
XCluster Synopses for Structured XML Content

Neoklis Polyzotis∗
Univ. of California, Santa Cruz
alkis@cs.ucsc.edu

Minos Garofalakis
Intel Research Berkeley

minos.garofalakis@intel.com

Abstract

We tackle the difficult problem of summarizing the
path/branching structure and value content of an XML
database that comprises both numeric and textual values.
We introduce a novel XML-summarization model, termed
XCLUSTERs, that enables accurate selectivity estimates for
the class of twig queries with numeric-range, substring, and
textual IR predicates over the content of XML elements. In
a nutshell, anXCLUSTER synopsis represents an effective
clustering of XML elements based on both their structural
and value-based characteristics. By leveraging techniques
for summarizing XML-document structure as well as nu-
meric and textual data distributions, ourXCLUSTERmodel
provides the first known unified framework for handling
path/branching structure and different types of element val-
ues. We detail theXCLUSTERmodel, and develop a system-
atic framework for the construction of effectiveXCLUSTER

summaries within a specified storage budget. Experimen-
tal results on synthetic and real-life data verify the effec-
tiveness of ourXCLUSTERsynopses, clearly demonstrating
their ability to accurately summarize XML databases with
mixed-value content. To the best of our knowledge, ours
is the first work to address the summarization problem for
structured XML content in its full generality.

1. Introduction
The Extensible Mark-up Language (XML) has rapidly

evolved to an emerging standard for large-scale data ex-
change and integration over the Internet. Being self-
describing and hierarchical in nature, XML provides a suit-
able data model that can adapt to several diverse domains
and hence enable applications to query effectively the vast
amount of information available on the Web.

Within the realm of XML query processing, XML sum-
marization has emerged as an important component for the
effective implementation of high-level declarative queries.
In brief, a concise XML summary, orsynopsis, captures (in
limited space) the key statistical characteristics of the under-
lying data and essentially represents a highly-compressed,

∗Supported in part by NSF Grant IIS-0447966

approximate version of the XML database. By executing
a query over the synopsis, the optimizer can efficiently ob-
tain selectivity estimates for different query fragments and
thus derive the cost factors of candidate physical execution
plans.

One of the key challenges in this important prob-
lem stems from the inherent complexity of XML data.
More specifically, the information content of a semi-
structured data store is encoded in both thestructure of
the XML tree as well as thevaluesunder different ele-
ments. Moreover, the content of XML elements is in-
herently heterogeneous, comprising of different types of
values, e.g., integers, strings, or free text, that can be
queried with different classes of predicates. As an ex-
ample, an application may query an XML database with
bibliographic information using the following path expres-
sion1: //paper[year>2000][abstract ftcontains(

synopsis , XML)]/title[contains(Tree)], which
will select all titles of papers that were published after 2000,
if their abstracts mention the terms “synopsis” and “XML”
and their title contains the substring “Tree”. To enable low-
error selectivity estimates for such queries, an XML sum-
mary clearly needs to capture the key correlations between
and across the underlying path structure and value content,
and provide accurate approximations for different types of
value distributions. Given that real-life XML data sets
contain highly heterogeneous content, it becomes obvious
that realizing this important and challenging goal will pro-
vide crucial support for the effective optimization of XML
queries in practice.

Related Work2. Summarizing a large XML data set for
the purpose of estimating the selectivity of complex queries
with value predicates is a substantially different and more
difficult problem than that of constructing synopses for flat,
relational data (e.g., [20, 24]). Recent research studies have
targeted specific variants of the XML summarization prob-
lem, namely, structure-only summarization [1, 18, 25], or
structure and value summarization only for numeric val-

1In this example, we use theftcontains operator from the Full-Text
extensions to XPath [2]

2Due to space constraints, a more detailed discussion of related work is
deferred to the full version of this paper.

ues [10, 13, 17, 19, 26]. Correlated Suffix Trees (CSTs) [7]
and CXHist [14] are recently-proposed techniques that
tackle the problem of XML selectivity estimation for sub-
string predicates. CSTs, however, take a straightforward
approach, simply treating string values as an extension of
the XML structure; on the other hand, CXHist focuses on
the simple case of fully-specified linear XPath expressions.
It is not at all clear if these techniques can be extended to
the more general problem oftwig querieswith predicates
onheterogeneousvalue content.

Contributions. In this paper, we address the challenging
and important problem of XML summarization in the pres-
ence ofheterogeneous value content. We propose a novel
class of XML synopses, termed XCLUSTERs, that capture
(in limited space) the key characteristics of the path and
value distribution of an XML database and enable selec-
tivity estimates for twig queries with complex path expres-
sions and predicates on element content. In sharp con-
trast to previous work, our proposed XCLUSTER model
provides a unified summarization framework that enables
a singleXML synopsis to effectively support twig queries
with predicates on numeric content (range queries), string
content (substring queries), and/or textual content (IR-style
queries). To the best of our knowledge, ours is the first at-
tempt to explore the key problem of XML summarization
in the context of heterogeneous element values. The main
contributions of our work can be summarized as follows.

• XCLUSTER Summarization Model. Our proposed
XCLUSTERsynopses rely on a clean, yet powerful model of
generalizedstructure-value clusters, a unified, clustering-
based framework that can effectively capture the key cor-
relations between and across structure and values of dif-
ferent types. To handle value-based approximations, our
framework employs well-known techniques for numeric
and string values, and introduces the class ofend-biased
term histogramsfor summarizing the distribution of unique
terms within textual XML content.

• XCLUSTER Construction Algorithm. We introduce a
set of compression operations for reducing the size of an
XCLUSTER synopsis and develop a systematic metric for
quantifying the effect of a compression step on the accu-
racy of the XML summary. Our proposed metric captures
the impact on the structure-value clustering of the synopsis
by taking into account thelocalizedstructural and value-
based characteristics of the compressed area of the sum-
mary. Based on this framework, we propose an efficient,
bottom-up construction algorithm that builds an effective
XCLUSTER synopsis for a specific space budget by apply-
ing carefully selected compression steps on an initial de-
tailed summary.

• Experimental Study Verifying the Effectiveness of
XCLUSTERs. We validate our approach experimentally

with a preliminary study on real-life and synthetic data sets.
Our results demonstrate that concise XCLUSTERs consti-
tute an effective summarization technique for XML data
with heterogeneous content, enabling accurate selectivity
estimates for complex twig queries with different classes
of value predicates.

