Streaming Algorithms for Robust, Real-Time Detection of DDoS

Attacks

Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, Krishan Sabnani
Bell Labs, Lucent Technologies

{sganguly, minos, rastogi, kks}@bell—labs .com

November 29, 2006

Abstract

Effective mechanisms for detecting and thwarting Distributed Denial-of-Service (DDoS) attacks are becoming in-
creasingly important to the success of today’s Internet as a viable commercial and business tool. Most earlier work
on the DDoS-detection problem has typically focused on either off-line analyses of DDoS-attack measurements or on
techniques targeting a small number of potential victim destinations; unfortunately, such mechanisms are not useful for
detecting possible DDoS activity in real time over large ISP networks, where the number of packet destinations to moni-
tor can easily rise to several millions. In this paper, we propose novel data-streaming algorithms for the robust, real-time
detection of DDoS activity in large ISP networks. The key element of our solution is a new, hash-based synopsis data
structure for network-data streams that allows us to efficiently track, in guaranteed small space and time, destination IP
addresses in the underlying network that are “large” with respect to the number of distinct source IP addresses that have
established potentially-malicious (e.g., “half-open”) connections to them. Our work is the first to address the problem
of efficiently tracking the top distinct-source frequencies over a general stream of updates (insertions and deletions) to
the set of underlying network flows, thus enabling us to effectively distinguish between DDoS activity and flash crowds.

Preliminary experimental results verify the effectiveness of our approach.

Keywords: Data-streaming algorithms, top-k frequencies, denial-of-Service attacks, IP networks, real-time systems.
Technical area: Data management.

Corresponding author’s email: rastogi @bell-labs.com.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are sources of mass disruption in today’s Internet. Unlike typical security
threats aiming to penetrate security perimeters to steal information, DDoS attacks paralyze Internet systems by swamping
network servers, links, and devices (e.g., routers, firewalls) with bogus traffic. A DDoS attack typically directs hundreds
or even thousands of compromised “zombie” hosts against a single victim. These zombie hosts are unwittingly recruited
from amongst the millions of unprotected computers connected to the Internet and implanted with malicious “sleeper”
code awaiting for the command to launch a massive DDoS attack. With a large enough legion of zombie hosts, the
volume of such an attack can be astounding.

Packet-flooding attacks that rely on directing large numbers of packets to a specific victim destination are probably
one of the most common forms of DDoS attacks. A packet flood can comprise either seemingly legitimate TCP, UDP,
or [ICMP packets in volumes large enough to overwhelm network devices and servers, or deliberately incomplete packets
designed to rapidly consume all available computational resources at the server. Most such attacks also make use of
spoofed source IP addresses in the packets; that is, they forge the IP address that supposedly generated the request (e.g.,
using a randomly-chosen address) in order to elude source identification. As a more concrete DDoS scenario, consider the
case of a TCP-SYN-flooding attack [3]. During such attacks, the attacking host(s) send a flood of (seemingly legitimate)
SYN messages with spoofed source IP addresses to establish a TCP connection with the victim server system. The victim
responds with a SYN-ACK message but, since the source IP address in the original packet was spoofed, the final step
in establishing the TCP connection (i.e., an ACK message from the client) is never sent to the victim. This sequence
essentially creates a “half-open” TCP connection at the victim server. Now, the server needs to maintain a finite-size,
in-memory data structure describing all pending connections. By intentionally creating a persistent, large number of
half-open connections with a continual flood of spoofed SYN packets, this data structure can be made to overflow. This,
in turn, causes the server to reject any incoming legitimate connection requests for the duration of the attack and, in some
cases, can force the server to exhaust its memory, crash, or be rendered otherwise inoperative [3].

Prior Work. The impact of successful DDoS attacks is severe and widespread. Compromised server performance can
result in Service-Level-Agreement (SLA) violations, frustrated customers, and cumulative losses that can easily mount
to millions or even billions of dollars for large corporations [1]. As a result, the problem of effectively detecting and
mitigating DDoS activity has received a lot of interest from several recent research as well as commercial efforts. The
bulk of this earlier work has typically concentrated on either off-line analysis trying to infer some interesting patterns of
DDoS activity after the fact, or simple filtering and statistical techniques that try to identify traffic anomalies for a small

number of suspected victim destinations or suspicious sources [4, 26, 20, 27, 21, 29]. Clearly, off-line techniques are

not very useful for on-line, real-time DDoS detection. Similarly, techniques that rely on monitoring traffic patterns for
specific source/destination addresses are impossible to scale when it comes to detecting DDoS activity over the network
of a large Internet Service Provider (ISP) — even for a single router in the ISP’s backbone, the set of potential addresses
to monitor can easily rise to millions, and maintaining per-address state quickly becomes infeasible. Scalability issues
also plague the approaches in [31, 11, 34, 30] because they require a certain amount of memory to be allocated for each
distinct source-destination pair [31], each source [11], or each flow [34, 30].

Estan and Varghese [10] have suggested DoS-detection algorithms that operate with small-space and small-time
guarantees in a data-streaming fashion [16]; that is, they operate by looking at the stream of packets only once (in the
fixed order of arrival) and guarantee a small memory footprint (much smaller than the domain of distinct addresses)
and low processing time per packet. In a nutshell, their algorithms employ ideas based on sampling [17, 25] and hash-
based filtering [6] to identify (with high probability) large flows (i.e., flows occupying more than a certain fraction of the
monitored network link). Still, it is unclear whether identifying large flows is a robust indicator of DDoS activity. As an
example, in the TCP-SYN-flooding scenario described earlier in this section, it is easy to see that none of the malicious,
half-open TCP flows will be large since no data packets are ever exchanged. An additional concern with such “large-
flow” techniques is that, by tracking only the volume of flow traffic, they make it impossible to distinguish between DDoS
attacks and flash crowds representing an unexpected surge of legitimate requests to a server due to an important event
(e.g., the 9/11 terrorist attack in the U.S.). The recent proposal of Akella et al. [4] also suffers from similar limitations
and may fail to detect DDoS attacks, since it relies on maintaining profiles (e.g., total number of bytes, number of distinct
source prefixes sending traffic) only for so-called popular destinations, whose traffic exceeds a certain threshold.

Wang et al. [36] have proposed a SYN-flood detection mechanism that relies on monitoring the difference between
the aggregate number of TCP SYN and FIN/RST packets at a leaf router, and employing statistical (i.e., Sequential
Change Point Detection) techniques to detect abrupt changes (potentially indicating a SYN-flooding attack). Their al-
gorithms must be run on individual first- or last-mile routers, and cannot be used to detect signs of distributed attacks
(or, identify potential victims) in large ISP networks; furthermore, their statistical change-detection techniques are, in a
sense, complementary to the results and tools presented in this paper. Krishnamurthy et al. [23] explore sketch-based
methods to detect significant changes in massive data streams with a large number of flows.

For scalable detection of attacks like TCP-SYN-flooding or various port scans in high-speed networks, [22, 15]
maintain multiple parallel hash tables with bucket counters to keep track of sources/destinations that hash into each
bucket. The idea is that if a destination (or source) hashes into buckets with large counters in all the hash tables, then

there is a good chance that the destination is being attacked. [24] discusses new types of hard-to-detect DoS attacks

based on low-rate traffic patterns that exploit TCP’s retransmission time-out mechanism. Recently, to limit DoS attack
traffic, there have been proposals based on a capability-based architecture [35], and encouraging “good” clients to send
more traffic, thereby crowding out the “bad” ones [33]. However, none of the above papers considers new streaming
algorithms (with provable guarantees) for detecting DDoS attack scenarios in real time.

