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Abstract
Recent work on distributed, in-network aggregation as-

sumes a benign population of participants. Unfortunately,
modern distributed systems are plagued by malicious par-
ticipants. In this paper we present a first step towards
verifiable yet efficient distributed, in-network aggregation
in adversarial settings. We describe a general framework
and threat model for the problem and then present proof
sketches, a compact verification mechanism that combines
cryptographic signatures and Flajolet-Martin sketches to
guarantee acceptable aggregation error bounds with high
probability. We derive proof sketches for count aggregates
and extend them for random sampling, which can be used to
provide verifiable approximations for a broad class of data-
analysis queries, e.g., quantiles and heavy hitters. Finally,
we evaluate the practical use of proof sketches, and observe
that adversaries can often be reduced to much smaller vio-
lations in practice than our worst-case bounds suggest.

1. Introduction
In recent years, distributed aggregation has been a topic

of interest in a number of settings, including network and
distributed system monitoring, sensor networks, peer-to-
peer systems, data integration systems, and web services. A
common yet widely applicable motivating scenario comes
from corporate network management. It is common prac-
tice for most computers owned by a corporation to run lo-
cally a host intrusion detection agent (HID) such as SNORT,
or other local management agents, e.g., for asset tracking,
connection quality monitoring, etc. Such agents generate
event streams like “My CPU utilization is 95%” or “I am
under a NIMDA attack” and typically communicate over
the corporate network with a central console, located at cor-
porate IT headquarters. The querier in this scenario is a
network manager at the console, posing aggregate queries
on agents to understand a developing performance prob-
lem or the outbreak of a worm. A usual query might
be “How many Windows XP hosts running patch X have
CPU utilization above 95%?”. We call these count queries
predicate polls, since each host responds with one boolean
value (“one machine, one vote”). Besides predicate polls,
there are queries like “how many HID log entries indicate a
NIMDA exploit?” (a tuple counting query), or even “return
the OS versions of k randomly chosen HIDs that identified
exploit X” (a random sampling query). In such scenarios,

each agent may have zero, one, or many records to con-
tribute to the aggregation.

Data warehousing may be an inappropriate solution
to this problem, since there may be many thousands of
globally distributed management agents in the corporation,
some connected by slow links (WiFi or modem), updating
their streams at sub-second intervals. Results to queries
may be required within seconds to catch anomalies or other
serious problems. Instead, in-network aggregation, for in-
stance over a well provisioned distributed infrastructure like
Akamai, can cut down on the bandwidth, latency, and pro-
cessing needs of real-time backhauling, by spreading more
of the computation within the network. In addition, for
many queries the querier may be interested in detecting only
trends or interesting patterns, not precise answers. Thus,
techniques for fast, approximate answers (e.g., approximate
predicate polls) are often preferred, especially if they can (a)
drastically reduce the burden on the network infrastructure,
and (b) provide approximation-error guarantees.

Unfortunately, although in-network aggregation can de-
liver real-time, efficient results, it must anticipate an un-
trusted aggregation infrastructure. For instance, the aggre-
gation functionality may be hosted by a third party (e.g.,
Akamai), or might be shared among multiple organizations
that pool their network resources. Even if wholly owned
by a single organization, the infrastructure will typically be
plagued by viruses and worms. Consequently, queriers pos-
ing questions may require extra assurances that the aggre-
gation results reflect accurately what the data sources (the
agents) produced. An outstanding and largely overlooked
research challenge is to provide trustworthy query results
in such environments with mutually distrustful or even ad-
versarial parties. The challenge we consider in this paper
is preventing malicious aggregators from undetectably per-
turbing the results of distributed, in-network aggregation.

Prior Work. Recent contributions have tackled communi-
cation faults in this setting [5, 11, 13], but remain vulnera-
ble to malicious misbehavior. Participant misbehavior in-
cludes manufacturing spurious subresults that were not de-
rived from authentic data generators, and suppression of
true results derived from the data generators; such activi-
ties can perturb aggregate results arbitrarily. Related work
that addresses misbehavior is typically limited in scale to
far smaller settings than the Internet-wide aggregation prob-
lem we explore here. The SIA approach [16] prevents a
single untrusted aggregator from tampering with aggrega-
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tion results over a sensor network using spot-checking of
aggregates against tamper-evident samples of the input sen-
sor data, but does not address scenarios in which many ag-
gregators must collaborate to compute a result, which are
necessary for larger-scale aggregations. Similarly, general
secure function evaluation approaches such as Fairplay [12]
address in practice only two-party computations and, even
then, have prohibitive overheads when considering scales
beyond counting a few hundred inputs among a few wide-
area parties every few minutes. Wagner’s resilient sensor
aggregation work [18] uses robust statistics to protect from
data source misbehavior but does not address the orthogo-
nal problem of misbehaving aggregators. Solving the prob-
lem of verifiability of in-network aggregation would com-
plement well much related work on other distributed secu-
rity problems with databases, such as data source trustwor-
thiness [1] or privacy-preserving query processing [2]).

Our Contributions. In this paper, we propose a family of
certificates called proof sketches. These allow parties in a
distributed aggregate computation to verify that the final re-
sult cannot have been perturbed by more than a small er-
ror bound with high probability. To our knowledge, this
is the first practical work to tackle verifiable, multi-party
query processing in the face of adversaries. We believe it
represents a significant step towards trustworthy distributed
query processing.

We initially target distributed single-table aggregation
queries of the form γ(σpred(R)), where γ is an aggregate
function, σpred is a selection operator, and R is a relation,
distributed across numerous participants. We develop proof
sketches of size logarithmic in |R| for a broad class of count
aggregates, and prove that they detect tampering beyond a
small factor of the true count. We extend our scheme to
develop compact proof sketches for verifiable random sam-
pling, which can itself be used to give verifiable approxima-
tions for a wide variety of data-analysis queries, including
quantiles and heavy hitters.

