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Abstract approximate version of the XML database. By executing

a query over the synopsis, the optimizer can efficiently ob-

We tackle the difficult problem of summarizing the tain selectivity estimates for different query fragmemsd a
path/branching structure and value content of an XML thus derive the cost factors of candidate physical exegutio
database that comprises both numeric and textual values.plans.
We introduce a novel XML-summarization model, termed One of the key challenges in this important prob-
XCLUSTERS, that enables accurate selectivity estimates for lem stems from the inherent complexity of XML data.
the class of twig queries with numeric-range, substringl an More specifically, the information content of a semi-
textual IR predicates over the content of XML elements. Instructured data store is encoded in both $teicture of
a nutshell, anXCLUSTER synopsis represents an effective the XML tree as well as th&aluesunder different ele-
clustering of XML elements based on both their structural ments. Moreover, the content of XML elements is in-
and value-based characteristics. By leveraging techréque herently heterogeneous, comprising of different types of
for summarizing XML-document structure as well as nu- values, e.g., integers, strings, or free text, that can be
meric and textual data distributions, oXICLUSTER model queried with different classes of predicates. As an ex-
provides the first known unified framework for handling ample, an application may query an XML database with
path/branching structure and different types of elemeht va bibliographic information using the following path expres
ues. We detail th¥CLUSTERmodel, and develop a system- sion': / / paper [ year >2000] [ abstract ftcont ai ns(
atic framework for the construction of effect€LUSTER synopsis , XM.)]/title[contains(Tree)], which
summaries within a specified storage budget. Experimen-will select all titles of papers that were published afted@0
tal results on synthetic and real-life data verify the effec if their abstracts mention the terms “synopsis” and “XML’
tiveness of ouKCLUSTERSynopses, clearly demonstrating and their title contains the substring “Tree”. To enable-low
their ability to accurately summarize XML databases with error selectivity estimates for such queries, an XML sum-
mixed-value content. To the best of our knowledge, oursmary clearly needs to capture the key correlations between
is the first work to address the summarization problem for and across the underlying path structure and value content,
structured XML content in its full generality. and provide accurate approximations for different types of
value distributions. Given that real-life XML data sets
contain highly heterogeneous content, it becomes obvious
that realizing this important and challenging goal will pro

The Extensible Mark-up Language (XML) has rapidly yjge crucial support for the effective optimization of XML
evolved to an emerging standard for large-scale data eXqueries in practice.

change and integration over the Internet. Being self- Related Work?. S . | XML d ;
describing and hierarchical in nature, XML provides a suit- '~¢ ated Work®. - Summarizing a large ata set for
e purpose of estimating the selectivity of complex querie

able data model that can adapt to several diverse domains . . : :
with value predicates is a substantially different and more

and hence enable applications to query effectively the vastd_ﬁ. | bl han that of ) for f
amount of information available on the Web. fiticult problem than that of constructing synopses for, flat

Within the realm of XML query processing, XML sum- relational da“”? (e.g., _[20’ 24]). Recent research St!“ﬂ‘*e h
marization has emerged as an important component for thetargeted specific variants of the XML_sur_nmanzatlon prob-
effective implementation of high-level declarative gestri lem, namely, structure-only s_um_manzatlon [1, 18, 2.5]’ or
In brief, a concise XML summary, @ynopsiscaptures (in structure and value summarization only for numeric val-
limited space) the key statistical characteristics of theeas- Lin this example, we use ttig cont ai ns operator from the Full-Text

lying data and essentially represents a highly-compressedextensions to XPath [2]
2Due to space constraints, a more detailed discussion ¢édeteork is

*Supported in part by NSF Grant 11S-0447966 deferred to the full version of this paper.

1. Introduction




ues[10, 13,17, 19, 26]. Correlated Suffix Trees (CSTs) [7] with a preliminary study on real-life and synthetic datasset
and CXHist [14] are recently-proposed techniques that Our results demonstrate that concise XIGTERS consti-
tackle the problem of XML selectivity estimation for sub- tute an effective summarization technique for XML data
string predicates. CSTs, however, take a straightforwardwith heterogeneous content, enabling accurate selsctivit
approach, simply treating string values as an extension ofestimates for complex twig queries with different classes
the XML structure; on the other hand, CXHist focuses on of value predicates.

the simple case of fully-specified linear XPath expressions

It is not at all clear if these te(_:hnlque_s can be ex_tended 195 preliminaries

the more general problem ofvig querieswith predicates

on heterogeneougalue content. Data Model. Following common practice, we model an
XML documentas a larg@ode-labeled tre@&'(V, E). Each
nodeu € V corresponds to an XML element and is char-
acterized by dabel (or, tag) assigned from some alpha-
bet of string literals, that captures the element’s seman-
glics. Edgese; ¢;) € E are used to capture the contain-
ment of (sub)element; undere; in the database. (We use

I abel (e;), children(e;) to denote the label and set of
child nodes for element nodg € V.) In addition, each
element node; can potentially also contain walue of a
certain type (denoted byal ue(e;)); we assume the exis-
tence of a mapping functionype from elements to a set
of data types, such thaype(e;) is the data type of value
val ue(e;). (Elements with no values are mapped to a spe-
cialnul | datatype.) Our study considers the following set

Contributions. In this paper, we address the challenging
and important problem of XML summarization in the pres-
ence ofheterogeneous value contet/e propose a novel
class of XML synopses, termed XGSTERSs, that capture
(in limited space) the key characteristics of the path an
value distribution of an XML database and enable selec-
tivity estimates for twig queries with complex path expres-
sions and predicates on element content. In sharp con
trast to previous work, our proposed XCTSTER model
provides a unified summarization framework that enables
a single XML synopsis to effectively support twig queries
with predicates on numeric content (range queries), string
content (substring queries), and/or textual content ¢(ifRes

ueries). To the best of our knowledge, ours is the first at- .
d ) 9 of possible data types for XML-element values:

tempt to explore the key problem of XML summarization L C i el lues: for i

in the context of heterogeneous element values. The main® wb.bl?ptureif‘“é“e“g element va ules, or Ilrc]i-

contributions of our work can be summarized as follows. _stance, In a bibllographic ¢ ata_l aseJhERIC values wou
include book prices, publication years, and so on. Follow-

e XCLUSTER Summarization Model. Our proposed ing the usual conventions for numeric database attributes,