2 Preliminaries

Data Model. Following common practice, we model an
XML document as a large,node-labeled treeT (V, E). Each
nodeu ∈ V corresponds to an XML element and is char-
acterized by alabel (or, tag) assigned from some alpha-
bet of string literals, that captures the element’s seman-
tics. Edges(ei, ej) ∈ E are used to capture the contain-
ment of (sub)elementej underei in the database. (We use
label(ei), children(ei) to denote the label and set of
child nodes for element nodeei ∈ V .) In addition, each
element nodeei can potentially also contain avalueof a
certain type (denoted byvalue(ei)); we assume the exis-
tence of a mapping functiontype from elements to a set
of data types, such thattype(ei) is the data type of value
value(ei). (Elements with no values are mapped to a spe-
cialnull data type.) Our study considers the following set
of possible data types for XML-element values:
• NUMERIC: Capturesnumeric element values; for in-
stance, in a bibliographic database, NUMERIC values would
include book prices, publication years, and so on. Follow-
ing the usual conventions for numeric database attributes,
we assume the NUMERIC values range in an integer domain
{0 . . .M − 1}.
• STRING: Captures(short) string values – in a bibli-
ographic database, these would include author/publisher
names and addresses, book titles, and so on.
• TEXT: Capturesfree-textelement values – in our biblio-
graphic database example, these would include book fore-
words and summaries, paper abstracts, and so on. Such
textual values need to support anIR-style, full-text query-
ing paradigm based on keyword/index-term search [3, 8].
Based on the traditional set-theoretic,Boolean modelof IR,
TEXT values are essentially Boolean vectors over an under-
lying dictionary of terms (where theith entry of the vector
is 1 or 0 depending on whether theith term appears in the
free-text data or not).3

As an example, Figure 1 depicts a sample XML data
tree containing bibliographic data. The document consists
of author elements, each comprising aname, and sev-
eralpaper andbook sub-elements. Eachpaper andbook
comprises a (STRING-valued)title, a (NUMERIC-valued)
year of publication, as well as (TEXT-valued)keywords,

3In future work, we intend to explore more flexible,Vector-SpaceIR
models [4] of representing and querying TEXT values in XML documents,
and their impact on our summarization framework.

d0

vvnnnnnnnnnn

&&MM
MM

MM
MM

a1

wwnnnnnnnnnn

��

��
<<

<<
<<

<<
<<

<<
<<

a11

�� &&LL
LL

LL
LL

p2

}}zz
zz

zz
z

�� &&LLLLLL
LLLL

n6
{...}

n12
{...} b13

{{vv
vv

vv
vv

��
$$

JJ
JJ

JJ
J

y3
{2000}

t4
{Counting...}

k5
{ XML,Summary,..}

p7

zzuuuuuuuuuu

��
""

DD
DD

DD
D

y14
{2002}

t15
{Database...}

f16
{Database

systems have...}

y8
{2002}

t9
{Holistic...}

ab10
{XML

employs a...}

q0

.//p[y>2000]

��

q1
./t[contains(Tree)]

��
<<

<<
<

./abs[ftcontains(synopsis)]

��

q2

q3

Figure 1. Example XML document. Figure 2. Example query.

abstract, and/orforeword sub-elements. Note that ele-
ment nodes in the tree are named with the first letter of the
element’s tag plus a unique identifier.

We believe that the above set of value types adequately
captures the bulk of real-world XML content. Textual in-
formation (i.e., STRING and TEXT values), in particular, is
an integral part of real-life XML documents – this is clearly
demonstrated by numerous recent research as well as stan-
dardization efforts that attempt to integrate XML query lan-
guages and query processing with substring and term-based
search models [3, 8, 2]. Our work, however, is thefirst
to consider the implications of different types of numeric
and textual information on the difficult problem of effective
XML summarization [10, 17].

Query Model. The focus of this paper istwig querieswith
value predicates. More specifically, a twig queryQ is node-
and edge-labeled treeQ(VQ, EQ) where each nodeqi ∈ VQ

represents a query variable that is bound, during query eval-
uation, to a set of elements from the input document (we as-
sume thatq0 is the root of the query and is always mapped
to the root of the document). Figure 2 shows an example
twig query over the sample document of Figure 1. An edge
(qi, qj) ∈ EQ denotes a structural constraint between the
elements of the source and target variable, specified by an
XPath expressionedge-path(qi, qj). In our work, we
focus on XPath expressions that involve the child and de-
scendant axis, wildcards, and optional predicates on path
branches and element values. Conceptually, the evalua-
tion of Q generates all possible assignments of elements
to query variables, such that both (a) thestructural con-
straints(as specified by the edge labels), and (b) thevalue
constraints(as specified by the value predicates attached to
query nodes), are satisfied. This set of possible assignments
constitutes the set ofbinding tuples, and its cardinality is
defined as theselectivitys(Q) of the query.

The class of supported value predicates in our twig
queries depends on the value types of the queried XML el-
ements, and is defined as follows.

• NUMERIC range predicatesof the general form[l, h], that
specify a certain range[l, h] for the NUMERIC values of the
designated XML elements; for example, find all thebook
elements with prices between $60 and $80.
• STRING substring predicatesof the general form
contains(qs), whereqs denotes a query string. A sub-
string predicate is satisfied by XML elements with STRING

values that containqs as a substring (i.e., similar to the SQL
like predicate); for instance, return allbooks such that the
publisher name contains the (sub)string “ACM”.
• TEXT keyword predicatesof the formftcontains(t1,
. . . , tk) (wheret1, . . . , tk denote terms from the underly-
ing term dictionary) specifying exact term matches; for ex-
ample, find allpaper elements withabstracts contain-
ing the terms “XML” and “synopsis”. (Our techniques can
also handle other Boolean-model predicates, such as set-
theoretic notions of document-similarity [4, 5].)

3. XCLUSTER Synopsis Model
A Generic Structural Graph-Synopsis Model. Ab-
stractly, our structural graph-synopsis model for an XML
document treeT (V, E) is defined by apartitioningof the el-
ement nodes inV (i.e., anequivalence relationR ⊆ V ×V)
that respects element labels; in other words, if(ei, ej) ∈ R
thenlabel(ei) = label(ej). The graph synopsis defined
for T by such an equivalence relationR, denoted bySR(T),
can be represented as adirected graph, where: (1) each
nodev in SR(T) corresponds to an equivalence class of
R, i.e., a subset of (identically-labeled) data elements inT
(termed theextentof v and denoted byextent(v)); and,
(2) an edge(u, v) exists inSR(T) if and only if some ele-
ment node inextent(u) has a child element inextent(v).
(We uselabel(v) to denote the common label of all data
elements inextent(v).)

At a high level, several recently-proposed techniques for
building statistical summaries for XML databases (includ-
ing XSKETCHes [17, 19] and TREESKETCHes [18]) are all
roughly based on the abstract “node-partitioning” idea de-

scribed above. Unfortunately, none of these earlier research
efforts considered the impact ofelement valuesof possi-
bly different types (most importantly, strings and unstruc-
tured text), and their corresponding querying models on
the underlying XML-summarization problem. Obviously,
given the prevalence of textual data and the importance of
supporting full-text search in modern XML data reposito-
ries [3, 8], this restriction severely limits the applicability
of such earlier solutions in real-life problem scenarios.

The XCLUSTER Synopsis Model. Our proposed
XCLUSTER synopses overcome the aforementioned lim-
itations of earlier work by explicitly accounting for dif-
ferent element-value types and querying requirements dur-
ing the XML-document summarization process. The key
idea in XCLUSTERs is to form structure-value clusters
that, essentially, group together (i.e., summarize) XML
elements that are “similar” in terms ofboth their XML-
subtree structure and their element values. More formally,
given an XML document treeT (V, E) with element val-
ues, we say that a node-partitioning graph synopsis ofT is
type-respectingif the underlying equivalence relationR ⊆
V × V respects both element labelsand value types; in
other words, if(ei, ej) ∈ R thenlabel(ei) = label(ej)
andtype(ei) = type(ej). (As previously, given a syn-
opsis nodev, label(v) andtype(v) denote the common
label and value type, respectively, of all data elements in
extent(v).) Our general XCLUSTER synopsis model is
defined as follows.

