics vectors across all
sites in P(oj), i.e., the global statistics vector ~v(oj , t) =

1
|P(oj)|

∑
pi∈P(oj) ~v(oj , pi, t).1 (To simplify notation, we omit

the explicit dependence on time when referring to the current
value of local/global vectors.)
Problem Statement. Our goal is to define effective pro-
tocols for continuously monitoring distributed skylines over
complex functions of fragmented multi-dimensional objects.
More formally, assume that the dimensions of our skyline
space are defined through a d′-dimensional function vector
f : Rd → Rd′ , where each dimension f [k](~v(·)) is a possibly
complex, non-linear, arbitrary function over the original d-
dimensional global statistics vectors of our objects. We define
the notion of functional dominance (or, f -dominance) over
fragmented data objects as follows. (Wlog., the definition
assumes that lower values are preferred for the skyline.)

Definition 1 (f -dominance). Let ~v(oi), ~v(oj) denote the
global statistics vectors of objects oi and oj . We say that
oi f -dominates oj (denoted as oi ≺f oj) if and only if
f [k](~v(oi)) ≤ f [k](~v(oj)) for all k = 1, . . . , d′, and ∃k ∈
{1, . . . , d′} such that f [k](~v(oi)) < f [k](~v(oj)).

The f -skyline of the set of objects O = {o1, . . . , on}
fragmented over the remote sites P is then simply defined
as the subset of objects in O that are not f -dominated by any
other object in O. That is, o ∈ O belongs in the f -skyline if
and only if @o′ ∈ O such that o′ ≺f o.

We address the challenging task of continuously maintain-
ing the f -skyline over a large collection of fragmented multi-
dimensional objects O that are dynamically updated across
multiple remote sites P . Our protocols aim to minimize
communication across remote sites and the coordinator — a
critical requirement in large-scale monitoring systems, owing
to either network-capacity restrictions (e.g., in ISP monitoring,
where the volumes of collected utilization and traffic data can
be huge [17]), or power and bandwidth restrictions (e.g., in
wireless sensor networks, where communication overhead is
the key factor in determining sensor battery life [18]). It is
important to note that the centralized solution that ships all
updates to a coordinator can easily introduce network, com-
putation, and power bottlenecks, overwhelming the underlying
network infrastructure. Similarly, simplistic solutions based on
batch or periodic updates to the coordinator can either cause
large amounts of unnecessary network traffic (with no real
change in the skyline) or fail to react to important transitions
in a timely manner (when the update period is large). Most
importantly, such techniques cannot offer useful guarantees
on the quality of the skyline between updates. Instead, our
proposed algorithms are reactive (based on the observed stream
of object updates) and guarantee the continuous correctness of
the f -skyline at the coordinator.

Example 2. Building on the ISP monitoring scenario of Ex-
ample 1, the set of remote processing sites P includes all
edge routers in the ISP network, which collect workload
statistics for all target IP addresses (or, subnets) contained in

1More generally, the global statistics vector can be defined through any
convex combination of the local statistics vectors.

O. Assume that we want to monitor the 2-dimensional skyline
shown in Fig. 1(c) (average number of packets and variance of
transfer volume across all routers, per IP address). Since our
f -skylines are defined on averaged global vectors, we rewrite
the variance function using the average transfer volume and
the average squared transfer volume per IP at all routers. In
particular, each router pj maintains a three-dimensional vector
~v(oi, pj) for each IP address oi: ~v[0](oi, pj) stores the count
of all observed packets destined for oi and routed through pj ,
~v[1](oi, pj) stores the sum of the packet sizes, and ~v[2](oi, pj)
stores (~v[1](oi, pj))

2. The global statistics vector for each IP
address oi is the average of the local statistics vectors over all
routers, i.e., ~v(oi) =

∑
pj∈P(oi)

~v(oi, pj)/|P(oi)|. The desired
skyline space is then defined by function f : f [0] = ~v[0](oi),
i.e., the identity function of the average number of packets
for each IP address, and f [1] = V ar({~v(oi, pj)|pj∈P(oi)})
=
∑

pj∈P(oi)

~v[2](oi,pj)

|P(oi)|
−
(∑

pj∈P(oi)

~v[1](oi,pj)

|P(oi)|

)2
= ~v[2](oi) −

(~v[1](oi))
2.

Background: The Geometric Method. Our algorithms de-
compose functional fragmented skyline monitoring to a small
set of distributed threshold crossing queries, which can be
monitored locally at each site using the geometric method. We
now describe the elements of the geometric method needed for
this paper. Further details can be found in [7].

The geometric method addresses the basic problem of mon-
itoring distributed threshold-crossing queries; that is, monitor
whether f(~v(o)) < τ or f(~v(o)) > τ , for any arbitrary,
possibly complex, non-linear function f() of a global statistics
vector ~v(o) fragmented over N sites, and a fixed threshold
τ . The core idea is that, since it is generally impossible to
connect the values of f() on the local statistics vectors to the
global value f(~v(o)), one can employ geometric arguments to
monitor the domain (rather than the range) of f().

To initialize the monitoring process, at time t0 all nodes
p ∈ P(o) send their local statistics vectors for the object
~v(o, p, t0) to a coordinator, where the global statistics vector
~v(o, t0) is computed. This global statistics vector is also called
the global estimate vector ~e(o), and is sent to all network
nodes. Whenever a node pj receives a new local value for o,
say, at time t, it updates its local statistics vector and checks
whether the new value may cause a threshold crossing. For
this check, pj extracts the statistics delta vector ∆~v(o, pj) =
~v(o, pj , t) − ~v(o, pj , t0). The drift vector is then defined as
~u(o, pj) = ~e(o) + ∆~v(o, pj). These vectors can be used to
bound the location of the global statistics vector, which, by
definition, is guaranteed to lie, within the convex hull formed
by the drift vectors of all nodes and ~e(o) [7]. Therefore, by
checking that the convex hull does not overlap the inadmissible
region (i.e., the region {~v ∈ R2 : f(~v) > τ} in Fig. 2) we can
guarantee that the threshold has not been violated.

The problem of course is that the drift vectors are dis-
tributed across the nodes. Therefore, the global convex hull
is unknown to the individual nodes. To transform the global
condition into a local constraint, we place a d-dimensional
bounding ball around each local delta vector, of radius ||~e(o)−
~u(o, pj)||/2 and centered at (~e(o)+~u(o, pj))/2 (see Fig. 2). It
can be shown that the union of all these balls completely covers
the convex hull of the drift vectors [7]. Therefore, as long
as the bounding ball constructed individually at each node is
monochromatic, i.e., it does not overlap with the inadmissible

e

u1
u2

u3

u4 u5 A
re

a
w

h
er

e
f(

v)
 >

 T

v

Fig. 2. Estimate vector ~e, delta vectors ∆~v(pi) (arrows out of ~e), convex
hull enclosing the current global vector ~v (dotted outline), and bounding balls
B(~e,∆~v(pi)).

region, the threshold has not been violated, and the node can
refrain from sending the local update to the coordinator. If
this is not the case, we have a local threshold violation, and
the site communicates its local ∆~v(pi) to the coordinator.
The coordinator then initiates a synchronization process that
typically tries to resolve the local violation by communicating
with some of the sites in order to “balance out” the violating
∆~v(pi). Briefly, this process involves collecting the current
delta vectors from (a subset of) the sites, and recomputing the
minimum and maximum values of f(~v) according to the new,
partial, average. In the worst case, the delta vectors from all
N sites are collected, leading to an accurate estimate of the
current global statistics vector.