Our basic technique combines Flajolet-Martin (FM)
sketches [6] with compact cryptographic signatures we call
authentication manifests. Authentication manifests ensure
that none of the data captured by the sketch were invented
by adversarial aggregators. To prevent aggregators from
silently omitting valid data from counts or samples, we es-
timate the overall population count, either directly from the
verifiable sample or through an additional counting proof
sketch on the complement of the query predicate. Assum-
ing the size of the participant population is approximately
known – a reasonable assumption in most environments we
consider – the querier can check the accuracy of this esti-
mate to detect malicious tampering.

We briefly discuss a number of extensions to our core
proof-sketching ideas, including general design guidelines
for the development of new proof sketches and accountabil-
ity mechanisms. Our empirical evaluation of verifiable ap-
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Figure 1. Dataflow among agents in the sys-
tem, with potential threats listed in the black
ovals. Proof sketches are used to thwart
the threats within the gray trapezoid. In
each component, we indicate the aggregation
functionality (I , M , E ) performed.

proximate count via proof sketches under different adver-
sarial strategies shows that, to remain undetected in prac-
tice, adversaries must limit themselves to much smaller-
scale tampering than the worst-case analysis suggests1.

2. Preliminaries
In-Network Aggregation Functionality. In our discus-
sion, we adopt the distributed aggregation terminology
of TAG [11]. TAG implements simple aggregates like
COUNT, SUM, or AVERAGE via three functions: an ini-
tializer I , a merging function M , and an evaluator function
E . M has the form 〈z〉= M (〈x〉,〈y〉), where 〈x〉 and 〈y〉 are
multi-valued partial state records (PSRs), computed over
one or more input data values, and representing the interme-
diate state over those values that will be required to compute
an aggregate. 〈z〉 is the PSR resulting from the application
of M to 〈x〉 and 〈y〉. For example, if M is the merging func-
tion for AVERAGE, each PSR will consist of a pair of val-
ues, sum S and count C, and, given two PSRs 〈S1,C1〉 and
〈S2,C2〉, M (〈S1,C1〉, 〈S2,C2〉) = 〈S1 + S2, C1 +C2〉. The
initializer I specifies how to instantiate a PSR for a single
input data value; for AVERAGE, I (x) = 〈x,1〉. Finally, the
evaluator E maps a PSR to an aggregate. For AVERAGE,
E(〈S,C〉) = S/C.

In-network aggregation entities play different roles (Fig-
ure 1). Sensors are agents that produce raw data values for
aggregation, and invoke initializer functions I to generate
PSRs. In our scenario, the management agent is a “sensor,”

1Due to space constraints, we defer proof arguments and several details
to the full paper.
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and agent measurements or HID alerts are the data. Ag-
gregators combine multiple PSRs by applying the merging
function M on their inputs and forwarding a merged PSR to
their outputs, according to an aggregation topology such as
trees [11], depth-based DAGs [5], and hybrids of trees and
DAGs [13]. The querier is the agent that receives the final
PSR, validates it and, if successful, executes the evaluator
E to generate the result.

We assume that nodes in the system are connected.
Queries from end users have unique IDs. They can be dis-
seminated to all relevant agents, including sensors and ag-
gregators [10, 11]. In some environments, queries can be
disseminated along with the agent software (e.g., every HID
reports on a predetermined set of predicate polls or other
queries periodically). Alternatively, queries can be dissem-
inated in batch (e.g., “the queries for the next hour are X , Y ,
and Z”) to the relevant agents via a slow but reliable means,
such as gossip among agents.
Threat Model. The adversary may control any and all ag-
gregators in the infrastructure to implement a holistic strat-
egy of her choosing. Two types of aggregator misbehavior
are possible (gray trapezoid in Figure 1). In partial-state
suppression (or deflation), aggregators omit data from input
PSRs during the merging function. The simplest such attack
is to suppress an entire PSR, but others are possible (e.g.,
suppressing a subset of a sample). In spurious partial state
(or inflation), aggregators introduce data into output PSRs
that should not be there. The simplest such attack is to man-
ufacture an entire PSR from scratch, but it is also possible to
manipulate an existing PSR to reflect manufactured inputs,
or inputs from elsewhere in the aggregation topology.

The adversary is bound to common limits of computa-
tional tractability: she cannot forge signatures for keys she
does not possess. We require all sensors to be registered
with an organization-wide public key infrastructure (PKI)
so that we can authenticate the data they produce.

3. AM-FM Proof Sketches
To begin our discussion of proof sketches, we consider

the special case of “predicate poll” queries; we expand to ar-
bitrary counts in Section 5. Our goal is to count the number
of nodes that satisfy some boolean predicate. Without loss
of generality, let [U ] = {0, . . . ,U − 1} denote the domain
of node identifiers, and let pred be the predicate of interest;
also, let Cpred (≤U) denote the answer to our predicate poll.
Consider the predicate COUNT aggregate:

I (t) =

{

〈1〉 if pred(t) = true
〈0〉 otherwise ;

M (〈x〉,〈y〉) = 〈x+ y〉 ; E(〈x〉) = x
where t denotes a sensor’s local data record. We treat mali-
cious inflation and deflation of a PSR’s value separately.

3.1. Detecting Inflation
To offer intuition, we start with a simple but impracti-

cal way to ensure that aggregators do not inflate the running

sum: counting in a unary representation, where the PSR is
a bitmap of size U . The aggregation logic becomes:

I (t) =

{

〈2a〉 if pred(t) = true at node a
〈0〉 otherwise ;

M (〈p〉,〈q〉) = 〈p OR q〉 ; E(〈p〉) = |p|
where |p| counts 1-bits in bitmap p. We protect from infla-
tion by requiring that every sensor voting “yes” also crypto-
graphically sign the unique identifier of the predicate poll,
and we collect all such signatures into a signature set called
the authentication manifest (AM) for a PSR. The initializer
I at sensor a ∈ [U ] initializes the AM to contain sensor a’s
signature if a satisfies the predicate. The merging function
M unions input AMs in addition to OR-ing input bitmaps.
To validate the final PSR, the querier verifies that, for each
1-bit in the bitmap at position a, the AM contains a valid
signature of the query identifier by sensor a’s public key.

