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DEFINITION
Waveletsare a useful mathematical tool for hierarchically decomposing functions in ways that are both efficient and theoretically
sound. Broadly speaking, the wavelet transform of a function consists of a coarse overall approximation together with detail
coefficients that influence the function at various scales. The wavelet transform has a long history of successful applications in
signal and image processing [11, 12]. Several recent studies have also demonstrated the effectiveness of the wavelet transform
(and Haar wavelets, in particular) as a tool for approximate query processing over massive relational tables [2, 7, 8] and
continuous data streams [3, 9]. Briefly, the idea is to apply wavelet transform to the input relation to obtain a compact data
synopsis that comprises a select small collection ofwavelet coefficients. The excellent energy compaction and de-correlation
properties of the wavelet transform allow for concise and effective approximate representations that exploit the structure of the
data. Furthermore, wavelet transforms can generally be computed in linear time, thus allowing for very efficient algorithms.

HISTORICAL BACKGROUND
A growing number of database applications require on-line,interactive access to very large volumes of data to perform a
variety of data-analysis tasks. As an example, large Internet Service Providers (ISPs) typically collect and store terabytes
of detailed usage information (NetFlow/SNMP flow statistics, packet-header information, etc.) from the underlying network
to satisfy the requirements of various network-managementtasks, including billing, fraud/anomaly detection, and strategic
planning. This data gives rise to massive, multi-dimensional relational data tablestypically stored and queried/analyzed using
commercial database engines (such as, Oracle, SQL Server, DB2). To handle the huge data volumes, high query complexities,
and interactive response-time requirements characterizing these modern data-analysis applications, the idea of effective, easy-
to-computeapproximate query answersover precomputed, compactdata synopseshas recently emerged as a viable solution.
Due to the exploratory nature of most target applications, there are a number of scenarios in which a (reasonably-accurate)
fast approximate answer over a small-footprint summary of the database is actually preferable over an exact answer thattakes
hours or days to compute. For example, during a “drill-down”query sequence in ad-hoc data mining, initial queries in the
sequence frequently have the sole purpose of determining the truly interesting queries and regions of the database. Providing
fast approximate answers to these initial queries gives users the ability to focus their explorations quickly and effectively,
without consuming inordinate amounts of valuable system resources.

The key behind such approximate techniques for dealing withmassive data sets lies in the use of appropriatedata-reduction
techniquesfor constructing compact synopses that can accurately approximate the important features of the underlying data
distribution. TheHaar wavelet decompositionis one such technique with deep roots in the fields of signal and image processing,
that has recently found its way into database applications as an important approximate query processing tool.

SCIENTIFIC FUNDAMENTALS
Haar Wavelet Basics.Haar wavelets are conceptually simple, easy to compute, andhave been found to perform well in practice
for a variety of applications, ranging from image editing and querying to database selectivity estimation tasks. Consider a one-
dimensional data vectorA containing theN = 8 data valuesA = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar wavelet transform ofA can
be computed as follows. The values are first averaged together pairwise to get a new “lower-resolution” representation of the
data with the following average values[2, 1, 4, 4]. To restore the original values of the data array, additional detail coefficients
must be stored to capture the information lost due to this averaging. In Haar wavelets, these detail coefficients are simply the
differences of the (second of the) averaged values from the computed pairwise average, that is,[2 − 2, 1 − 2, 4 − 5, 4 − 4] =
[0,−1,−1, 0]. No information has been lost in this process – it is simple toreconstruct the eight values of the original data
array from the lower-resolution array containing the four averages and the four detail coefficients. Recursively applying the
above pairwise averaging and differencing process on the lower-resolution array containing the averages, gives the following
full transform:

Thewavelet transformWA of A is the single coefficient representing the overall average of the data values followed by the
detail coefficients in the order of increasing resolution, i.e.,WA = [11/4, −5/4, 1/2, 0, 0, −1, −1, 0] (each entry is called a
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Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

wavelet coefficient). For vectors containing similar values, most of the detailcoefficients tend to be very small; thus, eliminating
them from the wavelet transform (i.e., treating them as zeros) introduces only small errors when reconstructing the original data,
resulting in a very effective form of lossy data compression[12].