Definition 3.1 AnXCLUSTERsynopsisS for an XML doc-
ument T is a (node- and edge-labeled) type-respecting
graph-synopsis forT , where each nodeu ∈ S stores: (1)
an element countcount(u) = |extent(u)| (also denoted
as|u|); (2) per-edge (average) child counterscount(u, v),
for each edge(u, v) ∈ S, that record theaverage number
of children inextent(v) for each element inextent(u);
and, (3) a value summaryvsumm(u) that compactly sum-
marizes the distribution of the collection oftype(u) values
under all elements inextent(u).

Figure 3 shows a possible XCLUSTER synopsis for
our example document, where each cluster essentially
represents elements of the same tag. Intuitively, each
XCLUSTER nodeu corresponds to a structure-value clus-
ter of count(u) elements in the original document treeT .
Similar to the TREESKETCH synopses, the tuple of edge-
counters(count(u, v1), count(u, v2), . . .) to the children
of u gives the structuralrepresentative(or, centroid) of the
u-cluster; moreover,vsumm(u) describes the distribution of
element values (or, in a probabilistic sense, the value of an
“average element”) in theu-cluster4. The key idea is that

4Note that, unlike the multi-dimensional histograms of [17], our
XCLUSTER value summaries do not explicitly try to capture correlations
between sets of values across different synopsis nodes. Uncovering such

all elements in the extent of nodeu are essentially approx-
imated bycount(u) occurrences of theu-cluster centroid,
and the key to effective summarization is hence to try to
keep these clusters as “tight” as possible. This generalized
structure-value clustering model is a key contribution of our
work, providing a clean, unified framework for the effective
summarization of both path structure and values of different
types in XML databases.

D(1)

2

��

A(2)

1

uulllllllllllllll

1
||yyy

yyy
yy

0.5

!!
CC

CC
CC

CC

N(2)
vsumm(N)

P (2)

0.5

||yyy
yy

yy
y

0.5 ��
1

""
EE

EE
EE

EE 1

((QQQQQQQQQQQQQQ B(1)

1

��

1

!!
CC

CC
CC

CC
1

}}{{
{{

{{
{{

K(1)
vsumm(K)

AB(1)
vsumm(AB)

Y (3)
vsumm(Y)

T (3)
vsumm(T)

F (1)
vsumm(F)

Figure 3. Example XCLUSTER for the data of Figure 1.

XCLUSTER Value Summaries.We have thus far been de-
liberately vague on the specifics of thevsumm value sum-
maries stored within XCLUSTER nodes. Not surprisingly,
the specific value-summarization mechanism used differs
across different value types; that is, the form ofvsumm(u)
depends ontype(u). In what follows, we briefly dis-
cuss the different classes of value summaries implemented
within our XCLUSTER framework; of course, it is always
possible to extend our framework with support for different
value-summarization techniques and/or additional types of
element values.
• NUMERIC value summariescapture the frequency distri-
bution of all numeric values in the extent of an XCLUSTER

node. Summarizing numeric frequency distributions is a
well-studied problem in relational approximate query pro-
cessing, and several known tools can be employed, in-
cluding histograms [21], wavelets [16], and random sam-
pling [15]. For concreteness, we focus primarily on his-
tograms as our main NUMERIC value summarization tool,
although our ideas can easily be extended to other tech-
niques.
• STRING value summariescapture the distribution of dif-
ferent substrings in the collection of strings corresponding
to the (STRING-valued) XML elements in an XCLUSTER

node’s extent. Following earlier work on the problem of

meaningful correlations across different value sets is itself a challenging
problem, and the benefits of the resulting multi-dimensional summaries
are often limited by the “curse of dimensionality”; further, designing ef-
fective multi-dimensional summaries for correlations spanning different
value types (e.g., text and numeric data) is, to the best of our knowledge,
an open problem.

substring selectivity estimation [6, 11], we employPruned
Suffix Trees (PSTs)as our main summarization mechanism
for STRING values and substring queries. Our model is
based on a modification of the original PST proposal, where
the PST records at least one node for each symbol that ap-
pears in the string distribution (this implies that the prun-
ing threshold [11] is redundant). We have found that this
modification yields accurate approximations, while avoid-
ing large errors for negative substring queries.

• TEXT value summariesessentially summarize the col-
lection of Boolean term vectors corresponding to the un-
derlying set of elements in an XCLUSTER node’s extent.
Our basic summarization mechanism here (similar to the
case of structure clusters) is thecentroid of the underly-
ing vector collection; in other words, lettingw1, . . . , wk

denote the set of Boolean term vectors corresponding to a
TEXT XCLUSTER nodeu (k = count(u)), then we de-
finevsumm(u) as the vectorw, wherew[t] =

∑k

i=1
wi[t]/k

for each termt (thus,w[t] is the fractional frequency oft
in the underlying set of texts). In practice, however, the
number of terms (i.e., the dimensionality of our vector-
centroid summary) can be quite large, thus placing a sig-
nificant storage burden on TEXT XCLUSTER nodes. Thus,
our XCLUSTER synopses also employ a second-level of
value summarization for TEXT nodes, where the vector
centroidw is itself compressed further using a novel tech-
nique, termedend-biased term histograms, that we intro-
duce in this paper. Note that conventional histogramming
techniques are likely to be ineffective for compressing such
term vectors, since they optimize performance for range
aggregates, whereas for TEXT values we are primarily in-
terested in term-matching (i.e., “single-point”) queries; for
instance, by grouping consecutive frequencies in buckets,
traditional histograms will almost certainly lose track of
zero-valued entries (i.e., non-existent terms). It is interest-
ing to note that recent studies in Information Retrieval have
looked into the general problem of compressing the infor-
mation stored in term vectors. These works, however, focus
on dimensionality-reduction techniques for improving the
quality of document clustering [12], or techniques for re-
ducing the disk footprint of an IR engine while preserving
relevance rankings [9, 23]. It is not clear, therefore, if they
can be extended to the problem that we tackle in this paper,
namely, selectivity estimation for point queries over term-
vectors.

Briefly, our end-biased term histograms compress the
term-vector centroidw using a combination of (1) thetop-
few term frequenciesin w (which are retained exactly); and,
(2) auniform bucketthat comprises a (lossless)run-length
compressed encodingof the binary version ofw (i.e., where
the entry fort is 1 if w[t] > 0 and 0 otherwise), along
with an average frequencyfor all the non-zero terms in
the bucket. To estimate the frequencyw[t] using an end-

biased term histogram ofw, we first try to lookupt in the
explicitly-retained top frequencies; if that fails, we lookupt
in the run-length compressed uniform bucket returning the
average bucket frequency if the corresponding entry is1,
and0 otherwise. Thus, by avoiding the grouping of values
into bucket ranges and retaining a lossless representationof
the0/1 uniform bucket, our end-biased term histograms cir-
cumvent the problems of conventional histograms giving an
effective summarization mechanism for term vectors.