In more recent work, Sharfman et al. [13] show that the
local bounding balls defined by the geometric method are spe-
cial cases of a more general theory of Safe Zones (SZs), which
can be broadly defined as convex subsets of the admissible
region of a threshold query. As long as the local drift vectors
stay within such a SZ, the global vector is guaranteed (by
convexity) to be within the admissible region of the query [13].

III. MONITORING FRAGMENTED SKYLINES
In this section, we propose two novel algorithms for

continuous fragmented skylines: (1) the Pivot-Based (PIVOT)
algorithm, and (2) the Direct Monitoring (DIRECT) algorithm.
Both algorithms rely on effectively decomposing the con-
tinuous fragmented skyline computation into a collection of
threshold-crossing queries, which can be efficiently monitored
at the participating sites using the geometric method. The main
difference between PIVOT and DIRECT lies in the details of
this decomposition into threshold-crossing conditions. Still,
since both algorithms share a common framework, we describe
them in parallel, with references to their particularities.

We start with a brief discussion of the high-level
distributed-monitoring protocol. Initially, the user configures
the continuous skyline query, by first defining the global
statistics vector ~v, and, second, the (possibly complex) func-
tions over ~v deriving the skyline dimensions, e.g., variance,
L2 norm, or identity function. The system goes through an
initialization phase, during which the coordinator requests the
current local statistics vectors from all sites, and uses them to
compute the initial global statistics vectors, the f values for
all objects in O, and an initial f -skyline, using a standard,
centralized algorithm [1]. Then, for each object oi ∈ O,
the coordinator extracts a set of continuous threshold-crossing
queries, denoted as Q(oi). While the details of these query sets
depend on the employed algorithm (PIVOT or DIRECT), their

key property is that they are “safe”: as long as no threshold
violation is observed at any site, the skyline is guaranteed
not to change. Finally, the computed global statistics vectors
and threshold-crossing queries are shipped to the remote sites
observing the corresponding objects, where they are monitored
using the geometric method. All updates not violating any
threshold query are registered locally at the sites, and only
the remaining updates are sent to the coordinator, invoking a
synchronization process.

As discussed earlier, a threshold-crossing query focuses
on detecting the condition that the value of a function g()
over a dynamic vector crosses a fixed threshold value τ . More
formally, let t0 denote the query construction time and let ~v(t)
be the dynamic vector; then, using the sign function sgn(), we
can define this general threshold-crossing query Qt0(g,~v, τ)
as the boolean condition:

Qt0(g,~v, τ) ≡ sgn(g(~v(t))− τ) 6= sgn(g(~v(t0))− τ). (1)

Both g() and τ can be multi-dimensional, giving rise to a
threshold-crossing query that is equivalent to the OR of the
boolean conditions across all dimensions; that is, a threshold
crossing along any of the dimensions causes the query to
fire. To keep our descriptions concise, we employ the multi-
dimensional form of Query (1) over our skyline function vector
f : Rd → Rd′ in the ensuing discussion. Obviously, only
the subset of relevant dimensions of Rd are accounted for
monitoring each component function f [k] (k = 1, . . . , d′).

In the remainder of this section, we first explain how the
two algorithms extract the threshold-crossing queries for each
object. Then, we outline the local monitoring and synchroniza-
tion processes, which are largely common to both algorithms.

A. Threshold-Crossing Query Decomposition
We now discuss the details of decomposing a contin-

uous fragmented skyline into threshold-crossing queries for
both PIVOT and DIRECT. PIVOT constructs threshold-crossing
queries that pair each object with a set of carefully selected
fixed pivot points. The purpose of these queries is to ensure that
the object remains within a “safe” region, defined by its pivot
points in Rd′ . DIRECT, on the other hand, constructs threshold-
crossing queries that correlate each object with a small set of
other (also moving) objects from O. The purpose of the queries
in this case is to detect when the dominance relation between
the objects changes.

We describe the query extraction process, starting with a
first approach, where each object monitors its relative position-
ing with respect to all other objects in the system, resulting in
n − 1 threshold-crossing queries per object in O. We then
propose techniques for drastically reducing the number of
queries (and, therefore, the network resources) required for
effective fragmented skyline monitoring.
The PIVOT Algorithm. PIVOT constructs threshold-crossing
queries that pair an object oi ∈ O with a set of fixed points
in the Rd′ space, termed pivot points. Specifically, during
the initialization phase at time t0, for each pair of objects
{oi, oj}, the coordinator computes the pivot point −→ppi,j as
the midpoint between the f -values of oi and oj , that is,
−→ppi,j = 1

2 (f(~v(oi, t0)) + f(~v(oj , t0))). Then, it constructs the
two threshold-crossing queries: Qt0(f , ~v(oi),

−→ppi,j) (installed
at sites P(oi)) and Qt0(f , ~v(oj),

−→ppi,j) (installed at sites
P(oj)). As an example, Fig. 3(a) depicts a sample data set
with five 2-dimensional objects, and Fig. 3(b) shows the same

v(o1,t) v(o2,t)

v(o4,t)

v(o3,t)

R
d
 space

v(o5,t)

f(.)

f(v(o1,t))

f(v(o4,t))

f(v(o3,t))

f(v(o2,t))

R
d’
 space

pp
2,4

pp
1,2

pp2,3

f(v(o5,t))

pp
2,5

f(v(o1,t))

f(v(o4,t))

f(v(o3,t))

f(v(o2,t))

R
d’
 space

pp
2,4

pp
1,2

pp
2,3

f(v(o5,t))

pp
2,5

Fig. 3. Pivot-based method: (a) the original Rd space, (b) the four pivot points for o2 in the transformed Rd′ space, (c) the safe region for o2.

objects in the f -skyline space, including the four pivot points
defined for o2 with respect to all other objects. A site observing
o2 then has to monitor the following threshold-crossing queries
(one per pivot point): Qt0(f , ~v(o2), −→pp1,2), Qt0(f , ~v(o2),−→pp3,2), Qt0(f , ~v(o2), −→pp4,2), and Qt0(f , ~v(o2), −→pp5,2).

Consider the geometric interpretation of the PIVOT tech-
nique. Each pivot point −→ppi,j partitions the Rd′ space into
3d

′
subspaces: three subspaces for each dimension k =

{1, . . . , d′}, namely, {~x : ~x[k] < −→ppi,j [k]}, {~x : ~x[k] >−→ppi,j [k]}, and {~x : ~x[k] = −→ppi,j [k]}. The intersection of these
3d

′
subspaces across all threshold-crossing queries for object oi

that contains f(~v(oi)) effectively defines a safe region for oi;
that is, as long as f(~v(oi)) remains in this region, its relative
positioning in the skyline with respect to all other objects in O
remains unchanged. For example, Fig. 3(c) depicts the (shaded)
safe region for o2. Note that the threshold-crossing queries
installed at P(oi) monitor exactly this safe-region condition
for oi. It is not difficult to prove that this scheme is correct:
As long as no PIVOT threshold-crossing query fires, the relative
positioning of any object pair in the fragmented skyline (i.e.,
their relative dominance) remains unchanged, and, thus, the
previously-computed skyline remains valid.
The DIRECT Algorithm. Rather than placing fixed pivot
points somewhat arbitrarily at the midpoint of two objects,
DIRECT directly monitors the relative dominance relation
across each pair of fragmented objects, based on the vector
difference of their f -values. Formally, consider any pair of
objects oi, oj ∈ O and, for the time being, assume that both
objects are observed at exactly the same subset of remote sites,
i.e., P(oi) = P(oj). We define the function-difference vector
g(~v(oi)|~v(oj)) = f(~v(oi))− f(~v(oj)), where ~v(oi)|~v(oj)
denotes the concatenation of the objects’ global statistics
vectors; thus, g : R2d → Rd′ . Then, for each such object
pair, the coordinator simply constructs the threshold-crossing
query Qt0(g, ~v(oi)|~v(oj), ~0) and installs it at all sites in
P(oi) = P(oj) to monitor updates to either oi or oj (~0
denotes the all-zero d′-dimensional vector). For instance, in
our running example in Fig. 3, the set of DIRECT threshold
queries extracted for o2 is Q(o2) = {Qt0(g, ~v(o2)|~v(oj), ~0) :
j = 1, 3, 4, 5}. Once again, it can be formally shown that, as
long as none of the DIRECT threshold-crossing queries fires,
the fragmented skyline cannot change.