Though impractical, since the size of a thus defined PSR
is as large as the number of “yes” votes counted (roughly
O(U)), this basic idea motivates our actual approach, which
produces a compact AM. To that goal, we relax our security
requirement: instead of detecting all count inflations, we
can settle for detecting “noticeable” attacks that overcount
by more than some small amount. This relaxation suggests
the use of space-efficient Flajolet-Martin (FM) sketches for
approximately counting the distinct values in a set [6]. By
augmenting FM with an authentication manifest, we de-
velop our first proof sketch, which we call AM-FM.
Quick Introduction to FM Sketches. The FM distinct-
count estimator [6] is a one-pass (streaming) algorithm that
relies on a family of hash functions H for mapping incom-
ing data values from an input domain [U ] = {0, . . . ,U −1}
uniformly and independently over the collection of binary
representations of the elements of [U ]. The basic FM-sketch
synopsis (for a fixed choice of hash function h ∈ H ) is a
bit vector of size Θ(logU).2 This bit-vector is initialized
to all zeros and, for each incoming value i in the input,
the bit located at position lsb(h(i)) is turned on, where
lsb(s) denotes the position of the least-significant 1 bit in
the binary string s. It is not difficult to see that for any i ∈
[U ], lsb(h(i))∈{0, . . . , logU−1} and Pr [lsb(h(i)) = l] =

1
2l+1 . After C distinct values from [U ] have been encoun-
tered in the stream, the location of the rightmost zero in the
bit-vector synopsis is an indicator of logC. To boost ac-
curacy and confidence, the FM algorithm employs averag-
ing over several independent instances (i.e., r independent
choices of the mapping hash function h j ∈ H for j ∈ [1,r]
and corresponding FM sketches). Recent work [3, 7, 9] has
shown that, using only r = O( log(1/δ)

ε2 ) FM bit vectors built
with simple, limited-independence hash functions, one can
provide (randomized) (ε,δ)-estimators for the number of
distinct values C; that is, the computed estimate Ĉ satisfies
Pr

[

|Ĉ−C| ≤ εC
]

≥ 1−δ.
FM-sketch summaries are naturally composable: simply

2Logarithms in this paper have base 2 unless otherwise noted.
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I (t) = 〈2lsb(h j(t‖a)), {〈lsb(h j(t‖a)), t,a,sa(t)〉}〉
M (〈p,Ap〉,〈q,Aq〉) = 〈p OR q, Ap tAq〉

E({〈p j,Ap j 〉 : j = 1, . . . ,r}) = FMEstimate({p1, . . . , pr})

Figure 2. Definition of (basic) AM-FM. The
predicate test in I is omitted for brevity. ‖
denotes concatenation.

OR-ing independently built bitmaps (e.g., over data sets a1
and a2) for the same hash function gives precisely the sketch
of the union of the underlying sets (i.e., a1∪a2). This makes
FM sketches ideally suited for in-network computation [5].
Inflation-free FM. From the perspective of verifiability, an
attractive aspect of FM sketches is that each bit’s value is an
independent function of the input domain. Thus, assuming
a pre-specified collection of hash functions for building FM
sketches, each 1-bit can be authenticated at the querier by a
single signed value from one of the sensor nodes that turn it
on. Hence, we can construct an authentication manifest for
a basic FM sketch with O(logU) (or fewer) signed inputs
of the form 〈k, t,a,sa(t)〉, where k is the bit position, t the
tuple, a the sensor identifier, and sa(t) the sensor’s signature
for the tuple. We refer to the resulting sketch structure as an
AM-FM proof sketch.

Figure 2 outlines the definition of our AM-FM sketches.
Note that the FM hash function is applied to the
〈dataRecord, sensorID〉 pair to ensure uniqueness across
all input data records. Ap denotes the authentication man-
ifest for FM bit-vector p: if p’s k-th bit is set to 1, the k-
th component of Ap is 〈k, t,a,sa(t)〉, and is valid iff k =
lsb(h(t‖a)) and sa(t) is a valid signature on t by sensor
a. The t operator forms a subset of the union of its in-
puts, retaining one input “exemplar” 〈k, t,a,sa(t)〉 for each
k ∈ [0, logU −1] (e.g., chosen randomly). Finally, the eval-
uator function executes a count-estimation procedure over
the collection of FM bit-vectors built [7, 9].

3.2. Deflation Detection
The authentication manifest in AM-FM prevents mali-

cious aggregators from turning 0-bits in an FM PSR into
1-bits. The remaining possible attack is to turn 1-bits into
0-bits, removing the corresponding signatures from the AM.
This attack could deflate the count in the FM sketch.

One natural approach to preventing this attack is to route
initialized PSRs along multiple redundant aggregation paths
between the sensors and the querier. Such redundant rout-
ing schemes exploit the duplicate-insensitive nature of FM
sketches, and have been proposed for adding fault tolerance
for benign aggregator populations in the face of an unreli-
able network fabric [13]. Our environment introduces more
stringent requirements: we need to provide strong guaran-
tees that our verification procedure bounds the amount of er-
ror an adversary can introduce. Extending redundant com-

munication schemes to our setting requires strong assump-
tions on the adversary and the aggregation topology, and
introduces difficult algorithmic and practical challenges,
which AM-FM does not face.
Complementary Proof Sketches. Our proposed approach
to deflation detection makes no assumptions about either the
aggregation topology or the adversary. It instead relies on
the querier knowing the total count U of the entire sensor
population (the “universe”). This seems like a very strong
assumption, but in many scenarios it is not at all unreason-
able: tracking the arrival and departure of each sensor at
a central query site is reasonably tractable, and is in fact
the common case in corporate management-agent scenar-
ios. For the moment then, we assume that the querier can
acquire the correct value for U at any time.

