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ABSTRACT
While a variety of lossy compression schemes have been developed for cer-
tain forms of digital data (e.g., images, audio, video), the area of lossy
compression techniques for arbitrary data tables has been left relatively un-
explored. Nevertheless, such techniques are clearly motivated by the ever-
increasing data collection rates of modern enterprises and the need for ef-
fective, guaranteed-quality approximate answers to queries over massive
relational data sets.
In this paper, we propose ������������ , a system that takes advantage of at-
tribute semantics and data-mining models to perform lossy compression of
massive data tables. ������������ is based on the novel idea of exploiting
predictive data correlations and prescribed error-tolerance constraints for
individual attributes to construct concise and accurate Classification and
Regression Tree (CaRT) models for entire columns of a table. More pre-
cisely, ������������ selects a certain subset of attributes (referred to as
predicted attributes) for which no values are explicitly stored in the com-
pressed table; instead, concise error-constrained CaRTs that predict these
values (within the prescribed error tolerances) are maintained. To restrict
the huge search space of possible CaRT predictors, ������������ uses a
Bayesian network structure to guide the selection of CaRT models that min-
imize the overall storage requirement, based on the prediction and material-
ization costs for each attribute. ������������ ’s CaRT-building algorithms
employ novel integrated pruning strategies that take advantage of the given
error constraints on individual attributes to minimize the computational ef-
fort involved. Our experimentation with several real-life data sets offers
convincing evidence of the effectiveness of ������������ ’s model-based
approach – ������������ is able to consistently yield substantially better
compression ratios than existing semantic or syntactic compression tools
(e.g., gzip) while utilizing only small samples of the data for model infer-
ence.

1. INTRODUCTION
Effective exploratory analysis of massive, high-dimensional tables
of alphanumeric data is a ubiquitous requirement for a variety of
application environments, including corporate data warehouses, net-
work traffic monitoring, and large socioeconomic or demographic
surveys. For example, large telecommunication providers typi-
cally generate and store records of information, termed “Call-Detail
Records” (CDRs), for every phone call carried over their network.
A typical CDR is a fixed-length record structure comprising several
hundred bytes of data that capture information on various (categor-
ical and numerical) attributes of each call; this includes network-
level information (e.g., endpoint exchanges), time-stamp informa-
tion (e.g., call start and end times), and billing information (e.g.,
applied tariffs), among others [4]. These CDRs are stored in ta-
bles that can grow to truly massive sizes, in the order of several
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TeraBytes per year. Similar massive tables are also generated from
network-monitoring tools that gather switch- and router-level traf-
fic data, such as SNMP/RMON probes [19] and Cisco’s NetFlow
measurement tools [1]. Such tools typically collect traffic infor-
mation for each network element at fine granularities (e.g., at the
level of packet flows between source-destination pairs), giving rise
to massive volumes of table data over time. These massive tables
of network traffic and CDR data are continuously explored and
analyzed to produce the “knowledge” that enables key network-
management tasks, including application and user profiling, proac-
tive and reactive resource management, traffic engineering, and
capacity planning, as well as providing and verifying Quality-of-
Service guarantees for end users.
Traditionally, data compression issues arise naturally in applica-
tions dealing with massive data sets, and effective solutions are
crucial for optimizing the usage of critical system resources, like
storage space and I/O bandwidth (for storing and accessing the
data) and network bandwidth (for transferring the data across sites).
In mobile-computing applications, for instance, clients are usually
disconnected and, therefore, often need to download data for offline
use. These clients may use low-bandwidth wireless connections
and can be palmtop computers or handheld devices with severe
storage constraints. Thus, for efficient data transfer and client-side
resource conservation, the relevant data needs to be compressed.
Several statistical and dictionary-based compression methods have
been proposed for text corpora and multimedia data, some of which
(e.g., Lempel-Ziv or Huffman) yield provably optimal asymptotic
performance in terms of certain ergodic properties of the data source.
These methods, however, fail to provide adequate solutions for
compressing a massive data table, as they view the table as a large
byte string and do not account for the complex dependency patterns
in the table.
Compared to conventional compression methods for text or mul-
timedia data, effectively compressing massive data tables presents
a host of novel challenges due to several distinct characteristics of
table data sets and their analysis.� Approximate (Lossy) Compression. Due to the exploratory na-
ture of many data-analysis applications, there are several scenarios
in which an exact answer may not be required, and analysts may
in fact prefer a fast, approximate answer, as long as the system
can guarantee that user-prescribed constraints on the approxima-
tion error are met. For example, during a drill-down query se-
quence in ad-hoc data mining, initial queries in the sequence fre-
quently have the sole purpose of determining the truly interesting
queries and regions of the data table. Providing (reasonably accu-
rate) approximate answers to these initial queries gives analysts the
ability to focus their explorations quickly and effectively, without
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consuming inordinate amounts of valuable system resources. Thus,
in contrast to traditional lossless data compression, the compres-
sion of massive tables can often afford to be lossy, as long as some
(user- or application-defined) upper bounds on the compression er-
ror are guaranteed by the compression algorithm. This is obviously
a crucial differentiation, as even small error tolerances can help us
achieve much better compression ratios.� Semantic Compression. Existing compression techniques are
“syntactic” in the sense that they operate at the level of consecutive
bytes of data. As explained above, such syntactic methods typi-
cally fail to provide adequate solutions for table-data compression,
since they essentially view the data as a large byte string and do
not exploit the complex dependency patterns in the table. Effective
table compression mandates techniques that are semantic in nature,
in the sense that they account for and exploit both (1) the mean-
ings and dynamic ranges of individual attributes (e.g., by taking
advantage of the specified error tolerances); and, (2) existing data
dependencies and correlations among attributes in the table.

In this paper, we describe the architecture of ���! �"$#% �& 1, a sys-
tem that takes advantage of attribute semantics and data-mining
models to perform lossy compression of massive data tables [2].�'�! �"$#% (& is based on the novel idea of exploiting data corre-
lations and user-specified “loss”/error tolerances for individual at-
tributes to construct concise and accurate Classification and Re-
gression Tree (CaRT) models [3] for entire columns of a table.
More precisely, �'�! �"$#% (& selects a certain subset of attributes
(referred to as predicted attributes) for which no values are explic-
itly stored in the compressed table; instead, concise CaRTs that
predict these values (within the prescribed error bounds) are main-
tained. Thus, for a predicted attribute ) that is strongly correlated
with other attributes in the table, ���! �"$#% �& is typically able to
obtain a very succinct CaRT predictor for the values of ) , which
can then be used to completely eliminate the column for ) in the
compressed table. Clearly, storing a compact CaRT model in lieu
of millions or billions of actual attribute values can result in sub-
stantial savings in storage. In addition, allowing for errors in the
attribute values predicted by a CaRT model only serves to reduce
the size of the model even further and, thus, improve the quality of
compression; this is because, as is well known, the size of a CaRT
model is typically inversely correlated to the accuracy with which
it models a given set of values [3; 16].