The recent work of Venkataraman et al. [32] is most closely related to our work. It proposes streaming algorithms

for identifying k-superspreaders, sources that connect to more than k distinct destinations for a given threshold k. We
provide a more detailed comparison after describing our approach below.
Our Contributions. In this paper, we consider the problem of robust, real-time detection of DDoS activity over large
ISP networks. The key element of our approach is a novel data-streaming algorithm for efficiently tracking, in guaranteed
small space and time, destination IP addresses that are “large” with respect to the number of distinct source IP addresses
that access them. We believe that such a distinct-source frequency metric for a destination IP address provides a very
robust indicator of potential DDoS activity targeted at the destination — this is clearly the case for the TCP-SYN-flooding
attack scenario described earlier or any other DDoS attack employing source IP-address spoofing. We propose new
data streaming algorithms and synopsis data structures for effectively tracking the top-k destinations with respect to the
distinct-source frequency metric over a large ISP network. Our techniques rely on simple, hash-based sketch synopses
of the stream of IP packets with small memory footprint and a guaranteed small (i.e., logarithmic) number of simple
maintenance operations per packet.

Furthermore, our tracking algorithms can readily handle deletions in the data stream, which provides us with a very
effective way of distinguishing between malicious flows (which should be accounted for in our frequency counting) and
legitimate flows (which should be ignored). The idea here is that flows that have been established as legitimate, for
example, by client sources returning an ACK packet to the server in the SYN-flooding scenario, should be removed from
our synopses, since our primary goal for SYN-flood detection is to estimate the number of distinct source IP addresses
with half-open TCP connections. Thus, by effectively handling deletions as well as insertions in the input data stream,
our techniques provide an effective mechanism for distinguishing between flash crowds and SYN-flooding attacks. To
the best of our knowledge, our work is the first to address the problem of efficiently tracking the top-k distinct frequencies
over a stream of updates (i.e., insertions and deletions), and explore its application in the context of DDoS detection'.
More concretely, our contributions can be summarized as follows.
¢ Novel, Small Update Time Stream Synopsis for Estimating Top Distinct Frequencies. We propose a novel hash-

based synopsis data structure, the Distinct-Count Sketch, for estimating the top-k distinct-source frequencies. A distinct-

1Our top-k distinct frequencies tracking algorithms can also be used to identify hosts that contact many distinct destinations during port scans

(mostly for worm propagation).

count sketch imposes a small space overhead, and can be efficiently maintained by performing a guaranteed small (i.e.,
logarithmic) number of simple hash operations per element in the stream. Furthermore, unlike earlier distinct-count
estimation techniques (e.g., the distinct samples of Gibbons et al. [18, 19], or the cascaded summaries of Cormode and
Muthukrishnan [8] for multigraph streams), our distinct-count sketch synopsis can readily handle deletions in the stream,
making it ideal for real-time detection of DDoS-attack scenarios like TCP-SYN-flooding. Also, our top-k problem
is different from the k-superspreaders problem [32] whose objective is to identify sources that connect to more than
k distinct destinations for a given threshold k. Our problem, on the other hand, seeks to find the top-%k destinations
connected to the most distinct sources. Thus, in our setting, users are not required to specify threshold values on the
number of distinct connections for a source/destination which can be difficult to determine in practice. Further, our
distinct-count sketch synopsis is novel, and is designed to be able to quickly estimate the top distinct frequencies in the
presence of stream deletions.
e Continuous-Tracking Algorithm for Top-£ Distinct-Frequency Destinations. We develop the first known streaming
algorithms for continuously tracking the top-k destinations with the largest distinct frequencies. As with our basic
distinct-count sketches, our Tracking Distinct-Count Sketch synopses incur a small (logarithmic) number of steps to
process each streaming update. Furthermore, at any given point in the stream, our tracking algorithms are able to produce,
in guaranteed logarithmic time, an approximate set of top-k destinations (and, corresponding distinct frequencies) that
is provably close (with high probability) to the actual top-k set. > Consequently, our tracking algorithms can be readily
deployed to monitor large ISP networks transiting large volumes of IP packet data.
¢ Experimental Results Validating our Approach. We present the results of an experimental study that demonstrate
the effectiveness of our tracking algorithms for estimating the top-k frequencies. Specifically, our results indicate that
even with a very small distinct-count sketch (whose size is only a small fraction of the complete information needed to
exactly capture the distinct-source frequencies), we are able to estimate the large frequencies with low relative errors.
Furthermore, our tracking algorithms are extremely fast, incurring only a few tens of microseconds to process each stream
update.

Due to space constraints, some of our theoretical results are presented here without proof. All the details can be found

in the full version of this paper [14].

2This is in sharp contrast with earlier work on hash-based sketches for update streams [13] which cannot guarantee small update or

query-tracking times.

2 System Model and Problem Formulation

In this section, we describe our general stream-processing architecture for detecting DDoS activity in a large ISP network

and formally define the DDoS-detection problem addressed in this paper.

" Flow-Update Stream Synopsis—Maintenance
N 7 Algorithm

DDoS T Flow-Update Stream L
Monitor | ™ ! T Y MEMORY
~ A _ . Top—k Synopsis
PR N Flow-Update Stream p Data Stracture
- A A
, .
, -

7
| \
\ \
\ \

1

1
1 .
.. Approximate Top—k e

/ \ RN Destinations & Frequencies -~

ISP Network

Figure 1: Update-Stream Processing Architecture.

Stream-Processing Model. The key elements of our stream-processing architecture for DDoS detection are depicted in
Figure 1. In a nutshell, our DDOS MONITOR box monitors flow information in the underlying network by observing
a (collection of) continuous streams of flow updates from various elements in the underlying ISP network. Each such
flow update can be abstracted as a triple of the form (source, dest, +1), where: (1) (source, dest) is a source-destination
IP address pair, interpreted as an indicator of a flow connection from source to dest, and (2) =1 denotes the net change
in the frequency of potentially-malicious (source, dest) flows. For example, in the SYN-flooding scenario described in
Section 1, the original SYN packet from source to dest appears with a “+1” in the flow-update stream (i.e., insertion),
whereas the corresponding ACK packet establishing the legitimacy of the TCP connection would appear as a “-1” flow-
update triple (i.e., deletion). Note that such input flow-update streams to our DDOS MONITOR can be generated using a
variety of network-monitoring tools, e.g., by deploying Cisco’s NetFlow tool [2] or AT&T’s recently-proposed GigaScope
probe [9] to monitor egress-flow traffic (and corresponding TCP flags) for routers at the edge of the ISP network. Finally,
even though our DDOS MONITOR tool is depicted outside the network in Figure 1, our proposed techniques are fairly
lightweight in terms of both memory footprints and processing times, making them also suitable for deployment inside
the network; for example, to monitor the packet streams seen at an ISP-backbone router for signs of DDoS activity.

Without loss of generality, we assume that each (source or destination) IP address in the input flow-update stream(s)

Symbol Semantics

(u,v) Generic source-destination IP address pair

m (m?2) Size of integer domain for IP addresses (resp., IP address pairs)

n Total number of elements in the stream(s)

fo (Distinct-source) frequency of destination v

Vl,...,Vk Current top-k destinations wrt frequency

U = ZZ So; Total number of distinct source-destination address pairs in the streams

Table 1: Notation.

takes values in the integer domain [m] = {0, ..., m — 1}, so each (source, dest) address pair takes values in the integers
[m?] (e.g., by concatenating the two addresses in the pair). We also let n denote an upper bound on the total size (i.e.,
number of update tuples) in the input streams. (Table 1 summarizes some of the key notational conventions used in the
paper.) Given the volume of flow-update streams in large ISP networks (e.g., AT&T’s IP backbone alone generates 500
GBytes of NetFlow data per day [9]) and the need for real-time reaction to DDoS attacks, our DDOS MONITOR tool
needs to operate in a streaming fashion [16] — that is, it is only allowed to see the flow-update tuples only once, in the
fixed order of arrival from the network, and explicit backtracking (i.e., access to past tuples) over the update stream is
impossible. Abstractly, our DDOS MONITOR aims to identify (in real-time) destination IP addresses that are potentially
under a DDoS attack based on the observed flow-update streams. Given the scale of large ISP networks, an important
design goal for our DDOS MONITOR is that it cannot maintain state for each source-destination in the network; clearly,

maintaining a potential 264

counters would make our solution far too heavyweight in terms of both space and update
time. Instead, we allow our DDOS MONITOR only a certain amount of memory (typically, significantly smaller than m
and n), which is used to maintain a concise synopsis of the input flow-update stream(s) (Figure 1). The key constraints
imposed on our stream synopsis are that: (1) it is significantly smaller than the number of distinct addresses in the
network (e.g., its size is logarithmic or poly-logarithmic in m); (2) it can be easily maintained in small (i.e., logarithmic
or poly-logarithmic) time per update tuple during a single pass over the update stream in the (fixed) order of arrival; and,
(3) it continuously tracks the quantities of interest, i.e., it can readily provide an answer to our DDoS query at any point
during the stream.