The technique we use accompanies each predicate poll
pred with its complementary poll ¬pred; the intuitive objec-
tive is to check that their counts sum up correctly: Cpred +
C¬pred = U . Since those counts are only approximately
known, the technique uses AM-FM proof sketches to es-
timate the approximate counts Ĉpred and Ĉ¬pred and to pre-
vent significant inflation of either count. By preventing the
complement Ĉ¬pred from being inflated, we thereby prevent
Ĉpred from being undetectably deflated: to deflate Ĉpred, the
adversary would have to inflate Ĉ¬pred to avoid detection by
the sum check. We focus on this scheme for the remain-
der of this section, and provide bounds on the undetectable
deflation error an adversary can introduce with complemen-
tary deflation detection.

3.3. Verification and Analysis
The AM-FM proof sketch allows deterministic detection

of spurious 1-bits in the FM sketch as per the validation de-
scribed in Section 3.1. Given a valid AM for an FM sketch,
the remaining question arises from the use of FM approxi-
mations: how much “wiggle room” does the inaccuracy in
these approximations give an adversary interested in deflat-
ing the count?

We assume FM-based estimators Ĉpred and Ĉ¬pred that
use O( log(2/δ)

ε2 ) independent AM-FM sketch instantiations
to estimate the Yes/No population counts [7]. Our defla-
tion verification step flags an attack when the condition
Ĉpred + Ĉ¬pred ≥ (1− ε)U is violated. The following theo-
rem establishes the (probabilistic) error guarantees provided
by our verifiable AM-FM aggregation scheme.

Theorem 1 Using O( log(2/δ)
ε2 ) AM-FM sketches to estimate

Ĉpred (and Ĉ¬pred), and assuming a successful verification,
the Ĉpred estimate is guaranteed to lie in the range [Cpred −
ε(U +C¬pred), Cpred(1+ε)] ⊆Cpred ±2εU, with probability
≥ 1 − δ. For predicate selectivities ≥ σ, this implies an
(ε( 2

σ −1),δ)-estimator for Cpred.
Thus with AM-FM any deflation attack can cause our

final Ĉpred estimate to underestimate the true count by at
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most ε(U +C¬pred) ≤ 2εU , or risk being detected with high
probability. The offered error guarantees are in terms of εU
factors, which are typically sufficient for predicates that rep-
resent significant fractions of U . For low-selectivity pred-
icates, as with regular sketch-based approximation, it can
be preferable to compute an exact result rather than a high-
relative-error approximation. In the AM-FM setting, this
means that when Ĉ¬pred is found to be close to U , the querier
can request that the few sensors with “Yes” votes contact it
directly. This request should be disseminated directly from
the querier to the sensors, without any untrusted intermedi-
aries, to prevent adversarial aggregators from suppressing
the request. Direct communication with the sensor popu-
lation can take more time than dissemination over the ag-
gregation population. Hence AM-FM is best suited to high-
selectivity predicate polls while ensuring verifiable results
for low selectivities at a higher cost.

4. Verifiable Random Sampling
We turn to the more involved problem of constructing a

verifiable random sample of given size k over the sensors’
data tuples. For clarity, we limit sensors to a single tuple
each, but relax this limitation in Section 5. As in aggrega-
tion, we wish to ensure that messages sent by aggregators
are small, and the result is verifiably an unbiased random
sample of the data. Such a sample is a general-purpose
summary of the sensor contents that the querier can use
to approximate verifiably a variety of different aggregation
functions and selection predicates, not known beforehand.

A conventional random-sampling summary is a pair ({t1,
. . . , tk}, N) comprising (a) the subset of sampled records,
and (b) the total count of the underlying population (sam-
pling rate = k/N). A simple adaptation of reservoir sam-
pling [17], for instance, can generate such a sample dynam-
ically moving up the aggregation topology, but falls short
of our verifiability goals. Consider an aggregator receiving
two random samples (s1,N1) and (s2,N2) from its children.
Despite individual sampled tuple authentication (e.g., via
signatures), the aggregator can still introduce arbitrary bias
in the sample: for example, instead of sub-sampling s1 and
s2 with the appropriate rates, it can favor tuples from s1 over
tuples from s2, or even deterministically choose the smallest
values, arbitrarily poisoning approximate results computed
over the resulting sample. The key problem in our threat
model is making the sampling procedure run by each ag-
gregator – e.g., the random coin flips – verifiable.

Our solution, AM-Sample proof sketches, collects a ran-
dom sample by mapping 〈dataRecord,sensorID〉 elements
to buckets with exponentially decreasing probabilities, us-
ing hash functions as in FM. The key difference from AM-
FM is that we now retain authentication manifests for all
exemplar elements mapping above a certain bucket level l
(along with their respective level)—these are exactly the el-
ements in our sample. Using sensor IDs to make tuples

I (t) = 〈0, {〈lsb(h(t‖a)), t,a,sa(t)〉}〉 (1)
M (〈L1,S1〉,〈L2,S2〉) = 〈L, S(L,S1,S2)〉 (2)

where S(L,S1,S2) = {〈l, t,a,sa(t)〉 ∈ S1 ∪S2 : l ≥ L}, and

L =

{

max(L1,L2) if |S(max(L1,L2),S1,S2)| ≤ (1+ ε)2k
max(L1,L2)+1 otherwise

E(〈L,S〉) = {t : 〈l, t,a,sa(t)〉 ∈ S},sampling rate = 2−L (3)

Figure 3. Definition of AM-Sample.
distinct, we essentially use a method similar in spirit to
Gibbons’ distinct-sampling technique [8] for approximat-
ing COUNT DISTINCT queries over data warehouses.