EXAMPLE 1.1.: Consider the table with 4 attributes and 8 tu-
ples shown in Figure 1(a), where each tuple represents a data flow
in an IP network. The categorical attribute protocol records the
application-level protocol generating the flow; the numeric attribute
duration is the time duration of the flow; and, the numeric at-
tributes byte-count and packets capture the total number of bytes
and packets transferred. Let the acceptable errors due to compres-
sion for the numeric attributes duration, byte-count, and packets
be 3, 1,000, and 1, respectively. Also, assume that the protocol
attribute has to be compressed without error (i.e., zero tolerance).
Figure 1(b) depicts a regression tree for predicting the duration at-
tribute (with packets as the predictor attribute) and a classification
tree for predicting the protocol attribute (with packets and byte-
count as the predictor attributes). Observe that in the regression
tree, the predicted value of duration (label value at each leaf) is
almost always within 3, the specified error tolerance, of the actual*

[From Webster] Spartan: /’spart-*n/ (1) of or relating to Sparta
in ancient Greece, (2) a: marked by strict self-discipline and avoid-
ance of comfort and luxury, b: sparing of words : TERSE : LA-
CONIC.

protocol duration byte-count packets
http 12 2,000 1
http 16 24,000 5
ftp 27 100,000 24

http 15 20,000 8
ftp 32 300,000 35

http 19 40,000 11
http 26 58,000 18
ftp 18 80,000 15

n y

duration = 29

protocol = http protocol = ftp

yn
protocol = http

n y

duration = 15

packets

(outlier: packets = 11)

 > 16

byte-count > 
60000

packets > 10

(a) Tuples in Table (b) CaRT Models

Figure 1: Model-Based Semantic Compression.

tuple value. For instance, the predicted value of duration for the
tuple with packets = 1 is 15 while the original value is 12. The only
tuple for which the predicted value violates this error bound is the
tuple with packets = 11, which is an marked as an outlier value in
the regression tree. There are no outliers in the classification tree.
By explicitly storing, in the compressed version of the table, each
outlier value along with the CaRT models and the projection of the
table onto only the predictor attributes (packets and byte-count),
we can ensure that the error due to compression does not exceed
the user-specified bounds. Further, storing the CaRT models (plus
outliers) for duration and protocol instead of the attribute values
themselves results in a reduction from 8 to 4 values for duration (2
labels for leaves + 1 split value at internal node + 1 outlier) and
a reduction from 8 to 5 values for protocol (3 labels for leaves + 2
split values at internal nodes).

The key algorithmic problem faced by ���! �"$#% �& ’s compres-
sion engine is that of computing an optimal set of CaRT models
for the input table such that (a) the overall storage requirements
of the compressed table are minimized, and (b) all predicted at-
tribute values are within the user-specified error constraints. This
is a very challenging optimization problem since, not only is there
an exponential number of possible CaRT-based models to choose
from, but also building CaRTs (to estimate their compression ben-
efits) is a computation-intensive task, typically requiring multiple
passes over the data [3; 12; 18]. As a consequence, �'�! �"$#% (&
has to employ a number of sophisticated techniques from the areas
of knowledge discovery and combinatorial optimization in order
to efficiently discover a “good” (sub)set of predicted attributes and
construct the corresponding CaRT models. Below, we list some of���! �"$#% �& ’s salient features.

� Use of Bayesian Network to Uncover Data Dependencies.
A Bayesian network is a DAG whose edges reflect strong
predictive correlations between nodes of the graph [14; 15].
Thus, a Bayesian network on the table’s attributes can be
used to dramatically reduce the search space of potential CaRT
models since, for any attribute, the most promising CaRT
predictors are the ones that involve attributes in its “neigh-
borhood” in the network. Our current ���! �"$#% �& imple-
mentation uses a constraint-based Bayesian network builder
based on recently proposed algorithms for efficiently infer-
ring Bayesian structure from data. To control the computa-
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tional overhead, the Bayesian network is built using a rea-
sonably small random sample of the input table.� Novel CaRT-selection Algorithms that Minimize Storage
Cost. ���! �"$#% �& exploits the inferred Bayesian network
structure by using it to intelligently guide the selection of
CaRT models that minimize the overall storage requirement,
based on the prediction and materialization costs for each
attribute. Intuitively, the goal is to minimize the sum of
the prediction costs (for predicted attributes) and material-
ization costs (for attributes used in the CaRTs). We demon-
strate that this model-selection problem is a strict general-
ization of the Weighted Maximum Independent Set (WMIS)
problem [6; 10], which is known to be &+� -hard. However,
by employing a novel algorithm that effectively exploits the
discovered Bayesian structure in conjunction with efficient,
near-optimal WMIS heuristics, �'�! ,"$#% �& is able to ob-
tain a good set of CaRT models for compressing the table.� Improved CaRT Construction Algorithms that Exploit
Error Constraints. A signification portion of ���! �"$#% �& ’s
execution time is spent in building CaRT models. This is
mainly because ���! �"$#% �& needs to actually construct many
promising CaRTs in order to estimate their prediction cost,
and CaRT construction is a computationally-intensive pro-
cess. To reduce CaRT-building times and speed up system
performance, ���! �"$#% �& employs the following three op-
timizations: (1) CaRTs are built using random samples in-
stead of the entire data set, (2) leaves are not expanded if
values of tuples in them can be predicted with acceptable
accuracy, and (3) pruning is integrated into the tree grow-
ing phase using novel algorithms that exploit the prescribed
error-tolerance constraints for the predicted attribute.

We have implemented the ���! �"$#% �& system and conducted an
extensive experimental study with three real-life data sets to com-
pare the quality of compression due to ���! �"$#% �& ’s model-based
approach with existing syntactic and semantic compression tech-
niques. For all three data sets, and even for small error tolerances
(e.g., 1%), we found that ���! �"$#% �& is able to achieve, on an
average, 20-30% better compression ratios. Further, our experi-
mental results indicate that ���! �"$#% �& compresses tables better
when they contain more numeric attributes and as error thresholds
grow bigger. For instance, for a table containing mostly numeric at-
tributes and for higher error tolerances in the 5-10% range, �'�! ," -#% �& outperformed existing compression techniques by more than
a factor of 3. Finally, we show that our improved CaRT construc-
tion algorithms make �'�! �"$#% (& ’s performance competitive, en-
abling it to compress data sets containing more than half a mil-
lion tuples in a few minutes. Thus, our experimental results clearly
demonstrate the effectiveness of ���! �"$#% �& ’s methodology for
compressing massive tables.
The technical discussion in this overview paper will focus mostly
on ���! �"$#% �& ’s efficient CaRT construction algorithms and how
they exploit the prescribed error constraints for predicted attributes.
For more details on other �'�! ,"$#% �& components the interested
reader is referred to [2].

2. PROBLEM FORMULATION AND
OVERVIEW OF OUR APPROACH

In this section, we describe our proposed model-based framework
for the semantic compression of massive data tables and we pro-
vide an overview of the architecture of ���! �"$#% �& , a system

built around this framework. We start by providing some neces-
sary definitions and background information on compression and
data mining models.

2.1 Preliminaries
Definitions and Notation. The input to the ���! �"$#% �& system
consists of a - -attribute table . , comprising a large number of tu-
ples (rows). We let /10324) *65879797:5 )<;%= denote the set of - at-
tributes of . and >@?6ACBD)<EGF represent the domain of attribute )<E .
Attributes with a discrete, unordered value domain are referred to as
categorical, whereas those with ordered value domains are referred
to as numeric. We also use .:H to denote the compressed version of
table . , and I .JI ( I . H I ) to denote the storage-space requirements for. ( . H ) in bytes.
The key input parameter to our semantic compression algorithms is
a (user- or application-specified) - -dimensional vector of error tol-
erances KL 0NM L * 5879797:5 L ;@O that defines the per-attribute acceptable
degree of information loss when compressing . . (Per-attribute er-
ror constraints are also employed in the fascicles framework [11].)
Intuitively, the PRQDS entry of the tolerance vector L E specifies an up-
per bound on the error by which any (approximate) value of ) E in
the compressed table . H can differ from its original value in . . Our
error tolerance semantics differ across categorical and numeric at-
tributes, due to the very different nature of the two attribute classes.

