
  

 

Abstract—Oral cancer is characterized by multiple 

genetic events such as alterations of a number of oncogenes and 

tumour suppressor genes. The aim of this study is to identify 

genes and their functional interactions that may play a crucial 

role on a specific disease-state, especially during oral cancer 

progression. We examine gene interaction networks on blood 

genomic data, obtained from twenty three oral cancer patients 

at four different time stages. We generate the gene-gene 

networks from sparse experimental temporal data using two 

methods, Partial Correlations and Kernel Density Estimation, 

in order to capture genetic interactions. The network study 

reveals an altered MET (hepatocyte growth factor receptor) 

network during oral cancer progression, which is further 

analyzed in relation to other studies. 

I. INTRODUCTION 

Biological processes organizing functional associations 
between different genes are central in understanding the 
biological mechanisms of several diseases, including oral 
cancer [1]. A variety of high-throughput experimental data, 
such as DNA microarray, ChIP-chip technology allow the 
simultaneous measurements of expression levels. These 
technologies have given thorough insight in complex 
molecular events in healthy and disease states. The extended 
study of related datasets has provided a new perspective in 
gene-gene network association studies with the network 
construction from experimental data being a promising 
approach in modeling functional processes. 

Several computational methodologies have been applied to 
construct biological networks using different data sources [2]. 
The main focus of networking approaches is to build target-
independent networks that describe the pair-wise relations 
between molecules. Recent studies include Bayesian 
networks [3], Pearson’s correlation-based approaches [4]. 
Although these methods have been successfully used to 
elucidate the functional relationship between genes and 
pathways, they are unlikely to directly indicate the specific 
gene networks in response to abnormal physiological 
conditions such as diseases, due to experimental errors and 
the inherent genetic complexity [2-4]. 

The analysis reported herein is an effort of revealing and 
modeling the inter-relationships of molecules in oral cancer 
that participate in many different pathways incriminated for 
this disease. The proposed method (in section II) for network 
construction is based on Kernel density estimation denoted as 
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KDE, as an attempt to model the nonlinear effect of gene 
interactions and to fill the information loss from the data 
samples. Our framework is applied on experimental blood 
data of oral cancer patients received from four successive 
follow-ups in section III. The goal is to reveal the network 
structure and differences between different time slices, in 
addition to conspicuous genes that play central role in all 
stages of the disease.  

II. METHODOLOGY 

A. Partial Correlation 

Pair-wise associations of co-expressed molecules can be 
modeled by Pearson’s correlation. The interaction 
identification between two variables is reduced to estimating 
the covariance matrix S. Each element in    , via             

and       
 , represents the correlation coefficient  

  
 between 

nodes Xi and Xk and indicates an association. The method of 
partial correlations (PC) [4] measures the correlation between 
two variables after the common effects of all other variables 
are removed.   An appropriate notion of the strength for these 
interactions is the partial correlation matrix     

  
 . Its 

coefficients describe the correlation between genes i and k 
conditioned on all remaining genes of the network. This 
property is reflected in the inverse covariance matrix S, S
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Given the experimental data, the covariance matrix is 
computed and then it is inverted. Indeed, using (1) the partial 
correlations,  ik can be easily computed. Significantly small 
values of | ik| indicate conditional independence between i 
and k given the remaining variables in graph. On the 
contrary, high values of | ik| indicate dependence between i 
and k which contributes to adding an edge between these 
nodes. 

However, this approach is only applicable if the sample 
number in dataset is larger than the number of genes/proteins. 
Otherwise, the inversion of S is unstable making the 
estimation of S a non-trivial task. To overcome this obstacle 
we invert S through Moore-Penrose pseudo inverse [4], an 
approximation of the standard matrix inverse, based on the 
singular value decomposition (SVD). 

B. Kernel Estimation Density 

Kernel density estimation [5], is a non-parametric 
framework that estimates the probability density function 
(pdf) of a random variable. Assume that a generic network is 
developed based on a limited genomic i.i.d dataset 
X=(x1,..xn),where xi denotes the sample i of gene X. The KDE 
allows the estimation of X as follows: 
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where K(.) is a symmetric positive definite Gaussian 

function  (   
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, n is  dataset’s size of the gene X and 

            is the optimal Gaussian bandwidth parameter, 
with   standard sample deviation [6].  