A helpful tool for conceptualizing the recursive Haar wavelet transform process is theerror treestructure (shown in Fig-
ure 1(a) for the example arrayA). Each internal nodeci (i = 0, . . . , 7) is associated with a wavelet coefficient value, and each
leaf di (i = 0, . . . , 7) is associated with a value in the original data array; in both cases, the indexi denotes the positions in
the (data or wavelet transform) array. For instance,c0 corresponds to the overall average ofA. The resolution levelsl for the
coefficients (corresponding to levels in the tree) are also depicted.
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Figure 1:(a) Error-tree structure for the example data arrayA (N = 8). (b) Support regions and signs for the 16 nonstandard two-dimensional
Haar basis functions.

Given an error treeT and an internal nodet of T , t 6= c0, leftleaves(t) (rightleaves(t)) denotes the set of leaf (i.e.,
data) nodes in the subtree rooted att’s left (resp., right) child. Also, given any (internal or leaf) nodeu, path(u) is the set of all
(internal) nodes inT that are proper ancestors ofu (i.e., the nodes on the path fromu to the root ofT , including the root but
notu) with non-zero coefficients. Finally, for any two leaf nodesdl anddh, d(l : h) denotes the range sum

∑h

i=l di. Using the
error tree representationT , the following important reconstruction properties of theHaar wavelet transform can be outlined.
• (P1) The reconstruction of any data valuedi depends only on the values of the nodes inpath(di). More specifically,di =
∑

cj∈path(di)
δij ·cj , whereδij = +1 if di ∈ leftleaves(cj) or j = 0, andδij = −1 otherwise; for example,d4 = c0−c1+c6

= 11
4 − (− 5

4 ) + (−1) = 3.
• (P2) An internal nodecj contributes to the range sumd(l : h) only if cj ∈ path(dl) ∪ path(dh). More specifically,
d(l : h) =

∑

cj∈path(dl)∪path(dh) xj , where

xj =

{

(h − l + 1) · cj , if j = 0
(|leftleaves(cj , l : h)| − |rightleaves(cj , l : h)|) · cj, otherwise.

whereleftleaves(cj , l : h) = leftleaves(cj) ∩ {dl, dl+1, . . . , dh} (i.e., the intersection ofleftleaves(cj) with the summa-
tion range) andrightleaves(cj , l : h) is defined similarly. (Clearly, coefficients whose subtree is completely contained within
the summation range have a net contribution of zero, and can be safely ignored.) For example,d(2 : 6) = 5c0+(2−3)c1−2c2 =
5 × 11

4 − (− 5
4 ) − 1 = 14.

Thus, reconstructing a single data value involves summing at most log N + 1 coefficients and reconstructing a range sum
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involves summing at most2 logN + 1 coefficients, regardless of the width of the range. Thesupport regionfor a coefficientci

is defined as the set of (contiguous) data values thatci is used to reconstruct.
The Haar wavelet transform can be naturally extended tomulti-dimensionaldata arrays using two distinct methods, namely

the standardandnonstandardHaar transform [12]. As in the one-dimensional case, the Haar transform of ad-dimensional
data arrayA results in ad-dimensional wavelet-coefficient arrayWA with the same dimension ranges and number of entries.
Consider ad-dimensional wavelet coefficientW in the (standard or nonstandard) wavelet-coefficient arrayWA. W contributes
to the reconstruction of ad-dimensional rectangular region of cells in the original data arrayA (i.e., W ’s support region).
Further, the sign ofW ’s contribution (+W or−W ) can vary along the quadrants ofW ’s support region inA.

As an example, Figure 1(b) depicts the support regions and signs of the sixteen nonstandard, two-dimensional Haar coeffi-
cients in the corresponding locations of a4 × 4 wavelet-coefficient arrayWA. The blank areas for each coefficient correspond
to regions ofA whose reconstruction is independent of the coefficient, i.e., the coefficient’s contribution is0. Thus,WA[0, 0] is
the overall average that contributes positively (i.e.,“+WA[0, 0]”) to the reconstruction of all values inA, whereasWA[3, 3] is a
detail coefficient that contributes (with the signs shown) only to values inA’s upper right quadrant. Each data cell inA can be
accurately reconstructed by adding up the contributions (with the appropriate signs) of those coefficients whose support regions
include the cell. Error-tree structures ford-dimensional Haar coefficients are essentiallyd-dimensional quadtrees, where each
internal nodet corresponds to asetof (at most)2d − 1 Haar coefficients, and has2d children corresponding to the quadrants of
the (common) support region of all coefficients int; furthermore, properties (P1) and (P2) can also be naturally extended to the
multi-dimensional case [2, 7, 8].