Formally, given a uniformly randomizing hash function
h over 〈dataRecord,sensorID〉 pairs and a sample size k,
an AM-Sample proof sketch is a pair 〈L,S〉, where S =
{〈l1, t1,a1,sa1(t1)〉, . . . ,〈lm, tm,am,sam(tm)〉} is a subset of
m = Θ(k) authentication manifests 〈li, ti,ai,sai(ti)〉 with cor-
responding bucket levels li = lsb(h(ti‖ai)). A well-formed
AM-Sample sketch stores exactly the authentication mani-
fests for 〈dataRecord,sensorID〉 elements at levels greater
than or equal to L, which implies the invariant li ≥ L for all
i = 1, . . . , m. Since each element maps to a bucket level
l with probability 1/2l+1, it is not difficult to see that each
element in the AM-Sample sketch is chosen/sampled with
probability ∑i≥L

1
2i+1 = 1/2L.

A concise description of our in-network aggregation
scheme for AM-Sample proof sketches is given in Fig-
ure 3. Briefly, our algorithm starts by computing the authen-
tication manifests and bucket levels for individual sensors
(Equation 1). These manifests are then unioned up the ag-
gregation topology, only keeping elements at the maximum
level max(L1,L2) with every PSR merge, effectively sub-
sampling elements at the lowest sampling rate among input
PSRs. To keep the sketch size under control, the sampling
rate drops by a factor of 2 (setting L = max(L1,L2) + 1)
when the sample size grows beyond 2k(1+ε) (Equation 2);
ε < 1 denotes an error parameter determined by the target
sample size. As we show, for large enough k, the size of our
AM-Sample sketch never grows beyond a range [(1− ε)k,
(1+ ε)2k] (with high probability) during aggregation.

4.1. Verification and Analysis
AM-Sample proof sketches combat adversarial infla-

tion of the collected random sample in two ways. First,
through the use of authentication manifests for data tuples,
the sketch prevents aggregators from inventing new data,
since all tuples are signed by a sensor. Second, AM signa-
tures also prevent aggregators from migrating tuples across
bucket levels (thereby biasing random-sampling choices)
since the level is determined through hashing by the signed
tuple and sensor identifier. In a sense, the hash function
can dictate the coin flips of intermediate aggregators, ensur-
ing that no inappropriate element selections bias the sample.
Note that our technique – unlike reservoir sampling – is also
naturally duplicate-insensitive and can, therefore, be used in

5



an aggregation topology that merges PSRs redundantly.
Besides inflation, the adversary may also deflate sam-

ples, as with AM-FM sketches, either by artificially increas-
ing the bucket level (to discard all lower-level elements), or
by removing specific elements at the current bucket level.
To quantify the deflation-error guarantees provided by our
AM-Sample proof sketches, we assert that, given a large
enough target sample size, and assuming no malicious tam-
pering, the final sample size at the querier must be within
a small factor of k; this, in turn, implies that the adversary
cannot hope to deflate the sample by a large factor without
being detected (with high probability).

Theorem 2 For a target sample size of at least k =

O( log(2/δ)
ε2 ), and assuming no malicious aggregator defla-

tions, the final sample size |S | at the querier is at least
(1− ε)k with probability ≥ 1−δ.

Given this result, a querier can raise a deflation alarm iff the
collected AM-Sample proof sketch sample size |S | fails the
condition |S | ≥ (1− ε)k.

We now consider the error guarantees provided for given
polls by such a sample. Let σ denote a known lower bound
on the selectivity of a predicate poll that the querier wishes
to run over the final sample. Given a target sample size of (at
least) k = O( log(6/δ)

σ(1−ε)ε2 ) and the population size U , the querier
can limit the potential impact of adversarial deflation on the
collected AM-Sample 〈L,S〉 by additionally ensuring that
2L · |S | ≥ (1− ε

√
σ)U . Again, if this condition is violated,

the querier flags a deflation attack with high probability (≥
1− δ). The following theorem establishes these verifiable
deflation-error guarantees for poll queries over AM-Sample
proof sketches.

Theorem 3 Assume an AM-Sample proof sketch collected
with a target sample size of k = O( log(6/δ)

σ(1−ε)ε2 ), and that both
final verification steps at the querier are successful. Then,
for the cardinality Cpred of any given predicate poll pred
with selectivity ≥ σ over the nodes, the estimate Ĉpred ob-
tained from the AM-Sample is guaranteed to lie in the range
[Cpred(1−ε( 2√

σ +1)), Cpred(1+ε)]⊆Cpred(1±ε( 2√
σ +1))

with probability ≥ 1 − δ (i.e., to give an (ε( 2√
σ + 1),δ)-

estimator for Cpred).

Leveraging verifiable samples. The bounds in Theorems 1
and 3 show that, for a poll on a given predicate, AM-FM
sketches offer a better space/accuracy trade-off than AM-
Sample sketches (which, of course, implies less communi-
cation for a given error guarantee for the Ĉpred estimate). On
the other hand, the final AM-Sample is a general-purpose
summary of the data content in the sensor population, and
can be leveraged to provide approximate answers for differ-
ent classes of data-analysis queries at the querier.

For instance, a (verified) AM-Sample can be used di-
rectly to construct approximate quantile summaries [15]

over different attributes in the sampled tuples, or to dis-
cover heavy-hitters/frequent items [14] in the attribute-value
space. A key property of such data-analysis queries is that
their error requirements are typically expressed in terms
of ±εU factors, since they look for either value ranges
(quantile intervals) or individual values (heavy-hitters) rep-
resenting a significant fraction of the overall population
U . This implies that our deflation error bounds for AM-
Sample sketches (Theorem 3) can be naturally translated
into strong, verifiable error guarantees for approximate
quantiles and heavy-hitters at the querier node.