A number of issues with the DIRECT algorithm are worth
noting. First, observe that it effectively doubles the dimen-
sionality of the local geometric bounding constraints since it
needs to account for updates to both objects. This increased
dimensionality typically leads to more frequent local threshold
violations and higher communication costs. (This issue can be

avoided for certain function types, e.g., when f is linear, but
not on the general case.) A second, and perhaps more subtle,
issue concerns the extension of DIRECT to handle the general
case of object pairs {oi, oj} that are observed at different
subsets of the remote sites (i.e., P(oi) 6= P(oj)), and its ef-
fectiveness in such settings. To ensure correctness in this case,
the DIRECT threshold query over ~v(oi)|~v(oj) needs to be mon-
itored across all sites in S = P(oi)∪P(oj) (with parts of the
local statistics vector zeroed out at sites observing only one of
the objects). Furthermore, since the geometric method requires
the monitored function(s) g to be defined over the average of
the local vectors across all |S| participating sites, an additional
weighting step is needed for the local statistics vectors used
in the computation of the f -values. The key observation here
is that the average global statistics vector ~v(oi) over all sites
in P(oi) is equal to the average vector over the super-set S
(assuming zero vectors for sites in S− P(oi)) multiplied by
|S|/|P(oi)|. Therefore, we can apply the geometric method
assuming that oi is monitored by all sites in S, by simply
scaling each of its local statistics vectors by |S|/|P(oi)| (and,
similarly for oj). This scaling, however, has the adverse effect
of increasing the radius of the local bounding ball for the
object, thereby increasing the number of local violations. In
fact, it can be formally proved that the performance of DIRECT
is worse than that of PIVOT under certain such settings.

Theorem 1. Monitoring the DIRECT threshold-crossing query
Qt0(g, ~v(oi)|~v(oj), ~0) for object oi at sites S = P(oi)∪P(oj)
is provably less communication-efficient than monitoring the
corresponding PIVOT threshold query Qt0(f , ~v(oi),

−→ppi,j),
when all functions in f are linear, and |S|

|P(oi)| > 2.

The proof is deferred to the extended version of the paper.
Similar results can also be shown for other types of functions.
Note that the cardinality ratio condition |S|

|P(oi)| > 2 is easily
satisfied when objects are monitored by distinct subsets of
sites; furthermore, some of the optimizations discussed later
in this section (e.g., grouping) further exacerbate this problem
for the DIRECT algorithm.

B. Reducing the Number of Queries
The total number of threshold crossing queries influences

the network cost of PIVOT and DIRECT, since: (a) all queries
need to be sent to the sites, during initialization and after
threshold crossings, and, (b) a higher number of queries can
obviously lead to tighter safe regions and more frequent thresh-
old crossings. To reduce network cost, we need to extract a suf-
ficient subset of queries that can still guarantee the correctness
of the skyline. In this section, we show how the total number of
queries can be substantially reduced (from quadratic to linear

on the number of objects). It is important to note that this re-
duction comes without increasing the tightness of the threshold
queries, which would have the adverse effect of increasing the
frequency of threshold violations and the induced network cost.
In fact, the safe regions are, for most objects, substantially
relaxed. To avoid repetition, the ensuing discussion focuses
primarily on PIVOT. The same optimizations can be adapted
for DIRECT in a reasonably straightforward manner.
Eliminating Redundant Threshold Queries. A crucial obser-
vation is that not all changes in pairwise dominance relations
between objects in O are important for skyline monitoring.
For example, the skyline will not change if o4 (Fig. 3(b))
is updated such that it no longer f -dominates o5. In fact,
there are only two types of threshold-crossing queries that
can signify a change in the skyline: (1) Queries monitoring
the domination of a non-skyline object by a skyline object,
where a violation may indicate the entry of a new object in
the skyline; and, (2) Queries monitoring the dominance (i.e.,
Pareto optimality) of a skyline object, where a violation may
indicate the removal of an object from the skyline. All other
queries are essentially redundant and can be safely dropped.
(1) Queries Monitoring Domination of a Non-Skyline Object:
The key observation here is that a non-skyline object cannot
enter the skyline as long as it is f -dominated by at least one
skyline object. Thus, for any given non-skyline object oi, it suf-
fices to monitor a single threshold-crossing query between oi
and a skyline object oj that f -dominates oi. Having no knowl-
edge on the distribution of future updates, the best threshold
condition to monitor is the one that maximizes the minimum
distance (slack) between oi and the resulting pivot point −→ppi,j
along all d′ dimensions; that is, we select the skyline object
oj that f -dominates oi and maximizes mind

′

`=1{f [`](~v(oi))−
f [`](−→ppi,j)}. In our Fig. 3(b) example, this gives rise to
threshold queries for the pairs {o2, o4} and {o2, o5}.
(2) Queries Monitoring Dominance of a Skyline Object: A
skyline object oi may exit the skyline only when some other
skyline object oj moves to f -dominate oi. (A non-skyline
object can cause the removal of a skyline object only after
itself enters the skyline, thereby causing another threshold
query of the previous class to fire.) Furthermore, not all pairs
of skyline objects need to be monitored, since some skyline
objects impose tighter threshold constraints than others, and
will always be violated first. For example, o1 cannot move
to dominate o3 without first crossing its threshold query with
o2. Specifically, for any skyline object oi, the coordinator
constructs a threshold-crossing query between oi and all other
skyline objects whose f values immediately precede or follow
f(oi) along any dimension of the Rd′ space. In our Fig. 3(b)
example, this gives rise to threshold queries for the pairs
{o2, o3} and {o2, o1}.

Using the above ideas, the total number of threshold-
crossing queries in the system is effectively reduced from
Θ(n2) to (at most) 2(n + s(d′ − 1)), where s denotes the
size of the skyline (and, typically, s << n).
Grouping of Pivot Points. Even after eliminating redundant
queries, skyline objects with dense dominance regions may
end up participating in a large number of threshold-crossing
queries with different pivot points. This translates to high
transfer volume for sending all these threshold queries to sites,
both during initialization and after threshold crossings. To
further reduce PIVOT’s resource requirements, the coordinator

forms groups of pivot points for each skyline object oi, and
replaces each group with a single “composite” pivot point
that imposes equivalent threshold constraints on oi. Threshold
queries are then constructed based on the computed composite
pivot points, which are much fewer than the original ones,
and typically also enable enlarging the safe-zones for the non-
skyline objects.

Precisely, the pivot points of each skyline object oi are
grouped based on their relative positioning with respect to
f(~v(oi)) in all d′ dimensions. Any two pivot points −→ppi,j and−→ppi,k are grouped together if their f values are on the same
side of f(~v(oi)) in all d′ dimensions, or, more formally, if
sgn(f [`](~v(oi))− −→ppi,j [`]) = sgn(f [`](~v(oi))− −→ppi,k[`]) for
all ` = 1, . . . , d′. All pivot points belonging in the same group
G = {−→ppi,j ,−→ppi,k, . . .} are then replaced by a composite pivot
point −→ppi,G, defined as follows:

−→ppi,G[`] =

{
min−→pp∈G

−→pp[`] if min−→pp∈G(
−→pp[`]) ≥ f [`](~v(oi, t))

max−→pp∈G
−→pp[`] if max−→pp∈G(

−→pp[`]) < f [`](~v(oi, t))

for ` = 1, . . . , d′.
By construction, this composite pivot point imposes the

same restrictions on f(~v(oi, t)) as the collection of pivot
points in G. Furthermore, all pivot points in G for objects
{oj , ok, . . .} are also replaced by the composite pivot point−→ppi,G, which can result in additional slack for these objects,
yet without introducing errors. In the example of Fig. 3(c),
grouping replaces G = {−→pp2,4, −→pp2,5} with a single composite
pivot point −→pp2,G that coincides with −→pp2,4, which actually
gives additional slack to o5.