Data Reduction and Approximate Query Processing.Consider a relational tableR with d data attributesX1, X2, . . . Xd.
The information inR can be represented as ad-dimensional arrayAR, whosejth dimension is indexed by the values of attribute
Xj and whose cells contain the count of tuples inR having the corresponding combination of attribute values.AR is essentially
thejoint frequency distributionof all the data attributes ofR. Given a limited amount of storage for building awavelet synopsis
of an input relationR, a thresholding procedure retains a certain numberB << N of the coefficients in the wavelet transform
of AR as a highly-compressed approximate representation of the original data (the remaining coefficients are implicitly setto
0). (The full details as well as efficient transform algorithms can be found in [2, 13].) The goal ofcoefficient thresholdingis to
determine the “best” subset ofB coefficients to retain, so that some overall error measure inthe approximation is minimized
— the next subsection discusses different thresholding strategies proposed in the database literature.

The construction of wavelet synopses typically takes placeduring the statistics collection process, whose goal is to create
concise statistical approximations for the value distributions of either individual attributes or combinations of attributes in the
relations of a Database Management System (DBMS). Once created, a wavelet synopsis is typically stored (as a collectionof B
wavelet coefficients) as part of theDBMS-catalog information, and can be exploited for several different purposes. The primary
(and, more conventional) use of such summaries is as a tool for enabling effective (compile-time) estimates of the result sizes
of relational operators for the purpose ofcost-based query optimization. (Accurate estimates of such result sizes play a critical
role in choosing an effective physical execution plan for aninput SQL query.) For instance, estimating the number of data
tuples that satisfy a range-predicate selection likel ≤ X ≤ h is equivalent to estimating the range summationf(l : h) =
∑h

i=l fi, wheref is the frequency distribution array for attributeX . As mentioned earlier, given aB-coefficient synopsis of the
f array, computingf(l : h) only involves retained coefficients inpath(fl)∪ path(fh) and, thus, can be estimated by summing
only min{B, 2 log N + 1} synopsis coefficients [13]. AB-coefficient wavelet synopsis can also be easily expanded (in O(B)
time) into anO(B)-buckethistogram(i.e., piecewise-constant) approximation of the underlying data distribution with several
possible uses (e.g., as a data visualization/approximation tool).

More generally, wavelet synopses can enable very fast and accurate approximate query answers [6] during interactive data-
exploration sessions. As demonstrated by Chakrabarti et al. [2], an approximate query processing algebra (which includes all
conventional aggregate and non-aggregate SQL operators, such asselect, project, join, sum, andaverage) can operate
directly over the wavelet synopses of relations, while guaranteeing the correct relational operator semantics. Query processing
algorithms for these operators workentirely in the wavelet-coefficient domain. This allows for extremely fast response times,
since the approximate query execution engine can do the bulkof its processing over compact wavelet synopses, essentially
postponing the (expensive) expansion step into relationaltuples until the end-result of the query.

Conventional and Advanced Wavelet Thresholding Schemes.Recall that coefficient thresholding achieves data reduction
by retainingB << N of the coefficients in the wavelet transform ofAR as a highly-compressed, lossy representation of the
original relational data. The goal, of course, is to minimize the amount of “loss” quantified through some overall approximation
error metric. Conventional wavelet thresholding (the method of choice for most studies on wavelet-based data reduction)
greedily retains theB largest Haar-wavelet coefficients in absolute valueafter a simple normalization step (that divides each
coefficient value at resolution levell by

