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Experimental Results

Register constructions, or related constructions for asyn-
chronous interprocess communication, are used in cur-
rent hardware and software.
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Problem Definition

Regular expressions (REs) provide an expressive and pow-
erful formalism for capturing the structure of messages,
events, and documents. Consequently, they have been
used extensively in the specification of a number of lan-
guages for important application domains, including the
XPath pattern language for XML documents [6], and the
policy language of the Border Gateway Protocol (BGP)
for propagating routing information between autonomous
systems in the Internet [12]. Many of these applications
have to manage large databases of RE specifications and
need to provide an effective matching mechanism that,
given an input string, quickly identifies all the REs in the
database that match it. This RE retrieval problem is there-
fore important for a variety of software components in the
middleware and networking infrastructure of the Internet.

The RE retrieval problem can be stated as follows:
Given a large set S of REs over an alphabet X, where each
RE r € S defines a regular language L(r), construct a data
structure on S that efficiently answers the following query:
given an arbitrary input string w € X', find the subset S,,
of REs in § whose defined regular languages include the
string w. More precisely, r € §,, iff w € L(r). Since S is
a large, dynamic, disk-resident collection of REs, the data
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structure should be dynamic and provide efficient support
of updates (insertions and deletions) to S. Note that this
problem is the opposite of the more traditional RE search
problem where S € X* is a collection of strings and the
task is to efficiently find all strings in S that match an input
regular expression.

Notations

An RE r over an alphabet ¥ represents a subset of strings
in ¥* (denoted by L(r)) that can be defined recursively
as follows [9]: (1) the constants € and @ are REs, where
L(e) = {€} and L(@) = @; (2) for any letter a € X, aisaRE
where L(a) = {a}; (3) if r; and r, are REs, then their union,
denoted by r + 1, is a RE where L(r; +7;) = L(r1) U L(r2);
(4) if r; and r; are REs, then their concatenation, denoted
by r1.r2, is a RE where L(r;.r2) = {s152 | s1 € L(r1),s2 €
L(ry)}; (5) if r is a RE, then its closure, denoted by r*, is
aRE where L(r*) = L(¢) U L(r) U L(rr) U L(rrr) U--+
and (6) if r is a RE, then a parenthesized r, denoted by (r),
is a RE where L((r)) = L(r). For example, if ¥ = {a, b, ¢},
then (a + b).(a + b + ¢)*.c is a RE representing the set of
strings that begins with either a “a” or a “b” and ends with
a“c”. Astring s € X* is said to match a RE rif s € L(r).

The language L(r) defined by an RE r can be recog-
nized by a finite automaton (FA) M that decides if an input
string w is in L(r) by reading each letter in w sequentially
and updating its current state such that the outcome is de-
termined by the final state reached by M after w has been
processed [9]. Thus, M is an FA for r if the language ac-
cepted by M, denoted by L(M), is equal to L(r). An FA is
classified as a deterministic finite automaton (DFA) if its
current state is always updated to a single state; otherwise,
it is a non-deterministic finite automaton (NFA) if its cur-
rant state could refer to multiple possible states. The trade
off between a DFA and an NFA representations for a RE
is that the latter is more space-efficient while the former
is more time-efficient for recognizing a matching string by
checking a single path of state transitions. Let |L(M)| de-
note the size of L(M) and |L,,(M)| denote the number of
length-n strings in L(M). Given a set M of finite automata,
let L(2M) denote the language recognized by the automata
in M;i.e., L(M) = UMiGM L(M;).

Key Results

The RE retrieval problem was first studied for a restricted
class of REs in the context of content-based dissemina-
tion of XML documents using XPath-based subscriptions
(e.g. [1,3,7]), where each XPath expression is processed in
terms of a collection of path expressions. While the XPath
language [6] allows rich patterns with tree structure to be

specified, the path expressions that it supports lack the full
expressive power of REs (e. g., XPath does not permit the
RE operators *, + and - to be arbitrarily nested in path ex-
pressions), and thus extending these XML-filtering tech-
niques to handle general REs may not be straightforward.
Further, all of the XPath-based methods are designed for
indexing main-memory resident data. Another possible
approach would be to coalesce the automata for all the REs
into a single NFA, and then use this structure to determine
the collection of matching REs. It is unclear, however, if
the performance of such an approach would be superior
to a simple sequential scan over the database of REs; fur-
thermore, it is not easy to see how such a scheme could be
adapted for disk-resident RE data sets.