Combining the elimination of redundant queries with pivot-
point grouping results in a maximum of 2d′ + 1 threshold-
crossing queries for each skyline object (2d′ pivot points for its
neighboring skyline objects and one composite pivot point for
all objects in its dominance region). Each non-skyline object
only needs to monitor a single threshold query. Thus, the
total number of threshold queries in the system is effectively
reduced to (at most) n+ 2sd′, that is, O(n).

The following theorem summarizes the correctness guar-
antees offered by the resulting queries.
Theorem 2. The extracted threshold queries are sufficient for
accurate fragmented skyline monitoring, i.e., as long as no
threshold violation occurs, the fragmented skyline is guaran-
teed to stay the same. They are also minimal, in the sense that
omitting any of the queries breaks the correctness guarantees.

The proof is deferred to the extended version of the paper.
C. Local Monitoring

Note that the threshold-crossing queries produced by our
decomposition do not directly translate to local monitoring
conditions, since these are defined over the aggregate object
values (the global statistics vectors). However, nodes can ex-
ploit the geometric method to efficiently monitor these thresh-
old queries without imposing centralization of all updates.
Briefly, a node receiving an update for an object o forms the
bounding ball (see Section II), and tests for monochromicity
w.r.t. all threshold queries. This test is performed by finding
the minimum and maximum value of the monitored function
inside the bounding ball. If both values are on the same side
of the threshold, the update is safe, i.e., it does not violate the
threshold query and cannot invalidate the skyline. Otherwise,
the site notifies the coordinator and a synchronization process
is initiated.

v(o2,p1,t’)

B1

B4

v(o1,t) v(o2,t)

v(o4,t)

v(o3,t)

R
d
 space

v(o5,t)

v(o2,p4,t’’) f(.)

f(v(o1,t))

f(v(o4,t))f(v(o3,t))

R
d’
 space

pp
2,G

pp
1,2

pp
2,3

f(v(o5,t))

m4

m1

M1

M1

M4

Fig. 4. Handling updates with the pivot-based method: (a) constructing the
balls in the Rd space, (b) constructing the boxes in the Rd′ space.

An example is depicted in Fig. 4, with two sites (p1 and
p4) receiving updates for the same object o2, and constructing
the local bounding balls, B1 and B4 (Fig. 4(a)). Let −→m1/

−→
M1

denote the minimum and maximum values of f inside B1,
as computed at p1, and −→m4/

−→
M4 the ones inside B4. Since

both −→m1 and
−→
M1 remain within the safe region defined by the

threshold queries in Rd′ (Fig. 4(b)), the update at p1 is safe
and registered locally at p1. On the other hand, the update at p4
is unsafe, since −→m4 violates the query corresponding to −→pp2,3.
Thus, p4 notifies the coordinator of its current local vector,
initiating a synchronization process.

The local monitoring algorithm also makes use of the
more general safe zone mechanism for testing local violations
(Section II). Safe zones can be defined for various classes
of monitoring functions; for instance, using hyperplanes for
linear functions. In our work, we employ safe zones whenever
applicable, as these can drastically reduce the number of local
violations and, consequently, the required network resources.
More details on the definition and construction of safe zones
can be found in [19], [13].

D. Synchronization
Consider a PIVOT threshold-crossing query Q monitoring

the relative dominance relation of the object pair {oi, oj} that
raises a local violation due to an update of object oi at some
site in P(oi). As discussed briefly in Section II, the coordinator
initiates a balancing process to try to resolve the violation on
oi. If that balancing fails to resolve the local threshold violation
even after contacting all sites, the coordinator computes the
updated ~v(oi) out of the collected local statistics. Then, if the
dominance relation between oi and oj has not changed, the
coordinator only needs to recompute the pivot point for Q, and
send it to P(oi) and P(oj). Otherwise, it updates the skyline
according to the updated global statistics (using a centralized
continuous skyline algorithm to reduce computation cost [8]),
and recomputes only the threshold queries involving at least
one of the two objects and a skyline object, according to
the process described in Section III-B. All updated and new
threshold queries are then sent to the sites monitoring the
corresponding objects, and the monitoring protocol continues.
The above process relies on cached global statistics vectors of
some objects (i.e., oj), to extract the new threshold queries. It
is therefore possible that the local statistics vectors at some of
the sites cause immediate threshold violations with the updated
threshold queries. In such cases, synchronization is invoked
recursively, until no more threshold violations are observed.

An important optimization here is lazy query updating,
which postpones the replacement of all queries that are still
valid, even if the participating objects have changed their

skyline status. For example, when an object is removed from
the skyline but still dominates a large number of objects, the
coordinator need not update the corresponding query. Instead,
sites continue monitoring the query, until an update causes a
threshold crossing. In our experiments with real-world data
sets, this optimization has been shown to enable substantial
network savings.

A slight modification is required at the synchronization
process for the DIRECT algorithm: Since DIRECT threshold
queries are defined on pairs of objects, balancing is always
performed for both objects. The rest of the synchronization
scheme remains the same.

IV. THE ADAPTIVE METHOD
The geometric method (and, in effect, the proposed algo-

rithms) relies on the existence of a small slack (i.e., freedom to
move) for each object, for effectively filtering local updates. In
extreme situations, however, the constructed threshold queries
may be too tight, leaving little slack for updates and causing
frequent synchronizations (e.g., when two objects are very
close in Rd′). Depending on the frequency and cost of these
synchronizations, it may be more network-efficient to identify
such costly threshold queries, and exclude their corresponding
objects from the geometric monitoring protocol. All updates
for these objects are then directly streamed to the coordina-
tor, thereby introducing a cost for sending the updates, but
eliminating the need for costly synchronizations.

In this section, we propose an adaptive module for iden-
tifying such objects. The module is executed by the coor-
dinator each time any object causes a threshold violation,
and operates by estimating and comparing the communication
cost for keeping the object under geometric monitoring versus
directly streaming all its updates. Note that this module is only
applicable to PIVOT; since DIRECT always considers objects
in pairs, the dependencies across objects make it impossible
to exclude an individual object from geometric monitoring.

With Agm and Ast we denote the two alternative mon-
itoring schemes, the first based on the geometric method
(i.e., PIVOT) and the second based on streaming updates. We
distinguish two types of threshold violations: (a) true threshold
violations, where the global statistics vector of the object has
changed sufficiently to cause a threshold violation in the global
query; and, (b) false-positive threshold violations, where only a
local statistics vector of the object causes a violation that can
be resolved with balancing, without changing the threshold
query. Note that both Agm and Ast will incur the same true
threshold violations for the same stream, but only Agm will
run into false-positive violations.