Genes interacting with each other can be expressed as a 
network. Formally, an interaction network with weighted 
nodes and weighted edges can be expressed as        , 
where node set V represents genes, edge set E represents 
interactions. Under the assumption that gene and gene-
products share similarities in datasets, the problem of 
network construction is reduced to examination of 
independence between nodes Xi and Xk, through the  
Pearson’s cross correlation test: 

  ( i,        i                            (3) 

The smaller the absolute difference between two 
members of (3), the more independent the corresponding 
nodes are. In contrast, high absolute difference indicates 
dependence between Xi and Xk, thus connection between 
candidate nodes. This means that Xi and Xk, share common 
information characteristics that imply interaction. Reducing 
this scheme to correlations tests, the more correlated the two 
members of (3) the more independent are genes Xi and Xk. 
Otherwise, the candidate genes share dependencies which 
implies association. 

C. Edge Orientation 

Determination of edge direction networks is made based 
on Bayesian Information Criterion (BIC) [7]. For each node, 
the number of edges connecting to it is counted. Nodes 
directly connected to it form a sub-network. For each sub-
network, BIC score is computed for each edge that connects a 
pair of nodes, containing all other causative nodes to that pair 
that do not form a cycle. We evaluate the BIC score 
comparing the two possible orientations for the edge under 
examination. Finally, the edge is oriented in favor of the 
direction with the lowest BIC value. 

III. RESULTS AND DISCUSSION 

In order to investigate the statistical properties of the 
proposed methodology, we apply PC and KDE approaches to 
reveal the network structure from gene expression data. In a 
previous work [8] the analysis was performed on Arabidopsis 
on developing seeds. This analysis gave a clear advantage for 
KDE over PC in revealing gene-gene and gene and/or protein 
associations. In this study, we examine the biological 
performance on the human organism for the oral cancer 
disease. We compare the performance of both algorithms and 
investigate the biological meaning of the results.  

A. Oral Cancer Dataset 

The analysis is performed on the oral cancer dataset [9] of 
23 patients  that have been enrolled from three major clinical 
centers (University Hospital of Parma, National Cancer 
Center Regina Elena and MD Anderson Cancer Center). 
Gene expression data were collected from circulating blood 
cells, at the baseline state of the patient, and from monthly 
follow-ups. Totally, were analyzed four different time stages 
corresponding to the first, third, sixth and ninth month after 
the initial diagnosis. The number of blood samples per patient 
changed depending on repeatability during the follow-ups. In 

particular, the total sample size was 23, 10, 13 and 4, 
respectively, for the above monthly follow-ups. 

B. Direct Interactions 

Table I presents the number of molecular interactions on 
blood samples, for the first follow-up with the PC and KDE 
algorithms. The first column describes different thresholds of 
the strongest partial correlations set on PC for (1), while the 
second column provides the thresholds of strongest similarity 
of (3) for KDE. The third and fourth columns summarize the 
verified number of gene-gene/gene products interactions for 
both approaches, respectively. The fifth and sixth columns 
present the number of new edges that have occurred for each 
threshold, while the two last columns describe the number of 
edges that changed orientation according to BIC criterion. 

We compared the performance of two approaches, also 
taking into account existing information on gene-gene and 
gene-gene product interactions from BioGRID, an interaction 
repository database [10]. The currently available information 
provided 63 interconnections between the examined 
molecules. Thus, the goal of our study at this stage was to 
examine how many of these available associations can be 
verified from expression data. The results for the inferred 
networks with PC algorithm indicate that as thresholds 
increase, the graph becomes sparser with less interactions 
being verified. This is due to the lack of strong partial 
correlations between molecular units. However, as thresholds 
of KDE increase, correlation also increases. This implies that 
genes are found to be less independent, more interactions are 
identified and the graph becomes more cohesive.  

Table I provides a notion of the identified number of 
verified interactions. Comparing the performance of two 
methodologies, KDE appears to behave better in capturing 
the above biological associations. More precisely, KDE, 
identifies up to 86% of known genetic interactions for the 
blood constructed network while PC up to 66%.  However, 
table I shows that many false positive edges are found as the 
number of predicted interactions is far larger than 63, leading 
to low precision. This aspect is further addressed next. 