XCLUsTERsynopses rely on a clean, yet powerfulmodel of \ye assume the BWERIC values range in an integer domain
generalizedstructure-value clustersa unified, clustering- (9. a7 — 1},

based framework that can effectively capture the key cor-o srring: Captures(short) string values — in a bibli-
relations between and across structure and values of dif-ggraphic database, these would include author/publisher
ferent types. To handle value-based approximations, ourhgmes and addresses, book titles, and so on.

framework employs well-known techniques for numeric o TexT: Capturedree-textelement values — in our biblio-
and string values, and introduces the clasewd-biased  graphic database example, these would include book fore-
term histograms$or summarizing the distribution of unique  \yords and summaries, paper abstracts, and so on. Such
terms within textual XML content. textual values need to support H-style, full-text query-

o XCLUSTER Construction Algorithm. We introduce a  ing paradigm based on keyword/index-term search [3, 8].
set of compression operations for reducing the size of anBased on the traditional set-theoreBnolean modetf IR,
XCLUSTER synopsis and develop a systematic metric for TEXT values are essentially Boolean vectors over an under-
quantifying the effect of a compression step on the accu-lying dictionary of terms (where thé" entry of the vector
racy of the XML summary. Our proposed metric captures is 1 or 0 depending on whether thé" term appears in the
the impact on the structure-value clustering of the syropsi free-text data or nof).

by taking into account thécalized structural and value- As an example, Figure 1 depicts a sample XML data
based characteristics of the compressed area of the sumyee containing bibliographic data. The document consists
mary. Based on this framework, we propose an efficient, of aut hor elements, each comprisingrare, and sev-
bottom-up construction algorithm that builds an effective eralpaper andbook sub-elements. Eagiaper andbook
XCLUSTER synopsis for a specific space budget by apply- comprises a (8rING-valued)t i t | e, a (NUMERIC-valued)

ing carefully selected compression steps on an initial de-year of publication, as well as (@xT-valued)keywor ds,
tailed summary.

. . . 3In future work, we intend to explore more flexibléector-SpacedR
e Experimental Study Verifying the Effectiveness of models [4] of representing and querying T values in XML documents,

XCLUSTERs. We validate our approach experimentally and their impact on our summarization framework.
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Figure 1. Example XML document. Figure 2. Example query.

abstract, and/orf or ewor d sub-elements. Note that ele- e NUMERIC range predicatesf the general fornfi, ], that
ment nodes in the tree are named with the first letter of thespecify a certain rangé, 2] for the NUMERIC values of the
element’s tag plus a unique identifier. designated XML elements; for example, find all theok
We believe that the above set of value types adequatelyelements with prices betwee®and $0.
captures the bulk of real-world XML content. Textual in- e STRING substring predicatesof the general form
formation (i.e., SRING and TEXT values), in particular, is  cont ai ns(gs), wheregs denotes a query string. A sub-
an integral part of real-life XML documents —this is clearly string predicate is satisfied by XML elements withFéNG
demonstrated by numerous recent research as well as starvalues that contaifgs as a substring (i.e., similar to the SQL
dardization efforts that attempt to integrate XML query-lan |'i ke predicate); for instance, return alboks such that the
guages and query processing with substring and term-basegublisher name contains the (sub)string “ACM”".

search models [3, 8, 2]. Our work, however, is first e TEXT keyword predicatesf the formf t cont ai ns(¢1,

to consider the implications of different types of numeric ...,t) (Wheret,, ..., t; denote terms from the underly-
and textual information on the difficult problem of effeetiv  ing term dictionary) specifying exact term matches; for ex-
XML summarization [10, 17]. ample, find allpaper elements withabst r act s contain-

ing the terms “XML" and “synopsis”. (Our technigues can
also handle other Boolean-model predicates, such as set-
theoretic notions of document-similarity [4, 5].)

Query Model. The focus of this paper isvig querieswith
value predicatesMore specifically, a twig querg is node-
and edge-labeled trég(Vy,, Eg) where each nodg < V,
represents a query variable that is bound, during query eval .
uation, to a set of elements from the input document (we as-3- XCLUSTER Synopsis Model
sume thaty is the root of the query and is always mapped A Generic Structural Graph-Synopsis Model. Ab-
to the root of the document). Figure 2 shows an examplestractly, our structural graph-synopsis model for an XML
twig query over the sample document of Figure 1. An edge documenttre&'(V, E) is defined by gartitioningof the el-
(¢i,q;) € Eq denotes a structural constraint between the ement nodes it (i.e., anequivalence relatio® C V x V)
elements of the source and target variable, specified by arthat respects element labels; in other word¢eife;) € R
XPath expressioedge- pat h(gi,q;). In our work, we  thenl abel (e;) = | abel (e;). The graph synopsis defined
focus on XPath expressions that involve the child and de-for T by such an equivalence relatid) denoted bysx (7),
scendant axis, wildcards, and optional predicates on pathcan be represented asdaected graph where: (1) each
branches and element values. Conceptually, the evaluanodewv in Sg(7) corresponds to an equivalence class of
tion of () generates all possible assignments of elementsR, i.e., a subset of (identically-labeled) data elementg in
to query variables, such that both (a) tsteuctural con-  (termed theextentof v and denoted bgxt ent (v)); and,
straints(as specified by the edge labels), and (b)\hkie (2) an edg€u, v) exists inSz (7)) if and only if some ele-
constraintgas specified by the value predicates attached toment node irext ent (u) has a child elementiext ent (v).
query nodes), are satisfied. This set of possible assigsment(\We usel abel (v) to denote the common label of all data
constitutes the set dfinding tuples and its cardinality is  elements irext ent (v).)
defined as theelectivitys(Q) of the query. At a high level, several recently-proposed techniques for
The class of supported value predicates in our twig building statistical summaries for XML databases (includ-
gueries depends on the value types of the queried XML el-ing XSKETCHes [17, 19] and REESKETCHes [18]) are all
ements, and is defined as follows. roughly based on the abstract “node-partitioning” idea de-



scribed above. Unfortunately, none of these earlier rekear all elements in the extent of nodeare essentially approx-
efforts considered the impact efement valuesf possi- imated bycount (u) occurrences of the-cluster centroid,
bly different types (most importantly, strings and unstruc and the key to effective summarization is hence to try to
tured text), and their corresponding querying models on keep these clusters as “tight” as possible. This genethlize
the underlying XML-summarization problem. Obviously, structure-value clustering modelis a key contributionaf o
given the prevalence of textual data and the importance ofwork, providing a clean, unified framework for the effective
supporting full-text search in modern XML data reposito- summarization of both path structure and values of differen
ries [3, 8], this restriction severely limits the appliciitipi types in XML databases.

of such earlier solutions in real-life problem scenarios.