To decide between Agm and Ast for a given object o,
the coordinator needs to predict the network cost required by
each scheme for monitoring o until the next true threshold
violation for o. Let t denote the time of the last global
synchronization for o, and t′ the time of the next true threshold
violation caused by o. For illustration purposes only, assume
that the coordinator has full knowledge of the updates arriving
between t and t′. Let Nt′ denote the number of updates
arriving for o in this time range, Nfp(o) the number of false
positive threshold violations, and Cfp(o) the average cost of
resolving each such violation. Then, the cost for monitoring
o with Agm is Cgm = Cfp(o) × Nfp(o) (for resolving all
false positive threshold violations), whereas the cost for Ast
is simply Cst = c × Nt′ , where c is the cost of a single

Algorithm 1: Adaptivity Estimation Algorithm
// Executed at the coordinator

1 function EstimateNt′ ()
2 begin
3 n ← 1;
4 TC ← false; // true when I find a threshold crossing
5 repeat
6 TC ← probe(n); // check for threshold crossing
7 if (!TC) then n ← 2n;
8 until (TC);

// I know that n/2 < Nt′ ≤ n
9 maxN ← n; minN ← n/2;

10 while (maxN-minN>1) do
11 n = minN + (maxN-minN)/2;
12 if (probe(n)) then maxN ← n; else minN ← n;
13 end
14 return n;
15 end

// Checks for threshold crossing, for a given n
16 function probe(int n)
17 begin
18 for (dim = 1 → d) do

// Compute left/right bounds for prob 0.5 (see Eqn.3)
19 l[dim] ← computeLeftBound(n, 0.5);
20 r[dim] ← computeRightBound(n, 0.5);
21 end

// sampleN determines the sampling resolution
22 for (int sample=0 → sampleN) do
23 ~p←UniformSampleFromHyperCube(l, r);

// Compute prob to reach ~p after n steps (see Eqn.3)
24 prp ←probToReachPoint(~p,~v(o, t), n);
25 if (prp ≥ 0.5 and f(~p) causes threshold

crossing) then return true;
26 end
27 return false;
28 end

update message. The coordinator chooses the algorithm with
the smallest network cost, and notifies the sites monitoring o
to switch to that algorithm.

A. Estimating Threshold Violation Costs
Clearly, in a real-world situation, at time t < t′, the coor-

dinator cannot know the accurate values of Nfp(o), Cfp(o),
and Nt′(o), since these concern future updates in the stream.
It can, however, estimate these values through extrapolation
on recently observed updates for o. In the remainder of this
section, we first describe mathematical models for obtaining
these estimates, and then present the detailed algorithm that
exploits these models to predict the cost of the geometric and
streaming schemes.
Mathematical Preliminaries. To estimate the resolution cost
Cfp(o), the coordinator employs the average cost for resolving
false positive threshold violations over the last ` observed
violations, where ` is a small number, e.g., 10. Estimating Nt′
and Nfp requires a prediction model for future object updates.
In the absence of knowledge on the distribution characterizing
the updates, we employ a random walk model to capture the
behavior of object updates. Precisely, the changes in both the
global and local statistics vectors for each object o are modeled
as d-dimensional random walks. The step length for these
walks is determined empirically, by averaging the magnitudes
of change for all observed updates of o across all sites.

Let vector ~s(o) denote the average of change magnitudes
for the updates observed by all sites in P(o). According to

the random walk model [20], the global statistics vector of
o follows a d-dimensional binomial distribution, with variance
σg[i]

2 = ~s(o)[i]2
∑
p∈P(o) np, where np denotes the number of

updates received for object o at site p since time t. A similar
random walk is used to model the local statistics vector of
o at each site p ∈ P(o): To simplify computation, rather
than using per-site update statistics, our model employs the
single aggregate change vector |P(o)| × ~s(o) for all sites in
P(o) (recall that the global statistics vector is the average
of the |P(o)| local statistics vectors). Then, the probability
distribution describing the local statistics vector of object o
at p is a d-dimensional binomial distribution with variance
σl[i]

2 = (|P(o)| × ~s(o)[i])2np [20].
Through one-sided Chebyshev inequalities we can proba-

bilistically bound the location of the global and local statistics
vectors of each object, after np updates. Precisely, for any
dimension i and any point l < ~v(o, t)[i], the probability of
~v(o, t′)[i] crossing l along dimension i is Pr[~v(o, t′)[i] <

l] ≤ σg[i]
2

σg [i]2+(~v(o,t)[i]−l)2 . Therefore, the value of l satisfying
Pr[~v(o, t′)[i] < l] > pr for a desired minimum probability pr
is:

l ≥ ~v(o, t)[i]− σg[i]
√

(1− pr)/pr (2)

Similar inequalities hold for Pr[~v(o, t′)[i] > r] for all r >
~v(o, t)[i], as well as for the probability of a local statistics
vector dimension being less than l or greater than r.
Estimation Algorithm. Alg. 1 exploits the above-derived
probabilistic inequalities to estimate Nt′(o) and Nfp. Starting
from n = 1 and using a combination of doubling and binary
search, we find the maximum number of steps n, such that
any point ~p reachable from ~v(o, t) with probability higher
than 0.5, does not cause a threshold violation. Formally, let
Vn = {~p1, ~p2, . . .} denote the (possibly infinite) set of points,
such that any ~p ∈ Vn satisfies the following condition after n
updates, for all dimensions i = 1, . . . , d:
d∏
i=1

pri ≥ 0.5, with pri =
{
Pr[~v(o, t′)[i] < ~p[i]], if ~p[i] < ~v(o, t)[i]

Pr[~v(o, t′)[i] > ~p[i]], if ~p[i] > ~v(o, t)[i]

The significance of Vn is that each of the points in the set is
likely to be reached from ~v(o, t) after n updates, i.e., with
probability ≥ 0.5. Nt′(o) is set to the maximum value n,
such that for all points ~p ∈ Vn, f(~p) does not cause a
threshold violation for any of the threshold queries for object
o. To test the above constraints efficiently, the points ~p are
uniformly sampled (using a superimposed grid) over the range
defined by l and r, as these are computed per dimension
for probability 0.5, (e.g., using Equation 2). The number
of repetitions required to estimate Nt′(o), is logarithmic in
Nt′(o), and linear in the resolution of the grid.

The same process is used to predict the number of steps
for the next false positive threshold violation, required for es-
timating the total number of false positive threshold violations
Nfp. Then, using the described formulas for Cgm and Cst, we
compute the expected cost for Agm and Ast and select the
most efficient monitoring scheme.

Due to sampling and extrapolation, the above process may
fail to detect some local or global threshold violations. A
sudden change in stream characteristics may also result in an
overestimate or underestimate of the values of Nfp or Nt′ .
Such inaccuracies, however, do not introduce errors in the
skyline; the only possible negative consequence is that the

adaptive module selects a suboptimal monitoring algorithm for
an object, thereby increasing the monitoring cost.

V. EXPERIMENTAL EVALUATION
Our experiments were focused on evaluating the network

efficiency and scalability of PIVOT and DIRECT, as well as on
providing guidelines for selecting the best algorithm for each
configuration. Network efficiency was measured in number of
messages and transfer volume. Since both algorithms guarantee
maintaining the exact skyline, their accuracy was always 100%
and is therefore not presented in the results.

