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DEFINITION

Waveletsre a useful mathematical tool for hierarchically deconmmpinctions in ways that are both efficient and theorelycal
sound. Broadly speaking, the wavelet transform of a fumotionsists of a coarse overall approximation together watiait
coefficients that influence the function at various scalé® Wavelet transform has a long history of successful agipdios in
signal and image processing [11, 12]. Several recent stirdiee also demonstrated the effectiveness of the wavatetfarm
(and Haar wavelets in particular) as a tool for approximate query processingranassive relational tables [2, 7, 8] and
continuous data streams [3, 9]. Briefly, the idea is to appyelet transform to the input relation to obtain a compata da
synopsis that comprises a select small collectiowa¥elet coefficientsThe excellent energy compaction and de-correlation
properties of the wavelet transform allow for concise aridative approximate representations that exploit thecttine of the
data. Furthermore, wavelet transforms can generally bgoated in linear time, thus allowing for very efficient algbrins.

HISTORICAL BACKGROUND

A growing number of database applications require on-lingsractive access to very large volumes of data to perform a
variety of data-analysis tasks. As an example, large IeteBervice Providers (ISPs) typically collect and storaligtes

of detailed usage information (NetFlow/SNMP flow statistipacket-header information, etc.) from the underlyintgvoek

to satisfy the requirements of various network-managenashs, including billing, fraud/anomaly detection, andatggic
planning. This data gives rise to massive, multi-dimenaiaglational data tablesypically stored and queried/analyzed using
commercial database engines (such as, Oracle, SQL SeB®2y), Do handle the huge data volumes, high query complaxitie
and interactive response-time requirements charaatgrthiese modern data-analysis applications, the ideaedtefé, easy-
to-computeapproximate query answews/er precomputed, compadata synopseblas recently emerged as a viable solution.
Due to the exploratory nature of most target applicationstd are a number of scenarios in which a (reasonably-aegura
fast approximate answer over a small-footprint summaryefdatabase is actually preferable over an exact answeaaiest
hours or days to compute. For example, during a “drill-dowyneéry sequence in ad-hoc data mining, initial queries in the
sequence frequently have the sole purpose of determinentyuly interesting queries and regions of the databaseviding

fast approximate answers to these initial queries givessube ability to focus their explorations quickly and effeely,
without consuming inordinate amounts of valuable systesnueces.

The key behind such approximate techniques for dealingmwéhsive data sets lies in the use of appropdata-reduction
techniquedor constructing compact synopses that can accuratelyoappate the important features of the underlying data
distribution. TheHaar wavelet decompositias one such technique with deep roots in the fields of sigrlmage processing,
that has recently found its way into database applicatisrsdamportant approximate query processing tool.

SCIENTIFIC FUNDAMENTALS
Haar Wavelet Basics.Haar wavelets are conceptually simple, easy to computehavelbeen found to perform well in practice
for a variety of applications, ranging from image editinglajuerying to database selectivity estimation tasks. @ensi one-
dimensional data vectot containing theV = 8 data valuesA = [2,2,0, 2, 3,5, 4,4]. The Haar wavelet transform of can
be computed as follows. The values are first averaged togetimvise to get a new “lower-resolution” representatiéthe
data with the following average valugs 1, 4, 4]. To restore the original values of the data array, additidesail coefficients
must be stored to capture the information lost due to thisagieg. In Haar wavelets, these detail coefficients are lyitie
differences of the (second of the) averaged values fromahgpated pairwise average, that[®,— 2,1 — 2,4 — 5,4 — 4] =
[0,—1,—1,0]. No information has been lost in this process — it is simplestonstruct the eight values of the original data
array from the lower-resolution array containing the foverages and the four detail coefficients. Recursively apglthe
above pairwise averaging and differencing process on tertoesolution array containing the averages, gives theviong
full transform:

Thewavelet transforniV, of A is the single coefficient representing the overall averdgleeodata values followed by the
detail coefficients in the order of increasing resolutioe,, iV, = [11/4, —5/4,1/2,0,0, —1, —1, 0] (each entry is called a



Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5,4,4] —
2 [2,1,4,4] [0,-1,-1,0]
1 [3/2, 4] [1/2,0]
0 [12/4] [-5/4]

wavelet coefficieft For vectors containing similar values, most of the detadfficients tend to be very small; thus, eliminating
them from the wavelet transform (i.e., treating them asdmroduces only small errors when reconstructing thgioal data,
resulting in a very effective form of lossy data compres$idt].