√
2l). It is a well-known fact that this thresholding method is infact provably optimal

with respect to minimizing the overall root-mean-squared error (i.e., L2-norm error) in the data compression [12]. More
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formally, lettingd̂i denote the (approximate) reconstructed data value for celli, retaining theB largest normalized coefficients

implies that the resulting synopsis minimizesL2(d̂) =
√

∑

i(d̂i − di)2 (for the given amount of spaceB).
Conventional wavelet synopses optimized for overallL2 error may not always be the best choice for approximate query

processing systems. The quality of the approximate answerssuch synopses provide can vary widely, and users have no way of
knowing the accuracy of any particular answer. Even for the simplest case of approximating a value in the original data set,
the absolute and relative errors can show wide variation. Consider the example depicted in Table 1. The first line shows the
16 original data values (the exact answer), whereas the secondline shows the16 approximate answers returned when using
conventional wavelet synopses and storing8 coefficients. Although the first half of the values is basically a mirror image of the
second half, all the approximate answers for the first half are 65, whereas all the approximate answers for the second half are
exact! Similar data values have widely different approximations, e.g.,30 and31 have approximations30 and65, respectively.
The approximate answers make the first half appear as a uniform distribution, with widely different values, e.g.,3 and127,
having the same approximate answer65. Moreover, the results do not improve when one considers thepresumably easier
problem of approximating the sum over a range of values: forall possibleranges within the first half involvingx = 2 to 7 of
the values, the approximate answer will be65 · x, while the actual answers vary widely. For example, for boththe ranged0

to d2 and the ranged3 to d5, the approximate answer is195, while the actual answer is285 and93, respectively. On the other
hand,exactanswers are provided for all possible ranges within the second half.

Original data values 127 71 87 31 59 3 43 99 100 42 0 58 30 88 72 130
Wavelet answers 65 65 65 65 65 65 65 65 100 42 0 58 30 88 72 130

Table 1: Errors with Conventional Wavelet Synopses.

The simple example above illustrates that conventional wavelet synopses suffer from several important problems, including
the introduction of severe bias in the data reconstruction and wide variance in the quality of the data approximation, aswell as
the lack of non-trivial guarantees for individual approximate answers. To address these shortcomings, recent work hasproposed
novel thresholding schemes for building wavelet synopses that try to minimize different approximation-error metrics, such as
themaximum relative error(with an appropriatesanity bounds) in the approximation of individual data values based on the

synopsis; that is, minimizemaxi

{

|d̂i−di|
max{|di|,s}

}

. Such relative-error metrics are arguably the most important quality measures

for approximate query answers. (The role of the sanity boundis to ensure that relative-error numbers are not unduly dominated
by small data values.)

More specifically, Garofalakis and Gibbons [7] introduceprobabilisticthresholding schemes based on ideas from random-
ized rounding, that probabilistically round coefficients either up to a larger rounding value (to be retained in the synopsis) or
down to zero. Intuitively, their probabilistic schemes assign each non-zero coefficientfractional storagey ∈ (0, 1] equal to
its retention probability, and then flip independent, appropriately-biased coins to construct the synopsis. Their thresholding
algorithms are based onDynamic-Programming (DP)formulations that explicitly minimize appropriate probabilistic metrics
(such as the maximum normalized standard error or the maximum normalized bias) in the randomized synopsis construction;
these formulations are then combined with aquantizationof the potential fractional-storage allotments to give combinatorial
techniques [7].

In more recent work, Garofalakis and Kumar [8] show that the pitfalls of randomization can be avoided by introducing
efficient schemes fordeterministicwavelet thresholding with the objective of optimizing ageneral class of error metrics(e.g.,
maximum or mean relative error). Their optimal and approximate thresholding algorithms are based on novel DP techniques
that take advantage of the Haar transform error-tree structure. In a nutshell, their DP algorithms tabulate the optimalsolution
for the subtree rooted at each error-tree nodecj given the error contribution that “enters” that subtree through the choices
made at all ancestor nodes ofcj in the tree(i.e., the choice of coefficients onpath(cj)). The key observation here is that,
since the depth of the error tree isO(log N), all such possible selections can be tabulated while still keeping the running-time
of the thresholding algorithm in the low-polynomial range.This turns out to be a fairly powerful idea for wavelet synopsis
construction that can handle a broad, natural class ofdistributive error metrics(which includes several useful error measures
for approximate query answers, such as maximum or mean weighted relative error and weightedLp-norm error) [8].