The XCLUSTER Synopsis Model.  Our proposed D(1)

XCLUSTER synopses overcome the aforementioned lim-

itations of earlier work by explicitly accounting for dif- QJ/

ferent element-value types and querying requirements dur- A(2)

ing the XML-document summarization process. The key

idea in XQLUSTERS is to form structure-value clusters L// w\

that, essentially, group together (i.e., summarize) XML N(2)

elements that are “similar” in terms dfoth their XML- VSUmmMy) P(2) 1 B(1)
subtree structure and their element valu&ore formally, 0.5 l 1 L 1
given an XML document tred (V, E) with element val- 0.5 !

ues, we say that a node-partitioning graph synopsi isf vs{fr(an%K) vsﬁﬁ%{gm vsﬁr(r?ﬁ)w) vsﬁn?;r)m vsﬁr(rlr%F)

type-respectingf the underlying equivalence relatiaR C
V x V respects both element labelsd value types; in
other words, if(e;, e;) € R thenl abel (e;) = I abel (e;)
andtype(e;) = type(e;). (As previously, given a syn- XCLUSTER Value Summaries.We have thus far been de-
opsis nodey, | abel (v) andt ype(v) denote the common liberately vague on the specifics of theunmvalue sum-
label and value type, respectively, of all data elements in maries stored within XCUSTER nodes. Not surprisingly,
extent (v).) Our general XCUSTER synopsis model is  the specific value-summarization mechanism used differs
defined as follows. across different value types; that is, the formvetimm(u)
depends ortype(u). In what follows, we briefly dis-
cuss the different classes of value summaries implemented
within our XCLUSTER framework; of course, it is always
possible to extend our framework with support for different
value-summarization techniques and/or additional tyges o
element values.
e NUMERIC value summariesapture the frequency distri-
bution of all numeric values in the extent of an X@GSTER
node. Summarizing numeric frequency distributions is a
well-studied problem in relational approximate query pro-
cessing, and several known tools can be employed, in-
Figure 3 shows a possible XOSTER synopsis for clgding histograms [21], wavelets [16], anq ran_dom sam-
our example document, where each cluster essentiallyPling [15]. For concreteness, we focus primarily on his-

represents elements of the same tag. Intuitively, each09rams as our main BWERIC value summarization tool,
XCLUSTER nodeu corresponds to a structure-value clus- although our ideas can easily be extended to other tech-

ter of count () elements in the original document trge ~ Nigues.

Figure 3. Example XCLUSTERfor the data of Figure 1.

Definition 3.1 An XCLUSTERSsynopsisS for an XML doc-
umentT is a (node- and edge-labeled) type-respecting
graph-synopsis fofl", where each node € S stores: (1)

an element countount (u) = |ext ent (u)| (also denoted
as|ul); (2) per-edge (average) child countersunt (u, v),

for each edgdu,v) € S, that record theaverage number
of children inext ent (v) for each element imxt ent (u);
and, (3) a value summarnysunm(u) that compactly sum-
marizes the distribution of the collectiontofpe(u) values
under all elements iext ent (u). |

Similar to the TREESKETCH synopses, the tuple of edge-
countergcount (u,v1), count (u,vz), ...) to the children
of u gives the structurakepresentativéor, centroid of the
u-cluster; moreovegsunm(u) describes the distribution of

e STRING value summariesapture the distribution of dif-
ferent substrings in the collection of strings correspogdi
to the (S'RING-valued) XML elements in an XGJSTER
node’s extent. Following earlier work on the problem of

element values (or, in a probabilistic sense, the value of anmeaningful correlations across different value sets fits challenging

“average element) in the u-clustef. The key idea is that

4Note that, unlike the multi-dimensional histograms of [16ur
XCLusTERValue summaries do not explicitly try to capture correlagio
between sets of values across different synopsis nodesovericg such

problem, and the benefits of the resulting multi-dimendicnanmaries
are often limited by the “curse of dimensionality”; furthelesigning ef-
fective multi-dimensional summaries for correlations rspag different
value types (e.g., text and numeric data) is, to the best okoowledge,
an open problem.



substring selectivity estimation [6, 11], we empl@yuned biased term histogram ¥, we first try to lookupt in the
Suffix Trees (PSTg)s our main summarization mechanism explicitly-retained top frequencies; if that fails, we lagp¢

for STRING values and substring queries. Our model is in the run-length compressed uniform bucket returning the
based on a maodification of the original PST proposal, whereaverage bucket frequency if the corresponding entry, is
the PST records at least one node for each symbol that apand0 otherwise. Thus, by avoiding the grouping of values
pears in the string distribution (this implies that the prun into bucket ranges and retaining a lossless representation
ing threshold [11] is redundant). We have found that this the0/1 uniform bucket, our end-biased term histograms cir-
modification yields accurate approximations, while avoid- cumvent the problems of conventional histograms giving an
ing large errors for negative substring queries. effective summarization mechanism for term vectors.

e TEXT value summariegssentially summarize the col- o )
lection of Boolean term vectors corresponding to the un- 4. Building XCLUSTER Summaries

derlying set of elements in an XOSTER node’s extent. In this section, we tackle the challenging problem of ef-
Our basic summarization mechanism here (similar to the fective synopsis construction, and introduce novel, effiti
case of structure clusters) is ticentroid of the underly-  aigorithms for building an accurate XOSTER summary
ing vector collection; in other words, letting,, ..., wg for a given space-budget constraint.

denote the set of Boolean term vectors corresponding to a At g high level, our goal during XCUSTER construc-
TEXT XCLUSTER nodew (k = count (u)), then we de-  tjon is to group XML elements in a manner that results
finevsunmm(u) as the vectow, wherew[t] = 31 w,[t]/k in “tight” structure-value clusters, i.e., X@STER nodes
for each terny (thus,w[t] is the fractional frequency dof that represent elements with high similarity in both their
in the underlying set of texts). In practice, however, the subtree structures and their value distributions in thgiori
number of terms (i.e., the dimensionality of our vector- nal XML document. This natural analogy with clustering,
centroid summary) can be quite large, thus placing a sig-however, highlights the key challenges of our XGTER
nificant storage burden oneEKT XCLUSTERNodes. Thus,  construction problem. First, clustering problems are gene
our XCLUSTER synopses also employ a second-level of ally known to be computationally intractable, even in the
value summarization for AXT nodes, where the vector simple case of a fixed set of points in low-dimensional
centroidw is itself compressed further using a novel tech- spaces [22, 27]. Second, our XGSTER nodes capture
nique, termecend-biased term histogramthat we intro-  bothstructure and valudistributions — this means that our
duce in this paper. Note that conventional histogramming clustering error metric has to appropriately combine both
techniques are likely to be ineffective for compressingsuc the structural- and value-summarization errors of a ctuste
term vectors, since they optimize performance for rangein a manner that accurately quantifies the effects of such
aggregates, whereas foEXT values we are primarily in-  errors on the final approximate query estimates.