The first disk-based data structure that can handle
the storage and retrieval of REs in their full generality is
the RE-tree [4,5]. Similar to the R-tree [8], an RE-tree is
a dynamic, height-balanced, hierarchical index structure,
where the leaf nodes contain data entries corresponding
to the indexed REs, and the internal nodes contain “direc-
tory” entries that point to nodes at the next level of the
index. Each leaf node entry is of the form (id, M), where
id is the unique identifier of an RE r and M is a finite au-
tomaton representing r. Each internal node stores a collec-
tion of finite automata; and each node entry is of the form
(M, ptr), where M is a finite automaton and ptr is a pointer
to some node N (at the next level) such that the following
containment property is satisfied: If My is the collection of
automata contained in node N, then L(My) € L(M). The
automaton M is referred to as the bounding automaton for
My. The containment property is key to improving the
search performance of hierarchical index structures like
RE-trees: if a query string w is not contained in L(M), then
it follows that w & L(M;) for all M; € M. As a result, the
entire subtree rooted at N can be pruned from the search
space. Clearly, the closer L(M) is to L(My), the more ef-
fective this search-space pruning will be.

In general, there are an infinite number of bounding
automata for My with different degrees of precision from
the least precise bounding automaton with L(M) = X¥'* to
the most precise bounding automaton, referred to as the
minimal bounding automaton, with L(M) = L(My). Since
the storage space for an automaton is dependent on its
complexity (in terms of the number of its states and tran-
sitions), there is a space-precision tradeoff involved in the
choice of a bounding automaton for each internal node en-
try. Thus, even though minimal bounding automata result
in the best pruning due to their tightness, it may not be de-
sirable (or even feasible) to always store minimal bounding
automata in RE-trees since their space requirement can be
too large (possibly exceeding the size of an index node),
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thus resulting in an index structure with a low fan-out.
Therefore, to maintain a reasonable fan-out for RE-trees,
a space constraint is imposed on the maximum number
of states (denoted by «) permitted for each bounding au-
tomaton in internal RE-tree nodes. The automata stored
in RE-tree nodes are, in general, NFAs with a minimum
number of states. Also, for better space utilization, each
individual RE-tree node is required to contain at least m
entries. Thus, the RE-tree height is O(log,,, (|S])).

RE-trees are conceptually similar to other hierarchi-
cal, spatial index structures, like the R-tree [8] that is de-
signed for indexing a collection of multi-dimensional rect-
angles, where each internal entry is represented by a min-
imal bounding rectangle (MBR) that contains all the rect-
angles in the node pointed to by the entry. RE-tree search
simply proceeds top-down along (possibly) multiple paths
whose bounding automaton accepts the input string; RE-
tree updates try to identify a “good” leaf node for inser-
tion and can lead to node splits (or, node merges for dele-
tions) that can propagate all the way up to the root. There
is, however, a fundamental difference between the RE-tree
and the R-tree in the indexed data types: regular languages
typically represent infinite sets with no well-defined no-
tion of spatial locality. This difference mandates the de-
velopment of novel algorithmic solutions for the core RE-
tree operations. To optimize for search performance, the
core RE-tree operations are designed to keep each bound-
ing automaton M in every internal node to be as “tight” as
possible. Thus, if M is the bounding automaton for My,
then L(M) should be as close to L(!My) as possible.

There are three core operations that need to be ad-
dressed in the RE-tree context: (P1) selection of an op-
timal insertion node, (P2) computing an optimal node
split, and (P3) computing an optimal bounding automa-
ton. The goal of (P1) is to choose an insertion path for
anew RE that leads to “minimal expansion” in the bound-
ing automaton of each internal node of the insertion path.
Thus, given the collection of automata M(N) in an in-
ternal index node N and a new automaton M, an opti-
mal M; € M(N) needs to be chosen to insert M such that
|L(M;) N L(M)| is maximum. The goal of (P2), which
arises when splitting a set of REs during an RE-tree node-
split, is to identify a partitioning that results in the minimal
amount of “covered area” in terms of the languages of the
resulting partitions. More formally, given the collection of
automata M = {My, My, --- , My} in an overflowed index
node, find the optimal partition of M into two disjoint
subsets M; and M, such that | M;| > m, |M,| > m and
|[L(My)| + |L(M3)| is minimum. The goal of (P3), which
arises during insertions, node-splits, or node-merges, is to
identify a bounding automaton for a set of REs that does

not cover too much “dead space”. Thus, given a collection
of automata ‘M, the goal is to find the optimal bounding
automaton M such that the number of states of M is no
more than o, L(M) C L(M) and |L(M)| is minimum.