1. For a numeric attribute ) E , the tolerance L E defines an upper
bound on the absolute difference between the actual value of)<E in . and the corresponding (approximate) value in the
compressed table .:H . That is, if T , T%U denote the accurate
and approximate value (respectively) of attribute )VE for any
tuple of . , then our compressor guarantees that TXWYM T U�ZL E 5 T U�[ L E O .

2. For a categorical attribute )<E , the tolerance L E defines an
upper bound on the probability that the (approximate) value
of )<E in . H is different from the actual value in . . More
formally, if T , T U denote the accurate and approximate value
(respectively) of attribute )VE for any tuple of . , then our
compressor guarantees that \<M T]0XT U O�^�_ Z L E .

For numeric attributes, the error tolerance could very well be spec-
ified in terms of quantiles of the overall range of values rather than
absolute, constant values. Similarly, for categorical attributes the
probability of error could be specified separately for each individ-
ual attribute class (i.e., value) rather than an overall measure. (Note
that such an extension would, in a sense, make the error bounds
for categorical attributes more “local”, similar to the numeric case.)
Our proposed model-based compression framework and algorithms
can be readily extended to handle these scenarios, so the specific
definitions of error tolerance are not central to our methodology.
To make our discussion concrete, we use the definitions outlined
above for the two attribute classes. (Note that our error-tolerance
semantics can also easily capture lossless compression as a special
case, by setting L E 0a` for all P .)
Metrics. The basic metric used to compare the performance of dif-
ferent compression algoritms is the well-known compression ratio,
defined as the ratio of the size of the compressed data representa-
tion produced by the algorithm and the size of the original (uncom-
pressed) input. A secondary performance metric is the compression
throughput that, intuitively, corresponds to the rate at which a com-
pression algorithm can process data from its input; this is typically
defined as the size of the uncompressed input divided by the total
compression time.
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Our work focuses primarily on optimizing the compression ratio,
that is, achieving the maximum possible reduction in the size of
the data within the acceptable levels of error defined by the user.
This choice is mainly driven by the massive, long-lived data sets
that are characteristic of our target data warehousing applications
and the observation that the computational cost of effective com-
pression can be amortized over the numerous physical operations
(e.g., transmissions over a low-bandwidth link) that will take place
during the lifetime of the data. Also, note that our methodology of-
fers a key “knob” for tuning compression throughput performance,
namely the size of the data sample used by ���! �"$#% �& ’s model-
construction algorithms. Setting the sample size based on the amount
of main memory available in the system can help ensure high com-
pression speeds.

2.2 Model-Based Semantic Compression:
Problem Statement

Briefly, our proposed model-based framework for the semantic com-
pression of tables is based on two key technical ideas. First, we
exploit the (user- or application-specified) error constraints on in-
dividual attributes in conjunction with data mining techniques to
efficiently build accurate models of the data. Second, we compress
the input table using a select subset of the models built. The ba-
sic intuition here is that this select subset of data-mining models is
carefully chosen to capture large portions of the input table within
the specified error bounds.
More formally, we define the model-based, compressed version of
the input table . as a pair .:Hb0bcd. U 5 2fe *45979797:5 ehg�=�i where
(1) .(U is a small (possibly empty) projection of the data values in. that are retained accurately in .:H ; and, (2) 24e *45979787�5 ehg@= is a
select set of data-mining models, carefully built with the purpose of
maximizing the degree of compression achieved for . while obey-
ing the specified error-tolerance constraints. Abstractly, the role of
the projection .(U is to capture values (tuples or sub-tuples) of the
original table that cannot be effectively “summarized away” in a
compact data-mining model within the specified error tolerances.
(Some of these values may in fact be needed as input to the se-
lected models.) The attribute values in . U can either be retained as
uncompressed data or be compressed using a conventional lossless
algorithm.
A definition of our general model-based semantic compression prob-
lem can now be stated as follows.

[Model-Based Semantic Compression (MBSC) ] Given a mas-
sive, multi-attribute table . and a vector of (per-attribute) er-
ror tolerances KL , find a collection of models 2fe *45979797:5 ekjl=
and a compression scheme for . based on these models . H 0bc. U 5 2fe * 5979797:5 e g =]i such that the specified error boundsKL are not exceeded and the storage requirements I .�HmI of the
compressed table are minimized.

Given the multitude of possible models that can be extracted from
the data, this is obviously a very general problem definition that
covers a huge design space of possible alternatives for semantic
compression. We provide a more concrete statement of the prob-
lem addressed in our work on the �'�! ,"$#% �& system later in this
section. First, however, we discuss how our model-based compres-
sion framework relates to recent work on semantic compression
and demonstrate the need for the more general approach advocated
in this paper.

Comparison with Fascicles. Our model-based semantic compres-
sion framework, in fact, generalizes earlier ideas for semantic data
compression, such as the very recent proposal of Jagadish, Madar,

and Ng on using fascicles for the semantic compression of rela-
tional tables [11]. (To the best of our knowledge, this is the only
work on lossy semantic compression of tables with guaranteed up-
per bounds on the compression error.)
A fascicle basically represents a collection of tuples (rows) that
have approximately matching values for some (but not necessarily
all) attributes, where the degree of approximation is specified by
user-provided compactness parameters. Essentially, fascicles can
be seen as a specific form of data-mining models, i.e., clusters in
subspaces of the full attribute space, where the notion of a cluster
is based on the acceptable degree of loss during data compression.
The key idea of fascicle-based semantic compression is to exploit
the given error bounds to allow for aggressive grouping and “sum-
marization” of values by clustering multiple rows of the table along
several columns (i.e., the dimensionality of the cluster).

EXAMPLE 2.1.: Consider the table in Figure 1(a) described
in Example 1.1. Error tolerances of 3, 1,000 and 1 for the three
numeric attributes duration, byte-count and packets, respectively,
result in the following two fascicles (among others):n * npo

http 12 2,000 1
http 15 20,000 8
http 16 24,000 5

ftp 27 100,000 24
ftp 32 300,000 35

The tuples in the two fascicles
n * and

npo
are similar (with respect

to the permissible errors) on the protocol and duration attributes.
(Two numeric attribute values are considered similar if the differ-
ence between them is at most twice the error bound for that at-
tribute.) Substituting for each numeric attribute value, the mean
of the maximum and minimum value of the attribute in a fascicle
ensures that the introduced error is acceptable. Consequently, in
order to compress the table using fascicles, the single (sub)tuple
(http, 14) replaces the three corresponding (sub)tuples in the first
fascicle and (ftp, 29.5)replaces the two subtuples in the second fas-
cicle. Thus, in the final compressed table, the maximum error for
duration is not greater than 3, and the number of values stored for
the protocol and duration attributes is reduced from 8 to 5.

As the above example shows, in many practical cases, fascicles
can effectively exploit the specified error tolerances to achieve high
compression ratios. There are however, several scenarios for which
a more general, model-based compression approach is in order.
The main observation here is that fascicles only try to detect “row-
wise” patterns, where sets of rows have similar values for sev-
eral attributes. Such “row-wise” patterns within the given error-
bounds can be impossible to find when strong “column-wise” pat-
terns/dependencies (e.g., functional dependencies) exist across at-
tributes of the table. On the other hand, data-mining models like
CaRTs capture and model attribute correlations and, thereby, can
attain much better semantic compression when such correlations
exist. Revisiting Example 1.1, we see that CaRTs result in better
compression than fascicles even for our toy example table2 – the
storage for the duration attribute reduces from 8 to 4 with CaRTs
compared to 5 with fascicles.