5. Extensions
Multi-Tuple Sensors. We now consider general distributed
query processing scenarios, where each sensor in the under-
lying “universe” [U ] can store multiple data tuples. Specifi-
cally, let mi denote the total number of tuples at sensor i and
let M denote the total tuple population, i.e., M = ∑i∈[U ] mi.
Our verifiable-aggregation protocols and analysis for AM-
FM proof sketches and AM-Sample proof sketches are im-
mediately applicable in this more general setting by simply
replacing U with M, assuming that the querier has accurate
knowledge of M. Of course, in any realistic scenario, M
is not a static quantity but varies over time as sensors up-
date their local data streams. We present a communication-
efficient verifiable approximate counting algorithm to esti-
mate a tuple population M in the system, which builds on
our predicate polling mechanism while still requiring only
logarithmic-size messages. With a selection predicate, the
algorithm performs a “tuple predicate poll” whereas, with-
out a selection predicate, it can estimate the size of the to-
tal tuple population, which can be used with the verification
steps of subsequent tuple predicate polls as described above.

Fix a small θ > 0. Let Sk denote the subset of sensors
in the system with at least (1+θ)k data tuples; that is, Sk =
{i ∈U : mi ≥ (1+θ)k}, and let uk = |Sk|. Also, let K denote
the maximum index k for which uk > 0 – obviously, K ≤
log(1+θ) M ≈ logM

θ . Now, define an approximate (quantized)
tuple count Ma = ∑K

k=0(uk − uk+1)(1 + θ)k (i.e., rounding
down each mi to the closest power of (1+θ)). It is not diffi-
cult to see that Ma is within a (1+θ) multiplicative factor of
the true tuple count M, i.e., (1+θ)−1M ≤ Ma ≤ (1+θ)M.

The algorithm uses a logarithmic number of AM-FM
predicate polls to produce accurate estimates ûk for each uk,
and then employs these estimates to approximate Ma. It is
crucial to avoid error bounds that depend on the size of the
overall sensor population U , especially for large values of k
(i.e., error factors of εU(1+θ)k), which can have a signifi-
cant effect on the estimate. Instead, our estimator works in
an “incremental” manner, taking advantage of the inclusion
relationship Sk ⊆ Sk−1. Briefly, our algorithm runs its kth

predicate poll over the Sk−1 subset of sensors, and uses the
ûk−1 estimate in the verification step for ûk, for each k = 0,
. . . , K +1. For convenience, we define u−1 = U .
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More formally, for each k = 0, . . . , K +1, our algorithm
uses O( log(logM/(θδ))

ε2 ) AM-FM sketches to estimate uk as
the approximate predicate-poll count Ĉp(k,Sk−1) (i.e., ûk =

Ĉp(k,Sk−1)), where p(k,Sk−1) and its negation are defined as:
p(k,Sk−1) : “ (1+θ)k ≤ mi? ′′ and

¬p(k,Sk−1) : “ (1+θ)k−1 ≤ mi < (1+θ)k? ′′

for each sensor i; for step k, the querier flags an adversarial
omission attack iff the condition Ĉp(k,Sk−1) + Ĉ¬p(k,Sk−1) ≥
(1−ε)ûk−1 is violated. Once the index K ′ ≤ K ≤ logM

θ such
that ûK′+1 = 0 is reached, our algorithm returns the count
estimate M̂a = ∑K′

k=0(ûk − ûk+1)(1 + θ)k for the total tuple
count M. Note that all steps can run in parallel. The error
guarantees for our verifiable approximate counting scheme
are summarized in the following:

Theorem 4 Using a total of O( logM log(logM/(θδ))
θε2 ) AM-FM

sketches to estimate the approximate tuple count M̂a, and
assuming successful final verification steps for all k = 0,
. . . , K + 1, our counting algorithm guarantees that, with
probability ≥ 1−δ,

M̂a ∈
[

(1−2ε(1+ ε)(1+θ))M
1+θ

− 2εU
1+θ

, (1+ ε)(1+θ)M
]

.

This mechanism can be directly used to also compute
SUMs over sensor values instead of YES counts over multi-
ple tuples per sensor. Due to space constraints, we defer to
the full paper the details of extensions to verifiable aggre-
gates such as SUMs and AVERAGEs, as well as optimizations
for our basic verifiable approximate counting scheme.
A Generalized Template for Proof Sketches. While the
proof sketches we develop in this paper are based on FM
sketches, this is not a requirement of the approach, and
we expect that a variety of proof sketches could be con-
structed beyond our initial ideas here. In general, the basic
guidelines for constructing a proof sketch for an aggrega-
tion function are as follows:
–Compact Manifest: A key challenge is to develop a com-
pact authentication manifest. Compact manifests are trivial
to construct for sketches like FM where each bit is indepen-
dent of the others, and can be authenticated by a single ex-
emplar value. Otherwise, one must reason about the m-to-n
relationship between input values and sketch bits: a subset
(or possibly multiple alternative subsets) of the input values
may constitute a “support” for an output bit, and each input
value may influence multiple output bits. This leads to a
combinatorial optimization problem of choosing a minimal
manifest for a given output sketch. It would seem desirable
to choose sketches that not only have compact manifests,
but avoid combinatorial complexity in evaluating them.
–Deflation Bounds: Complementary deflation protection
hinges on the querier’s ability to detect deflations given
only the aggregate results on a subset of the sensor pop-
ulation and on its complement. In the proof sketches we

have described, if an aggregate value can be approximately
reduced to the sensor population size that verifiably justifies
that value, deflation verification checks can be devised. For-
tunately, building reductions by combining simpler, already
known reductions – as with the geometric superimposition
of AM-FM proof sketches earlier in this section – covers
typical SQL aggregates. Going beyond to arbitrary aggre-
gate functions is an open problem of both theoretical and
practical importance.

Clearly these are neither formal characterizations for
“proof-sketchability,” nor turnkey guidelines for developing
new proof sketches. However, we believe they are of use in
developing new verifiability techniques.