The objective of the above three operations is to max-
imize the pruning during search by keeping bounding au-
tomata tight. In (P1), the optimal automaton M; selected
(within an internal node) to accommodate a newly in-
serted automaton M is to maximize |[L(M;) N L(M)|. The
set of automata ‘M are split into two tight clusters in (P2),
while in (P3), the most precise automaton (with no more
than « states) is computed to cover the set of automata
in M. Note that (P3) is unique to RE-trees, while both
(P1) and (P2) have their equivalents in R-trees. The heuris-
tics solutions [2,8] proposed for (P1) and (P2) in R-trees
aim to minimize the number of visits to nodes that do not
lead to any qualifying data entries. Although the minimal
bounding automata in RE-trees (which correspond to reg-
ular languages) are very different from the MBRs in R-
trees, the intuition behind minimizing the area of MBRs
(total area or overlapping area) in R-trees should be ef-
fective for RE-trees as well. The counterpart for area in
an RE-tree is |[L(M)|, the size of the regular language for
M. However, since a regular language is generally an infi-
nite set, new measures need to be developed for the size of
a regular language or for comparing the sizes of two regu-
lar languages.

One approach to compare the relative sizes of two reg-
ular languages is based on the following definition: for
a pair of automata M; and M;, L(M;) is said to be larger
than L(M;) if there exists a positive integer N such that
for all k > N, Y5, [Li(M3)] = Y5, [Li(M;)]. Based on
the above intuition, three increasingly sophisticated mea-
sures are proposed to capture the size of an infinite regu-
lar language. The max-count measure simply counts the
number of strings in the language up to a certain size
Asie, |[L(M)| = Z%:I |L;(M)|. This measure is useful for
applications where the maximum length of all the REs
to be indexed are known and is not too large so that A
can be set to some value slightly larger than the max-
imum length of the REs. A second more robust mea-
sure that is less sensitive to the A parameter value is
the rate-of-growth measure which is based on the intu-
ition that a larger language grows at a faster rate than
a smaller language. The size of a language is approxi-
mated by computing the rate of change of its size from
one “window” of lengths to the next consecutive “win-
dow” of lengths: if A is a length parameter that denote the
start of the first window and 6 is a window-size parameter,
then |L(M)| = 52971 | L.(M) |/ 4071 |Ly(M)]. As in
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the max-count measure, the parameters A and 6 should be
chosen to be slightly greater than the number of states of
M to ensure that strings involving a substantial portion of
paths, cycles, and accepting states are counted in each win-
dow. However, there are cases where the rate-of-growth
measure also fails to capture the “larger than” relation-
ship between regular languages [4]. To address some of the
shortcomings of the first two metrics, a third information-
theoretic measure is proposed that is based on Rissanen’s
Minimum description length (MDL) principle [11]. The
intuition is that if L(M;) is larger than L(M;), then the
per-symbol-cost of an MDL-based encoding of a random
string in L(M;) using M; is very likely to be higher than
that of a string in L(M;) using M, where the per-symbol-
cost of encoding a string w € L(M) is the ratio of the cost
of an MDL-based encoding of w using M to the length
of w. More specifically, if w = wy.w,.--- .w, € L(M) and
50,51, -- - Sy is the unique sequence of states visited by w
in M, then the MDL-based encoding cost of w using M is
givenby "7~ '[log, (n;)], where each ; denotes the num-
ber of transitions out of state s;, and log, (#;) is the num-
ber of bits required to specify the transition out of state s;.
Thus, a reasonable measure for the size of a regular lan-
guage L(M) is the expected per-symbol-cost of an MDL-
based encoding for a random sample of strings in L(M).

To utilize the above metrics for measuring L(M), one
common operation needed is the computation of |L,(M)|,
the number of length-n strings in L(M). While |L,(M)|
can be efficiently computed when M is a DFA, the prob-
lem becomes #P-complete when M is an NFA [10]. Two
approaches were proposed to approximate |L,(M)| when
N is an NFA [10]. The first approach is an unbiased esti-
mator for |L,(M)|, which can be efficiently computed but
can have a very large standard deviation. The second ap-
proach is a more accurate randomized algorithm for ap-
proximating |L, (M)| but it is not very useful in practice
due to its high time complexity of O(1'°¢(). A more prac-
tical approximation algorithm with a time complexity of
O(n?|M|?> min{| X|, | M|}) was proposed in [4].