A helpful tool for conceptualizing the recursive Haar watdtansform process is thegror tree structure (shown in Fig-
ure 1(a) for the example array). Each internal node; (: = 0,...,7) is associated with a wavelet coefficient value, and each
leafd; (¢ = 0,...,7) is associated with a value in the original data array; irhlmatses, the indexdenotes the positions in
the (data or wavelet transform) array. For instangesorresponds to the overall averagef The resolution levelsfor the
coefficients (corresponding to levels in the tree) are aégmaded.

do d1 d2 d3 d4 d5 d6 d =0
(a) (b)

Figure 1:(a) Errortree structure for the example data arraglNV = 8). (b) Support regions and signs for the 16 nonstandard iwesional
Haar basis functions.

Given an error tred” and an internal nodeof T, ¢ # ¢y, leftleaves(t) (rightleaves(t)) denotes the set of leaf (i.e.,
data) nodes in the subtree rooted'adeft (resp., right) child. Also, given any (internal oa® nodew, path(u) is the set of all
(internal) nodes if{" that are proper ancestorsof(i.e., the nodes on the path fromto the root ofT’, including the root but
notw) with non-zero coefficients. Finally, for any two leaf nodksnddy,, d(I : k) denotes the range suEf:l d;. Using the
error tree representatidn, the following important reconstruction properties of thaar wavelet transform can be outlined.
¢ (P1) The reconstruction of any data valliedepends only on the values of the nodesdsh(d;). More specificallyd; =
chepath(di) di;-cj, whered;; = +1if d; € leftleaves(c;) orj = 0,andd;; = —1 otherwise; for examplely, = co—ci1+cs
=4 (= + (-1 =3
e (P2) An internal node:; contributes to the range sud{! : h) only if ¢; € path(d;) U path(dy). More specifically,
d(l : h) = ch €path(d;)Upath(dy) Lj, where

L (h—l—f'l)cj,lszo
L= (|Leftleaves(c;,l : h)| — |rightleaves(c;,! : h)|) - ¢;, otherwise.

whereleftleaves(c;j,! : h) = leftleaves(c;) N {di, dit+1,. .., dr} (i.€., the intersection afeftleaves(c;) with the summa-
tion range) andightleaves(c;,! : h) is defined similarly. (Clearly, coefficients whose subtseedmpletely contained within
the summation range have a net contribution of zero, andeaafiely ignored.) For examplé(2 : 6) = 5co+(2—3)c1 —2¢o =
5x L (=3) - 1=14.
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Thus, reconstructing a single data value involves summingastlog N + 1 coefficients and reconstructing a range sum



involves summing at mo&tlog N + 1 coefficients, regardless of the width of the range. Staeport regiorfor a coefficient;
is defined as the set of (contiguous) data valuesdhiatused to reconstruct.

The Haar wavelet transform can be naturally extendeduti-dimensionatiata arrays using two distinct methods, namely
the standardandnonstandardHaar transform [12]. As in the one-dimensional case, ther ttaasform of ad-dimensional
data arrayA results in ad-dimensional wavelet-coefficient arrdl/4, with the same dimension ranges and number of entries.
Consider al-dimensional wavelet coefficiemt’” in the (standard or nonstandard) wavelet-coefficient driray 1V contributes
to the reconstruction of d-dimensional rectangular region of cells in the originaledarray A (i.e., W’s support region).
Further, the sign ofi”’s contribution &W or —W) can vary along the quadrantsidf's support region irA.

As an example, Figure 1(b) depicts the support regions ayms sif the sixteen nonstandard, two-dimensional Haar eoeffi
cients in the corresponding locations of & 4 wavelet-coefficient arraji’4. The blank areas for each coefficient correspond
to regions ofA whose reconstruction is independent of the coefficient,the coefficient’s contribution 8. Thus,IW4[0, 0] is
the overall average that contributes positively (i-€1¥4[0, 0]") to the reconstruction of all values iA, wheread?’4[3, 3] is a
detail coefficient that contributes (with the signs showmlydo values inA’s upper right quadrant. Each data celldncan be
accurately reconstructed by adding up the contributioiith (lve appropriate signs) of those coefficients whose stpegions
include the cell. Error-tree structures #dimensional Haar coefficients are essentidlgimensional quadtreesvhere each
internal node corresponds to setof (at most)2¢ — 1 Haar coefficients, and h&¢ children corresponding to the quadrants of
the (common) support region of all coefficientgjriurthermore, properties (P1) and (P2) can also be nayugatended to the
multi-dimensional case [2, 7, 8].