Concrete Problem Definition. The above discussion demonstrates
the need for a semantic compression methodology that is more gen-
eral than simple fascicle-based row clustering in that it can account
for and exploit strong dependencies among the attributes of the
input table. The important observation here (already outlined ino

This is not surprising given the strong correlations among the attributes in
a table of network traffic records [1].

SIGKDD Explorations. Volume 2, Issue 2 - page 4



Example 1.1) is that data mining offers models (i.e., CaRTs) that
can accurately capture such dependencies with very concise data
structures. Thus, in contrast to fascicles, our general model-based
semantic compression paradigm can accommodate such scenarios.
The ideas of row-wise pattern discovery and clustering for seman-
tic compression have been thoroughly explored in the context of
fascicles [11]. In contrast, our work on the ���! �"$#% �& semantic
compressor reported in this paper focuses primarily on the novel
problems arising from the need to effectively detect and exploit
(column-wise) attribute dependencies for the purposes of seman-
tic table compression. The key idea underlying our approach is
that, in many cases, a small classification (regression) tree struc-
ture can be used to accurately predict the values of a categorical
(resp., numeric) attribute (based on the values of other attributes)
for a very large fraction of table rows. This means that, for such
cases, our compression algorithms can completely eliminate the
predicted column in favor of a compact predictor (i.e., a classifi-
cation or regression tree model) and a small set of outlier column
values. More formally, the design and architecture of ���! �"$#% �&
focuses mainly on the following concrete MBSC problem.

[ �'�! �"$#% (& CaRT-Based Semantic Compression ] Given
a massive, multi-attribute table . with a set of categorical
and/or numeric attributes / , and a vector of (per-attribute)
error tolerances KL , find a subset 24) * 5979787�5 ) g = of / and a
collection of corresponding CaRT models 2fe *45979797:5 ehg@=
such that: (1) model eqE is a predictor for the values of at-
tribute ) E based solely on attributes in / Z 2f) *f5979797:5 )�g�= ,
for each Pl0 _ 5479797:5Dr ; (2) the specified error bounds KL are
not exceeded; and, (3) the storage requirements I . H I of the
compressed table . H 0bcs. U 5 2fe * 5979797:5 e g =ti are mini-
mized.

Abstractly, our novel semantic compression algorithms seek to par-
tition the set of input attributes / into a set of predicted attributes24) * 5979787�5 ) g = and a set of predictor attributes / Z 2f) * 5479787�5 ) g =
such that the values of each predicted attribute can be obtained
within the specified error bounds based on (a subset of) the predic-
tor attributes through a small classification or regression tree (ex-
cept perhaps for a small set of outlier values). (We use the notation/ E Zvu ) E to denote a CaRT predictor for attribute ) E using the
set of predictor attributes /wEJxN/ Z 2f) * 5979797:5 ) g = .) Note that
we do not allow a predicted attribute )<E to also be a predictor for a
different attribute. This restriction is important since predicted val-
ues of )<E can contain errors, and these errors can cascade further
if the erroneous predicted values are used as predictors, ultimately
causing error constraints to be violated. The final goal, of course, is
to minimize the overall storage cost of the compressed table. This
storage cost I . H I is the sum of two basic components:

1. Materialization cost, i.e., the cost of storing the values for all
predictor attributes / Z 2f) *45978747:5 )�g@= . This cost is repre-
sented in the . U component of the compressed table, which
is basically the projection of . onto the set of predictor at-
tributes. (The storage cost of materializing attribute )VE is
denoted by MaterCost BD)<EGF .)

2. Prediction cost, i.e., the cost of storing the CaRT models
used for prediction plus (possibly) a small set of outlier val-
ues of the predicted attribute for each model. (The storage
cost of predicting attribute )<E through the CaRT predictor/ E Z%u ) E is denoted by PredCost BR/ E Z%u ) E F ; note
that this does not include the cost of materializing the pre-
dictor attributes in / E .)

We should note here that our proposed CaRT-based compression
methodology is essentially orthogonal to techniques based on row-
wise clustering, like fascicles. It is entirely possible to combine the
two techniques for an even more effective model-based semantic
compression mechanism. As an example, the predictor attribute
table . U derived by our “column-wise” techniques can be com-
pressed using a fascicle-based algorithm. (In fact, this is exactly the
strategy used in our current ���! �"$#% �& implementation; how-
ever, other methods for combining the two are also possible.) The
important point here is that, since the entries of . U are used as in-
puts to (approximate) CaRT models for other attributes, care must
be taken to ensure that errors introduced in the compression of .yU
do not compound over the CaRT models in a way that causes error
guarantees to be violated. More details can be found in [2].

2.3 Overview of the zt{(|X}�~�|�� System
As depicted in Figure 2, the architecture of the ���! �"$#% �& sys-
tem comprises of four major components: the DEPENDENCYFINDER,
the CARTSELECTOR, the CARTBUILDER, and the ROWAGGRE-
GATOR. In the following, we provide a brief overview of each���! �"$#% �& component.

X3

X4

X6

X5X7

X1 X2

Tc

Predictor Attributes +
CaRT Predictors

X2X3X4X5X6X7X1

e
Error tolerance vector

=[e1, e2, e3, e4, e5, e6, e7]

X3 = ... X3 = ...
X3 = ...

CaRTSelector

CaRTBuilder

Bayesian Network

RowAggregator

BuildCaRT( {X4,X7}->X3 , e3 )
Error Tolerance

+

DependencyFinder

TTable

Compressed
Table

CaRT for X3
within error e3

SPARTAN

Figure 2: �'�! �"$#% (& system architecure.

� DEPENDENCYFINDER.The purpose of the DEPENDENCYFINDER
component is to produce an interaction model for the input ta-
ble attributes, that is then used to guide the CaRT building algo-
rithms of ���! �"$#% �& . The main observation here is that, since
there is an exponential number of possibilities for building CaRT-
based attribute predictors, we need a concise model that identifies
the strongest correlations and “predictive” relationships in the input
data.
The approach used in the DEPENDENCYFINDER component of���! �"$#% �& is to construct a Bayesian network [14] on the under-
lying set of attributes / . Abstractly, a Bayesian network imposes a
Directed Acyclic Graph (DAG) structure � on the set of nodes / ,
such that directed edges capture direct statistical dependence be-
tween attributes. In effect, a Bayesian network is a graphical spec-
ification of a joint probability distribution that is believed to have
generated the observed data. Bayesian networks are an essential
tool for capturing causal and/or predictive correlations in observa-
tional data; such interpretations are typically based on well-known
dependence semantics of the Bayesian network structure [14; 15].
Intuitively, a set of nodes in the “neighborhood” of node ) E in� (e.g., )<E ’s parents) captures the attributes that are strongly cor-
related to )<E and, therefore, show promise as possible predictor
attributes for ) E [2].� CARTSELECTOR. The CARTSELECTOR component constitutes
the core of �'�! ,"$#% �& ’s model-based semantic compression en-
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gine. Given the input table . and error tolerances L E , as well
as the Bayesian network on the attributes of . built by the DE-
PENDENCYFINDER, the CARTSELECTOR is responsible for se-
lecting a collection of predicted attributes and the corresponding
CaRT-based predictors such that the final overall storage cost is
minimized (within the given error bounds). As discussed above,�'�! �"$#% (& ’s CARTSELECTOR employs the Bayesian network� built on / to intelligently guide the search through the huge
space of possible attribute prediction strategies. Clearly, this search
involves repeated interactions with the CARTBUILDER component,
which is responsible for actually building the CaRT-models for the
predictors (Figure 2).
We demonstrate that even in the simple case where the set of nodes
that is used to predict an attribute node in � is fixed, the problem
of selecting a set of predictors that minimizes the combination of
materialization and prediction cost naturally maps to the Weighted
Maximum Independent Set (WMIS) problem, which is known to be&�� -hard and notoriously difficult to approximate [6; 10]. Based
on this observation, we propose a CaRT-model selection strategy
that starts out with an initial solution obtained from a near-optimal
heuristic for WMIS [9; 10] and tries to incrementally improve it by
small perturbations based on the unique characteristics of our prob-
lem. We also give an alternative greedy model-selection algorithm
that chooses its set of predictors using a simple local condition dur-
ing a single “roots-to-leaves” traversal of the Bayesian network � .� CARTBUILDER.Given a collection of predicted and (correspond-
ing) predictor attributes / E Z%u ) E , the goal of the CARTBUILDER
component is to efficiently construct CaRT-based models for each)JE in terms of /�E for the purposes of semantic compression. In-
duction of CaRT-based models is typically a computation-intensive
process that requires multiple passes over the input data [3; 18; 12].
As we demonstrate, however, ���! �"$#% �& ’s CaRT-construction
algorithms can take advantage of the compression semantics and
exploit the user-defined error-tolerance constraints to effectively
prune computation. In addition, by building CaRTs using data sam-
ples instead of the entire data set, �'�! ,"$#% �& is able to further
speed up model construction.� ROWAGGREGATOR. Once �'�! ,"$#% �& ’s CARTSELECTOR com-
ponent has finalized a “good” solution to the CaRT-based semantic
compression problem, it hands off its solution to the ROWAGGRE-
GATOR component which tries to further improve the compression
ratio through row-wise clustering. Briefly, the ROWAGGREGA-
TOR uses a fascicle-based algorithm [11] to compress the predic-
tor attributes, while ensuring (based on the CaRT models built) that
errors in the predictor attribute values are not propagated through
the CaRTs in a way that causes error tolerances (for predicted at-
tributes) to be exceeded.