terested in term-matching (i.e., “single-point”) querites Our proposed XCUSTER construction algorithm is
instance, by grouping consecutive frequencies in bucketsbased on a generliottom-up clusteringaradigm: starting
traditional histograms will almost certainly lose track of from alarge, detaileteferenceX CLUSTERsummaryof the
zero-valued entries (i.e., non-existent terms). It isriedge underlying XML document, our construction process builds
ing to note that recent studies in Information Retrievalehav a synopsis of the desired size by incrementaligrging
looked into the general problem of compressing the infor- X CLusTERnodeswith similar structure and value distribu-
mation stored in term vectors. These works, however, focustions until the specified space constraint is met; in aduljtio
on dimensionality-reduction techniques for improving the our construction algorithm can also applglue-summary
quality of document clustering [12], or techniques for re- compressioroperations that further compress the value-
ducing the disk footprint of an IR engine while preserving distribution information stored locally at synopsis nodes
relevance rankings [9, 23]. Itis not clear, therefore, éth  (e.g., by merging similar adjacent buckets in aN\ERIC-

can be extended to the problem that we tackle in this paperyalues histogram). In what follows, we first describe these
namely, selectivity estimation for point queries over term two key operations and their impact on the quality of clus-
vectors. tering, and then introduce our proposed construction algo-

Briefly, our end-biased term histograms compress therithm.
term-vector centroid@v using a combination of (1) thep-
few term frequencieis W (which are retained exactly); and, 4.1. Merging XCLUSTER Nodes
(2) auniform buckethat comprises a (losslesg)n-length Consider two nodes and v with identical labels and
compressed encodimg the binary version aiv (i.e., where  value types (i.e.| abel (u) = | abel (v) andtype(u) =
the entry fort is 1 if W[t] > 0 and0 otherwise), along type(v)) in a given XQUSTER synopsisS, and let
with an average frequencyor all the non-zero terms in  parents(u) (chi | dren(u)) denote the set of parent (re-
the bucket. To estimate the frequengift] using an end-  spectively, children) nodes afin S (similarly for v). (Note



that, sinceS is a general directed-graph structure, the par- o If t ype(u) =t ype(v) = NUMERIC, we build the com-

ent and children sets for nodaesandv may overlap, i.e.,
u andwv can have some common parents/childrerSin
As previously, we use@sunmm(u) andvsunm(v) to denote
the value-distribution summaries for the two X@GSTER

bined histogramvsumm(w) by merging bucket-count in-
formation from the individual histogramsumm(u) and
vsunm(v). This involves an initiabucket alignmenstep,
where vsumm(w) and vsumm(u) acquire buckets on the

nodes. Our XCUSTER-construction process can choose to same set of ranges by (potentially) splitting the ranges

apply anode-merge operatioon such (label/type compati-

and counts of their existing buckets (based on conventional

ble) node pairs in order to further reduce the space require-histogram-uniformity assumptions [21]); subsequentig, t

ments of theS synopsis.
p - p - P p - p - p
¢ .. c .. c" ¢ .. ¢ .. c"

Figure 4. Node-merge operation.

two histograms are merged to prodweinmw) by sum-
ming the frequency counts across the aligned buckets.

o If type(u) =type(v) = STRING, we build the com-
bined PSTvsunmw) by starting out with an empty tree
and simply inserting all substrings foundisunmm(«) and
vsumm(v). The count for a substringin vsumm(w) is set
equal to the sum of the individual counts foin vsunm(u)
andvsumm(v).

o If type(u) =type(v) = TEXT, then, assuming that

Intuitively, such a node-merge operation creates aysumm(u) andvsunm(v) denote the Boolean term vector

smaller synopsiss’ from S (denoted byS’ = mer ge(S,
u,v)), in which the two original nodes and v are re-
placed by a new node representing the structure-value
cluster of the combined collection of XML elementsin
andv; that is,ext ent (w) = ext ent (u)U ext ent (v). Of
course, all edges in the origindlsynopsis are maintained
in&’, i.e.,parent s(w) = par ent s(u)U par ent s(v) and
chi | dren(w) = children(u)U children(v). (Thisis
shown pictorially in Figure 4.) Furthermore, the structura
summary information for the new nodeis computed in a

centroids foru and v, we define the combined centroid
vector forw as a simple weighted combination of the two
individual vectors; that isysumm{w) = {4vsum{u)+

I‘—Ivsun‘n(v). (Merging of end-biased term histograms can

v
be defined in a similar manner.)

Quantifying Node-Merging Approximation Error. Ap-
plying a node-merge operation on an XWSTER synop-
sis S to obtain a smaller synopsiS’ = ner ge(S, u,v)
increases the approximation error in the resulting sum-

natural manner (based on the cluster-centroid semantics demary. Intuitively, this comes from fusing two structure-

scribed in Section 3), as an appropriately-weighted combi-yajue clusters:, v in S into a single, “coarser” structure-
nation of the summary information in the two merged nodes ya|ue clusterw in S’. The increase in approximation er-

u andv; more formally, we defineount (w) = |w| = |u|+
|v|, and, for each child nodeand parent nodg of w in the
new synopsis, we define the edge counts frona/es

|u|count (u, ¢) + |v|count (v, c)
|w]
count (p,u) + count (p,v),

count (w,c) = and

count (p,w) =

where, of coursecount (u,c¢) = 0 (count (p,u) = 0)

if ¢ & children(u) (respectively,p ¢ parents(u))
(and, similarly forv). Recall that our XCUSTER edge-
countscount (x, y) correspond to the average numbeyof
children per element of — it is easy to see that the above
formulas for the edge counts of the merged nadeetain
these average-count semantics in the resulting synspsis

The value-distribution summary information ferin S’

is similarly computed by appropriately “fusing” the value-
distribution summaries af andv to produce a summary for
the combined collection of element valuesitt ent (u) U
ext ent (v). Thatis, we defin@summ(w) = f(vsumm(u),
vsunm(v)), where the specifics of the value-summary fu-
sion functionf() depend on the type of element values in
nodesu, v.

ror when going fromS to S’ (denoted byA(S,S’)) com-
prises two key components: ($}ructural clustering error
due to the fusion of the two structure centroids (i.e., edge-
count tuples) for the clustersxt ent (u) andext ent (v)
into a single, weighted structure centroid for the com-
bined clusterext ent (w) = extent (u) U extent (v) in

S’; and, (2)Value clustering errodue to the merging of the
two value summariegsunmu) andvsunmm(v) (for values

in ext ent (u) andext ent (v), respectively) into a single
value summarysunmw) for the union of the two value
collections.