Problem Formulation. The key goal of our DDOS MONITOR tool is to track (in small space/time) over the flow-update
stream(s) the top-k destination IP addresses in the network with respect to the number of distinct source IP addresses
that have established potentially-malicious (e.g., half-open) TCP connections to them. More formally, in our flow-update

stream setting described above, given a destination IP address v in the underlying network, we define the distinct-source

frequency of v (denoted by f,) as the number of distinct source addresses u for which the net number of occurrences

of the (u,v) source-destination pair in the input update streams is positive; that is, f, = [{u : OCCUR(u, v, +1) >
OCCUR (u, v, —1)}|, where OCCUR(t) denotes the number of times the update tuple ¢ is seen in the input stream(s). As
already discussed in Section 1, such a distinct-source frequency metric can provide a fairly robust indicator of DDoS
activity (e.g., in a SYN-flooding scenario), and the “largest” destinations in the underlying network are clearly the most
likely victims of such activity. Thus, by continuously tracking the top-k distinct-source frequency destinations over the
stream of flow updates, our DDOS MONITOR can readily identify (in real time) signs of potential DDoS activity in the
network (e.g., by comparing against “baseline” profiles of network activity created over longer periods of time). 3 To
simplify the discussion, we often refer to “distinct-source frequency” simply as “frequency” in the remainder of this
paper.

Without loss of generality, assume that the list of destination addresses in the underlying network is v1, va, ...
with destinations sorted with respect to the frequency metric, i.e., fi,, > fy, > Given a target number k£ of most
frequent destinations in the update stream, our goal is to continuously track the top-k destinations vy, ..., v and their
corresponding frequencies f,, , ..., fu,. Note, of course, that the actual list of top-k destination addresses as well as their
frequencies can vary throughout the duration of the input stream(s); more generally, all the symbols defined in Table 1
and used in our analysis are defined, at any given point in time, with respect to the stream of updates seen thus far.
Strong lower-bound results exist even for simple variants of our tracking problem. For example, Alon et al. [5] show that
any algorithm for tracking the most popular (i.e., most-frequently occurring) address in an (insert-only) stream to within
constant relative error with constant proability requires 2(m) space*. Thus, in this paper, we focus on the following
(approximate) variant of the top-k destination-tracking problem for which our techniques can achieve significant space

savings, and guaranteed small update and query times.

TRACKAPPROXTOPK(S, k, ¢, 9)

e Input: Flow-update stream(s) S, number of desired top-frequency elements &, desired relative error € and proba-
bilistic confidence ¢ in the frequency estimates.

e Output: Continuously track a list L of k destination IP addresses from S such that, at any point in the stream, we
are guaranteed that with probability of at least 1 — 4:

1. Any destination address v € L has frequency f, > (1 — €) f,, ; and,

2. For any destination v € L, the relative error in our frequency estimate fv is at most €, i.e.,
Pr[|fv—fu| gefv] >1-3.

In other words, our approximate top-k tracking algorithm guarantees that (with high probability) only destinations

with frequencies very close to f,, are actually output (Clause 1); furthermore, all the output destination frequency

3Even though our discussion here focuses on top-k tracking, our techniques and results also easily extend to the problem of tracking all destinations

v with f, > 7, for some fixed threshold 7.
4The asymptotic notation f(n) = (g(n)) is equivalent to g(n) = O(f(n)). Similarly, the notation f(n) = ©(g(n)) means that functions f(n)

and g(n) are asymptotically equal (to within constant factors); in other words, f(n) = O(g(n)) and g(n) = O(f(n)) [7].

estimates are within a relative error of ¢ with probability > 1 — 0 (i.e., (¢, §)-estimates) of their true values (Clause 2).

3 The Distinct-Count Sketch Synopsis for Flow-Update Streams

In this section, we present our basic, novel stream-synopsis data structure (termed Distinct-Count Sketch) and the algo-
rithm for maintaining a distinct-count sketch over continuous streams of flow updates.

The Distinct-Count Sketch Data Structure. Our distinct-count sketch synopsis is a non-trivial generalization of the ba-
sic bit-vector hash structure proposed by Flajolet and Martin for the simple problem of distinct-value estimation [12]. A
distinct-count sketch employs a randomly-chosen hash function A that (as in [12]) maps the domain of source-destination
address-pair values [m?] onto a logarithmic range {0, ..., ©(logm)} of buckets with exponentially-decreasing probabil-
ities. Thatis, h : [m?] — {0, ..., ©(logm)}, with Pr [h(z) =[] = 1/2!! for any x € [m?] — thus, we expect 1/2 of the
distinct values in [m?] mapping to bucket 0, 1/4 mapping to bucket 1, and so on.> For each partition of the [m?] domain
corresponding to such a (first-level) hash bucket, we maintain an array of r (second-level) hash tables; foreach: = 1,.. .,
r, the i*" second-level hash table comprises s buckets and employs a randomizing hash function g; (the same across all
first-level buckets) that maps [m?] uniformly onto [s] (i.e., g; : [m?] — [s]) for mapping elements of the first-level parti-
tion onto second-level hash buckets. Here, the g; hash functions are assumed to be mutually independent (e.g., defined
using independently-chosen random seeds); also, note that the values of the parameters r and s defining the number and
size, respectively, of the inner hash tables are fixed later (based on our analysis). Finally, each second-level hash bucket
in our distinct-count sketch maintains a small (logarithmic-size) count signature for the (multi)set of source-destination
pairs that are mapped onto this bucket.

The second-level hash buckets are essentially needed to ensure that our synopsis structure is resilient to deletes. In
addition to keeping track of the number of source-destination pairs that map to each bucket, the count signatures in
the buckets also help to (1) detect collisions (that is, instances when multiple elements hash to the same bucket), and
(2) identify the source-destination pair mapping to a bucket in case there no collision. The count signature maintained
for each second-level hash bucket is basically an array of logm? + 1 = 2logm + 1 counters (each of size O(logn)),

comprising two parts: (a) one total element count, which tracks the net total number of source-destination pairs that map

onto the bucket; and, (b) 2log m bit-location counts, which track, for each j = 1, ..., 2logm, the net total number of

5Such a hash function k can be easily implemented using a function f that randomizes values of [m?] uniformly over [m?*] (where
k is a small constant, e.g., k = 2, used to guarantee that the mapping over [m>*] is injective with high probability), combined with the
LSB operator that returns the least-significant 1 bit in a binary string. Simply defining h(z) = LSB(f(x)) gives a hash function with

the desired properties [12].

source-destination pairs (u, v) € [m?] with BIT;(u,v) = 1 that map onto the bucket (where, BIT; (u, v) denotes the value
of the 5" bit in the binary representation of the (u,v) source-destination pair). Conceptually, a distinct-count sketch
synopsis can be seen as a four-dimensional array X of size © (logm)x rx sx (2logm+1) = rx sx ©(log? m), where

each entry X[, j, k,1] is a source-destination pair counter of size ©(logn) corresponding to the [*?

count-signature
location of the k*" second-level hash bucket in hash table number j for the i*" first-level hash bucket. (Note that the total
space requirement of a distinct-count sketch is O(rs log® mlog n).) By convention, we assume that, for a given second-
level hash bucket (i, j, k), X[i, j, k, 0] is always the total source-destination pair count, whereas the bit-location counts

are located at X[i, j, k, 1], ..., X[i, j, k,2logm]. The structure of our distinct-count sketch synopsis for flow-update

streams is pictorially depicted in Figure 2.