The next section discusses ���! �"$#% �& ’s CARTBUILDER com-
ponent in detail, focusing on our novel CaRT-construction algo-
rithms that effectively exploit user-prescribed error constraints on
individual attributes. Details of the other three ���! �"$#% �& com-
ponents can be found in the original �'�! �"$#% (& paper [2].

3. THE zt{(|X}�~�|�� CARTBUILDER
The CARTBUILDER component of ���! �"$#% �& constructs a CaRT
predictor /�E Z%u )<E for the attribute )<E with /�E as the predictor
attributes. The CARTBUILDER component’s objective is to con-
struct the smallest (in terms of storage space) CaRT model such
that each predicted value (of a tuple’s value for attribute ) E ) devi-
ates from the actual value by at most L E , the prescribed error toler-
ance for attribute ) E .

If the predicted attribute )<E is categorical, then the CARTBUILDER
component builds a compact classification tree with values of ) E
serving as class labels. CARTBUILDER employs classification tree
construction algorithms from [18; 17] to first construct a low stor-
age cost tree and then explicitly stores sufficient number of out-
liers such that the fraction of misclassified records is less than the
specified error bound L E . Thus, CARTBUILDER guarantees that
the fraction of attribute )<E ’s values that are incorrectly predicted is
less than L E .
In the remainder of this section, we focus on the case when the
predicted attribute )<E is numeric. Specifically, we present efficient
algorithms for constructing compact regression trees for predicting) E with an error that does not exceed L E .
3.1 Storage Cost of Regression Trees
A regression tree consists of two types of nodes – internal nodes
and leaves. Each internal node is labeled with a splitting condi-
tion involving attribute )l��W�/�E – this condition is of the form) � i�T if ) � is a numeric attribute and ) � W�2fT 5 T U 5879797 = if ) �
is categorical. Each leaf is labeled with a numeric value T which
is the predicted value for ) E for all tuples in table . that belong
to the leaf (a tuple belongs to a leaf if it satisfies the sequence of
splitting conditions on the path from the root to the leaf). Thus,
for a tuple � belonging to a leaf with label T , the predicted value
of � on attribute )<E , �9M )<E O , satisfies the error bounds if �9M )<E O WM T Z L E 5 T [ L E O . Tuples � in the leaf for whom �8M ) E O lies outside
the range M T Z L E 5 T [ L E O are outliers since their predicted values
differ from their actual values by more than the tolerance limit.
The storage cost of a regression tree � for predicting )VE thus com-
prises (1) the cost of encoding nodes of the tree and their associated
labels, and (2) the cost of encoding outliers. The cost of encod-
ing an internal node � of the tree is _ [����m� I / E I [d��� g9� E Q B���F ,
where 1 bit is needed to specify the type of node (internal or leaf),����� I /�E�I is the number of bits to specify the splitting attribute and� � g9� E Q B���F is the cost of encoding the split value for node � . If� is the number of distinct values for the splitting attribute )��
at node � , then � � g9� E Q B���F$0 ���m� B � Z _ F if ) � is numeric and� � g9� E Q B���Fw0 ����� BR�6� Z ��F if )l� is categorical. Next, we compute
the cost of encoding a leaf with label T . Due to Shannon’s theo-
rem, in general, the number of bits required to store A values of
attribute ) E is A times the entropy of ) E . Since ) E is a numeric
attribute, ���m� I >@?6ACBD)<ERF9I is a good approximation for the entropy of)<E . Thus, to encode a leaf node � , we need _ [����m� B�I >@?mA�BD)VEGF9I F
bits, where 1 bit is needed to encode the node type for the leaf and����� B�I >@?6ACBD)<EGF9I F bits are used to encode the label. Finally, if the
leaf contains A outliers, then these need to be encoded separately
at a total cost of approximately A ���m� B�I >@?6ACBD)<EGF9I F .
In the following subsections, we present efficient algorithms for
computing a low-cost regression tree that predicts )VE .
3.2 Regression Tree Construction with Sepa-

rate Building and Pruning
We construct a low-cost regression tree in two phases – a tree build-
ing phase followed by a tree pruning phase. At the start of the
building phase, the tree contains a single root node containing all
the tuples in . . The tree building procedure continues to split
each leaf � in the tree until for tuples � in the leaf, the differ-
ence between the maximum and minimum values of �9M )VE O is less
than or equal to � L E . The splitting condition for a node � con-
taining a set of tuples � is chosen such that the mean square er-
ror of the two sets of tuples due to the split is minimized. Thus,
if the split partitions � into two sets of tuples � * and � o , then� QG����  B¡�9M ) E O Z]¢ * F