One of the key challenges in our XGSTER synopsis-
construction framework is to appropriately quantify and
combine these two forms of error in a meaningful overall
approximation-error differencA(S,S’) between the two
synopsess andS’. Obviously, the problem is further com-
plicated by the several different types of values and value
predicates that our synopses need to support,

The basic idea in our approach is to quantify the increase
in both structure and value clustering errorShby essen-
tially measuring their impact on the estimation errors for a
collection ofatomic queriednvolving the synopsis nodes



affected by the merge operation. The key observation hereteresting to note that REESKETCH construction [18] re-

is that oumer ge(S, u, v) operator has a verpcalizedef- lies on a similar node-merging approach for building an ef-
fect on the synopsis, essentially changing the edge-counfective structural summary within a specific space budget.
and value-distribution centroids attached to nodesdwv. The TREESKETCH algorithm, however, evaluates merge
Thus, it is possible to capture the average behavior of arbi-operations based on global structural clustering metric
trary queries by measuring the estimation errorsonple, that requires accessing a large, detailed count-stable sum
localized query pathgor, atomic queries) in the affected mary [18] during the build process. Our proposed approach,
parts of the summary. (Taking an analog from the domain on the other hand, relies oracalized structure-valuelus-

of measurements, our atomic query paths are essentially dering metric that uses the current synopsis as the point of
set of micro-benchmarks that allows us to quantify differ- reference; as a result, it is both efficient to compute and sig

ent aspects of a system’s performance without a full-blown
qguery benchmark.)

nificantly less demanding in terms of memory overhead.

More specifically, to quantify the increase in estimation 4 2. Compressing Value Summaries

error, our set of atomic query paths comprises all paths of

the formu[p]/c andv[p]/c in S, wherec € C, U C, (Cy

is a shorthand fochi | dr en(x)) andp is a simple atomic
value predicateon the underlying value-distribution sum-
mariesvsunm(u) andvsunmm(v). (And, of course, the cor-
responding set ofv[p]/c paths inS’ = mer ge(S,u,v).)
The exact definition of the atomic predicajei our query
paths obviously depends on the nature of the summary: Fo
NUMERIC histograms, the atomic predicates correspond to
all possible range predicates of the fojtn/] over the do-
main of the summary; for STRING PSTs, atomic pred-

icates correspond to all substrings in the summary; and,

for TEXT summaries, atomic predicates refer to all indi-
vidual terms. Without going into the details of our es-
timation algorithms (Section 5), it is not difficult to see

that (based on the average-count semantics for our synopsi

edge counts) the average numbet elements reached per
element ofu by theu[p]/c path inS is exactlyes (u, p, ¢)
op(u) - count (u,c), where the selectivityy,(u) of the
atomic predicate at v is estimated fronvsunm(«) (and,
similarly, for es(v,p,c) andes/(w, p,c)). Summing the
squared atomic-query estimation errors over all possible
(p, ¢) combinations for the merged nodes, we obtain the
overall increase in approximation error for the compressed
summaryS’ = mer ge(S, u,v) as

AS,S) = Y > (es(up,e) — esi(w,p,0))’

p ceCL,UCy

+Hol Y Y (es(v,pie) — esi(w,p,0))°.

p ceCLUCY

Thus, by effectively quantifying the impact of a merged
structure-value cluster on the error of all localized query

r

As described above, fusing value-distribution summaries
during structural node merges essentially preservesall th
detail present in the original value summaries. In order to
effectively compress the value information in X@STER
nodes (e.g., to meet a specified space budget), we now in-
troduce appropriatealue compression operatiotizat can
be applied to different types of value summaries. For a spe-
cific nodeu € § with value summarysum(«), a value
compression operation results in a new synogsishere
vsunm(u) is a coarser approximation of the same value dis-
tribution. To quantify the error that is introduced by sum-
mary compression, we rely on the same metric as in the
case of structural merges, i.e., we quantyS, S’) as the
sum-squared estimation error for the set of atomic queries
u[p]/c. The key difference here, of course, is that the struc-
fure of the summary remains unchanged, so we only need
the first summand in the above formula (S, S’) (with
w = u).

We introduce three value compression operations in
our framework that cover the different types of value
summaries: (ahi st _cnprs for NUMERIC nodes, (b)
tv_enprs for TEXT nodes, and (c)st_cnprs for
STRING nodes.

e hi st _cnpr s(u,b). Here,u is a node with a histogram
value summarysum{u) andb is a positive integer. This
operation results in a new histograsunm() that contains

b buckets less than the original value summary. The new
histogram can be constructed from the original distributio

if it is available, or it can be formed by performingnerge
operations on adjacent bucket-pairysunm(u) (the latter
can be implemented without storing the original distribati
and is thus more efficient.)

estimates affected by the merge operation, our clusteringe t v_cnpr s(u,b). Here,u is a summary node with a end-

error metric provides us with an intuitive, meaningful mea-

sure for unifying structure and value approximation errors
and guiding the choice of compression operations during
our bottom-up XQUSTER construction algorithm. Itis in-

5Using atomic predicates oveangesof the histogram is needed in
order to avoid introducing “holes” (i.e., zero-count rasgi the merged
histograms.