As a baseline, we have used the only available alternative
for continuous fragmented functional skylines, which streams
the updates to a central node (only the updates that actually
alter the local statistics vector of an object were considered).
In the following, the baseline will be denoted as CENTR, due
to its central nature. Unless noted differently, the results for
PIVOT and DIRECT correspond to the fully-fledged variants
of the algorithms, i.e., with query reduction, grouping, and the
adaptivity extension. In the vast majority of the experiments,
each of these extensions was shown to improve the perfor-
mance of the algorithms, typically reducing the communication
overhead by a factor of two.
Data sets. We have used two publicly available real-
world data sets, a massive weather-related data set (denoted
with WEATHER), and the Movielens movie ratings data set
(MOVIES). Furthermore, a set of massive synthetic data
streams generated with Kossmann’s data generator [1] – the
standard generator for evaluation of skyline algorithms – al-
lowed us to study the behavior of the algorithms under different
data characteristics. Since Kossmann’s generator creates only
static data sets, updates were simulated by randomly selecting
a site pi and an object oj at each step, and shifting the local
value of the object to a value uniformly selected within the
range [(1−maxCh)~v(oj , pi, t), (1 + maxCh)~v(oj , pi, t)], with
maxCh denoting the maximum relative change chosen for the
experiment. Unless otherwise specified, the reported results
correspond to the average cost over 40 executions, with streams
of 10 million updates.
Monitored functions. The proposed algorithms were evalu-
ated using both linear and non-linear functions. For linear
functions, we will report results for the identity function of the
average object values, i.e., f(~v(o, t)) = ~v(o, t), which enables
us to directly observe the influence of the data characteristics
to the performance of the algorithms. For non-linear functions,
we considered three frequently used functions, variance of a
dimension across all sites, euclidean norm on two dimensions,
and L2 distance on four dimensions.

Table I summarizes the configuration parameters varied in
our experiments, and the default values for each parameter. To
avoid repetition, in our discussion we will be noting only the
parameters with values different from the default values.

A. Influence of the data characteristics
We first investigate the influence of the following data

characteristics to the performance of the proposed algorithms:
• Correlation between dimensions: correlated (e.g., price Vs
performance for computers), anti-correlated (price Vs mileage
for used cars), or independent (shipping cost Vs item price).
• Maximum change: We consider values from 1% to 16%.

For this first set of experiments, we have generated different
synthetic streams of 2000 two-dimensional objects, varying the

Data sets
Name synthetic, WEATHER, MOVIES
Correlation of dim. Independent, Correlated, Anti-correlated
Max. relative change 0.01, 0.02, 0.04, 0.08, 0.16
objects 257, 1000, 2000, 3000, 4000, 5000, 10681
Experimental Configuration
Function Linear, Norm, L2 distance, Variance
Dimensions 2, 3, 4, 5
sites 200, 500, 1000, 1500, 2000, 2500, 5423

TABLE I. EXPERIMENTAL PARAMETERS (DEFAULT VALUE IS BOLD).

properties described earlier. The network was configured such
that all objects were monitored by all sites. In order to maintain
the stream properties also in the skyline space, f [0] and f [1]
were set to be the identity functions on the two dimensions of
the objects. The total cost of CENTR in these experiments was
always 10 million messages totaling 305 Mbytes.
Correlation between dimensions. Fig. 5(a) plots the transfer
volume required by PIVOT and DIRECT, as measured at regular
stream intervals. Notice that, for illustration purposes, Y axis
is interrupted at y = 0.0065. Clearly, both PIVOT and DIRECT
enable substantial savings for all data sets. In particular, both
algorithms require two to three orders of magnitude less
transfer volume compared to CENTR on the data sets with
independent and correlated dimensions. The data set with
anti-correlated dimensions is more challenging for the two
algorithms, since, due to this anti-correlation, skyline objects
end up to be close to each other leading to frequent skyline
updates. Nevertheless, even for this data set, both PIVOT and
DIRECT still enable around 70% reduction of the network cost
compared to CENTR. Similar observations are derived by the
comparison of the three algorithms in terms of number of
messages (Fig. 5(b)).

Also note that DIRECT is more efficient than PIVOT for
the streams with the correlated and independent dimensions,
both with respect to number of messages and transfer volume.
This is not the case for the anti-correlated data set, where
PIVOT substantially outperforms DIRECT in terms of number
of messages. The reason for this discrepancy is the adaptivity
extension of PIVOT, which, for the anti-correlated data set,
sets a small set of objects (less than 10%) to the streaming
algorithm, reducing the threshold crossings and the incurred
network cost. The effect of the additivity extension is more
visible at the latter part of the stream, since the extension relies
on stream statistics to detect the candidate objects. In terms of
transfer volume, this difference becomes apparent only at the
end of the stream, since the messages exchanged by PIVOT also
include the pivot point coordinates, and are therefore larger
than the messages sent by DIRECT.

The initialization phase of PIVOT and DIRECT induces
a small network cost, for broadcasting the initial threshold
queries to all sites. Notice that this is a one-time cost, and,
therefore, with a small significance for continuous skyline
queries. In the previous experiments, the maximum initializa-
tion cost over all runs and for both algorithms was found to
be less than 25 Kbytes per node, i.e., less than 25 Mbytes
total. The total transfer volume (including initialization cost)
required by the algorithms is shown in Fig. 5(c) (the figure
corresponding to number of messages is almost identical to
Fig. 5(b), and is omitted). We see that, for the anti-correlated
data set, CENTR appears to be more efficient at the early
stages of the stream compared to PIVOT and DIRECT. This is
expected, since CENTR does not require initialization. How-

0.000

0.002

0.004

0.006

 1 2 3 4 5 6 7 8 9 10

R
a
tio

 o
f
C
E
N
T
R

 (
tr

a
n
sf

e
r

vo
lu

m
e
)

Number of updates (millions)

 0.25

 0.30

 0.35

 0.40

 0.45

0.000

0.002

0.004

0.006

 1 2 3 4 5 6 7 8 9 10

R
a
tio

 o
f
C
E
N
T
R

 (
#
 m

e
ss

a
g
e
s)

Number of updates (millions)

 0.10

 0.15

 0.20

 0.25

 0.30

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

 1 2 3 4 5 6 7 8 9 10

R
a
tio

 o
f
C
E
N
T
R

 (
tr

a
n
sf

e
r

vo
lu

m
e
)

Number of updates (millions)

Fig. 5. Effect of the correlation of dimensions to the performance of PIVOT and DIRECT: (a) transfer volume, (b) # messages, (c) transfer volume including
one-time initialization cost.

ever, already after around 1.5 million updates, the amortized
transfer volume of both PIVOT and DIRECT becomes less
than the corresponding cost of CENTR. Since most real-world
applications involve long-running – possibly infinite – streams,
the one-time initialization cost of the proposed algorithms is
not an important concern. Instead, as more updates arrive in
the stream, the amortized transfer volume of the two proposed
algorithms converges to their running transfer volume. There-
fore, the running cost of each algorithm (Fig. 5(a) and (b)) is
a more interesting evaluation indicator.
Maximum Change. The streams in the previous simula-
tions were generated assuming a maximum relative change
maxCh = 0.02 per update. This value is reasonable for
simulating real-world applications, since the stream readings
usually arrive at regular intervals, e.g., every 30 seconds, and
therefore most updates are expected to be small. However, to
verify the applicability of PIVOT and DIRECT for fast-changing
streams, we have also conducted experiments with different
maximum change values, up to 0.16. Fig. 6(a) plots the
measured transfer volume and number of messages required by
PIVOT and DIRECT for data sets generated with independent
dimensions. As expected, increasing maxCh results to an
increase of the network cost of both algorithms. Nevertheless,
even for maxCh = 0.16, PIVOT enables network savings of
80% compared to CENTR in terms of transfer volume, and
90% in terms of messages. DIRECT is even more efficient,
requiring 88% less network volume, and 90% less messages
compared to CENTR. The 8% difference in the transfer volume
between PIVOT and DIRECT is attributed to the more compact
threshold queries of DIRECT, which do not need to include the
pivot points. For small maxCh values, the network savings of
both algorithms are substantially higher, approximating 100%.
B. Scalability

To investigate the scalability of the two algorithms, we also
ran experiments with different network sizes. To ensure that
each site receives a substantial number of updates for each
object, the number of rounds in each experiment was set such
that each site receives an expected number of 10000 updates.
Therefore, the cost of CENTR varied with the network size,
starting from 152 Mbytes for 500 sites, and reaching to 763
Mbytes for the largest network of 2500 sites.