_---» total element count

7 S] .
©(logm [—>E——>‘counto ‘ count; | e o e ‘ count210q4
g 1(uyV) [| e e - T ST !
] bit-location counts
b]
- H\r hash -
h(u,v) tables I
.
[]
S[]
g (uy)]
_; ,‘counto ‘countl ¢ o @ ‘count21og,4
~ 1]
0

Figure 2: Our Distinct-Count Sketch Update-Stream Synopsis.

Maintenance. The algorithm for maintaining a distinct-count sketch synopsis X’ over (one or more) streams of flow up-
dates is fairly straightforward. The sketch structure is first initialized to all zeros and, for each incoming update (u, v, £1),
the element counters at the appropriate locations of the X’ sketch are updated. More specifically, for each second-level
hash table j = 1,..., r of the first-level hash bucket identified by h(u,v), we simply set X[h(u,v), j, g;(u,v),0] :=
X[h(u,v), j, g;(u,v),0] £ 1 to update the total count in the corresponding second-level hash bucket and, for each | =
1,..., 2logm such that BIT;(u,v) = 1, we set X[h(u,v), j, g;(u,v),l] := X[h(u,v),], gj(u,v),l] £ 1 to update the

appropriate bit-location counts in the bucket. Note here that our distinct-count sketch synopsis is essentially impervious

10

to delete operations; in other words, the sketch obtained at the end of an update stream is identical to a sketch that never
sees the deleted items in the stream. Also, it is easy to see that the maintenance time per streaming flow update for a

distinct-count sketch is only O(r log m).

4 Top-k Frequency Estimation using a Distinct-Count Sketch

In this section, we present our baseline estimation procedure for approximating the top-k distinct-source frequencies over
a set of flow-update streams using a distinct-count sketch synopsis, along with a detailed analysis of its space/accuracy
guarantees. More specifically, assume a distinct-count sketch X maintained over the input flow-update stream(s) (Fig-
ure 1), as described in Section 3. Our baseline estimator for the top-k distinct-source frequencies (and corresponding
destination addresses), termed BaseTopk, is depicted in Figure 3. In a nutshell, the main idea in our estimator is to
employ the distinct-count sketch synopsis to build an (appropriately-sized) distinct sample of the observed active source-
destination pairs. Unlike traditional random sampling, a distinct sample is essentially a uniform random sample col-
lected over the distinct values of the underlying domain, thus enabling accurate estimation for quantities with set (i.e.,
frequency-independent) semantics (like our distinct-source frequencies); see, for example, [18, 19].° Once such a distinct
sample (dSample) is available, our top-k estimation process is fairly straightforward: the destinations with the k highest
occurrence frequencies in dSample are identified, and are returned with their frequencies appropriately scaled by the
distinct-sampling rate (Steps 8-9).

Building the distinct sample (dSample) of source-destination pairs from X proceeds iteratively, starting from the
topmost first-level hash bucket of X and dropping to lower buckets until dSample reaches a desired size (Steps 1-6).
More specifically, our target size for dSample is O(s) (Step 3), where, of course, s denotes the number of second-level
hash buckets in X’ (Section 3). (Our analysis shows that this target sample size is always reached with high probability.)
At each bucket level b, our estimator uses the GetdSample(X', b) procedure to extract a new set of sample points from
the current bucket and add these points to the running dSample (Step 4).

The pseudo-code for our GetdSample procedure is shown in Figure 4. The key idea here is to employ the second-
level hash tables and count signatures in our distinct-count sketch synopsis in order to identify (the binary signatures of)
specific source-destination address pairs that have mapped onto the specified first-level bucket b; these pairs comprise
our output distinct sample from this bucket. To identify such pairs, our GetdSample procedure essentially iterates over

all second-level hash buckets (4, k) for bucket b, using the count-signature information to discover second-level buckets

%In a sense, our distinct-count sketch synopsis can be seen as a distinct-sampling technique that, unlike the earlier methods of

Gibbons et al. [18, 19], is completely delete-resistant.

11

Procedure BaseTopk(X, ¢)

Input: Distinct-Count Sketch synopsis &X' over input stream(s), relative accuracy parameter e.
Output: Approximate top-k destinations and corresponding distinct-source frequencies.
begin

1. b:=index of topmost first-level hash bucket of X /1'b=0(logm)
2. dSample := ¢
3. while (b > 0 and |dSample| < (1 + €)s/16) do {
4. dSample := dSampleU GetdSample(X’, b)
5. bi=b-1
6. }

7

8

9

./l dSample = distinct sample of source-dest (u, v) pairs

. letws, ..., v be the k destinations with the highest occurrence frequencies (say, fy, ..., fy,) in dSample
. return {< v;, 2° - f5 >: 1<i<k}
end

Figure 3: Baseline Top-k Estimator using a Distinct-Count Sketch.

that are singletons (i.e., contain only a single distinct source-destination pair) (Steps 2—6). The key here is that, based
on our count-signature structure, a second-level bucket is a singleton iff for each bit-locationl = 1, ..., 2logm, the
corresponding bit-location count is either zero (i.e., X[b, j, k,!] = 0, implying only pairs with a 0 bit in that location)
or equal to the total element count (i.e., X[b, j, k,I] = XI[b, j, k, 0], implying only pairs with a 1 bit in that location).
Furthermore, this allows us to trivially identify the (binary signature of the) unique address pair in a singleton bucket.
Procedure ReturnSingleton (also depicted in Figure 4) basically implements this logic to identify and return an address
pair from a singleton second-level bucket, and return null in the case of an empty bucket or if there is a collision (i.e.,
> 2 address pairs map onto the bucket).

Analysis. Deriving the analytical space/accuracy guarantees for our BaseTopk estimation procedure relies on a couple
of interesting observations regarding our distinct-count sketch synopsis structure X'. (Throughout our analysis, we use
r and s to denote the number and size, respectively, of the inner hash tables for each first-level bucket in X.) First,
recall (from Section 3) that the expected number of source-destination address pairs in a first-level hash bucket drops
exponentially with the bucket index (i.e., Pr[h(z) =[] = 1/2!*! for any = € [m?]). Thus, we typically expect to find
only few distinct address pairs in the higher first-level bucket indexes which, of course, also implies that pairs in such
buckets are unlikely to collide in the corresponding second-level hash tables. Second, even for first-level buckets in
our sketch where the number of distinct mapped address pairs is ©(s) (i.e., our target distinct-sample size), the second-
level randomization of these pairs across several, independently-built hash tables each with s buckets, implies that each
such pair appears as a singleton in some second-level bucket (and, thus, is recovered in our distinct sample) with high

probability. Finally, the above two observations coupled with the fact that our distinct-sampling procedure proceeds top-

12

Procedure GetdSample(X',b)

Input: Distinct-Count Sketch X, first-level bucket index b.

Output: Distinct sample ds of source-destination pairs from bucket b.
begin

1. ds:=¢

2. for j:=1tordo

3. fork:=1tosdo{

4 (u, v) := ReturnSingleton(X, b, j, k)

5. if ((u,v) # null) then ds :=ds U {(u,v)}
6. }

7. return ds

end

Procedure ReturnSingleton(X,b, j, k)

Input: Distinct-Count Sketch X, index triple (b, j, k) specifying a second-level hash bucket X'[b, j, k,] in X.

Output: (Binary signature of) the single source-destination pair in X'[b, j, k, | if that bucket is a singleton; null, otherwise.
begin

1. if (X[b,7,k,0] =0) return null // bucket is empty

2. forl:=1to2logmdo {

3 if (X[b,7,k, 1] = X[b,j,k, 0]) then set BIT; (u,v) :=1

4. elseif (X[b,7,k,1] =0)then set BIT;(u,v) :=0
5. else return null /I collision: > 2 pairs in the bucket
6. }
7. return (u,v)

end

Figure 4: Computing a Distinct Sample from a First-Level Bucket.

down across the first-level buckets of X' imply that we reach our O(s) target sample size with high probability; then, a
simple application of Chernoff bounds [28] (with an appropriate setting for s) gives us the space/accuracy guarantees for
our BaseTopk estimator. In the remainder of this section, we formalize and prove the above informal claims. To simplify
the exposition, we often abstract away the detailed constants from our analysis using ©-notation; the exact constants can
be easily worked out and are quite small for all practical purposes.