biased term histogramsumm(u) andb is a positive integer.
Similar tohi st _cnpr s, this operation essentially reduces
the number of singleton “buckets” farsunm(u), i.e., the
number of terms for which the synopsis records exact fre-
guency information, by moving thielowest-frequency in-
dexed terms to the uniform term bucket and appropriately
adjusting the corresponding average frequency (used to ap-



proximate all frequencies in the umfor_m bucket). Procedure XCLUSTERBUILD(T, Burr. Bunt)

e st _cnprs(u, ?7). Here_,y is a node Wlth aPsST summary nout: XML Tree T; Structural budgeB...; Value budgetB,a

ysumw(u) gndb is a positive integer. This operation results Output: XCLUSTERSynopsisS

in the pruning ob leaf nodes from thesumm(u) PST, and  pegin

hence in a coarser approximation of the underlying string 1.nitialize S with the reference synopsis

distribution. We propose a novel pruning scheme for PST /** (1) Structure-Value Merge **/

summaries that removes a specified number of nodes while2.! := 1; Cands:, :=bui | d_pool (S, Hp, 1)

trying to minimize the resulting estimation error. More eon  3while structural information in5' > B¢ do

cretely, we associate with each leaf nadapruning error 4. While [Cands:.| > H, do /

that quantifies the difference in estimates, before and af-5.  Apply mergem € Candst, : 7 ieA— is minimized

ter the pruning ofr from the PST, for the sub-string that 6.  Removen from Cand,:, and recompute losses

x represents. Our observation is that this pruning error is 7. end

a good indicator of the importance of nodein the PST 8- [:=1+(maxlevel of new vertices in this stage)

structure, or equivalently, how well the Markovian estima- 206%1”‘13“‘ =bui | d_pool (S,Hxm,!) I/ Replenish pool

tion assumption [11] applle_s at O_ur pruning scheme re- (2) Value-Summary Compression **/

movt_as_b n_odes based on their pruning error (thus attemptlng 11for eachu € S with valuesdo // Init heap

to minimize the impact on eshmaﬂo_n accuracy), Wh|le €N 15 Candya — (compression onsumu))

suring that the monotonicity constraint of the PST is always 13eng

preserved. In the interest of space, the complete details ofi4while value information isS > B,.; do

this scheme can be found in the full version of this paper. 15 apply value compressiom € Candya; : é(‘«j‘«z)‘ is minimized
16. Letvsunmm(u) be the summary that compressed

4.3 XCLUsTERBUILD Algorithm 17. Candya— = m; Candyq+ = (compression onsummu))

18done

19return S

end

Having introduced our key component operations
for reducing the size of an X@STER summary,
we now describe our construction algorithm, termed
XCLUSTERBUILD, for building an accurate XGJSTER Figure 5. Algorithm XCLUSTERBUILD.
synopsis within a specific storage budget.

The pseudo-code for XIWSTERBUILD is depicted in
Figure 5. The algorithm receives as input the XML data
tree T, and two parameters, nameli,;,. and B,;, that

define thestructural- and value-storagebudget. In a nut- . o . .
. U . sion, we note thatit is possible to invoke XGSTERBUILD
shell, By, specifies the storage for recording information

on the graph synopsis (nodes + edges + edge-counts),whilg"ith a unified total space budg8tand let the construction

o ; process determine automatically the ratio of structual- t
B, specifies the space that will be devoted to value sum- . .
. . o value-storage budget. One plausible approach, for instanc
maries. The algorithm constructs an initial reference syn-

L . would be to perform a binary search in the range of pos-
opsis (line 1), that represents a very detailed clustering o sible Bo.. /B ratios. based on the observed estimation
the XML database, and subsequently reduces its size us: str/ Bual '

ing the operations that were introduced in the previous sec-crrorona sample workload. This top|c,_ howeverz IS beyond
tions (lines 2-18). As shown, the last step proceeds in two _the Scope of our current work and we intend to investigate
. it further in our future research.
phases :(1) atructure-value mergghase, where merge op-
erations are used in order to reduce the structure of the synReference Synopsis ConstructionOur reference synopsis
opsis within B, space units, and (2) a subsequealue- is essentially a refinement of the losslessint-stablesum-
summary compressigohase, where the algorithm applies mary of the input data [18]. More concretely, each cluster
value-based operations in order to compress the storage ofiroups elements that have the same number of children in
value-distribution summaries withiB,,; units. In short,  any other summary node and is associated with a detailed
the first phase generates a “tight” structure-value cligler  content summary that approximates the distribution of ele-
of input elements, while the second phase builds value sum-ment values with low error. Moreover, each cluster has ex-
maries that accurately approximate the content of differen actly one incoming path in order to capture potential path-
element clusters. As we will discuss later, these two prop- to-value correlations. This detailed clustering in ourd&)
erties have a strong connection to the assumptions of thereference summary obviously provides a very accurate ap-
XCLUSTER estimation framework and are effectively the proximation of the combined structural and value-based dis
key for the construction of accurate synopses. tribution information of the input XML tree. (Due to space
The key components of XSTERBUILD, namely, the  constraints, we defer the complete details for our refexenc

computation of the reference synopsis and the two com-
pression stages, are discussed in detail in the paragraphs
that follow. Before proceeding with our detailed discus-



synopsis construction to the full paper.) bottom-up-fashion, starting from the leaf nodes of the sum-
Structure-Value Merge. The goal of this phase is to com- Mary and gradually moving closer to the root. More con-
cretely, each synopsis node is assigned keval based on

press the structure of the computed summary witBip. _
space units while preserving the key correlations betweent® shortest outgoing path that leads to a leaf descendant.
The key idea is that a merge of two nodes at lévell is

and across the structural and value-based distribution. To - k 8 . .
achieve this, our algorithm applies a sequence of node-more likely to have a lowA if their respective children have

merge operations that are selected based onagginal been merged at levél(this matches the intuition that two
lossesheuristic (line 5): among the candidate operations, clus_te_rs are _5|m|Iar and hen(_:e_ can b? merged if they point
the algorithm selects the mergethat yields the least dis- tq similar children.) The first initialization of the pool e
tance A(S,S') (i.e., loss in accuracy) per unit of saved siders merges among nodes at levels O (leafs) and 1 (parents
storage, that isy» minimizesA(S, 8')/(|S|ser — 1S |ser) of leafs); when the pool needs to be replenished with new
) y 9 Sir Sir ) . . . .
wheresS’ is the resulting synopsis and|s:. — | S|« is the candidate operations, the algonthm conS|der§ merges up to
space savings for structural information. In order to reduc €velmazlevel +1, wheremazlevel is the maximum level
the number of possible operations, our algorithm employs qfqnewly creat_ed node from th_e previous pool. This heuris-
two key techniques. First, it only considers operationgnfro tic is based again on the same intuition, namely, that merges
a pool Candy;, of at mostH,, candidate merges, where at levell may increase the effectiveness of merges at level
sir m 1