C. Performance through External Genes 

The poor performance in biological network reconstruct 
ion is a well-known problem that has been extensively 
addressed, especially when it is dealt only with expression 
data [3-6]. The problem is focused on the large number of 
false-positive predicted interactions due to the consideration 
of only direct interactions that have been biologically 
confirmed. In this section, we consider not only known direct 
associations between  pairs  of genes,  but   we  also   accept 

TABLE I.  GENE-GENE INTERACTIONS FOR THE 1ST
  FOLLOW-UP ON 

BLOOD SAMPLES 

Threshold 
Verified 

Interactions 
New Edges Oriented Edges 

PC KDE PC  KDE PC KDE PC KDE 

≥0.  ≤0.6 42/63 0/63 4607 1 279 1 

≥0. 5 ≤0.7 34/63 4/63 3763 134 185 70 

≥0. 75 ≤0.75 30/63 5/63 3336 262 181 85 

≥0.2 ≤0.8 27/63 7/63 2953 535 172 92 

≥0.3 ≤0.85 17/63 18/63 1662 1417 187 158 

≥0.4 ≤0.875 6/63 33/63 754 2261 157 204 

≥0.5 ≤0.9 4/63 54/63 279 3790 67 321 



  

connections that are induced by external molecules, which 
can be identified in various available databases [11]. We 
compare the performance of both algorithms taking into 
account the expression data and the available knowledge of 
associations from various databases. In this way, we can 
examine indirect interactions between the studied genes 
taking into account all the possible external pathways that 
connect these molecules. Hence, several initially assigned 
false-positive edges could be characterized true-positive as a 
result of multiple effects of external molecules. Additionally, 
we used HIPPIE database for the validation of all new 
interactions generated by our network framework; we found 
that only these 63 interactions have protein annotations in the 
human interactome reference [12]. 

In order to integrate molecular interactions from different 
public databases we used BioNetBuilder [11], which is an 
open-source client-server Cytoscape plug-in and offers a 
user-friendly interface to create biological networks 
integrated from several databases. For the 110 oral cancer 
disease genes and five disease unrelated genes (e.g. PARK7) 
the BioNetBuilder retrieved more than 300,000 interactions 
with more than 25.000 genes. This produced network through 
extensive consideration of available biological knowledge is 
considered as the ground-truth, against which we compare 
our analysis. 

To determine the performance of the proposed algorithm 
we used the receiver operator characteristic (ROC) and 
precision recall curves. We use the following notation: TP is 
the number of edges present in the ground-truth network and 
in the predicted network; FP is the number of edges not 
present in the ground-truth network but included in the 
predicted network; FN is the number of edges present in the 
ground-truth network but not in the predicted network; TN is 
the number of edges not present in the ground-truth network 
and also not included in the predicted network. Between the 
two networks, we consider TP as the existent edges in both 
networks. Also, when a predicted interaction is verified 
through indirect associations with external factors (apart from 
the 115 genes) then the predicted association is set as TP. 
Finally, we consider FN as the non-existent in the ground 
truth but predicted direct and/or indirect interactions, while 
TN are edges that are not present in the constructed and  
ground-truth networks neither as direct nor as indirect 
connections. 

Table II presents the results according to the above 
analysis. According to ground-truth network, apart from the 
63 direct edges there are 1558 indirect implications;     these 
result from considering a maximum of three external genes. 
Furthermore, from the 115 analyzed genes, there are 22 
association; in our analysis we did not take into account 
edges connecting these genes. For this reason the number of 
new edges (columns 3, 4) differs from those in table I. In 
order to specify the number of TN associations we found all 
the possible interactions between the 115 studied genes and 
from this set we omitted the TP interactions (direct, indirect). 
Totally, the set of TN associations was composed of 2657 
edges. 

Fig.1 presents the ROC curves for the blood samples 
associated with the three follow-ups (fig.1a-1c). For the ninth 
month PC could not give a reliable structure thus was 

omitted. For all listed cases, both methods show monotonic 
performance over the parameters. For the optimal bandwidth 
h in eqn (2), KDE outperforms PC as it covers larger area 
under the curve (AUC) compared to PC.  For non-optimal h, 
KDE is expected to give lower precision. Furthermore, both 
algorithms show improvement in performance after taking 
the external genetic influence into consideration. In fact, 
precision and recall (fig.1d-1f) show significant improvement 
for all studied cases. The diagrams show the levels of 
precision comparing the initial approach based on the 63 
direct interactions, with the proposed idea based on the 1558 
indirect external interactions. With this consideration the 
precision is highly improving for all network cases, in 
support of the conclusion that expression data enclose 
dependencies from a variety of sources. Thereafter, when 
dealing with expression data direct associations that come 
from statistical analysis should be interpreted as a result of 
indirect influence of external factors and not as spurious 
edges. We note that the precision of KDE can be greatly 
improved by evaluating a larger number of indirect 
interactions. Another future enhancement is to include 
experimental protein data. By combining both gene and 
protein data the method can yield more precise results. 
However, at this stage the results of our framework can be 
validated because of the small number of the "newly 
discovered" gene/protein interactions related to the network 
intersection of all time-slices, as illustrated in fig.2a. 