Let U =). fo, denote the total number of distinct source-destination address pairs with positive net frequency
in our input flow-update streams S. Furthermore, given a first-level bucket index b, let u; denote the number of such
distinct address pairs mapping onto first-level buckets with indexes > b, and let ds; be the distinct sample collected by

our estimator from first-level buckets with indexes > b. Note that u; is a random variable with expectation

1 1 U
E[Ub]=U-<W+W+“-)=§,

since the probability of each distinct pair mapping to the I*" first-level bucket in X" is 1/2!*! (Section 3). Then, by

Chernoff bounds, we have that Pr [|ub - 2%| > eQ—U,,] < 2exp(— ;2—2[],,), or, equivalently,

13

Pr{|ub—g|<e£}>1—§, it > e(-E). (0

Our first lemma formalizes our earlier claim, showing that, if the number of elements mapped to bucket indexes > b
is at most s/2, then our distinct-sampling procedure recovers all these elements with high probability as long as there are
r = O(log(n/d)) independent inner hash tables. This is because each element appears as a singleton in a second-level
hash bucket with constant (1/2) probability, and over r = ©(log(n/J)) second-level hash tables, this probability grows

to 1 — &/n. Thus, every element is included in the sample with high probability.
Lemma 4.1 Ler r = ©(log(n/0)) and assume that up < s/2. Then, Pr[|dsy| = up] > 1 — 4. |

Our second lemma now demonstrates that the stopping condition requiring a ©(s) distinct sample in our BaseTopk

estimator (Step 3) is satisfied with high probability at a first-level bucket index b such that 2% € (15, 1)-

Lemmad4.2 Let e < 1/3, r = ©(log(n/d)), and s > %‘;gm)/‘s). Also, let b be the highest bucket index such that

up > %. Then, with probability at least 1 — 6, (a) s/16 < 2% < s/4, and (b) |dsp| = up. |

We are now in a position to demonstrate our main analytical result stating the key accuracy/space guarantees for
the frequency estimates returned by our BaseTopk estimator. Given a destination IP address v, let f; denote the oc-
currence frequency of destination v in the distinct sample collected by our BaseTopk procedure, and let b denote the
first-level bucket index at which the distinct-sampling loop of BaseTopk terminates — note that the estimates fv returned

by BaseTopk are simply f, = 2" - f¢ (Figure 3).

Lemma 4.3 Lete < 1/3,r = O(logn/d), and s > 16'10g((”;1;)g ™)/ " Then, each frequency estimate f, computed

€2 fu,

by our BaseTopk procedure satisfies: | fo — fo| < emax{fy, fu, }, with probability > 1 — @(%) |

rooj: emma 4.2, we know that (witl 1 robabilit the stoppin ucket index satisfies - > s and,
P By L 4.2, we know that (with high probability) the stopping bucket index b satisfies & > 5/16 and

furthermore, all pairs mapped onto buckets > b make it in our distinct sample (i.e., |dsy| = up). Fix a destination v with

frequency f,. Since distinct IP address pairs map onto buckets with index > b with probability 1/2°, we know that the

random variable f; (i.e., the occurrence frequency of destination v in our distinct sample) has expectation

_ fv

B =L > fu-s N fv log((n +logm)/d)

2 =16-U = f,, 2

(using the assumed lower bound on s). Thus, by Chernoff bounds, our frequency estimate fAU =20 . 5 satisfies

fou

|fv_fv|S <€ fv

) 'fv < e'max{fvyka}a

14

with probability > 1 — %. This completes the proof. [|

Finally, Theorem 4.4 follows directly from Lemma 4.3 and concludes our analysis by identifying the space and
update/query-time requirements under which our BaseTopk estimator returns robust (¢, §)-approximations for the top-k

destinations.

Theorem 4.4 Ler ¢ < 1/3. Procedure BaseTopk returns a list of (¢,0) frequency estimates satisfying Clauses (1,2)

of our TRACKAPPROXTOPK problem, using a distinct-count sketch synopsis X with a total space requirement of

U log((n+logm)/é)
fu, €2

O(rslog® mlogn), where r = O(log %) and s = O). The update time for X (per streaming flow

update) is O(r log m), whereas the query time (to recover the top-k destinations) is O(rslog® m). |

5 Time-Efficient Top-% Tracking

Our basic distinct-count sketch synopsis and BaseTopk estimator, while efficient in terms of space usage and update time
for processing stream updates, can incur a high overhead for producing the top-k frequency estimates and corresponding
destination addresses. By Theorem 4.4, the top-k query time for a distinct-count sketch is O(rs log? m) where, even
though r is logarithmic in n, s can be fairly large (in the order of %@/&) and, clearly, not poly-logarithmic in n, m.
Thus, while our baseline distinct-count sketch estimation scheme may prove useful in environments with rapid stream
updates and relatively-infrequent top-k estimation queries, it is not an effective tracking solution — its high query-time
requirements render it unsuitable for environments that require the top-k destinations to be continuously tracked either
for every single update or for every constant (small) number of updates.

In this section, we propose an effective tracking solution for our TRACKAPPROXTOPK problem based on an enhance-
ment of our basic distinct-count sketch stream synopsis, termed a Tracking Distinct-Count Sketch (or, Tracking-DCS, for
short). In a nutshell, the key idea behind our Tracking-DCS synopsis and top-k tracking scheme is to incrementally
maintain the underlying distinct sample and corresponding destination occurrence frequencies over the stream of flow
updates, rather than having to re-compute everything from the distinct-count sketch on every top-k estimation (as in
BaseTopk). Our Tracking-DCS-based top-k estimation algorithm offers guaranteed poly-logarithmic update and query
times, while increasing the overall storage space by only a small constant factor over our baseline distinct-count sketch
Synopsis.

The Tracking Distinct-Count Sketch Data Structure. Compared to a basic distinct-count sketch (Figure 2), a Tracking-
DCS basically maintains some additional information for each bucket in the first-level hash table. More specifically, for

each first-level bucket b, in addition to the r independent s-bucket second-level hash tables and count signatures, a

15

/ S
@(logm o . ‘counto count;| e e o |counts g,
g v, -
— e =
bl o r hash | L
\ tables g (uyv)
h(u,v) 1] -
E g Counto count; | @ o e | countyiog
1]
o0 cou
i
‘ numSingletons(b) ‘
~ singletons(b) topDestHeap(b)
0

Figure 5: Our Tracking Distinct-Count Sketch Synopsis.

Tracking-DCS also stores:

1. The current set singletons(b) of singleton (source, destination) address pairs in bucket b (note, of course, that these

pairs are exactly the distinct sample contributed by bucket b);

2. A counter numSingletons(b) recording the current number of singleton (source, destination) address pairs in bucket

b (i.e., numSingletons(b) = |singletons(b)|); and,

3. A heap topDestHeap(b) containing all destinations v appearing in singleton address pairs in the distinct sample col-
lected from first-level buckets > b (i.e., U;>,singletons(1)). topDestHeap(b) is organized as a max-heap according
to the occurrence frequency f2 of destination v in the distinct sample U;>psingletons(l), that is, f5 = |{(s,d) €

Ui>psingletons(l) : d = v}|.