4. Building XCLUSTER Summaries
In this section, we tackle the challenging problem of ef-

fective synopsis construction, and introduce novel, efficient
algorithms for building an accurate XCLUSTER summary
for a given space-budget constraint.

At a high level, our goal during XCLUSTER construc-
tion is to group XML elements in a manner that results
in “tight” structure-value clusters, i.e., XCLUSTER nodes
that represent elements with high similarity in both their
subtree structures and their value distributions in the origi-
nal XML document. This natural analogy with clustering,
however, highlights the key challenges of our XCLUSTER

construction problem. First, clustering problems are gener-
ally known to be computationally intractable, even in the
simple case of a fixed set of points in low-dimensional
spaces [22, 27]. Second, our XCLUSTER nodes capture
bothstructure and valuedistributions — this means that our
clustering error metric has to appropriately combine both
the structural- and value-summarization errors of a cluster,
in a manner that accurately quantifies the effects of such
errors on the final approximate query estimates.

Our proposed XCLUSTER construction algorithm is
based on a genericbottom-up clusteringparadigm: starting
from a large, detailedreferenceXCLUSTERsummaryof the
underlying XML document, our construction process builds
a synopsis of the desired size by incrementallymerging
XCLUSTERnodeswith similar structure and value distribu-
tions until the specified space constraint is met; in addition,
our construction algorithm can also applyvalue-summary
compressionoperations that further compress the value-
distribution information stored locally at synopsis nodes
(e.g., by merging similar adjacent buckets in a NUMERIC-
values histogram). In what follows, we first describe these
two key operations and their impact on the quality of clus-
tering, and then introduce our proposed construction algo-
rithm.

4.1. MergingXCLUSTER Nodes
Consider two nodesu and v with identical labels and

value types (i.e.,label(u) = label(v) andtype(u) =
type(v)) in a given XCLUSTER synopsisS, and let
parents(u) (children(u)) denote the set of parent (re-
spectively, children) nodes ofu in S (similarly for v). (Note

that, sinceS is a general directed-graph structure, the par-
ent and children sets for nodesu andv may overlap, i.e.,
u and v can have some common parents/children inS.)
As previously, we usevsumm(u) andvsumm(v) to denote
the value-distribution summaries for the two XCLUSTER

nodes. Our XCLUSTER-construction process can choose to
apply anode-merge operationon such (label/type compati-
ble) node pairs in order to further reduce the space require-
ments of theS synopsis.

� � � � � � � � � � � �

� �

� � � � � �� � � � � �

� � � � � � � � � � � �

� � � � � �� � � � � �

�

Figure 4. Node-merge operation.

Intuitively, such a node-merge operation creates a
smaller synopsisS′ from S (denoted byS′ = merge(S,
u, v)), in which the two original nodesu and v are re-
placed by a new nodew representing the structure-value
cluster of the combined collection of XML elements inu
andv; that is,extent(w) = extent(u)∪ extent(v). Of
course, all edges in the originalS synopsis are maintained
in S′, i.e.,parents(w) = parents(u)∪ parents(v) and
children(w) = children(u)∪ children(v). (This is
shown pictorially in Figure 4.) Furthermore, the structural
summary information for the new nodew is computed in a
natural manner (based on the cluster-centroid semantics de-
scribed in Section 3), as an appropriately-weighted combi-
nation of the summary information in the two merged nodes
u andv; more formally, we definecount(w) = |w| = |u|+
|v|, and, for each child nodec and parent nodep of w in the
new synopsis, we define the edge counts from/tow as

count(w, c) =
|u|count(u, c) + |v|count(v, c)

|w|
and

count(p, w) = count(p, u) + count(p, v),

where, of course,count(u, c) = 0 (count(p, u) = 0)
if c 6∈ children(u) (respectively,p 6∈ parents(u))
(and, similarly forv). Recall that our XCLUSTER edge-
countscount(x, y) correspond to the average number ofy-
children per element ofx — it is easy to see that the above
formulas for the edge counts of the merged nodew retain
these average-count semantics in the resulting synopsisS′.

The value-distribution summary information forw in S′

is similarly computed by appropriately “fusing” the value-
distribution summaries ofu andv to produce a summary for
the combined collection of element values inextent(u) ∪
extent(v). That is, we definevsumm(w) = f(vsumm(u),
vsumm(v)), where the specifics of the value-summary fu-
sion functionf() depend on the type of element values in
nodesu, v.

• If type(u) = type(v) = NUMERIC, we build the com-
bined histogramvsumm(w) by merging bucket-count in-
formation from the individual histogramvsumm(u) and
vsumm(v). This involves an initialbucket alignmentstep,
where vsumm(u) and vsumm(u) acquire buckets on the
same set of ranges by (potentially) splitting the ranges
and counts of their existing buckets (based on conventional
histogram-uniformity assumptions [21]); subsequently, the
two histograms are merged to producevsumm(w) by sum-
ming the frequency counts across the aligned buckets.
• If type(u) = type(v) = STRING, we build the com-
bined PSTvsumm(w) by starting out with an empty tree
and simply inserting all substrings found invsumm(u) and
vsumm(v). The count for a substrings in vsumm(w) is set
equal to the sum of the individual counts fors in vsumm(u)
andvsumm(v).
• If type(u) = type(v) = TEXT, then, assuming that
vsumm(u) andvsumm(v) denote the Boolean term vector
centroids foru and v, we define the combined centroid
vector forw as a simple weighted combination of the two
individual vectors; that is,vsumm(w) = |u|

|w|vsumm(u)+
|v|
|w|vsumm(v). (Merging of end-biased term histograms can
be defined in a similar manner.)

Quantifying Node-Merging Approximation Error. Ap-
plying a node-merge operation on an XCLUSTER synop-
sis S to obtain a smaller synopsisS′ = merge(S, u, v)
increases the approximation error in the resulting sum-
mary. Intuitively, this comes from fusing two structure-
value clustersu, v in S into a single, “coarser” structure-
value clusterw in S′. The increase in approximation er-
ror when going fromS to S′ (denoted by∆(S,S′)) com-
prises two key components: (1)Structural clustering error
due to the fusion of the two structure centroids (i.e., edge-
count tuples) for the clustersextent(u) and extent(v)
into a single, weighted structure centroid for the com-
bined clusterextent(w) = extent(u) ∪ extent(v) in
S′; and, (2)Value clustering errordue to the merging of the
two value summariesvsumm(u) andvsumm(v) (for values
in extent(u) andextent(v), respectively) into a single
value summaryvsumm(w) for the union of the two value
collections.