H,, is a parameter of the construction process. The pool! T 1 (that holds the parents of the merged nodes).

is maintained as a priority queue based on marginal gainsValue-Summary Compression.The goal of this stage is to
thus making it very efficient to select the most effective op- compress thealue-distribution informatiomf the synopsis
eration at each step. Once the top operation is applied, thavithin the specified value-storage budget. More concretely
algorithm re-configures the queue by computing the new the algorithm maintains a priority qued#&nd, .; that con-
marginal losses for operations in the neighborhood of thetains the minimum marginal loss value-compression opera-
merged nodes, and continues this process until the size otion m (Section 4.2) for eachisumm(u) in the synopsis. To
Cand, falls below a specific thresholH;. At that point, ensure efficiency, our algorithm only considers candidate
it rebuilds the pool with a new set of candidate operations operations for a fixed value &f(typically,b = 1 in our ex-
(line 9) and begins a new round of cluster merges. periments). Similar to the previous case, the candidate op-
erations are ranked and applied according to their marginal
losses, i.e., the value-structure distare€s, S’) between

the current §) and the updated synopsiS’), normalized

Procedurebui | d_pool (S, Hp, 1)
Input: XCLUSTERS; Max heap sizé{,,; levell
Output: The poolCands:. of candidate merges

begin by the savings in storagé| — |S’| (line 20). Once an op-
1.Candar =0 eration is applied, the algorithm updates the queue with a
2 for each (u,v) : u,v € S do new operation for the modified value summarunmm(u),

3. if I abel (u) =1 abel (v) Alevel(u),level(v) < I then and repeats the process until the specific budget constraint
4.  m « (merge operation on, v) is met (or, the queue becomes empty.)

5. Candser.push(m)

6. if |Candsir| > Hpm then ) .

2 Cand.y— — {m m maximizeséﬁ‘f’é/,)‘} 5. XCLUSTER Estimation

8.  endif Our proposed estimation framework is based on an ex-
9. endif tension of the estimation algorithm for the structuraleE-
10end SKETCH synopses. More concretely, XGSTER estima-
1lreturn Candstr tion relies on the key concept of a quamybeddingthat is,

end a mapping from query nodes to synopsis nodes that satisfies

the structural and value-based constraints specified in the
query. As an example, Figure 7 shows the embedding of a
The second technique concerns the initialization of sample query over a given XOSTERsynopsis. Each node
the pool with candidate merge operations (function is annotated with the query variable that it maps to, while
bui | d_pool shown in Figure 6). Clearly, the number of the edge-counts represent the average number of descen-
candidate merges grows quadratically with the number of dants per source element (we discuss their computation in
synopsis nodes and an exhaustive exploration of all possi-the next paragraph). Overall, the set of unique embeddings
ble operations may be prohibitively expensive (partidylar provides the possible evaluations @fon the underlying
during the first steps of the construction process that oper-database, and the overall selectivity can thus be approxi-
ate on the large reference synopsis). To address this issugnated as the sum of individual embedding selectivities.
we employ a heuristic that considers merge operationsina To estimate the selectivity of an embedding, the

Figure 6. Function bui | d_pool .




XCLUSTER algorithm employs the stored statistical infor- synopses over real-life and synthetic XML data sets.
mation coupled with a generalized Path-Value Indepen-

dence assumption that essentially de-correlates patti-dist 6.1. Methodology

bution from the distribution of value-content. More for-
mally, Path-Value Independence approximates the selec
tivity of a simple synopsis path[p]/c as |u| - op,(u) -
count (u, c), where the fractiorv,(u) can be readily es-
timated from the value summansumm(u). (Note that we
have already hinted at the above formula in our discussion
of the distance metric in Section 4.) Based on this approx-
imation, our estimation a|gorithm traverses the guery em- Data Sets. We use two data sets in our evaluation: a sub-

bedding and combines edge-counts and predicate selectivSet of the real-lifdMDB data set, and th¥Mark synthetic
ities at each step in order to compute the total number ofbenchmark data set. The main characteristics of our data

b|nd|ng tup|es_ Returning to our examp|e’ consider nodesSets are summarized in Table 6.1. The table lists the size
A:qp andc : q2. Using path-va|ue independence' the num- of the XML dOCUment, the number of elements in each
ber of descendants i per element iny;, is computed as ~ data set, the size of the reference synopsis, and the num-
count (A,B) - count (B,C) - o¢(p) = 10-5-0.1, assuming  ber of nodes (total and nodes with value summaries only.)
thatoc(p) = 0.1 based orvsunm(C). Similarly, the total ~ As mentioned earlier, the reference synopsis containgvalu

descendant count from : q1 to E* : ¢5 is estimated to be ~ summaries for specific paths only which are provided as in-
count (A,D?) - count (D, E2) = 10. Hence, each element Put to the construction algorithm. In our experiments, we

in A : ¢; will generate10 - 5 = 50 binding tuples as it ~ included at least one path for each different type of values,

will be combined with every descendant in variahjeand ~ for a total of 7 paths for IMDB and 9 for XMark. In both
gs. Given that the root element iy has10 descendantsin ~ data sets, we observe that the reference synopsis is consid-

A : ¢y, this will bring the total estimated number of binding €rably smaller than the input data but may still be too large
tuples to50 - 10 = 500. for the time and memory constraints of a query optimizer.

Techniques. We have completed a prototype implemen-
tation of the XQUSTER model that is outlined in Sec-
tion 3. Our prototype considers the construction of value-
summaries under specific paths of the underlying XML, and
supports histograms, PSTs, and end-biased term histograms
as approximation methods for value distributions.