Each entry in the singletons(b) set comprises a (singleton) address pair (u,v) in bucket b and a count recording
the number of second-level hash tables where (u,v) appears as a singleton. The interface to the singletons(b) set data
structure supports three key operations: (1) getCount(u,v): Returns the count for the (u,v) pair in singletons(b) (or,
zero if the (u, v) ¢ singletons(b)); (2) incrCount(u, v): Increments the count for the (u, v) pair in singletons(b) (inserting

that pair with a count of 1 if it is not already there); and, (3) decrCount(u, v): Decrements the count for the (u, v) pair

16

in singletons(b) (deleting the (u,v) entry if its count drops to zero). The key observation here is that, by virtue of the
second-level structures in a distinct-count sketch, the number of observed singleton pairs in a first-level bucket is at most
r - s. Thus, a simple way of implementing singletons(b) is using a hash-table structure (on source-destination pairs)
with ©(rs) entries — this also allows us to implement each of the above interface operations for the singletons(b) set in
O(1) (expected) time. Similarly, note that the number of entries in each topDestHeap(b) data structure is at most r - s-
O(logm). Thus, it is easy to see that the space overhead of a Tracking-DCS is only a small constant factor over that
of a basic distinct-count sketch synopsis (for the same r, s parameters). The structure of our Tracking-DCS synopsis is

depicted in Figure 5.

Procedure UpdateTracking(7X, (u, v, A))
Input: Tracking Distinct-Count Sketch synopsis 7" over input stream(s),
source-destination pair (u,v) with update action A = %1 (insert or delete).
Output: Updated Tracking Distinct-Count Sketch synopsis 7:X.
begin
1. b:=h(u,v)
2.if (A =+1) then // insertion of the (u, v) address pair
3. forj:=1tordo{
4 if (bucket g, (u, v) is a singleton and the address pair in g; (u,v) is (v, v’) # (u,v)) then
5 { // bucket g;(u,v) no longer a singleton
6. decrCount(singletons(b), (u’, v"))
7 if (getCount(singletons(b), (u’,v’)) = 0) then
8 { /1 (&,v") no longer in singletons(b) — update singleton counter and destination heaps

9. numSingletons(b) := numSingletons(b) —1

10. for [:= b downto O do

11. find entry for destination v’ in topDestHeap(1), update frequency f2, := f2, —1, and adjust the heap
12. }

3.}

14. else if (bucket g;(u,v) is empty) then
15. { //bucket g;(u,v) is a new singleton bucket

16. incrCount(singletons(d), (u, v))

17. if (getCount(singletons(b), (u,v)) = 1) then

18. { // new singleton occurrence — update counter, heaps

19. numSingletons(b) := numSingletons(b) +1

20. for [:== b downto O do

21. find entry for destination v in topDestHeap(l) (or, create one with f; = 0 if not already there),
update frequency f; := f; +1, and adjust the heap

22. }

23, }

24. insert (u,v) in the count signature for bucket g;(u, v)

25. } /1 for

26else if (A =—1)then // deletion of the (u,v) address pair
27. /! symmetric to the insertion case —
// possible second-level bucket transitions of interest: (non-singleton — singleton) and (singleton — empty).
28. ...
end

Figure 6: Updating a Tracking Distinct-Count Sketch Synopsis.

17

Maintenance. The algorithm for maintaining a Tracking-DCS synopsis 7ZX over stream(s) of flow updates is slightly
more complicated than that for a basic distinct-count sketch. The added complexity, of course, comes from maintaining
the additional information in each first-level hash bucket up-to-date; as we will see, however, this extra complexity has
little effect on the worst-case update time which remains small.

Our procedure for processing each streaming flow update over a Tracking-DCS synopsis ZX is depicted in Figure 6.
Briefly, for every stream update (u,v, A = +1), our UpdateTracking procedure finds the appropriate first-level bucket
b = h(u,v) and updates the count signatures for each corresponding second-level bucket g;(u,v), 7 = 1,..., r (as
in the case of a basic distinct-count sketch). Furthermore, for each of these r count-signature updates, UpdateTracking
also keeps track of the status of the current distinct sample in bucket b (i.e., the singletons(b) set) as well as the cor-
responding singletons’ counter (numSingletons(b)) and destination max-heaps (topDestHeap). Consider the case of an
insertion of the (u,v) pair (A = +1). This insertion can cause a second-level bucket g; (u, v) to transition from singleton
to non-singleton (i.e., > 2 bucket elements) (Steps 4-14), or from empty to singleton (Steps 15-24). (Other possible
bucket transitions can have no effect on the distinct sample collected from bucket b.) In each case, the count for the af-
fected singleton address pair in singletons(b) is appropriately updated and, in the case that the singleton is either deleted
from (Steps 7-13) or newly-inserted in (Steps 18-23) singletons(b), the numSingletons(b) counter is adjusted and the
topDestHeap(!) structures for all first-level buckets | < b are updated to reflect the new frequency for the destination in
the affected pair. The procedure for the case of a deletion (A = —1) is completely symmetric to the insertion case, and
not shown in detail in Figure 6; of course, in this case, the second-level bucket transitions of interest are non-singleton to
singleton and singleton to empty.

In terms of update-time complexity, note that all the extra operations for maintaining the added distinct-sample
tracking information in a Tracking-DCS have O(1) time complexity, with the sole exception of the b + 1 = O(log m)
topDestHeap adjustments which, since there can clearly be no more than m distinct destinations, can be done in
O(log? m) time. (Updating the count-signature information (Step 23), as described in Section 3, is an O(logm) op-
eration.) Thus, the (worst-case) maintenance time per streaming flow update for our Tracking-DCS synopsis is only
O(rlog?m).

Top-k Estimation. Incrementally maintaining the distinct-sample information in each first-level bucket of a Tracking-
DCS (as described above), makes the estimation procedure for recovering the (approximate) top-k frequencies (and
corresponding destination addresses) very simple. Our top-k tracking procedure, termed TrackTopk (depicted in Fig-

ure 7), essentially mimics the logic of our baseline BaseTopk estimator while exploiting (a) the per-bucket numSingletons

18

Procedure TrackTopk(ZX, ¢)

Input: Tracking Distinct-Count Sketch synopsis 72X’ over input stream(s), relative accuracy parameter .
Output: Approximate top-k destinations and corresponding distinct-source frequencies.

begin

1. // find the right distinct-sample inference level

2. b :=index of topmost first-level hash bucket of 7X /1'b=0(logm)

3. sampleSize :=0

4. while (b > 0 and sampleSize < (1 + €)s/16) do {

5. sampleSize := sampleSize +numSingletons(b)

6. b:=b—-1

7.}

8. // find top-k destinations using the heap at bucket level b
9.fori:=1tokdo {

10. // remove current maximum sample frequency

11. <, f;, > :=deleteMax(topDestHeap(b))

12}

13// scale obtained sample frequencies by 2°

ldreturn {< v; , 2°- f5 >: 1<i<k}

end

Figure 7: Tracking Top-k Destinations using a Tracking-DCS.

counters to quickly infer the correct sample-inference level b (Steps 1-7), and (b) the topDestHeap structure in the cho-
sen first-level bucket b to quickly recover the top-k destinations (without re-building the distinct sample from scratch)
(Steps 8-12). Since each deleteMax heap operation (Step 11) for recovering the destination with the maximum occurrence
frequency in the distinct sample has a time cost of at most O(log m), it is easy to see that the overall time complexity of
our TrackTopk procedure for recovering the top-k destination frequencies is only O(k logm).

Theorem 5.1 summarizes the results of our analysis, identifying the space and update/query-time requirements for
our tracking TrackTopk estimation procedure; the proof follows easily from Theorem 4.4 and our earlier discussion in this

section.

Theorem 5.1 Ler ¢ < 1/3. Procedure TrackTopk returns a list of (¢,0) frequency estimates satisfying Clauses (1,2)

of our TRACKAPPROXTOPK problem, using a distinct-count sketch synopsis TX with a total space requirement of

O(rslog® mlogn), where r = O(log 5)and s = G(M). The update time for TX (per streaming flow
update) is O(r log? m), whereas the query time (o recover the top-k destinations) is O(klogm). |

We summarize the (worst-case) space/time requirements for our two proposed families of Distinct-Count Sketch

synopses (Basic and Tracking) in Table 2.