One of the key challenges in our XCLUSTER synopsis-
construction framework is to appropriately quantify and
combine these two forms of error in a meaningful overall
approximation-error difference∆(S,S′) between the two
synopsesS andS′. Obviously, the problem is further com-
plicated by the several different types of values and value
predicates that our synopses need to support,

The basic idea in our approach is to quantify the increase
in both structure and value clustering error inS′ by essen-
tially measuring their impact on the estimation errors for a
collection ofatomic queriesinvolving the synopsis nodes

affected by the merge operation. The key observation here
is that ourmerge(S, u, v) operator has a verylocalizedef-
fect on the synopsis, essentially changing the edge-count
and value-distribution centroids attached to nodesu andv.
Thus, it is possible to capture the average behavior of arbi-
trary queries by measuring the estimation error onsimple,
localized query paths(or, atomic queries) in the affected
parts of the summary. (Taking an analog from the domain
of measurements, our atomic query paths are essentially a
set of micro-benchmarks that allows us to quantify differ-
ent aspects of a system’s performance without a full-blown
query benchmark.)

More specifically, to quantify the increase in estimation
error, our set of atomic query paths comprises all paths of
the formu[p]/c andv[p]/c in S, wherec ∈ Cu ∪ Cv (Cx

is a shorthand forchildren(x)) andp is a simple,atomic
value predicateon the underlying value-distribution sum-
mariesvsumm(u) andvsumm(v). (And, of course, the cor-
responding set ofw[p]/c paths inS′ = merge(S, u, v).)
The exact definition of the atomic predicatesp in our query
paths obviously depends on the nature of the summary: For
NUMERIC histograms, the atomic predicates correspond to
all possible range predicates of the form[0, h] over the do-
main of the summary;5 for STRING PSTs, atomic pred-
icates correspond to all substrings in the summary; and,
for TEXT summaries, atomic predicates refer to all indi-
vidual terms. Without going into the details of our es-
timation algorithms (Section 5), it is not difficult to see
that (based on the average-count semantics for our synopsis
edge counts) the average number ofc elements reached per
element ofu by theu[p]/c path inS is exactlyeS(u, p, c) =
σp(u) · count(u, c), where the selectivityσp(u) of the
atomic predicatep at u is estimated fromvsumm(u) (and,
similarly, for eS(v, p, c) and eS′(w, p, c)). Summing the
squared atomic-query estimation errors over all possible
(p, c) combinations for the merged nodesu, v, we obtain the
overall increase in approximation error for the compressed
summaryS′ = merge(S, u, v) as

∆(S ,S ′) = |u|
∑

p

∑

c∈Cu∪Cv

(eS(u, p, c)− eS′(w, p, c))2

+|v|
∑

p

∑

c∈Cu∪Cv

(eS(v, p, c)− eS′(w, p, c))2.

Thus, by effectively quantifying the impact of a merged
structure-value cluster on the error of all localized query
estimates affected by the merge operation, our clustering
error metric provides us with an intuitive, meaningful mea-
sure for unifying structure and value approximation errors
and guiding the choice of compression operations during
our bottom-up XCLUSTER construction algorithm. It is in-

5Using atomic predicates overrangesof the histogram is needed in
order to avoid introducing “holes” (i.e., zero-count ranges) in the merged
histograms.

teresting to note that TREESKETCH construction [18] re-
lies on a similar node-merging approach for building an ef-
fective structural summary within a specific space budget.
The TREESKETCH algorithm, however, evaluates merge
operations based on aglobal structuralclustering metric
that requires accessing a large, detailed count-stable sum-
mary [18] during the build process. Our proposed approach,
on the other hand, relies on alocalized structure-valueclus-
tering metric that uses the current synopsis as the point of
reference; as a result, it is both efficient to compute and sig-
nificantly less demanding in terms of memory overhead.

4.2. Compressing Value Summaries

As described above, fusing value-distribution summaries
during structural node merges essentially preserves all the
detail present in the original value summaries. In order to
effectively compress the value information in XCLUSTER

nodes (e.g., to meet a specified space budget), we now in-
troduce appropriatevalue compression operationsthat can
be applied to different types of value summaries. For a spe-
cific nodeu ∈ S with value summaryvsumm(u), a value
compression operation results in a new synopsisS′ where
vsumm(u) is a coarser approximation of the same value dis-
tribution. To quantify the error that is introduced by sum-
mary compression, we rely on the same metric as in the
case of structural merges, i.e., we quantify∆(S,S′) as the
sum-squared estimation error for the set of atomic queries
u[p]/c. The key difference here, of course, is that the struc-
ture of the summary remains unchanged, so we only need
the first summand in the above formula for∆(S,S′) (with
w = u).

We introduce three value compression operations in
our framework that cover the different types of value
summaries: (a)hist cmprs for NUMERIC nodes, (b)
tv cmprs for TEXT nodes, and (c)st cmprs for
STRING nodes.
• hist cmprs(u, b). Here,u is a node with a histogram
value summaryvsumm(u) andb is a positive integer. This
operation results in a new histogramvsumm(u) that contains
b buckets less than the original value summary. The new
histogram can be constructed from the original distribution,
if it is available, or it can be formed by performingb merge
operations on adjacent bucket-pairs invsumm(u) (the latter
can be implemented without storing the original distribution
and is thus more efficient.)
• tv cmprs(u, b). Here,u is a summary node with a end-
biased term histogramvsumm(u) andb is a positive integer.
Similar tohist cmprs, this operation essentially reduces
the number of singleton “buckets” forvsumm(u), i.e., the
number of terms for which the synopsis records exact fre-
quency information, by moving theb lowest-frequency in-
dexed terms to the uniform term bucket and appropriately
adjusting the corresponding average frequency (used to ap-

proximate all frequencies in the uniform bucket).
• st cmprs(u, b). Here,u is a node with a PST summary
vsumm(u) andb is a positive integer. This operation results
in the pruning ofb leaf nodes from thevsumm(u) PST, and
hence in a coarser approximation of the underlying string
distribution. We propose a novel pruning scheme for PST
summaries that removes a specified number of nodes while
trying to minimize the resulting estimation error. More con-
cretely, we associate with each leaf nodex a pruning error
that quantifies the difference in estimates, before and af-
ter the pruning ofx from the PST, for the sub-string that
x represents. Our observation is that this pruning error is
a good indicator of the importance of nodex in the PST
structure, or equivalently, how well the Markovian estima-
tion assumption [11] applies atx. Our pruning scheme re-
movesb nodes based on their pruning error (thus attempting
to minimize the impact on estimation accuracy), while en-
suring that the monotonicity constraint of the PST is always
preserved. In the interest of space, the complete details of
this scheme can be found in the full version of this paper.

4.3 XCLUSTERBUILD Algorithm

Having introduced our key component operations
for reducing the size of an XCLUSTER summary,
we now describe our construction algorithm, termed
XCLUSTERBUILD , for building an accurate XCLUSTER

synopsis within a specific storage budget.
The pseudo-code for XCLUSTERBUILD is depicted in

Figure 5. The algorithm receives as input the XML data
treeT , and two parameters, namely,Bstr andBval, that
define thestructural- andvalue-storagebudget. In a nut-
shell, Bstr specifies the storage for recording information
on the graph synopsis (nodes + edges + edge-counts), while
Bval specifies the space that will be devoted to value sum-
maries. The algorithm constructs an initial reference syn-
opsis (line 1), that represents a very detailed clustering of
the XML database, and subsequently reduces its size us-
ing the operations that were introduced in the previous sec-
tions (lines 2-18). As shown, the last step proceeds in two
phases :(1) astructure-value mergephase, where merge op-
erations are used in order to reduce the structure of the syn-
opsis withinBstr space units, and (2) a subsequentvalue-
summary compressionphase, where the algorithm applies
value-based operations in order to compress the storage of
value-distribution summaries withinBval units. In short,
the first phase generates a “tight” structure-value clustering
of input elements, while the second phase builds value sum-
maries that accurately approximate the content of different
element clusters. As we will discuss later, these two prop-
erties have a strong connection to the assumptions of the
XCLUSTER estimation framework and are effectively the
key for the construction of accurate synopses.