Using these criteria in a fairly different setting, we briefly
consider the example of Bloom Filters [4]; for brevity
we assume familiarity with their construction and use. A
Bloom Filter can be formed via in-network aggregation in a
straightforward way. Like FM sketches, the bits in a Bloom
Filter are independent functions of the input domain. Hence
a simple authentication manifest for a Bloom Filter can
maintain one exemplar per bit. Actually, one can perhaps
do better than this, since each input value maps to multiple
bits of the Bloom Filter. Minimizing the Bloom Filter mani-
fest size is an instance of the combinatorics we warn against
above, but is perhaps an unnecessary optimization of the
simple technique. With respect to deflation bounds, there is
a scenario with an appropriate analogy for set-membership
tests. Assume that the data set in the network contains tu-
ples of the form (id, value). We wish to form a Bloom filter
for the set of ids of tuples that satisfy a selection predicate
σpred(value). In this case we can prevent deflation attacks by
also requiring a Bloom Filter to be formed on σ¬pred(value).
Assuming the querier knows the universe of ids currently
stored in the network, each membership test it performs
should succeed on at least one of the two Bloom Filters
(again, within the error guarantees of the filter(s)); if not,
a deflation attack occurred.

As an example, verifiable Bloom Filters can be useful
in approximating the size of an intersection: first we run a
verifiable Bloom Filter aggregation on the values of one set,
and then we compute the size of the intersection as an AM-
FM count over the other set, where the selection predicate is
a match with the Bloom Filter. The count of any semi-join-
like operation can be similarly computed (e.g., key/foreign-
key queries without referential integrity), and an analogous
approach can be used to compute the size of anti-joins (e.g.,
set differences via SQL’s EXCEPT and NOT IN clauses).
Verification Failure and Accountability. Our verifica-
tion tests for AM-FM sketches raise alarms when either
the authentication manifest does not match the sketch, or
the complementary deflation detection check fails. Alone,
such alarms are useful in flagging a result as suspect. How-
ever, a subsequent forensic analysis tracing the cause of the
alarm may be invaluable, not only for identifying malicious
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aggregators, but also for identifying false alarms. In the
full paper, we will discuss different options for pinpointing
inflation and deflation attacks through efficient trace-back
mechanisms over the aggregation topology.
Universal Population Knowledge. Our complementary
deflation protection requires some “ground truth” knowl-
edge, namely U (the total size of the universe of sensors),
to be maintained somehow at the querier. Knowing this size
is reasonable in many practical settings, such as in an en-
terprise where nodes must register with a VPN. The full
paper will further support this argument in more detail and
explore scenarios in which the requirement may be relaxed
(e.g., having only approximate knowledge of U) while re-
taining the benefits of complementary deflation protection.

6. Experimental Evaluation
In this section, we experimentally evaluate AM-FM to

understand its behavior during an attack as well as in the
absence of an attack. Furthermore, we explore some prac-
tical adversarial suppression strategies to demonstrate that,
in the average case, the adversary has a low probability of
getting away with deflating a predicate count significantly.

6.1. Adversary Strategies
Though our worst-case analysis provides probabilistic

guarantees about the effects of adversarial behavior during
aggregation, in practice not many adversaries will be able
to achieve worst-case tampering, for at least two reasons.
First, unless the adversary succeeds in compromising the
“root” aggregator in the network, she will not have access
to the final PSR given to the querier. Instead she will be able
to affect only PSRs further down the aggregation topology.
This means that she has only partial information on which to
determine her suppression strategy; for example, some sup-
pressed sketch bits will be re-set by other, well behaved ag-
gregators. Second, the adversary does not control the hash
functions used by the estimators. Consequently, she can-
not always achieve worst-case suppression undetected if,
for instance, Ĉ¬pred is underestimated by FM in a particular
query; this tightens the width of the range from Theorem 1.

We examine adversary strategies that approximate two
different goals. In the Targeted Strategy, given target
count Cmalicious, the adversary suppresses as many sketch
bits as will bring Ĉpred close to that target count. In the Safe
Strategy, the adversary suppresses as many sketch bits as
will deflate Ĉpred without violating the deflation verification
condition (see Theorem 1). With each strategy we vary a
coverage parameter 0 < G < 1 that reflects the fraction of
the universe aggregated via malicious aggregators. For in-
stance, in a tree aggregation topology, an adversarial aggre-
gator covers all data values ingested into the topology via
the subtree of which it is the root. The greater the cover-
age, the more likely it is that sketch bits suppressed by the
adversary will not be set again by another aggregator.
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Figure 4. Fraction of alarms, out-of-bounds
estimates, alarms for in-bounds estimates
(false positives) and undetected out-of-
bounds estimates (false negatives) over all
runs for different selectivities (x axis) and dif-
ferent ε parameters (one per curve).

6.2. Results
The results presented below use 256 FM sketches—

qualitatively similar numbers were obtained for other sum-
mary sizes and estimators (e.g., those from Ganguly et
al. [7]). Even though we present results using the FM esti-
mator, we heuristically select ε = 0.15 to match the Ganguly
et al. worst-case bound of O( log(1/δ)

ε2 ) with a probability of
about 80% ignoring constants. For each datapoint, 50 inde-
pendent runs were computed. We fix the size of the universe
to 100,000 and vary the cardinality of the polled predicate
between 10,000 and 100,000. We vary adversary coverage
from 1/64-th of the universe to 100%.

We raise an alarm when the deflation verification condi-
tion fails (for given ε parameter), and we claim an estimate
Ĉpred in bounds when it satisfies the error bounds of The-
orem 1. Alarms for which the Ĉpred estimate was actually
in bounds are conservatively termed false positives below,
whereas estimates that are not in bounds but fail to raise an
alarm are termed false negatives.