o [ � QR�@�6£ B¡�8M ) E O Z	¢ o F
o

is minimized, where
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¢ * and ¢ o are the means of �8M )<E O for tuples � in � * and � o , respec-
tively.
At the end of the tree building phase, for each leaf � of the con-
structed tree � , the label T is set to B¡�¤j E ;:M ) E O [ �¥j'¦4§vM ) E O F¤¨�� ,
where � j E ; and � j'¦4§ are the tuples in � with the minimum and
maximum values for ) E . Thus, � contains no outliers since B¡��j�¦4§©M ) E O Z� j E ; M )<E O F,ª�� L E and as a result, the error in the predicted values
of attribute ) E are within the permissible limit. However, the cost
of � may not be minimum – specifically, deleting nodes from �
may actually result in a tree with smaller storage cost. This is be-
cause while pruning an entire subtree from � may introduce out-
liers whose values need to be stored explicitly, the cost of explicitly
encoding outliers may be much smaller than the cost of the deleted
subtree.
Thus, the goal of the pruning phase is to find the subtree of � (with
the same root as � ) with the minimum cost. Consider an internal
node � in � and let � be the set of tuples in � . Let �l« be the
subtree of � rooted at node � with cost � B�� « F (the cost of en-
coding nodes and outliers in �l« ). Thus, � B��y«yF is essentially the
reduction in the cost of � if � ’s children are deleted from � . Now,
deletion of � ’s children from � causes � to become a leaf whose
new cost is as follows. Suppose that T is the label value for � that
minimizes the number, say A , of outliers. Then the new cost of leaf� , � B���Fw0 _ [������ B�I >@?mA�BD) E F9I F [ A ���m� B�I >@?6ACBD) E F9I F . Thus, if� B���F�ª � B�� « F for node � , then deleting � ’s children from �
causes � ’s cost to decrease.
The overall pruning algorithm for computing the minimum cost
subtree of � considers the nodes � in � in decreasing order of their
distance from the root of � . If, for a node � , � B���F�ª � B�� « F ,
then its children are deleted from � . One issue that we still need
to resolve when computing � B���F for a node � is determining the
label T for � that minimizes the number, A , of outliers. This can
easily be achieved by maintaining for each node � , a sorted list
containing the )<E values of tuples in � . Then, in a single pass over
the list, for each value T U in the list, it is possible to compute the
number of elements (in the list) that fall in the window M T U 5 T U¬[ � L E O .
If T U is the value for which the window M T U 5 T U [ � L E O contains the
maximum number of elements, then the label T for node � is set
to T U [ L E (since this would minimize the number of outliers).

3.3 Regression Tree Construction with Inte-
grated Building and Pruning

In the tree construction algorithm presented in the previous sub-
section, portions of tree � are pruned only after � is completely
built. Consequently, the algorithm may expend substantial effort
on building portions of the tree that are subsequently pruned. In
this subsection, we present an algorithm that during the growing
phase, first determines if a node will be pruned during the follow-
ing pruning phase, and subsequently stops expanding such nodes.
Thus, integrating the pruning phase into the building phase enables
the algorithm to reduce the number of expanded tree nodes and im-
prove performance. Although Rastogi and Shim [17] present inte-
grated algorithms for classification trees, the algorithms we present
in this subsection are novel since in our case, we are primarily inter-
ested in regression trees and we allow bounded errors in predicted
values.
Recall that for a completely built regression tree � , for a non-leaf
node � in � , we pruned � ’s children if � B���F�ª � B�� « F , where� B��y«yF and � B���F are the costs of encoding the subtree �« and
node � (considering it to be a leaf), respectively. However, if �
is a partially built regression tree, then �l« may still contain some
leaves that are eligible for expansion. As a result, � B�� « F , the cost
of the partial subtree �« , may be greater than the cost of the fully

procedure LowerBound( ® , ¯ E , ° )
Input: Leaf ® for which lower bound on subtree cost is to be computed;

error tolerance ¯ E for attribute ± E ; bound ° on the maximum number
of internal nodes in subtree rooted at ® .

Output: Lower bound ²�³¡®J´ on cost of subtree rooted at ® .
begin
1. for µ�¶ ·�¸ to ¹
2. minOut[ µ»º¥¼ ] := µ
3. for ½¶ ·¾¸ to °À¿C¸
4. minOut[ ¼�ºD½ ] := 0
5. Á%¶ ·C¼
6. for µ�¶ ·�¸ to ¹
7. while Â E%Ã Â ��Ä *'ÅÇÆ ¯ E
8. Á%¶ ·CÁ�¿�¸
9. for ½¶ ·�¸ to °�¿C¸
10. minOut[ µ»º¡½ ] := ÈlÉËÊ�Ì minOut[ µ Ã ¸4ºD½ ] + 1, minOut[ Á�º¡½ Ã ¸ ] Í
11. end
12. ²�³¡®J´Î¶ ·ÐÏ
13. for ½¶ ·C¼ to °
14. ²Ñ³D®b´p¶ ·�ÈlÉËÊ@Ì'²�³¡®J´Îº Æ ½�¿�¸�¿]½:ÒËÓ4Ô�³»Õ Ö E Õ ´R¿³Ë½�¿C¸Î¿ minOut ³×¹9ºD½�¿�¸Ø´R´�ÒËÓ4Ô@³¥Õ ÙfÚ8Û$³×± E ´�Õ ´�Í
15. ²�³¡®J´Î¶ ·CÈlÉËÊ�Ì'²�³¡®J´Ñº Æ °:¿�Üf¿³¡°:¿C¸Ø´mÒËÓ4Ô@³»Õ Ö E Õ ´©¿�³¡°�¿ Æ ´�ÒËÓ4Ô@³¥Õ ÙfÚ8Û$³¬± E ´�Õ ´�Í
16. return ²Ñ³D®b´
end

Figure 3: Algorithm for Estimating Lower Bound on Subtree Cost.

expanded subtree rooted at � (after “still to be expanded” leaves
in � « are completely expanded). This overestimation by � B�� « F
of the cost of the fully expanded subtree rooted at � can result in� ’s children being wrongly pruned (assuming that we prune � ’s
children if � B���Fwª � B�� « F ).
Instead, suppose that for a “still to be expanded leaf” � , we could
compute Ý�B���F , a lower bound on the cost of any fully expanded
subtree rooted at � . Further, suppose for a non-leaf node � , we
define Ý�B�� « F to be the sum of (1) for each internal node � U in � « ,_ [������ B�I / E I F [Þ� � g9� E Q B�� U F , (2) for each “still to be expanded” leaf
node � U in � « , Ý�B�� U F and (3) for leaf nodes � U in � « that do not
need to be expanded further and containing A outliers, _ [ BDA [_ F ����� B�I >@?mA�BD)<EGF9I F . It is relatively straightforward to observe thatÝ�B��«yF is indeed a lower bound on the cost of any fully expanded
subtree rooted at node � . As a consequence, if � B���F(ª�Ý�B�� « F ,
then we can safely prune � ’s children from � since � B���F would
be less than or equal to the cost of the fully expanded subtree rooted
at � and as a result, � ’s children would be pruned from � during
the pruning phase anyway.
Thus, we simply need to be able to estimate a lower bound Ý�B���F
on the cost of any fully expanded subtree rooted at a “still to be
expanded” leaf � . A simple estimate for the lower bound Ý�B���F
is _ [�ßVà�á 2 ����� B�I / E I F 5 ����� B�I >@?mA�BD) E F9I F�= . However, in the follow-
ing, we show how a better estimate for Ý�B���F can be devised. LetT *95 T o 5479797:5 T!â be the values of attribute ) E for tuples in node �
in sorted order. Suppose we are permitted to use ã intervals of
width � L E to cover values in the sorted list. Further, suppose we
are interested in choosing the intervals such that the number of val-
ues covered is maximized, or alternately, the number of uncovered
values (or outliers) is minimized. Let minOut( P 5 ã ) denote this min-
imum number of outliers when ã intervals are used to cover values
in T *95 T o 5479797:5 T E . The following dynamic programming relation-
ship holds for minOut( P 5 ã ). (In the third equation below, ä ^ ` is
the smallest index for which T E Z T ��Ä * ª+� L E .)
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minOut BDP 5 ãvFÑ0
åææç ææè
` if P�0a`P if ãJ0�`ßVà�á 2 minOut BDP Z _ 5 ã©F [ _ 5

minOut B�ä 5 ã Z _ F�= otherwise.

The second condition essentially states that with 0 intervals, the
number of outliers in T * 5879797:5 T!E is at least P . The final condition
corresponds to the two cases for T E : (1) T E does not belong to any
of the ã intervals (and is thus an outlier), and (2) TÀE belongs to one
of the ã intervals.
We are now in a position to prove the following theorem that lays
the groundwork for us to compute a good estimate for Ý�B���F in
terms of minOut defined above.