The key components of XCLUSTERBUILD , namely, the

ProcedureXCLUSTERBUILD(T , Bstr, Bval)
Input: XML Tree T ; Structural budgetBstr; Value budgetBval

Output: XCLUSTERsynopsisS
begin
1.InitializeS with the reference synopsis
/** (1) Structure-Value Merge **/
2.l := 1; Candstr := build pool(S , Hm, l)
3.while structural information inS > Bstr do
4. while |Candstr| > Hl do

5. Apply mergem ∈ Candstr : ∆(S,S′)
|S|str−|S′|str

is minimized
6. Removem from Candstr and recompute losses
7. end
8. l := 1 + (max level of new vertices in this stage)
9. Candstr := build pool(S,Hm,l) // Replenish pool
10.end
/** (2) Value-Summary Compression **/
11.for eachu ∈ S with valuesdo // Init heap
12. Candval ← (compression onvsumm(u))
13.end
14.while value information isS > Bval do
15. Apply value compressionm ∈ Candval : ∆(S,S′)

|S|−|S′|
is minimized

16. Letvsumm(u) be the summary thatm compressed
17. Candval− = m; Candval+ = (compression onvsumm(u))
18.done
19.return S

end

Figure 5. Algorithm XCLUSTERBUILD .

computation of the reference synopsis and the two com-
pression stages, are discussed in detail in the paragraphs
that follow. Before proceeding with our detailed discus-
sion, we note that it is possible to invoke XCLUSTERBUILD

with a unified total space budgetB and let the construction
process determine automatically the ratio of structural- to
value-storage budget. One plausible approach, for instance,
would be to perform a binary search in the range of pos-
sible Bstr/Bval ratios, based on the observed estimation
error on a sample workload. This topic, however, is beyond
the scope of our current work and we intend to investigate
it further in our future research.

Reference Synopsis Construction.Our reference synopsis
is essentially a refinement of the losslesscount-stablesum-
mary of the input data [18]. More concretely, each cluster
groups elements that have the same number of children in
any other summary node and is associated with a detailed
content summary that approximates the distribution of ele-
ment values with low error. Moreover, each cluster has ex-
actly one incoming path in order to capture potential path-
to-value correlations. This detailed clustering in our (large)
reference summary obviously provides a very accurate ap-
proximation of the combined structural and value-based dis-
tribution information of the input XML tree. (Due to space
constraints, we defer the complete details for our reference-

synopsis construction to the full paper.)

Structure-Value Merge. The goal of this phase is to com-
press the structure of the computed summary withinBstr

space units while preserving the key correlations between
and across the structural and value-based distribution. To
achieve this, our algorithm applies a sequence of node-
merge operations that are selected based on amarginal
lossesheuristic (line 5): among the candidate operations,
the algorithm selects the mergem that yields the least dis-
tance∆(S,S′) (i.e., loss in accuracy) per unit of saved
storage, that is,m minimizes∆(S,S′)/(|S|str − |S′|str),
whereS′ is the resulting synopsis and|S|str −|S′|str is the
space savings for structural information. In order to reduce
the number of possible operations, our algorithm employs
two key techniques. First, it only considers operations from
a poolCandstr of at mostHm candidate merges, where
Hm is a parameter of the construction process. The pool
is maintained as a priority queue based on marginal gains,
thus making it very efficient to select the most effective op-
eration at each step. Once the top operation is applied, the
algorithm re-configures the queue by computing the new
marginal losses for operations in the neighborhood of the
merged nodes, and continues this process until the size of
Candstr falls below a specific thresholdHl. At that point,
it rebuilds the pool with a new set of candidate operations
(line 9) and begins a new round of cluster merges.

Procedurebuild pool(S , Hm, l)
Input: XCLUSTERS ; Max heap sizeHm; level l
Output: The poolCandstr of candidate merges
begin
1.Candstr := ∅
2.for each (u, v) : u, v ∈ S do
3. if label(u) = label(v) ∧ level(u), level(v) ≤ l then
4. m← (merge operation onu, v)
5. Candstr.push(m)
6. if |Candstr| > Hm then

7. Candstr− =
{

m : m maximizes∆(S,S′)
|S|−|S′|

}

8. endif
9. endif
10.end
11.return Candstr

end

Figure 6. Function build pool.

The second technique concerns the initialization of
the pool with candidate merge operations (function
build pool shown in Figure 6). Clearly, the number of
candidate merges grows quadratically with the number of
synopsis nodes and an exhaustive exploration of all possi-
ble operations may be prohibitively expensive (particularly
during the first steps of the construction process that oper-
ate on the large reference synopsis). To address this issue,
we employ a heuristic that considers merge operations in a

bottom-up-fashion, starting from the leaf nodes of the sum-
mary and gradually moving closer to the root. More con-
cretely, each synopsis node is assigned to alevelbased on
the shortest outgoing path that leads to a leaf descendant.
The key idea is that a merge of two nodes at levell + 1 is
more likely to have a low∆ if their respective children have
been merged at levell (this matches the intuition that two
clusters are similar and hence can be merged if they point
to similar children.) The first initialization of the pool con-
siders merges among nodes at levels 0 (leafs) and 1 (parents
of leafs); when the pool needs to be replenished with new
candidate operations, the algorithm considers merges up to
levelmaxlevel+1, wheremaxlevel is the maximum level
of a newly created node from the previous pool. This heuris-
tic is based again on the same intuition, namely, that merges
at levell may increase the effectiveness of merges at level
l + 1 (that holds the parents of the merged nodes).

Value-Summary Compression.The goal of this stage is to
compress thevalue-distribution informationof the synopsis
within the specified value-storage budget. More concretely,
the algorithm maintains a priority queueCandval that con-
tains the minimum marginal loss value-compression opera-
tion m (Section 4.2) for eachvsumm(u) in the synopsis. To
ensure efficiency, our algorithm only considers candidate
operations for a fixed value ofb (typically, b = 1 in our ex-
periments). Similar to the previous case, the candidate op-
erations are ranked and applied according to their marginal
losses, i.e., the value-structure distance∆(S, S′) between
the current (S) and the updated synopsis (S ’), normalized
by the savings in storage|S| − |S′| (line 20). Once an op-
eration is applied, the algorithm updates the queue with a
new operation for the modified value summaryvsumm(u),
and repeats the process until the specific budget constraint
is met (or, the queue becomes empty.)