19

Basic DCS

Tracking DCS

Space

Ulog® 2 log? m
@(g 5 log

)

@(U10g3 %logzm)

ka €2 ka €2
Update Time | O(log % logm) O(log % log? m)
2 n 2
Query Time O(w) O(klogm)

fuoy €2

Table 2: Basic vs. Tracking Distinct-Count Sketch.

6 Experimental Study

memory, running Redhat Linux 7.2.

major findings of our study can be summarized as follows.

6.1 Experimental Testbed and Methodology

20

In this section, we present preliminary results from an experimental study that we have conducted to verify the effective-

ness of our sketching synopses and techniques for tracking the top-k destination frequencies in small space/time. The

o Effective Stream Summarization for Top-% Distinct-Source Frequency Queries. By maintaining small distinct-
count sketch synopses over the stream(s) of flow updates our estimation algorithms are able to recover the top-k
destinations (and, corresponding distinct-source frequencies) quite accurately. More specifically, using a distinct-
count sketch summary whose size is only a small fraction of the total number U of distinct source-destination

address pairs in the stream, we are able to answer top-k frequency queries with high recall and low relative estima-

Small Synopsis Update and Top-k Query Times. Both our basic and tracking distinct-count sketch maintenance
algorithms incur a small processing overhead per stream update that is of the order of a few tens of microseconds.
Furthermore, our Tracking-DCS synopses can handle continuous top-k query tracking with minimal overhead,

whereas the performance of the basic distinct-count sketch can suffer for high query frequencies.

Thus, our experimental results validate our approach, demonstrating that our proposed distinct-count sketch synopses
are indeed viable, effective tools for detecting destinations in large ISP networks that may be under a DDoS attack (in

real time). All experiments reported in this paper were run on a 1GHz Intel Pentium-III machine with 256MB of main

Stream-Synopsis Implementation. We implemented both the Basic and the Tracking versions of our distinct-count
sketch stream synopses and top-k estimation algorithms (described in Sections 3-5). We varied the two key parameters

of our implemented distinct-count sketch synopses, namely the number of inner hash tables and the number of buckets

per inner hash table s between 3—4 and 64-256, respectively. The default values used in the bulk of our experimental runs
were = 3 and s = 128; the numbers reported below are indicative of the results obtained for other parameter settings.
Data Sets. We employed a synthetic data generator based on Zipfian frequency distributions [37] (with various levels
of skew) to produce our stream of source-destination address-pair updates. Our update-stream generation process is
characterized by three key parameters: the total number of distinct source-destination IP-address pairs U, the number of
distinct destinations d, and the Zipfian skew parameter z that determines the distribution of distinct source IP addresses
in our input stream across the d distinct destinations. We varied the U parameter between 2 - 105-16 - 10°, the d
parameter between 103-10°, and the z parameter between 1 (moderate skew) and 2.5 (extreme skew). We believe that
such moderate-to-high frequency-skew values are indicative of real-life DDoS attack scenarios, where a large part of the
total “mass” of observed pairs U is concentrated to only a few of the d distinct destination addresses in the underlying
ISP network. The default parameter settings used in most of our experiments were U = 8 - 10% and d = 5 - 10%; once
again, qualitatively similar numbers were obtained for other settings.

Distinct-Count Sketch Synopsis Space Requirements. Assuming the default number of distinct source-destination
pairs U = 8 - 105, the number of non-empty first-level hash buckets in our constructed distinct-count sketch synopses
is approximately equal to 23 — this is because 8 - 105 ~ 223 and the probability of a pair mapping to level i drops
exponentially with ¢ (Section 3). Thus, since each count-signature array maintains (64 + 1) = 65 integer counters
(each 4 bytes long), and assuming our default distinct-count sketch parameter values of » = 3 and s = 128, the total
space requirements (in bytes) of our Basic distinct-count sketch synopsis in this setting are 23x 3x 128x 65X 4 =
2.3MB. With its extra data structures, the Tracking version of our distinct-count sketch increases this space requirement
by a factor of about two, yielding a total synopsis size of approximately 4.6MB. On the other hand, note that a naive,
“brute-force” scheme for maintaining distinct-source frequencies over a stream of flow updates with U = 8 - 10° distinct
source-destination pairs would require approximately 96MB of space. This is essentially the space needed to store the
source and destination IP addresses (4 bytes per address) as well as frequency counts (4 bytes per count) for the observed
8 million source-destination pairs. Thus, our sketching techniques offer storage-space benefits of well over an order of
magnitude in this setting.

Of course, the space benefits of our distinct-count sketch synopses become much more impressive as the number of
distinct pairs U grows. For example, when U is increased from 8-106 to 109 = 23°, the space requirements of our sketches
grow by a factor of about 30/23 = 1.3 (i.e., approximately 30 instead of 23 non-empty first-level buckets), yielding a
total size of about 6MB for a Tracking Distinct-Count Sketch. In contrast, the space needed to store all of U (and

corresponding frequency counters) explodes by a factor of 23° /223 = 128 for a total space requirement of over 12GB,

21

giving our sketches a storage gain of over three orders of magnitude! Coupled with the observed small update/query
times and the excellent result accuracy of our sketches for top-k queries, the above analysis clearly demonstrates the
effectiveness of our solution for real-time tracking of DDoS activity over massive ISP networks.

Performance Metrics. We employed two key metrics to gauge the effectiveness of our sketch-based estimation tech-
niques for top-k queries. The first metric is the top-k recall defined as the fraction of the true top-k destinations in the
approximate top-k result returned by our estimators based on the distinct-count sketch synopsis (for various values of
k). The second metric is the average relative error in the distinct-source frequency estimates fq, returned by our esti-

|fo—fol

mators for the true top-k destinations v found in the approximate answer; that is, the quantity » 7 where R

vER

denotes the “recall set” for the top-k query (|R| < k). (Note, of course, that these accuracy numbers are independent
of the specific version (i.e., Basic or Tracking) of distinct-count sketch used.) Finally, to gauge the effectiveness of our
techniques in dealing with high-speed data streams, we measured the processing time per stream update for both Basic
and Tracking distinct-count sketch synopses in top-k tracking environments with different mixes of stream updates and
top-k queries. To account for the randomness in our techniques, all numbers reported below represent averages over 5

runs of our algorithms with different random seeds.

8M Distinct Pairs, 50K Distinct Destinations, r =3, s = 128 8M Distinct Pairs, 50K Distinct Destinations, r = 3, s = 128
1
1 A, - - 2=10 ——
Koy S z=15 = BB EBa
= ’ T T e G 081 z=20 = 1
T 08 S 1 o z=25 =
[$] ;g/ =+ - Keeeixg 2
fo} =} - * een =
< o » S o6t oo d
> 06F z=10 . « &
§ z=15 = o ~
z=2.0 * B |
X 04t z=25 -5 o o 04
g ®
C g
0.2] o 02r
<
0 . 0
0 5 10 15 20 0
k k

Figure 8: Top-k Estimation Accuracy Results: (a) Top-k Query Recall. (b) Average Relative Error in Top-k Frequencies.

6.2 Experimental Results

Top-k Estimation Accuracy. Figures 8(a,b) depict the top-£ recall and average relative error numbers obtained with
our estimation algorithms (as a function of k), using distinct-count sketch synopses (with the default parameters of
r = 3 and s = 128) over a stream of flow updates with 8 million distinct source-destination pairs and 50, 000 distinct

destinations for different values of the Zipfian skew parameter z. Clearly, our sketching-based estimators are able to

22

correctly identify the top few destinations in the update stream with remarkable accuracy; for example, the recall for the
top-k destinations with k£ < 5 is almost always 100% for all skew values z. (The observed dips in recall are basically
due to our estimators occasionally reversing the order of neighboring top-k elements.) As expected, for larger values of
k the recall of our approximate top-k results drops but still remains reasonably high; for example, for all skew values
z < 2.0, our estimators retrieve more than 86% of the top-k destinations for all £ < 10, and more than 73% for k& < 15.
The drop in top-k recall is obviously much more dramatic for the extreme skew parameter value of z = 2.5; this is
natural since, with such extreme skew, more than 95% of the distinct-source frequency mass is concentrated in the top-5
destinations (which are typically correctly identified by our estimators), with remaining destinations having significantly
smaller observed frequencies.