Data Reduction and Approximate Query Processing.Consider a relational tabl® with d data attributes\;, X, ... X,.
The information inR can be represented ad-alimensional arrayl z, whosej'” dimension is indexed by the values of attribute
X; and whose cells contain the count of tuplegihaving the corresponding combination of attribute valubs.is essentially
thejoint frequency distributiorf all the data attributes dR. Given a limited amount of storage for buildingvavelet synopsis
of an input relationR, a thresholding procedure retains a certain nuniber< N of the coefficients in the wavelet transform
of Ar as a highly-compressed approximate representation ofrihmal data (the remaining coefficients are implicitly s@t
0). (The full details as well as efficient transform algorithoan be found in [2, 13].) The goal cbefficient thresholding to
determine the “best” subset &f coefficients to retain, so that some overall error measutikedrapproximation is minimized
— the next subsection discusses different thresholdirmdesiies proposed in the database literature.

The construction of wavelet synopses typically takes pthoéng the statistics collection process, whose goal is¢ate
concise statistical approximations for the value distidns of either individual attributes or combinations dafiautes in the
relations of a Database Management System (DBMS). Onctediegawavelet synopsis is typically stored (as a colleatioR
wavelet coefficients) as part of tEBMS-catalog informatiorand can be exploited for several different purposes. Tinegry
(and, more conventional) use of such summaries is as a toehfabling effective (compile-time) estimates of the resizdes
of relational operators for the purposeaafst-based query optimizatiofAccurate estimates of such result sizes play a critical
role in choosing an effective physical execution plan forigput SQL query.) For instance, estimating the number o dat
tuples that satisfy a range-predicate selection like X < h is equivalent to estimating the range summatjgh: h) =
Z?:z fi» wheref is the frequency distribution array for attribuke As mentioned earlier, given/a-coefficient synopsis of the
f array, computingf (I : h) only involves retained coefficients gath( f;)U path(f;,) and, thus, can be estimated by summing
only min{ B, 2log N + 1} synopsis coefficients [13]. B-coefficient wavelet synopsis can also be easily expanded((B)
time) into anO(B)-buckethistogram(i.e., piecewise-constant) approximation of the undadydata distribution with several
possible uses (e.g., as a data visualization/approximédid).

More generally, wavelet synopses can enable very fast angdae approximate query answers [6] during interactita-da
exploration sessions. As demonstrated by Chakrabarti f2]abn approximate query processing algebra (which ohesuall
conventional aggregate and non-aggregate SQL operatmts,asselect, project, join, sum, andaverage) can operate
directly over the wavelet synopses of relationkile guaranteeing the correct relational operator seicearQuery processing
algorithms for these operators woektirelyin the wavelet-coefficient domain. This allows for extreynfest response times,
since the approximate query execution engine can do thedfutk processing over compact wavelet synopses, esdgntial
postponing the (expensive) expansion step into relatitupdés until the end-result of the query.

Conventional and Advanced Wavelet Thresholding Scheme$RRecall that coefficient thresholding achieves data redaocti
by retainingB << N of the coefficients in the wavelet transform 4f; as a highly-compressed, lossy representation of the
original relational data. The goal, of course, is to minietize amount of “loss” quantified through some overall apjpnaxion
error metric. Conventional wavelet thresholding (the rodtlof choice for most studies on wavelet-based data redyctio
greedily retains thé3 largest Haar-wavelet coefficients in absolute vaaiger a simple normalization step (that divides each
coefficient value at resolution leveby v/2Y). It is a well-known fact that this thresholding method igaet provably optimal
with respect to minimizing the overall root-mean-squargdre(i.e., Lo-norm errod) in the data compression [12]. More



formally, Iettingcil- denote the (approximate) reconstructed data value foi,aeltaining theB largest normalized coefficients

implies that the resulting synopsis minimizes(d) = \/Zi(d}- — d;)? (for the given amount of spade).