THEOREM 3.1. For a leaf � that still remains to be expanded,
a lower bound on the cost of a fully expanded subtree with ã splits
and rooted at � is at least �6ã [ _ [ ã ���m� B�I /wE�I F [ B�ã [ _ [
minOut BDé 5 ã [ _ F¤F ����� B�I >@?6ACBD)<EGF9I F .
Proof: A subtree with ã splits has ã internal nodes and ã [ _
leaves. Thus, the cost of specifying the type for each node is 1 bit
and the cost of specifying the splitting attribute for each internal
node is ����� B�I / E I F , resulting in a total cost of �mã [ _ [ ã ���m� B�I / E I F .
Further, specifying the labels for the ã [ _ leaves requires at leastB�ã [ _ F ����� B�I >@?6ACBD) E F9I F bits. Finally, the number of outliers in
any subtree rooted at � and containing ã [ _ leaves is at least
minOut BDé 5 ã [ _ F , the minimum number of outliers when the é
values in � can be covered by ã [ _ arbitrary intervals of width� L E .
In Figure 3, we present the procedure for computing Ý�B���F for
each “still to be expanded” leaf � in the partial tree � . Pro-
cedure LowerBound repeatedly applies Theorem 3.1 to compute
lower bounds on the cost of subtrees containing 0 to ê splits (for
a fixed, user-specified constant ê ), and then returns the minimum
from among them. In Steps 1–11, the procedure computes minOut
values for _ to ê [ _ intervals using the dynamic-programming re-
lationship for minOut presented earlier. Then, LowerBound setsÝ�B���F to be the minimum cost from among subtrees containing at
most ê splits (Steps 13–14) and greater than ê splits (Step 15). Note
that �6ê [	ë�[ BDê [ _ F ���m� B�I /�E�I F [ BDê [ �mF ����� B�I >@?6ACBD)JE»F9I F is a lower
bound on the cost of any subtree containing more than ê splits.
It is straightforward to observe that the time complexity of proce-
dure LowerBound is ì<BDé6ê4F . This is due to the two for loops in
Steps 6 and 9 of the procedure. Further, the procedure scales for
large values of é since it makes a single pass over all the values in
node � . The procedure also has very low memory requirements
since for computing minOut for each P (Step 10), it only needs to
store in memory minOut values for P Z _ and ä .
4. EXPERIMENTAL STUDY
In this section, we present some of our results from an extensive
empirical study whose objective was to compare the quality of
compression due to �'�! �"$#% (& ’s model-based approach with ex-
isting syntactic (gzip) and semantic (fascicles) compression tech-
niques. (The complete set of results can be found in [2].) We con-
ducted a wide range of experiments with three very diverse real-life
data sets in which we measured both compression ratios as well as
running times for ���! �"$#% �& . The major findings of our study
can be summarized as follows.� Better Compression Ratios. On all data sets, ���! �"$#% �&

produces smaller compressed tables compared to gzip and

fascicles. The compression due to ���! �"$#% �& is more ef-
fective for tables containing mostly numeric attributes, at
times outperforming gzip and fascicles by a factor of 3 (for
error tolerances of 5-10%). Even for error tolerances as low
as 1%, the compression due to ���! �"$#% �& , on an average,
is 20-30% better than existing schemes.� Small Sample Sizes are Effective. For the data sets, even
with samples as small as 50KB (0.06% of one data set),���! �"$#% �& is able to compute a good set of CaRT mod-
els that result in excellent compression ratios. Thus, using
samples to build the Bayesian network and CaRT models can
speed up �'�! �"$#% (& significantly.� Best Algorithms for �'�! �"$#% (& Components. Our more
sophisticated CaRT-selection algorithm based on WMIS com-
presses the data more effectively that the simpler greedy al-
gorithm. Further, since ���! �"$#% �& spends most of its time
building CaRTs (between 50% and 75% depending on the
data set), the integrated pruning and building of CaRTs re-
sults in significant speedups to �'�! ,"$#% �& ’s execution times.

Thus, our experimental results validate the thesis of this paper that���! �"$#% �& is a viable and effective system for compressing mas-
sive tables. All experiments reported in this section were performed
on a multi-processor (4 700MHz Pentium processors) Linux server
with _ GB of main memory.

4.1 Experimental Testbed and Methodology
Compression Algorithms. We consider three compression algo-
rithms in our study.� Gzip. gzip is the widely used lossless compression tool based

on the Lempel-Ziv dictionary-based compression technique
[20; 21]. We compress the table row-wise using gzip after
doing a lexicographic sort of the table. We found this to sig-
nificantly outperform the cases in which gzip was applied to
a row-wise expansion of the table (without the lexicographic
sort).� Fascicles. In [11], Jagadish, Madar and Ng, describe two al-
gorithms, Single-k and Multi-k, for compressing a table using
fascicles. They recommend the Multi-k algorithm for small
values of ã (the number of compact attributes in the fascicle),
but the Single-k algorithm otherwise. In our implementation,
we use the Single-k algorithm as described in [11]. The two
main input parameters to the algorithm are the number of
compact attributes, ã , and the maximum number of fascicles
to be built for compression, \ . In our experiments, for each
individual data set, we used values of ã and \ that resulted in
the best compression due to the fascicle algorithm. We found
the Single-k algorithm to be relatively insensitive to \ (sim-
ilar to the finding reported in [11]) and chose \ to be ím`m`
for all three data sets. However, the sizes of the compressed
tables output by Single-k did vary for different values of ã
and so for the Corel, Forest-cover and Census data sets (de-
scribed below), we set ã to î , ë î and 9, respectively. Note
that these large values of ã justify our use of the Single-k al-
gorithm. We also set the minimum size A of a fascicle to
0.01% of the data set size. For each numeric attribute, we
set the compactness tolerance to two times the input error
tolerance for that attribute. However, since for categorical
attributes, the fascicle error semantics differs from ours, we
used a compactness tolerance of 0 for every categorical at-
tribute.
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� ���! �"$#% �& . The results shown here were obtained us-
ing our WMIS-based CaRT-selection algorithm and using the
Single-k fascicle algorithm for the ROWAGGREGATOR com-
ponent [2]. Our implementation also employs our integrated
building and pruning algorithms in the CARTBUILDER com-
ponent, and using a simple lower bound of _ [yßVà�á 2 ����� B�I /wE�I F 5����� B�I >@?6ACBD) E F9I F�= for every “yet to be expanded” leaf node.
In order to be fair in our comparison with fascicles, we set
the error tolerance for categorical attributes to always be 0.

Real-life Data Sets. We experimented with a number of real-
life data sets with very different characteristics. Due to space con-
straints, however, we only present results for the Corel3 data set
in this paper, which we found to be representative of our overall
results (see [2] for the full set of experiments). This data set con-
tains image features extracted from a Corel image collection. We
used a _ ` 7 í MB subset of the data set which contains the color his-
togram features of 68,040 photo images. This data set consists of
32 numerical attributes and contains 68,040 tuples.

Default Parameter Settings. The critical input parameter to the
compression algorithms is the error tolerance for numeric attributes
(note that we use an error tolerance of 0 for all categorical at-
tributes). The error tolerance for a numeric attribute ) E is speci-
fied as a percentage of the width of the range of )VE -values in the
table. Another important parameter to �'�! �"$#% (& is the size of
the sample that is used to select the CaRT models in the final com-
pressed table. For these two parameters, we use default values of
1% (for error tolerance) and 50KB (for sample size), respectively,
in all our experiments.