The above wavelet thresholding algorithms for non-L2 error metrics consider only therestrictedversion of the problem,
where the algorithm is forced to select values for the synopsis from the standard Haar coefficient values. As observed by Guha
and Harb [10], such a restriction makes little sense when optimizing for non-L2 error, and can, in fact, lead to sub-optimal
synopses. Their work considersunrestrictedHaar wavelets, where the values retained in the synopsis arespecifically chosen to
optimize a general (weighted)Lp error metric. Their proposed thresholding schemes rely on aDP over the error tree (similar
to that in [8]) thatalso iterates over the range of possible coefficient values for each node. To keep time and space complexities
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manageable, techniques for bounding these coefficient-value ranges are also discussed [10].

Extended and Streaming Wavelet Synopses.Complex tabular data setswith multiple measures(multiple numeric entries
for each table cell) introduce interesting challenges for wavelet-based data reduction. Such massive, multi-measuretables
arise naturally in several application domains, includingOLAP (On-Line Analytical Processing) environments and time-series
analysis/correlation systems. As an example, a corporate sales database may tabulate, for each available product, (1)the number
of items sold, (2) revenue and profit numbers for the product,and (3) costs associated with the product, such as shipping and
storage costs. Similarly, real-life applications that monitor continuous time-series typically have to deal with several readings
(measures) that evolve over time; for example, a network-traffic monitoring system takes readings on each time-tick from a
number of distinct elements, such as routers and switches, in the underlying network and typically several measures of interest
need to be monitored (e.g., input/output traffic numbers foreach router or switch interface) even for a fixed network element.
Deligiannakis et al. [4] show that obvious approaches for building wavelet synopses for such multi-measure data can lead to
poor synopsis-storage utilization and suboptimal solutions even in very simple cases. Instead, their proposed solution is based
on (1) extended wavelet coefficients, the first adaptive, efficient storage scheme for multi-measure wavelet coefficients; and,
(2) novel algorithms for selecting the optimal subset of extended coefficients to retain for minimizing the weighted sumof L2

errors across all measures under a given storage constraint.
Traditional database systems and approximation techniques are typically based on the ability to make multiple passes over

persistent data sets, that are stored reliably in stable storage. For several emerging application domains, however, data arrives
at high rates and needs to be processed on a continuous (24 × 7) basis, without the benefit of several passes over a static,
persistent data image. Suchcontinuous data streamsarise naturally, for example, in the network installationsof large Telecom
and Internet service providers where detailed usage information (Call-Detail-Records (CDRs), SNMP/RMON packet-flowdata,
etc.) from different parts of the underlying network needs to be continuously collected and monitored for interesting trends
and phenomena (e.g., fraud or Denial-of-Service attacks).Efficiently tracking an accurate wavelet synopsis over suchmassive
streaming data, using only small space and time (per streaming update), poses a host of new challenges. Recently-proposed
solutions [3, 9] rely on maintaining small-space,pseudo-random AMS sketches(essentially, random linear projections) over
the input data stream [1]. These sketches can then be queriedto efficiently recover the topmost wavelet coefficients of the
underlying data distribution within provable error guarantees [3].

KEY APPLICATIONS
Wavelet synopses are a general data-reduction tool with several important applications, including statistics for query optimiza-
tion, lossy data compression, OLAP cube summarization, andinteractive data exploration, mining, and query processing.

DATA SETS
Several publicly-available real-life data collections have been used in the experimental study of wavelet synopses (and other
data-reduction methods); examples include the US Census Bureau data sets (http://www.census.gov/), the UCI KDD
Archive (http://kdd.ics.uci.edu/), and the UW Earth Climate and Weather Data Archive (http://www-k12.atmos.

washington.edu/k12/grayskies/).

FUTURE DIRECTIONS
The area of wavelet-based data reduction is still rife with interesting algorithmic questions, including, for instance (1) designing
efficient methods for building wavelet synopses that optimize different error metrics under general streaming models (e.g.,
allowing both item insertions and deletions), and (2) developing a sound foundation and appropriate summarization tools for
approximateset-valued(i.e., non-aggregate) queries. Dealing with thecurse of dimensionalitythat invariably haunts space-
partitioning techniques (such as wavelets and histograms)is another big open issue; some initial ideas based on combining
these techniques with statistical-correlation models appear in [5]. And, of course, from a systems perspective, the problem of
incorporating wavelets and other approximate query processing tools in an industrial-strength database engine (thatcan, e.g.,
select and optimize the appropriate tools for each scenario) remains wide open.
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