In this small scenario, our approach delivers to the
querier no more than 256×dlog105e = 4252 signed tuples,
versus 100,000 signed tuples via backhauling; backhauling
is preferable only up to a population size of 2,950. The ratio
of signed-tuple volumes delivered to the querier grows with
O(U/ logU), and more than justifies the ε = 0.15 verifiable
error bound for our scenario.
Benign Behavior. We begin with the behavior of AM-FM
in the absence of adversaries. We wish to understand how
frequently the deflation verification condition triggers and
when it does, whether it is justified by the occasional out-
lying estimate. Figure 4 plots the frequency of alarms and
out-of-bounds estimates, as well as the frequency of false
positives and false negatives.
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Figure 5. The effects of the targeted strategy on three predicate polls of selectivities 0.2 (top), 0.5
(middle), and 0.7 (bottom). All x axes are the target selectivity of the adversary, from the predicate
selectivity down to 0. On the left, we show the average suppressed selectivity. The next two columns
show the fraction of alarms over all runs with an aggressive ε = 0.15 and with a more conservative
ε = 0.25. The final two columns show the fraction of false positives over all runs with the same two ε
values. In each graph, we show different curves for four levels of adversarial coverage.

Given the number of sketches (256), the out-of-bounds
occurrences are below 5% for ε ≥ 0.1, which is in practice
much better than the worst-case error and confidence prob-
ability described above for 256 sketches. False negatives
are also well below 5% for all ε parameters. Therefore, our
implemented estimators perform well within the worst-case
bounds of our method. Note that even without the adversary
around, the verification condition does catch some outlier
estimates, especially for high selectivities. Those appear as
alarms that are not false positives.

Targeted Strategy. The targeted strategy approximates
an adversary who cares about a particular count suppres-
sion, event at the cost of being detected. She suppresses as
many sketch bits as will cause the estimate (which she com-
putes locally) to reach the target count Cmalicious < Ĉpred.
When she has limited coverage, her attempts are thwarted as
the remaining, non-malicious aggregators merge their PSRs
with those she has concocted.

Figure 5 explores this strategy for predicate polls of car-
dinalities 0.2, 0.5, and 0.7. Estimates of the selectivity are
affected much more dramatically when the adversary has
high coverage (1/4-th or more) and otherwise remain fairly
close to the actual selectivity. However, the dramatic sup-
pressions incurred by the high coverage adversary necessar-
ily trigger alarms at the querier. When the querier applies
a tight bound on the verification condition (ε = 0.15 in col-
umn 2), alarm frequency is greater as the adversary strives
for larger estimate deflation. Lower-selectivity predicates
(higher rows) suffer less from those alarms, since there is

less wiggle room from our εU verification condition.
In terms of false positives, the two rightmost columns

feature a sharp drop in the high coverage curves; the x-axis
point of the sharp drop off is exactly the lower-bound of
Theorem 1. For instance, in the bottom right plot, the full
coverage false positives curve drops sharply at target selec-
tivity Cpred − ε(U +C¬pred) = 0.7−0.25(1 + 0.3) = 0.375.
The top row (selectivity 0.2) does not feature this sharp drop
off because the lower bound of our theorem falls below 0.

Alarm frequencies are lower for lower coverage, since
lower coverage results in less dramatic estimate deflation;
compare the 1/4-th coverage curve to the full coverage
curve. Note however that the 1/4-th coverage curve does
not feature any sharp drops. This is an artifact of our con-
servative definition of “false positives.” Since the low-
coverage adversary cannot suppress the estimate signifi-
cantly, she can suppress it enough to raise an alarm (for the
0.5 and 0.7 selectivities) but not enough to violate a tight
error bound (for ε = 0.15), causing a false positive. For the
more conservative ε = 0.25 this is not the case.
Safe Strategy. The safe strategy represents an adversary
whose primary goal is not to raise an alarm while deflating
the count as much as possible. To do so, the adversary sup-
presses sketch bits that do not violate the verification con-
dition (evaluated as best as possible given the adversary’s
coverage). We conservatively assume for this strategy that
the adversary knows her own coverage exactly, as well as
the size of the universe U .

Figure 6 plots the average deflation bias introduced by
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Figure 6. Average deflated selectivity esti-
mate for an adversary of varying coverage
(different curves) using the safe interior strat-
egy. On the left, the strategy uses a timid
ε = 0.1. On the right the strategy uses a more
permissive ε = 0.25.

this adversary, under two ε parameters, one very conserva-
tive (ε = 0.1) given the number of sketches, and one more
permissive that assumes a relaxed querier (ε = 0.25). (The
X = Y line represents the perfect, zero-error, estimate.) At
the tight setting, the adversary does not succeed in biasing
the estimate by more than εU , except under very high cov-
erage, a quarter of the universe and above. At the more
relaxed ε setting, the adversary hovers around εU for full
universe coverage, but still remains fairly close to the cor-
rect count for lower coverage values.

Note that, especially when the aggregation topology is
beyond the adversary’s control, the ability of the adversary
to place herself at high coverage positions can be kept low.
As a result, the expected deflation bias in this strategy is
strongly weighted towards the low coverage values. For
instance, in a binary tree topology, half of the aggregators
cover only their own PSRs and the fraction of the value uni-
verse corresponding to a single aggregator.
Discussion. At a high level, our experimental study demon-
strates that our techniques are quite robust: to get near our
worst-case bounds undetected, an adversary needs both to
compromise aggregators near the root of the topology, and
to get even luckier than our analysis might suggest. The
former issue can be mitigated by design; for instance, by
implementing multiple redundant aggregation trees for the
same query. Furthermore, to remain undetected, the adver-
sary need limit herself to much lower deflations than those
tolerated in the worst-case by our result. At the same time,
our implementation raises interesting issues with respect to
fine-tuning for a real-life setting—we are currently explor-
ing different techniques in that context.

7. Conclusions and Future Work
This work on proof sketches represents a first step in

an agenda towards general-purpose verifiable distributed
query processing. Our approach marries two historically
disjoint technologies: cryptographic authentication and ap-
proximate query processing. While this sounds complex,

our FM-based proof sketches provide a remarkably sim-
ple defense against the introduction of spurious data during
aggregation. Our complement technique for detecting sup-
pressions is also simple, though it does require the querier
to track the size of the sensor population. While this is
quite realistic in a number of important practical settings,
there are scenarios for which alternative suppression de-
fenses would be welcome. We believe this is an important
area for future research.
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