The cost of PIVOT and DIRECT for the different network
sizes is presented in Fig. 6(b), as a ratio of the corresponding
cost of CENTR for the same setup. Clearly, both PIVOT and
DIRECT maintain a steady cost ratio compared to CENTR,
independent of the network size (the small peaks visible in
the plot for networks of 500 and 1500 sites are due to random
artifacts in the generated data sets). For all network sizes, the

transfer volume is less than 3% of CENTR for PIVOT and less
than 1% for DIRECT, whereas the number of messages remains
always below 1% for both.

We have also considered experiments with different num-
bers of objects (from 1000 to 5000). Similar to the previous
experiment, the stream size was adapted to the number of
objects (5000 expected updates per object, reaching to a total
of 25 million updates for the 5000-objects configuration).
As seen in Fig. 6(c), the cost ratio for PIVOT in terms of
transfer volume slightly increases with the number of objects.
This behavior is expected, since the denser area around the
skyline (attributed to the increased number of objects) leads to
more frequent threshold crossings and updates in the skyline.
This does not affect the number of messages, because all
threshold crossings observed due to an update by a node are
packed to a single message. Nevertheless, even for the 5000-
objects experiment, the transfer volume of both PIVOT and
DIRECT does not exceed 4% of CENTR, whereas the number
of messages remains always less than 2%. The scalability
experiments were also repeated in configurations where each
site monitored a subset of the objects, with very similar results.
C. Different function types

The final set of experiments with synthetic data focused
on investigating the influence of the number of functions to
the performance of PIVOT and DIRECT, and on verifying
the applicability of the algorithms to different function types
– not necessarily linear. Fig. 7(a) presents the performance
of PIVOT and DIRECT when monitoring 2, 3, and 4 linear
functions, i.e., the skyline space is of 2, 3, and 4 dimensions.
Notice that the transfer volume for the baseline varies with the
number of functions, since the number of object dimensions
are increased. For 2 dimensions, the transfer volume of CENTR
is 305 Mbytes, for 3 dimensions it is 343 Mbytes, and for 4
dimensions it reaches to 381 Mbytes.

We observe that an increase of the number of functions
leads to higher network requirements for both PIVOT and
DIRECT. The main reason for this observation is that by adding
functions – dimensions in the skyline space – we increase the
frequency of synchronizations (recall that threshold crossing
in a single dimension is sufficient to invoke the synchroniza-
tion process). Nevertheless, even for the experiment with 4
functions, PIVOT is substantially more efficient than CENTR,
reducing the transfer volume by 70%, and the messages
by more than 80% by the end of the stream. Notice that
skylines of higher dimensions are rarely considered, since in
high dimensions most of the objects end up in the skyline,
rendering it useless. Also note that PIVOT is more efficient than
DIRECT for 3 or more functions. The inefficiency of DIRECT

0.00

0.02

0.04

0.06

0.08

0.10

 0.01 0.02 0.04 0.08 0.16
Maximum change percentage (log. scale)

(ii) Number of messages

R
a
tio

 o
f
C
E
N
T
R

0.00

0.04

0.08

0.12

0.16

0.20

(i) Transfer volume

Pivot
Direct

0.000

0.002

0.004

0.006

0.008

 500 1000 1500 2000 2500

R
a
tio

 o
f
C
E
N
T
R

Network size

(ii) Number of messages

0.00

0.01

0.02

0.03

0.04

0.05

(i) Transfer volume

Pivot
Direct

0.000

0.004

0.008

0.012

0.016

 1000 2000 3000 4000 5000
Number of objects

(ii) Number of messagesR
a
tio

 o
f
C
E
N
T
R

0.00

0.04

0.08

0.12

0.16

0.20

(i) Transfer volume

Pivot
Direct

Fig. 6. Effect of (a) maximum relative change, (b) network size, (c) number of objects, to the transfer volume of PIVOT and DIRECT.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 1 2 3 4 5 6 7 8 9 10
Number of updates (millions)

(ii) Number of messages

R
at

io
 o

f C
E
N
T
R

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(i) Transfer volume

Pivot 2 functions
Pivot 3 functions
Pivot 4 functions

Direct 2 functions
Direct 3 functions
Direct 4 functions

0.0

0.1

0.2

0.3

0.4

0.5

 1 2 3 4 5 6 7 8 9 10
Number of updates (millions)

(ii) Number of messages

R
at

io
 o

f C
E
N
T
R

0.0

0.2

0.4

0.6

0.8
(i) Transfer volume

Pivot id,id (2 dim)
Pivot id,var (2 dim)

Pivot id,norm (3 dim)
Pivot id,L2 dist. (5 dim)

Direct id,id (2 dim)
Direct id,var. (2 dim)

Direct id,norm (3 dim)
Direct id,L2 dist. (5 dim)

0.0

0.2

0.4

0.6

0.8

 10 20 30 40 50 60 70 80 90 100
Observed stream (percentage)

(ii) Number of messagesR
at

io
 o

f C
E
N
T
R

0.0

0.2

0.4

0.6

0.8

1.0

(i) Transfer volume

Weather-pivot Group
Weather-pivot

Movies-pivot
Movies-direct

Fig. 7. (a) Effect of the number of functions, (b) Effect of the function types, (c) Experiments with real data sets.

in the experiments with 4 functions is attributed to a high
frequency of threshold crossings, due to the increased number
of functions. PIVOT on the other hand identifies the objects
causing frequent threshold crossings, through the adaptivity
extension, and sets them to the streaming algorithm, thereby
avoiding the majority of the threshold crossings.

We also conducted experiments with more complex
functions, namely the Euclidean norm on two dimensions
(Norm(~v(o, t)) =

√∑2
i=1 ~v(o, t)[i]

2), the L2 distance on four

dimensions (L2(~v(o, t)) =
√∑2

i=1 ~v(o, t)[i]
2 − ~v(o, t)[i+ 2]2),

and the variance of one dimension on all sites (V ar(~v(o, t)[i]) =∑
p∈P(o)(~v(o, t, p)[i])

2−~v(o, t)[i]2). In all experiments, the sky-
line space was 2-dimensional, with f [0] set as the identity
function, and f [1] set as one of the three functions above.

Fig. 7(b) plots the network cost incurred by the two
algorithms for each function, as the ratio of the corresponding
cost of CENTR. For comparison, the figure also includes the
cost for the case where both functions are set to the identity
function. Notice that, as with the previous experiments, the
transfer volume of CENTR was not the same for all functions,
since the number of dimensions in the object space differed:
for the variance, the transfer volume was 305 Mbytes (2-
dimensional objects), for the Euclidean norm 343 Mbytes (3-
dim.), and for L2 distance 420 Mbytes (5-dim.).

We see that the proposed algorithms substantially outper-
form CENTR, also on skylines defined through non-linear func-
tions. The improvement is in fact similar to the improvement
observed with linear functions. The only exception involves
the experiments with DIRECT used for monitoring the pair
of identity and L2 distance functions. For this configuration,
DIRECT reduces the transfer volume only by 20% compared
to CENTR. DIRECT does not perform well in this configuration
due to its local monitoring process, which requires constructing
balls in the 2d-space for each function, i.e., in the 8-dimensions
for L2 (cf. Section III-A). This substantially increases the

frequency of threshold crossings, and consequently also the
transfer volume. PIVOT, on the other hand, reduces the network
cost to around 20% of the baseline, since: (a) it constructs
balls in the d-dimensional space, and not in the 2d-dimensional
space and, (b) it uses the adaptivity extension, which avoids a
large number of threshold crossings.