5. XCLUSTER Estimation

Our proposed estimation framework is based on an ex-
tension of the estimation algorithm for the structural TREE-
SKETCH synopses. More concretely, XCLUSTER estima-
tion relies on the key concept of a queryembedding, that is,
a mapping from query nodes to synopsis nodes that satisfies
the structural and value-based constraints specified in the
query. As an example, Figure 7 shows the embedding of a
sample query over a given XCLUSTERsynopsis. Each node
is annotated with the query variable that it maps to, while
the edge-counts represent the average number of descen-
dants per source element (we discuss their computation in
the next paragraph). Overall, the set of unique embeddings
provides the possible evaluations ofQ on the underlying
database, and the overall selectivity can thus be approxi-
mated as the sum of individual embedding selectivities.

To estimate the selectivity of an embedding, the

XCLUSTER algorithm employs the stored statistical infor-
mation coupled with a generalized Path-Value Indepen-
dence assumption that essentially de-correlates path distri-
bution from the distribution of value-content. More for-
mally, Path-Value Independence approximates the selec-
tivity of a simple synopsis pathu[p]/c as |u| · σp(u) ·
count(u, c), where the fractionσp(u) can be readily es-
timated from the value summaryvsumm(u). (Note that we
have already hinted at the above formula in our discussion
of the distance metric in Section 4.) Based on this approx-
imation, our estimation algorithm traverses the query em-
bedding and combines edge-counts and predicate selectiv-
ities at each step in order to compute the total number of
binding tuples. Returning to our example, consider nodes
A : q1 andC : q2. Using path-value independence, the num-
ber of descendants inq2 per element inq1 is computed as
count(A, B) · count(B, C) · σC(p) = 10 · 5 · 0.1, assuming
that σC(p) = 0.1 based onvsumm(C). Similarly, the total
descendant count fromA : q1 to E

a : q3 is estimated to be
count(A, Da) · count(Da, Ea) = 10. Hence, each element
in A : q1 will generate10 · 5 = 50 binding tuples as it
will be combined with every descendant in variablesq2 and
q3. Given that the root element inq0 has10 descendants in
A : q1, this will bring the total estimated number of binding
tuples to50 · 10 = 500.

R

10
��

A
10

zzuu
uu

uu
5

��

5
��

??
?

B

5
��

D
a

2
��

3

��
==

==
D

b

4
��C

vsumm(C) E
a

E
b

q0

//A
��

q1
/B/C[p]

����
��

�
//E

��

q2 q3

R : q0

10
��

A : q1

5

{{ww
ww

ww
10

��

C : q2 Ea : q3

(a) (b) (c)

Figure 7. (a) XCLUSTER (b) Query, (c) Embedding.

Clearly, the accuracy of XCLUSTER estimation depends
heavily on the validity of Path-Value Independence with re-
spect to the underlying data. This assumption, however, is
satisfied if element clusters are tight, i.e., they group to-
gether elements that have the same structure and similar
distribution of values. As outlined in Section 4, this is ex-
actly the criterion used by our construction algorithm in or-
der to compress a synopsis within a specific storage budget.
This observation forms the key link between the construc-
tion process and the proposed estimation framework, and
provides an intuitive justification for the effectiveness of our
construction algorithm.

6. Experimental Study

In this section, we present results from an empirical
study that we have conducted using our novel XCLUSTER

synopses over real-life and synthetic XML data sets.

6.1. Methodology

Techniques. We have completed a prototype implemen-
tation of the XCLUSTER model that is outlined in Sec-
tion 3. Our prototype considers the construction of value-
summaries under specific paths of the underlying XML, and
supports histograms, PSTs, and end-biased term histograms
as approximation methods for value distributions.

Data Sets.We use two data sets in our evaluation: a sub-
set of the real-lifeIMDB data set, and theXMark synthetic
benchmark data set. The main characteristics of our data
sets are summarized in Table 6.1. The table lists the size
of the XML document, the number of elements in each
data set, the size of the reference synopsis, and the num-
ber of nodes (total and nodes with value summaries only.)
As mentioned earlier, the reference synopsis contains value
summaries for specific paths only which are provided as in-
put to the construction algorithm. In our experiments, we
included at least one path for each different type of values,
for a total of 7 paths for IMDB and 9 for XMark. In both
data sets, we observe that the reference synopsis is consid-
erably smaller than the input data but may still be too large
for the time and memory constraints of a query optimizer.

Workloads. We evaluate the accuracy of each synopsis on
a workload of random positive twig queries, i.e, queries
with non-zero selectivity. The workload is generated by
sampling twigs from the reference synopsis and attaching
random predicates at nodes with values. (The sampling
of paths and predicates is biased toward high-counts.) Ta-
ble 6.1 summarizes the characteristics of our workloads for
the two data sets. We note that we have also performed ex-
periments with negative workloads, i.e., queries with zero
selectivity. We omit the results as they have shown that
XCLUSTERs consistently yield close to zero estimates for
all space budgets.

Evaluation Metric. We quantify the accuracy of an
XCLUSTERsummary with theaverage absolute relative er-
ror of result estimates over the queries of a workload. Given
a queryq with true result sizec and estimated selectivitye,
the absolute relative error is computed as|c−e|/ max(c, s),
where parameters represents asanity boundthat essen-
tially equates all low counts with a default counts and thus
avoids inordinately high contributions from low-count path
expressions. Following previous studies [17, 18], we set this
bound to the10-percentile of the true counts in the work-
load (i.e., 90% of the path expressions in the workload have
a true result size≥ s).

6.2. Experimental Results
In this section, we present the results of our experi-

mental study for evaluating the effectiveness of our novel

File Size
(MB)

Elements
Ref. Size

(KB)
Nodes: Value/Total

IMDB 7.1 236822 473448 2037 / 3800
XMark 10 206130 890745 3593 / 16446

Avg. Result Size
Struct Pred

IMDB 6727 123
XMark 286341 1005

Table 1. Data Set Characteristics. Table 2. Workload Charac teristics.

XCLUSTER summaries. In all the experiments that we
present, we vary the structural summarization budget from
0KB to 50KB while keeping the value summarization bud-
get fixed at 150KB. (Hence, the total summary size varies
from 150KB to 200KB). We have empirically verified that
these settings provide a good balance between structural
and value-based summarization for the two data sets that
we have used. As we have discussed in Section 4, the au-
tomated allocation of a total space budget remains an in-
teresting problem that we intend to investigate further in
our future research. We note that a structural space bud-
get of 0KB represents the smallest possible structural sum-
mary that clusters elements based solely on their tags. In
all experiments, we set the maximum and minimum size of
the candidate merge pool toHm = 10000 andHl = 5000
respectively.

Figure 8 shows the average estimation error as a function
of the structural budget size, for the two data sets IMDB and
XMark. For each data set, the plot depicts the overall esti-
mation error (Overall), the estimation error for queries with
predicates on different types of value content (Numeric,
Text, String), and queries without predicates (Struct). We
discuss these results in more detail below.