Conventional wavelet synopses optimized for ovefallerror may not always be the best choice for approximate query
processing systems. The quality of the approximate anssuetssynopses provide can vary widely, and users have nofvay o
knowing the accuracy of any particular answer. Even for thpkest case of approximating a value in the original data se
the absolute and relative errors can show wide variatioms@er the example depicted in Table 1. The first line shows th
16 original data values (the exact answer), whereas the sdomdhows thel6 approximate answers returned when using
conventional wavelet synopses and stograpefficients. Although the first half of the values is badicalmirror image of the
second half, all the approximate answers for the first habar whereas all the approximate answers for the second half are
exact! Similar data values have widely different approxiores, e.g.30 and31 have approximation30 and65, respectively.
The approximate answers make the first half appear as a omdtribution, with widely different values, e.@3,and 127,
having the same approximate answér Moreover, the results do not improve when one considerpthsumably easier
problem of approximating the sum over a range of valuesaligrossibleranges within the first half involving = 2 to 7 of
the values, the approximate answer will &fe- x, while the actual answers vary widely. For example, for bbthranged,
to d2 and the rangé; to ds, the approximate answer 195, while the actual answer B85 and93, respectively. On the other
hand,exactanswers are provided for all possible ranges within thersgbalf.

Original datavalues | 127 71 87 31 59 3 43 99 100 42 0 58 30 88 72 130
Wavelet answers 65 65 65 65 65 65 65 65 100 42 O 58 30 88 72 130

Table 1: Errors with Conventional Wavelet Synopses.

The simple example above illustrates that conventionakledsynopses suffer from several important problemsuinob
the introduction of severe bias in the data reconstructimhveide variance in the quality of the data approximationyalf as
the lack of non-trivial guarantees for individual approxziteanswers. To address these shortcomings, recent wopkdpssed
novel thresholding schemes for building wavelet synopisastty to minimize different approximation-error metrissich as
the maximum relative errofwith an appropriatsanity bound) in the approximation of individual data values based on the

synopsis; that is, minimizeax; {% . Such relative-error metrics are arguably the most impbgaality measures
for approximate query answers. (The role of the sanity basitalensure that relative-error numbers are not unduly dated
by small data values.)

More specifically, Garofalakis and Gibbons [7] introdyzebabilisticthresholding schemes based on ideas from random-
ized rounding, that probabilistically round coefficienither up to a larger rounding value (to be retained in the pgi®) or
down to zero. Intuitively, their probabilistic schemesigsseach non-zero coefficiefractional storagey € (0, 1] equal to
its retention probability, and then flip independent, appiately-biased coins to construct the synopsis. Thegsholding
algorithms are based dbynamic-Programming (DPformulations that explicitly minimize appropriate prolfilaic metrics
(such as the maximum normalized standard error or the mamimarmalized bias) in the randomized synopsis construction
these formulations are then combined withuantizationof the potential fractional-storage allotments to give bamatorial
techniques [7].

In more recent work, Garofalakis and Kumar [8] show that thfalfs of randomization can be avoided by introducing
efficient schemes fateterministiovavelet thresholding with the objective of optimizingi@aneral class of error metrice.g.,
maximum or mean relative error). Their optimal and appraterthresholding algorithms are based on novel DP techsique
that take advantage of the Haar transform error-tree streicin a nutshell, their DP algorithms tabulate the optisdilition
for the subtree rooted at each error-tree nedgiven the error contribution that “enters” that subtree thugh the choices
made at all ancestor nodes of in the tree(i.e., the choice of coefficients asath(c;)). The key observation here is that,
since the depth of the error tree(glog V), all such possible selections can be tabulated while sépkng the running-time
of the thresholding algorithm in the low-polynomial rangEhis turns out to be a fairly powerful idea for wavelet syneps
construction that can handle a broad, natural clagfistfibutive error metricgwhich includes several useful error measures
for approximate query answers, such as maximum or mean teeigélative error and weighted,-norm error) [8].