4.2 Experimental Results
Effect of Error Threshold on Compression Ratio. Figure 4(a)
depicts the compression ratios for gzip, fascicles and ���! �"$#% �&
for the Corel data set. From the figures, it is clear that ���! �"$#% �&
outperforms both gzip and fascicles, on an average, by 20-30% on
all data sets, even for a low error threshold value of 1%. The com-
pression due to ���! �"$#% �& is especially striking for the Corel
data set that contains only numeric attributes. For high error tol-
erances (e.g., 5-10%), ���! �"$#% �& produces a compressed Corel
table that is almost a factor of 3 smaller than the compressed tables
generated by gzip and fascicles, and a factor of 10 smaller than the
uncompressed Corel table.
The reason gzip does not compress the data sets as well is that
unlike fascicles and �'�! ,"$#% �& it treats the table simply as a se-
quence of bytes and is completely oblivious of the error bounds
for attributes. In contrast, both fascicles and �'�! ,"$#% �& ex-
ploit data dependencies between attributes and also the semantics
of error tolerances for attributes. Further, compared to fascicles
which simply cluster tuples with approximately equal attribute val-
ues, CaRTs are much more sophisticated at capturing dependencies
between attribute columns. This is especially true when tables con-
tain numeric attributes since CaRTs employ semantically rich split
conditions for numeric attributes like ) E i � . Another crucial
difference between fascicle- and CaRT-based compression is that,
when fascicles are used for compression, each tuple and as a con-
sequence, every attribute value of a tuple is assigned to a single
fascicle. However, in ���! �"$#% �& , a predictor attribute and thus a
predictor attribute value (belonging to a specific tuple) can be used
in a number of different CaRTs to infer values for multiple different
predicted attributes. Thus, CaRTs offer a more powerful and flex-
ible model for capturing attribute correlations than fascicles. Asï

See http://kdd.ics.uci.edu/databases/-
CorelFeatures/CorelFeatures.html.

a result, a set of CaRT predictors are able to summarize complex
data dependencies between attributes much more succinctly than
a set of fascicles. For an error constraint of 1%, the final Corel���! �"$#% �& -compressed table contains 20 CaRTs that along with
outliers, consume only 1.98 MB or 18.8% of the uncompressed ta-
ble size. The compression ratios for �'�! ,"$#% �& are even more
impressive for larger values of error tolerance (e.g., 10%) since the
storage overhead of CaRTs + outliers is even smaller at these higher
error values. For example, at 10% error, in the compressed Corel
data set, CaRTs consume only 0.6 MB or 5.73% of the original
table size.

Effect of Error Threshold and Sample Size on Running Time.
In Figures 4(b) and 4(c), we plot the running times for �'�! �" -#% �& for a range of error threshold values and sample sizes. Two

trends in the figures that are straightforward to observe are that���! �"$#% �& ’s running time decreases for increasing error bounds,
and increases for larger sample sizes. The reason for the decrease
in execution time when the error tolerance is increased is that for
larger error thresholds, CaRTs contain fewer nodes and so CaRT
construction times are smaller. For instance, CaRT construction
times (which constitute approximately 50-75% of �'�! �"$#% (& ’s
total execution time) reduce by approximately 25% as the error
bound increases from 0.5% to 10%. Note the low running times
for ���! �"$#% �& on the Corel data set.
In Figure 4(c), we plot �'�! ,"$#% �& ’s running time against the
random sample size instead of the data set size because ���! �" -#% �& ’s DEPENDENCYFINDER and CARTBUILDER components
which account for most of ���! �"$#% �& ’s running time (on an av-
erage, 20% and 75%, respectively) use the sample for model con-
struction. ���! �"$#% �& makes very few passes over the entire data
set (e.g., for sampling, for identifying outliers in the data set for
each selected CaRT and for compressing . U using fascicles), the
overhead of which is negligible compared to the overhead of CaRT
model selection. Observe that �'�! �"$#% (& ’s performance scales
almost linearly with respect to the sample size.
Finally, in experiments with building regression trees on the data
sets, we found that integrating the pruning and building phases
can result in significant reductions in �'�! �"$#% (& ’s running times.
This is because, integrating the pruning and building phases causes
fewer regression tree nodes to be expanded (since nodes that are go-
ing to be pruned later are not expanded), and thus improves CaRT
building times by as much as 25%.

5. RELATED WORK
Popular compression programs (e.g., gzip, compress) employ the
Lempel-Ziv algorithm [20; 21] which treats the input data as a byte
string and performs lossless compression on the input. Thus, these
compression routines when applied to massive tables, do not ex-
ploit data semantics or permit errors in the compressed data.
Other lossless compression schemes primarily for numeric attributes
and that do not exploit correlations between attributes have recently
been proposed in the database literature [8; 13]. Goldstein, Ra-
makrishnan and Shaft [8] propose a page level algorithm for com-
pressing tables. For each numeric attribute, its minimum value oc-
curing in tuples in the page is stored separately once for the entire
page. Further, instead of storing the original value for the attribute
in a tuple, the difference between the original value and the mini-
mum is stored in the tuple. Thus, since storing the difference con-
sumes fewer bits, the storage space overhead of the table is reduced.
Tuple Differential Coding (TDC) [13] is a compression method that
also achieves space savings by storing differences instead of actual
values for attributes. However, for each attribute value in a tuple,
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Figure 4: Effect of Error Threshold and Sample Size on Compression Ratio/Running Time.

the stored difference is relative to the attribute value in the preced-
ing tuple.
Buchsbaum et al. [4] devise a lossless compression scheme that es-
sentially partitions the set of attributes of table . into groups of cor-
related attributes that compress well (by examining a small amount
of training material) and then simply uses gzip to compress the
projection of . on each group. A different approach for lossless
compression, proposed by Davies and Moore [5], first constructs a
Bayesian network on the attributes of the table and then rearranges
the table’s attributes in an order that is consistent with a topolog-
ical sort of the Bayesian network graph. The key intuition is that
reordering the data (using the Bayesian network) results in corre-
lated attributes being stored in close proximity; consequently, tools
like gzip yield better compression ratios for the reordered table.
Another instance of a lossless compression algorithm for categor-
ical attributes is the one proposed by Goh et al. [7]. The algo-
rithm uses data mining techniques (e.g., classification trees, fre-
quent itemsets) to find sets of categorical attribute values that occur
frequently in the table. The frequent sets are stored separately (as
rules) and occurrences of each frequent set in the table are replaced
by the rule identifier for the set. The notion of a fascicle [11] gen-
eralizes the approach of Goh et al. to both numeric as well as cate-
gorical attributes and performs lossy data compression by allowing
bounded errors in the compressed table.

6. CONCLUSIONS
In this paper, we have described the design and algorithms under-
lying ���! �"$#% �& , a novel system that exploits attribute seman-
tics and data-mining models to effectively compress massive data
tables. �'�! ,"$#% �& takes advantage of predictive correlations be-
tween the table attributes and the user- or application-specified error-
tolerance constraints to construct concise and accurate CaRT mod-
els for entire columns of the table. To restrict the huge search space
of possible CaRTs, ���! �"$#% �& explicitly identifies strong depen-
dencies in the data by constructing a Bayesian network model on
the given attributes, which is then used to guide the selection of
promising CaRT models through novel optimization algorithms.�'�! �"$#% (& ’s CaRT-building component also relies on novel inte-
grated pruning strategies that take advantage of the prescribed (per-
attribute) error constraints to minimize the computational effort in-
volved. Our experimentation with several real-life data sets has
offered convincing evidence of the effectiveness of ���! �"$#% �& ’s
model-based approach – ���! �"$#% �& has been able to consistently
yield substantially better compression ratios than existing semantic
or syntactic compression tools while utilizing only small samples
of the data for model inference.
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