D. Experiments with real data sets
We have also conducted experiments with two real-world

data sets, WEATHER and MOVIES. WEATHER was down-
loaded from the website of the National Oceanic and At-
mospheric Administration (NOAA). The data set includes
weather statistics collected from a network of sensors dis-
tributed around the globe. For our experiments, we used a
subset of the data set for years 2010 and 2011, by excluding
the sensors with incomplete location meta-data or infrequent
readings. The resulting data set contained 93.6 million readings
of 5423 sensors distributed in 257 countries. An interesting
characteristic of this data set is that, even though the value of
each object (country) is fragmented over many sensors, each
sensor always maintains the data of a single object, i.e., the
weather statistics corresponding to a single country. This has
two important consequences. First, as shown in Theorem 1,
DIRECT is provably worse than PIVOT for such a setup, and
therefore we do not use it in this experiment. Second, our
experiments have shown that the query grouping extension
introduced at Section III-B is not beneficial for this extreme
scenario, since every time a small threshold violation occurs
at a composite pivot point, a large number of distinct sensors
need to be contacted for updating the composite pivot point.
Therefore, for this data set, we present results of PIVOT, both
with and without query grouping.

MOVIES is the largest of the Movielens data sets, published
by the grouplens group. The data set contains 10 million
ratings of 10681 movies provided by 71567 users, and is
frequently used for evaluating recommender systems. In the
context of this work, MOVIES is used to simulate the scenario

where a large number of servers distributed around the world
(such as eBay servers) collaborate to maintain a set of useful
skylines on collected user ratings. Since the data set does not
contain any kind of user demographics that would allow us to
break the stream to sites, we introduced a random distribution
of the users to 200 sites. Each site accepts ratings for all
movies, and the initial ratings at each site are set based on
a sample of the ratings for the movie.

Fig. 7(c) shows the incurred network cost for maintaining
two indicative skylines on these data sets: (1) for WEATHER,
the skyline of countries with lower average temperatures and
lower average dew points, and, (2) for MOVIES, the movies
with the highest average ratings and the highest number of
ratings in the network. The transfer volume is always reported
as a percentage of the corresponding cost of CENTR, which
was 2.8 Gbytes for WEATHER, and 248 Mbytes for MOVIES.

Both methods enable substantial improvement on the in-
curred network cost, similar to the improvement with the
synthetic data sets with different correlations (cf. Fig. 5). With
respect to WEATHER, PIVOT without query grouping is more
efficient than the fully-fledged PIVOT, requiring 4 times less
network cost. Compared to CENTR, PIVOT without grouping
requires only 10% of the cost of CENTR, both with respect to
number of messages and transfer volume. The network savings
for MOVIES approached 100% for both algorithms.

We also see that WEATHER is more difficult to handle
compared to MOVIES, i.e., the network savings are lower. This
is due to the characteristics of the two data sets. On the one
hand, MOVIES has correlated dimensions, i.e., a movie with
high average rating is highly likely to have a high number of
ratings. As discussed in Section V-A, our algorithms thrive
in these data sets, requiring a near-zero network cost. On
the other hand, WEATHER has two properties that make it
a difficult data set: (a) the similar weather statistics observed
in nearby countries, leading to tight threshold queries, and to
frequent changes in the skyline, and, (b) the periodicity of
the readings due to the day-night cycle, which causes frequent
changes in the skyline. Extreme weather situations, such as the
extremely low temperatures in continental Europe in the winter
of 2010-2011 (starting at around 50% of the stream), also cause
drastic skyline changes and increased network requirements.
Nevertheless, even with this data set, the overall network
savings are significant, reaching to 90%.
Summary. The experimental evaluation showed that the
proposed algorithms substantially outperform CENTR, the
only available alternative. Cost reduction was frequently
in the range of two orders of magnitude, as shown with
experiments on both real and synthetic data sets, and using
different number and types of functions. Both PIVOT and
DIRECT were shown to scale well with the number of objects,
and number of sites. Furthermore, a thorough experimental
comparison of the two algorithms was used to reveal the
preferred algorithms for each situation:
• PIVOT is the algorithm of choice for monitoring dense
skyline spaces, i.e., with anti-correlated dimensions, and with
many functions, due to the adaptivity extension which detects
tight threshold queries and assigns their corresponding objects
to streaming monitoring.
• PIVOT substantially outperforms DIRECT when monitoring
skylines that include non-linear functions with a high number
of dimensions, e.g., the L2 distance.

• For 2-dimensional skylines with correlated or independent
dimensions, DIRECT is more efficient than PIVOT, since it
does not introduce fixed pivot points, allowing higher slack
to the objects, and more compact threshold queries.

VI. CONCLUSIONS
In this paper we formally introduced the problem of

continuous fragmented skyline queries, i.e., skyline queries
defined over aggregate values of distributed data, possibly
through additional complex functions. To address the problem,
we proposed two distributed algorithms that rely on geometric
monitoring to reduce the number of updates that need to be
transmitted by each site to a central node, thereby drastically
reducing the total network cost for maintaining the skyline.
We have also described an adaptivity module which enables
detecting highly volatile data and handling them more effi-
ciently. An extensive experimental evaluation with massive
real-world and synthetic datasets demonstrated the scalability
of the algorithm, as well as its significantly improved network
efficiency compared to the only available baseline algorithm.

REFERENCES
[1] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in

ICDE, 2001.
[2] K. Hose and A. Vlachou, “A survey of skyline processing in highly

distributed environments,” VLDB J., 2011.
[3] Z. Zhang, R. Cheng, D. Papadias, and A. Tung, “Minimizing the

communication cost for continuous skyline maintenance,” in SIGMOD,
2009.

[4] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis, “Efficient
routing of subspace skyline queries over highly distributed data,” TKDE,
vol. 22, no. 12, 2010.

[5] W.-T. Balke, U. Gntzer, and J. X. Zheng, “Efficient distributed skylining
for web information systems,” in EDBT, 2004.

[6] G. Trimponias, I. Bartolini, D. Papadias, and Y. Yang, “Skyline pro-
cessing on distributed vertical decompositions,” TKDE, vol. 25, no. 4,
2013.

[7] I. Sharfman, A. Schuster, and D. Keren, “A geometric approach to mon-
itoring threshold functions over distributed data streams,” in SIGMOD,
2006.

[8] P. Wu, D. Agrawal, Ö. Egecioglu, and A. El Abbadi, “Deltasky: Optimal
maintenance of skyline deletions without exclusive dominance region
generation,” in ICDE, 2007.

[9] D. Papadias, G. Fu, M. Chase, and B. Seeger, “Progressive skyline
computation in database systems,” TODS, vol. 30, no. 1, 2005.

[10] Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung, “Continuous skyline
queries for moving objects,” TKDE, vol. 18, no. 12, 2006.

[11] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient computation of skylines
in subspaces,” in ICDE, 2006.

[12] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou, “Parallel distributed
processing of constrained skyline queries by filtering,” in ICDE, 2008.

[13] D. Keren, I. Sharfman, A. Schuster, and A. Livne, “Shape sensitive
geometric monitoring,” TKDE, vol. 24, no. 8, 2012.

[14] G. Cormode and M. Garofalakis, “Approximate continuous querying
over distributed streams,” TODS, vol. 33, no. 2, 2008.

[15] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi, “Holis-
tic aggregates in a networked world: Distributed tracking of approximate
quantiles,” in SIGMOD, 2005.

[16] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” in SIGMOD, 2003.

[17] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in SIGMOD, 2003.

[18] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The design of an
acquisitional query processor for sensor networks,” in SIGMOD, 2003.

[19] S. Burdakis and A. Deligiannakis, “Detecting outliers in sensor net-
works using the geometric approach,” in ICDE, 2012.

[20] R. Graham, D. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley, 1989.