Overall Estimation Error. Overall, the results indicate
that our novel XCLUSTERs synopses constitute a very ef-
fective technique for estimating the selectivity of complex
twig queries over structured XML content. For both IMDB
and XMark, the overall estimation error falls below 10%
for a modest total budget of 200KB, which represents a tiny
fraction of the original data set size (Table 6.1). This level
of performance is very promising, considering the complex-
ity of our workload: multi-variable twig queries, with value
predicates on different types of XML content. We also ob-
serve that the final error is considerably lower than the start-
ing error of the smallest structural summary (73% for IMDB
and 63% for XMark), which clearly demonstrates the ef-
fectiveness of our novel structure-value clustering metric in
capturing the key correlations between the path and value
distribution of the underlying data.

Estimation Error for Value Predicates. The estimation
error for individual classes of value predicates follows the
same decreasing trend as the previous case, demonstrating
again the effectiveness of our summarization mechanism.
A notable exception is the considerably increased error of
more than 50% for queries with TEXT predicates over the

XMark data set. This result, however, is an artifact of
our test workload on XMark. More concretely, the XMark
TEXT predicates have very low selectivities, thus leading to
an artificially high relative error even though the absolute
error is low. To verify this, Figure 9 lists the average abso-
lute error for low-count queries over the two data sets, when
the synopsis size is fixed at 200KB. (A query is included in
these results if its true selectivity is below the sanity bound
s.) As the results indicate, TEXT queries on XMark have an
average absolute error of 1.09 tuples per query, which, com-
bined with the average true selectivity of 3 tuples, yields the
artificially high relative error.

Another interesting point concerns the estimation error
for numeric predicates in the IMDB data set. More con-
cretely, we observe an increase in the average error when
the structural storage budget is varied from 35KB to 40KB.
In this case, the compressed structure in the 35KB synop-
sis effectively leads to a lower number of nodes with nu-
meric values, that are however assigned the same budget
of 150KB for value-based summarization. This essentially
results in an increased number of buckets per numeric his-
togram, thus yielding lower estimation errors for the smaller
synopsis.

Error for Structural Queries. Finally, it is interesting
to note the effectiveness of our novel localized clustering
metric in the structural summarization of XML data. For
both data sets, the estimation error for structural queriesre-
mains well below 5% for modest structural budgets (10KB–
50KB), and is comparable to the original TREESKETCH

summaries [18] that target specifically the structural sum-
marization problem. Moreover, the results indicate that our
localized∆ metric is equally effective to theglobal TREE-
SKETCH clustering metric, which quantifies the differences
between successive compression steps based on a count-
stable summary and hence requires repeated accesses to the
(potentially large) reference synopsis.

7. Conclusions

The accurate summarization of XML data with heteroge-
neous value content remains a critical problem in the effec-
tive optimization of real-world XML queries. In this pa-
per, we propose the novel class of XCLUSTER synopses
that enable selectivity estimates for complex twig queries
with predicates on numeric (range queries), string (sub-
string queries), and textual content (IR queries). We de-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 150 160 170 180 190 200

A
v
g
.

R
e
l

E
r
r
o
r

(
%
)

Synopsis Size (KB)

Text
String
Numeric
Struct
Overall

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 150 160 170 180 190 200

A
v
g
.

R
e
l

E
r
r
o
r

(
%
)

Synopsis Size (KB)

Text
String
Numeric
Struct
Overall

(a) (b)

Avg. Absolute Error
IMDB XMark

Numeric 0.015 0
String 5.12 0.5
Text 0.18 1.09

Figure 8. XCLUSTER relative estimation error for complex twig

queries: (a) IMDB, (b) XMark.

Figure 9. Absolute estimation error for low-

count queries: (a) IMDB, (b) XMark.

fine the XCLUSTER model and develop a systematic con-
struction algorithm for building accurate summaries within
a specific space budget. Our results on real-life and syn-
thetic data sets verify the effectiveness of our approach.

References
[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Esti-

mating the Selectivity of XML Path Expressions for Internet
Scale Applications. InVLDB, 2001.

[2] S.Amer-Yahia, C.Botev, S.Buxton, P. Case, J. Doerne, D.
McBeath, M. Rys, and J. Shanmugasundaram. XQuery 1.0
and XPath 2.0 Full-Text. W3C Working Draft.

[3] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleX-
Path: Flexible Structure and Full-Text Querying for XML.
In ACM SIGMOD, 2004.

[4] R. Baeza-Yates and B. Ribeiro-Neto.“Modern Information
Retrieval”. ACM Press, Addison-Wesley Publishing Com-
pany, 1999.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
“Syntactic Clustering of the Web”. InWWW, 1997.

[6] S. Chaudhuri and V. Ganti and L. Gravano. Selectivity Esti-
mation for String Predicates: Overcoming the Underestima-
tion Problem. InICDE, 2004.

[7] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrish-
nan, R. Ng, and D. Srivastava. Counting Twig Matches in a
Tree. InICDE, 2001.

[8] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: A se-
mantic search engine for xml. InVLDB, pages 45–56, 2003.

[9] M Franz and J. S. McCarley. How Many Bits are Needed to
Store Term Frequencies?. InSIGIR, 2002.

[10] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon.
StatiX: Making XML Count. InACM SIGMOD, 2002.

[11] H. Jagadish, R. T. Ng, and D. Srivastava. Substring Selectiv-
ity Estimation. InPODS, 1999.

[12] X. He and D. Cai and H. Liu and W.Y. Ma. Locality preserv-
ing indexing for document representation. InSIGIR, 2004.

[13] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr.
XPathLearner: An On-Line Self-Tuning Markov Histogram
for XML Path Selectivity Estimation. InVLDB, 2002.

[14] L. Lim, M. Wang, J. Vitter. CXHist : An On-line
Classification-Based Histogram for XML String Selectivity
Estimation. InVLDB, 2005 (To appear).

[15] R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Se-
shadri. Efficient sampling strategies for relational database
operations.Theoretical Comput. Sci., 116(1 & 2), 1993.

[16] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based His-
tograms for Selectivity Estimation. InACM SIGMOD, 1998.

[17] N. Polyzotis and M. Garofalakis. Structure and Value Syn-
opses for XML Data Graphs. InVLDB, 2002.

[18] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate
XML Query Answers. InACM SIGMOD, 2004.

[19] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity
Estimation for XML Twigs. InICDE, 2004.

[20] V. Poosala and Y. E. Ioannidis. Selectivity EstimationWith-
out the Attribute Value Independence Assumption. InVLDB,
1997.

[21] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Im-
proved Histograms for Selectivity Estimation of Range Pred-
icates. InACM SIGMOD, 1996.

[22] C. M. Procopiuc.Geometric Techniques for Clustering: The-
ory and Practice. PhD thesis, Duke Univ., 2001.

[23] T Sakai and K Sparck-Jones. Generic summaries for index-
ing in information retrieval. InSIGIR, 2001.

[24] J. S. Vitter and M. Wang. Approximate Computation of Mul-
tidimensional Aggregates of Sparse Data Using Wavelets. In
ACM SIGMOD, 1999.

[25] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Containment Join
Size Estimation: Models and Methods. InACM SIGMOD,
2003.

[26] Y. Wu, J. M. Patel, and H. Jagadish. Estimating Answer
Sizes for XML Queries. InEDBT’02, 2002.

[27] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Ef-
ficient Data Clustering Method for Very Large Databases. In
ACM SIGMOD, 1996.