D. Biological Interpretation 

As shown in fig. 2a, MET is obviously a central molecule 
that interacts with a number of critical molecules for tumor 
development and progression, including oncogenes (EGFR, 
epidermal growth factor receptor), suppressor genes (TP53, 
tumor protein p53), and transcription factors (HIF1A, 
hypoxia inducible factor 1 alpha subunit). Fig. 2b depicts the 
degree distribution of these molecules in each constructed 
network for all four disease stages. From these identified 
MET interactors, only the MET/EGFR  associations have 
been reported before  [12]. We conclude that we recover 
known disease genes and provide potential associations that 
could be linked to oral carcinogenesis. 

Based on our findings, we suggest that MET is 
characterized by topological alterations based on degree 
(number of associations with molecules) in each time slice 
accompanied with functional alterations  (different interact- 

TABLE II.  GENE INTERACTIONS FOR THE 1ST
 FOLLOW-UP ON BLOOD 

SAMPLES CONSIDERING THE EXTERNAL GENES 

Threshold New Edges TP FP TN FN 

PC KDE PC KDE PC  KDE PC  KDE PC KDE PC KDE 

≥0.  ≤0.6 3166 1 1167 1 1999 0 895 2657 454 1620 

≥0. 5 ≤0.7 2551 108 957 75 1594 33 1250 2627 664 1546 

≥0. 75 ≤0.75 2234 202 848 129 1386 73 1458 2588 773 1492 

≥0.2 ≤0.8 1968 347 738 167 1230 180 1614 2484 883 1454 

≥0.3 ≤0.85 1068 1081 394 423 674 658 2170 2038 1227 1198 

≥0.4 ≤0.875 474 1678 181 711 293 967 2551 1771 1440 910 

≥0.5 ≤0.9 172 2813 71 1225 101 1588 2743 1176 1550 396 



  

 

Figure 2.  (a) Network intersection of all time slices on blood samples. MET 

places the central role. (b) Degree distribution of MET interactors.  (Fig.2) 

ions with genes and/or gene products in each time slice) 
during oral cancer progression, which are in accordance with 
its biological role as proto-oncogene [13]. As many of these 
genes are basic components of multistep tumorigenesis, and 
since the role of MET in cancer development and progression 
has long been demonstrated, MET might be viewed as a key 
regulator of oral carcinogenesis. Furthermore, the in vivo 
MET molecular network might be an important determinant 
for the screening of patients at the time of diagnosis, during 
oral cancer progression and for effective therapy. Towards 
this direction we can define a unique motif for each time-
stage matching the clinical characteristics of a specific patient 
group. The proper analysis of motifs in tumor progression 
would enable the more accurate categorization of disease 
stage and indicate the proper therapy, targeting for example a 
specific signaling pathway. Based on the current evaluation 
metrics of our framework, the predictive accuracy of such 
screening can be considered sufficient. 

IV. CONCLUSION 

Clearly, the KDE approach models quite well the verified 
direct and indirect associations between the participating 
genes. On the contrary, the PC approach appears to capture 
less of those associations. Thus, our results indicate that KDE 
performs better on the network construction. With this 
analysis we proved that external factors that participate in 
different pathways affect the genetic expression. Thus, when 
statistical analysis gives a large amount of typically false 
edges, indirect pathways should be examined. Our network 
framework reveals important information about the 
functional alterations of gene-gene and/or gene-gene product 
interactions, which take place in particular time stages of a 
complex disease, such as oral cancer. 
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Figure 1. ROC comparison between KDE and PC for the blood samples (a-c). For the ninth month, PC cannot derive a reliable network structure. 

Apparently KDE covers larger AUC for all cases; Precision vs Recall comparison between KDE and PC for all cases on blood samples (d-f). KDE(63) and 
PC(63) represent the networks considering as TP the set of 63 direct interactions, while KDE and PC curves represent the performance considering as TP all 

direct and indirect edges.  (Fig. 1) 

 