The above wavelet thresholding algorithms for nbnerror metrics consider only threstrictedversion of the problem,
where the algorithm is forced to select values for the syisdpsm the standard Haar coefficient values. As observedutyaG
and Harb [10], such a restriction makes little sense wheimagihg for non<., error, and can, in fact, lead to sub-optimal
synopses. Their work considararestrictedHaar wavelets, where the values retained in the synopsgpaufically chosen to
optimize a general (weighted), error metric. Their proposed thresholding schemes rely DR @ver the error tree (similar
to that in [8]) thatalso iterates over the range of possible coefficient valoesdch nodeTo keep time and space complexities



manageable, techniques for bounding these coefficienevahges are also discussed [10].

Extended and Streaming Wavelet SynopsesComplex tabular data setgith multiple measuregmultiple numeric entries
for each table cell) introduce interesting challenges favelet-based data reduction. Such massive, multi-meaables
arise naturally in several application domains, includigAP (On-Line Analytical Processing) environments andetiseries
analysis/correlation systems. As an example, a corpoasge database may tabulate, for each available produthg humber
of items sold, (2) revenue and profit numbers for the prodarad, (3) costs associated with the product, such as shippishg a
storage costs. Similarly, real-life applications that fib@ncontinuous time-series typically have to deal withesa readings
(measures) that evolve over time; for example, a netwafitrmonitoring system takes readings on each time-ticknfeo
number of distinct elements, such as routers and switchéiseiunderlying network and typically several measurestafest
need to be monitored (e.g., input/output traffic numbersefarh router or switch interface) even for a fixed network eleim
Deligiannakis et al. [4] show that obvious approaches fdaiding wavelet synopses for such multi-measure data cahtiea
poor synopsis-storage utilization and suboptimal sohigieven in very simple cases. Instead, their proposed epligtbased
on (1) extended wavelet coefficientbe first adaptive, efficient storage scheme for multi-raeasvavelet coefficients; and,
(2) novel algorithms for selecting the optimal subset oexted coefficients to retain for minimizing the weighted safmi.,
errors across all measures under a given storage constraint

Traditional database systems and approximation techsiangetypically based on the ability to make multiple passes o
persistent data setshat are stored reliably in stable storage. For severatgngapplication domains, however, data arrives
at high rates and needs to be processed on a contin@dus ) basis, without the benefit of several passes over a static,
persistent data image. Sucbntinuous data streanaise naturally, for example, in the network installatioffarge Telecom
and Internet service providers where detailed usage irdtom (Call-Detail-Records (CDRs), SNMP/RMON packet-fibata,
etc.) from different parts of the underlying network neeal®é continuously collected and monitored for interestiegds
and phenomena (e.g., fraud or Denial-of-Service attad&kiciently tracking an accurate wavelet synopsis over suelsive
streaming data, using only small space and time (per strepapdate), poses a host of new challenges. Recently-prdpos
solutions [3, 9] rely on maintaining small-spageseudo-random AMS sketch@ssentially, random linear projections) over
the input data stream [1]. These sketches can then be quergfticiently recover the topmost wavelet coefficients af th
underlying data distribution within provable error guasss [3].

KEY APPLICATIONS
Wavelet synopses are a general data-reduction tool wittrakmportant applications, including statistics for gueptimiza-
tion, lossy data compression, OLAP cube summarizationjraedactive data exploration, mining, and query proceassin

DATA SETS

Several publicly-available real-life data collectionwddeen used in the experimental study of wavelet synopselsother
data-reduction methods); examples include the US CensusaBuwata setsh¢tp://www.census.gov/), the UCI KDD
Archive (http://kdd.ics.uci.edu/), and the UW Earth Climate and Weather Data Archivetp://www-k12.atmos.

washington.edu/k12/grayskies/).

FUTURE DIRECTIONS

The area of wavelet-based data reduction is still rife withriesting algorithmic questions, including, for instalt) designing
efficient methods for building wavelet synopses that oerdifferent error metrics under general streaming modets.,(
allowing both item insertions and deletions), and (2) depelg a sound foundation and appropriate summarizatiols foo
approximateset-valued(i.e., non-aggregate) queries. Dealing with these of dimensionalitthat invariably haunts space-
partitioning techniques (such as wavelets and histogrésrayother big open issue; some initial ideas based on cangpin
these techniques with statistical-correlation modelseapm [5]. And, of course, from a systems perspective, tioblpm of
incorporating wavelets and other approximate query psiegdools in an industrial-strength database engine (thate.g.,
select and optimize the appropriate tools for each sceramsains wide open.
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