The RE-tree operations (P1) and (P2) require frequent
computations of |L(M; N M;)| and |L(M; U M;)| to be
performed for pairs of automata M;, M;. These computa-
tions can adversely affect RE-tree performance since con-
struction of the intersection and union automaton M can
be expensive. Furthermore, since the final automaton M
may have many more states than the two initial automata
M; and M;, the cost of measuring |L(M)| can be high.
The performance of these computations can, however, be
optimized by using sampling. Specifically, if the counts
and samples for each L(M;) are available, then this infor-
mation can be utilized to derive approximate counts and

samples for L(M; N M;) and L(M; U M;) without incur-
ring the overhead of constructing the automata M; N M;
and M; U M; and counting their sizes. The sampling tech-
niques used are based on the following results for approx-
imating the sizes of and generating uniform samples of
unions and intersections of arbitrary sets:

Theorem 1 (Chan, Garofalakis, Rastogi, [4]) Let r; and

r2 be uniform random samples of sets S; and S, respec-

tively.

1. (Jr1 N S2||S11)/|r1] is an unbiased estimator of the size of
S1NS,.

2. r1 N Sy is a uniform random sample of S; N S, with size
|7’1 n Sz|

3. If the sets S; and S, are disjoint, then a uniform ran-
dom sample of S; U S, can be computed in O(|r1| + |r2])
time. If S; and S, are not disjoint, then an approximate
uniform random sample of S; U S, can be computed
with the same time complexity.

Applications

The RE retrieval problem also arises in the context of both
XML document classification, which identifies match-
ing DTDs for XML documents, as well as BGP rout-
ing, which assigns appropriate priorities to BGP advertise-
ments based on their matching routing-system sequences.

Experimental Results

Experimental results with synthetic data sets [5] clearly
demonstrate that the RE-tree index is significantly more
effective than performing a sequential search for match-
ing REs, and in a number of cases, outperforms sequential
search by up to an order of magnitude.
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Keywords and Synonyms

Automata-based searching

Problem Definition

Given a text string T of length n and a regular expression
R, the regular expression matching problem (REM) is to
find all text positions at which an occurrence of a string in
L(R) ends (see below for definitions).

For an alphabet X, a regular expression R over X con-
sists of elements of X' U {¢} (¢ denotes the empty string)
and operators - (concatenation), | (union), and * (iter-
ation, that is, repeated concatenation); the set of strings
L(R) represented by R is defined accordingly; see [5].
It is important to distinguish two measures for the size
of a regular expression: the size, m, which is the total
number of characters from X' U {-, |, x}, and X-size, my,
which counts only the characters in . As an example, for
R = (A|T)((C|CG)*), the set L(R) contains all strings that
start with an A or a T followed by zero or more strings in
the set {C, CG}; the size of R is m = 8 and the X -size is

my = 5. Any regular expression can be processed in lin-
ear time so that m = O(myx) (with a small constant); the
difference becomes important when the two sizes appear
as exponents.

Key Results
Finite Automata

The classical solutions for the REM problem involve fi-
nite automata which are directed graphs with the edges
labeled by symbols from X' U {¢}; their nodes are called
states; see [5] for details. Unrestricted automata are called
nondeterministic finite automata (NFA). Deterministic fi-
nite automata (DFA) have no e-labels and require that
no two outgoing edges of the same state have the same
label. Regular expressions and DFAs are equivalent, that
is, the sets of strings represented are the same, as shown
by Kleene [8]. There are two classical ways of computing
an NFA from a regular expression. Thompson’s construc-
tion [14], builds an NFA with up to 2m states and up to
4m edges whereas Glushkov-McNaughton-Yamada’s au-
tomaton [3,9] has the minimum number of states, m 5, + 1,
and O(m3;) edges; see Fig. 1. Any NFA can be converted
into an equivalent DFA by the subset construction: each
subset of the set of states of the NFA becomes a state of
the DFA. The problem is that the DFA can have exponen-
tially more states than the NFA. For instance, the regular
expression ((a|b)*x)a(alb)(alb) ... (a|b), with k occur-
rences of the (a|b) term, hasa (k + 2)-state NFA but re-
quires £2(2F) states in any equivalent DFA.

Classical Solutions

A regular expression is first converted into an NFA or DFA
which is then simulated on the text. In order to be able to
search for a match starting anywhere in the text, a loop
labeled by all elements of X is added to the initial state; see
Fig. 1.

Searching with an NFA requires linear space but many
states can be active at the same time and to update them all
one needs, for Thompson’s NFA, O (m) time for each letter
of the text; this gives Theorem 1. On the other hand, DFAs
allow searching time that is linear in n but require more
space for the automaton. Theorem 2 uses the DFA ob-
tained from the Glushkov-McNaughton-Yamada’s NFA.

Theorem 1 (Thompson [14]) The REM problem can be
solved with an NFA in O(mn) time and O(m) space.

Theorem 2 (Kleene [8]) The REM problem can be solved
with a DFA in O(n + 2% time and O(2™*) space.