Workloads. We evaluate the accuracy of each synopsis on
a workload of random positive twig queries, i.e, queries

R:

10? //AT miqo with non-zero selectivity. The workload i§ generated py

A sampling twigs from the reference synopsis and attaching

NS et o A:a random predicates at nodes with values. (The sampling
B D* p® / i//E Ywi of paths and predicates is biased toward high-counts.) Ta-

5% 2|, N\ 4 2 a3 C:q2 E%:qs ble6.1summarizes the characteristics of our workloads for
vsummg E° Eb the two data sets. We note that we have also performed ex-
(a) (b) (c) periments with negative workloads, i.e., queries with zero
selectivity. We omit the results as they have shown that

Figure 7. (@) XCLUSTER (b) Query, (c) Embedding. XCLUSTERS consistently yield close to zero estimates for

— all space budgets.
Clearly, the accuracy of XGQJSTER estimation depends

heavily on the validity of Path-Value Independence with re- ith th bsol lati
spect to the underlying data. This assumption, however, isXCLUSTERSummary with t @verage abso ute relative er
satisfied if element clusters are tight, i.e., they group to- " of result estimates over the queries of a workload. Given

gether elements that have the same structure and similaﬁlquiryqlw'th trlug result size and estimated selectiviey
distribution of values. As outlined in Section 4, this is ex- € absolute relative error is computedas e|/ max(c, s),

actly the criterion used by our construction algorithm in or where parametes represents &anity boundthat essen-

der to compress a synopsis within a specific storage budget?IaIIy equates all low counts with a default coursind thus

This observation forms the key link between the construc- avoids ir_10rdinate|y high con_tributions_ from Iow-count_lp)at
tion process and the proposed estimation framework, anceXPressions. Following previous studies [17, 18], we set th

provides an intuitive justification for the effectivenegsor ~ Pound to thel0-percentile of the true counts in the work-
construction algorithm. load (i.e., 90% of the path expressions in the workload have

atrue result size> s).

6. Experimental Study 6.2. Experimental Results

In this section, we present results from an empirical In this section, we present the results of our experi-
study that we have conducted using our novellXSTER mental study for evaluating the effectiveness of our novel

Evaluation Metric. We quantify the accuracy of an



File Size Ref. Size , Avg. Result Size
(MB) # Elements (KB) # Nodes: Value/Total Struct | Pred
IMDB 7.1 236822 473448 2037 /3800 IMDB 6727 123
XMark 10 206130 890745 3593 /16446 XMark | 286341] 1005
Table 1. Data Set Characteristics. Table 2. Workload Charac teristics.

XCLUSTER summaries. In all the experiments that we XMark data set. This result, however, is an artifact of
present, we vary the structural summarization budget fromour test workload on XMark. More concretely, the XMark
OKB to 50KB while keeping the value summarization bud- TEXT predicates have very low selectivities, thus leading to
get fixed at 150KB. (Hence, the total summary size varies an atrtificially high relative error even though the absolute
from 150KB to 200KB). We have empirically verified that error is low. To verify this, Figure 9 lists the average abso-
these settings provide a good balance between structuralute error for low-count queries over the two data sets, when
and value-based summarization for the two data sets thathe synopsis size is fixed at 200KB. (A query is included in
we have used. As we have discussed in Section 4, the authese results if its true selectivity is below the sanity tau
tomated allocation of a total space budget remains an in-s.) As the results indicate,BXT queries on XMark have an
teresting problem that we intend to investigate further in average absolute error of 1.09 tuples per query, which, com-
our future research. We note that a structural space bud-bined with the average true selectivity of 3 tuples, yielus t
get of OKB represents the smallest possible structural sum-artificially high relative error.

mary that clusters elements based solely on their tags. In Another interesting point concerns the estimation error
all experiments, we set the maximum and minimum size of for numeric predicates in the IMDB data set. More con-
the candidate merge pool fé,,, = 10000 and H; = 5000 cretely, we observe an increase in the average error when
respectively. the structural storage budget is varied from 35KB to 40KB.

Figure 8 shows the average estimation error as a function!n this case, the compressed structure in the 35KB synop-
of the structural budget size, for the two data sets IMDB and Sis €ffectively leads to a lower number of nodes with nu-
XMark. For each data set, the plot depicts the overall esti- Meric values, that are however assigned the same budget
mation error (Overall), the estimation error for queriethwi  Of 150KB for value-based summarization. This essentially
predicates on different types of value content (Numeric, results in an increased number of buckets per numeric his-
Text, String), and queries without predicates (Struct). We togramzthus yielding lower estimation errors for the serall
discuss these results in more detail below. Synopsis.

Error for Structural Queries. Finally, it is interesting

to note the effectiveness of our novel localized clustering
metric in the structural summarization of XML data. For
both data sets, the estimation error for structural queees
mains well below 5% for modest structural budgets (10KB—
50KB), and is comparable to the originaREESKETCH
summaries [18] that target specifically the structural sum-
marization problem. Moreover, the results indicate that ou
localizedA metric is equally effective to thglobal TREE-
SKETCH clustering metric, which quantifies the differences

Overall Estimation Error. Overall, the results indicate
that our novel XCUSTERS synopses constitute a very ef-
fective technique for estimating the selectivity of comple
twig queries over structured XML content. For both IMDB
and XMark, the overall estimation error falls below 10%
for a modest total budget of 200KB, which represents a tiny
fraction of the original data set size (Table 6.1). This leve
of performance is very promising, considering the complex-
ity of our workload: multi-variable twig queries, with vadu
predicates on different types of XML content. We also ob- . .
serve that the final error is considerably lower than the-star between successive compression steps based on a count-
ing error of the smallest structural summary (73% for IMDB stable summary and hence requires repeated accesses to the
and 63% for XMark), which clearly demonstrates the ef- (potentially large) reference synopsis.

fectiveness of our novel structure-value clustering meri

capturing the key correlations between the path and value7. Conclusions

distribution of the underlying data. o .
The accurate summarization of XML data with heteroge-

Estimation Error for Value Predicates. The estimation  neous value content remains a critical problem in the effec-
error for individual classes of value predicates follows th tive optimization of real-world XML queries. In this pa-
same decreasing trend as the previous case, demonstratinger, we propose the novel class of XWSTER synopses
again the effectiveness of our summarization mechanism.that enable selectivity estimates for complex twig queries
A notable exception is the considerably increased error ofwith predicates on numeric (range queries), string (sub-
more than 50% for queries withEXT predicates over the  string queries), and textual content (IR queries). We de-
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Figure 8. XCLUSTER relative estimation error for complex twig Figure 9. Absolute estimation error for low-
queries: (a) IMDB, (b) XMark. count queries: (a) IMDB, (b) XMark.

fine the XQ.usTER model and develop a systematic con- [13] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr.
struction algorithm for building accurate summaries withi XPathLearner: An On-Line Self-Tuning Markov Histogram
a specific space budget. Our results on real-life and syn- ~ for XML Path Selectivity Estimation. IVLDB, 2002.

thetic data sets verify the effectiveness of our approach.  [14] L. Lim, M. Wang, J. Vitter. CXHist : An On-line
Classification-Based Histogram for XML String Selectivity
Estimation. InVLDB, 2005 (To appear).
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