Similar trends can be observed in the average relative error plots of Figure 8(b): the relative error of the approximate
frequencies returned by our distinct-count sketch algorithms is less than 17% for the top-5 destinations (for all skew
values z) and, for z < 2.0, the estimation error is upper-bounded by 25% and 34% for the top-10 and top-15 destinations,
respectively. Once again, as expected, the increase in frequency estimation error with larger values of & is much more

dramatic for extreme skew values.

4M Stream Updates, r =3, s = 128

300 Y Y Y Y |

8

2

& 250 |

E

2 200 | |

pe)

o

)

5 190 BasicDCS —+— -

2 Tracking DCS ——»—

»

5 100 |

[oN

[0]

£

= 50F 1 1 : 1 .
0 0.0005 0.001 00015 0.002 0.0025

Max-Query Frequency

Figure 9: Per-Update Processing Times (in psec).

Processing-Time Overheads. We found the update algorithms for both our Basic and Tracking distinct-count sketch
synopses to be extremely fast, typically taking between 40—60 microseconds (usecs) to process each stream update. (We
believe that further optimizations in our code can reduce these numbers even further.) To differentiate between Basic and

Tracking sketches and demonstrate the effectiveness of our Tracking distinct-count sketch in continuously tracking the

23

top-k frequencies, we employed a stream of max (i.e., top-1) queries in parallel with the stream of flow updates, varying
the query-occurrence frequency (i.e., the max-element tracking frequency) in the stream. Figure 9 depicts the observed
average processing time per update for a stream of 4 million flow updates as the max-query frequency is varied between
0 (i.e., no queries) and 0.0025 (i.e., one max-query for every 400 stream updates). For a stream of pure updates (query
frequency = 0) both Basic and Tracking sketches spend about 55-56 psecs per update; as the query frequency grows,
however, the observed average times per-update for the Tracking distinct-count sketch remain approximately constant,
whereas the corresponding times for the Basic distinct-count sketch show a dramatic increase (due to its significantly

more expensive BaseTopk estimator) reaching about 290 usecs (for query frequency = 0.0025).

7 Conclusions

We have proposed novel data-streaming algorithms for the robust, real-time detection of DDoS activity in large ISP
networks. The key to our solution lies in new synopsis data structures that allow us to efficiently track (in guaranteed
small space and time) the top distinct-source frequencies over a general stream of updates to the set of underlying
network flows. Our experimental study has demonstrated the effectiveness of our approach, showing that our algorithms

accurately track large distinct frequencies in small space and guaranteed small update/query time.

References

[1] “Defeating DDoS Attacks”. Riverhead Networks White Paper (http://www.riverhead.com/).

[2] “NetFlow Services and Applications”. Cisco Systems White Paper (http://www.cisco.com/), 1999.

[3] “CERT Advisory CA-1996-21: TCP SYN Flooding and IP Spoofing Attacks”. (http://www.cert.org/), Nov. 2000.

[4] A. Akella, A. Bharambe, M. Reiter, and S. Seshan. “Detecting DDoS Attacks on ISP Networks”. In MPDS, June 2003.

[5] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approximating the Frequency Moments”. In ACM STOC, 1996.
[6] B. H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Errors”. Comm. of the ACM, 13(7), July 1970.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. “Introduction to Algorithms”. MIT Press, 1990.

[8] G. Cormode, and S. Muthukrishnan. “Space Efficient Mining of Multigraph Streams”. In ACM PODS, 2005.

[9] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. “Gigascope: A Stream Database for Network Applications”. In ACM
SIGMOD, June 2003.

[10] C. Estan and G. Varghese. “New Directions in Traffic Measurement and Accounting”. In ACM SIGCOMM, Aug. 2002.

[11] C.Estan, G. Varghese, and M. Fisk. “Bitmap Algorithms for Counting Active Flows on High-Speed Links”. In ACM SIGCOMM
Internet Measurement Workshop, 2003.

[12] P.Flajolet and G. N. Martin. “Probabilistic Counting Algorithms for Data Base Applications”. Journal of Computer and Systems
Sciences, 31:182-209, 1985.

[13] S. Ganguly, M. Garofalakis, and R. Rastogi. “Processing Set Expressions over Continuous Update Streams”. In ACM SIGMOD,
2003.

[14] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. “Streaming Algorithms for Robust, Real-Time Detection of DDoS
Attacks”. Bell Labs Tech. Memo.

24

[15] Y. Gao, Z. Li, and Y. Chen. “A DoS Resilient Flow-Level Intrusion Detection Approach for High-Speed Networks”. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2004.

[16] M. Garofalakis, J. Gehrke, and R. Rastogi. “Querying and Mining Data Streams: You Only Get One Look”. Tutorial in VLDB,
2002.

[17] P. B. Gibbons and Y. Matias. “New Sampling-Based Summary Statistics for Improving Approximate Query Answers”. In ACM
SIGMOD, June 1998.

[18] P. B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports”. In VLDB, Sep.
2001.

[19] P. B. Gibbons and S. Tirthapura. “Estimating Simple Functions on the Union of Data Streams”. In ACM SPAA, July 2001.

[20] A.Hussain, J. Heidemann, and C. Papadopoulos. “A Framework for Classifying Denial-of-Service Attacks”. InACM SIGCOMM,
2003.

[21] J. Jung, B. Krishnamurthy, and M. Rabinovich. “Flash Crowds and Denial of Service Attacks: Characterization and Implications
for CDNs and Web Sites”. In WWW, May 2002.

[22] R. Kompella, S. Singh, and G. Varghese. “On Scalable Attack Detection in the Network”. In ACM SIGCOMM IMC, 2004.

[23] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. “Sketch-Based Change Detection: Methods, Evaluation, and Applications”.
In ACM SIGCOMM IMC, 2003.

[24] A. Kuzmanovic and E. Knightly. “Low-Rate TCP-Targeted Denial-of-Service Attacks”. In ACM SIGCOMM, 2003.
[25] G. S. Manku and R. Motwani. “Approximate Frequency Counts over Data Streams”. In VLDB, Aug. 2002.
[26] D. Moore, G. M. Voelker, and S. Savage. “Inferring Internet Denial-of-Service Activity”. In USENIX, 2001.

[27] D. Moore, C. Sharon, D. Brown, G. M. Voelker, and S. Savage. “Inferring Internet Denial-of-Service Activity”. In ACM TOCS,
2006.

[28] R. Motwani and P. Raghavan. “Randomized Algorithms”. Cambridge University Press, 1995.

[29] V. Paxson. “An Analysis of Using Reflectors for Distributed Denial-of-Service Attacks”. In SIGCOMM Computer Comm.
Review, 31(3), July 2001.

[30] V. Paxson. “Bro: A System for Detecting Network Intruders in Real-time”. In Computer Networks, 31(23-24), Dec 1999.
[31] M. Roesch. “Snort - Lightweight Intrusion Detection for Networks”. In USENIX, 1999.

[32] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. “New Streaming Algorithms for Superspreader Detection”. In Network
and Distributed System Security Symposium NDSS, 2005.

[33] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker “DDoS Defense by Offense”. In ACM SIGCOMM, 2006.
[34] N. Weaver, S. Staniford, and V. Paxson. “Very Fast Containment of Scanning Worms”. In USENIX, 2004.

[35] X. Yang, D. Weatherall, and T. Anderson. “A DoS-Limiting Network Architecture”. In ACM SIGCOMM, 2005.

[36] H. Wang, D. Zhang, and K. G. Shin. “Detecting SYN Flooding Attacks”. In IEEE INFOCOM, June 2002.

[37] G. K. Zipf. “Human Behavior and the Principle of Least Effort — An Introduction to Human Ecology”. Addison-Wesley Press,
1949.

25

