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DEFINITION
Unlike conventional database query-processing engirssréiqjuire several passes over a static data image, stgaltaia-
analysis algorithms must often rely on building concisgragimate (but highly accuratsynopse®f the input stream(s) in
real-time (i.e., in one pass over the streaming data). Syrbpses typically require space that is significantly swdar in the
size of the data and can be used to prodgdproximate query answers

The collection of the top (i.e., largest) coefficients in t@velet transfornfor, decompositiopof an input data vector is
one example of such a key feature of the stre&vaveletgprovide a mathematical tool for the hierarchical decomipmsiof
functions, with a long history of successful applicationsignal and image processing [10]. Applying the wavelatsfarm
to a (one- or multi-dimensional) data vector and retainisglact small collection of the largest wavelet coefficiameg a very
effective form of lossy data compression. Swedvelet summariegrovide concise, general-purpose summaries of relational
data, and can form the foundation for fast and accurate appade query processing algorithms.

HISTORICAL BACKGROUND

Haar wavelethave recently emerged as an effective, general-purpogeddtiction technique for approximating an underlying
data distribution, and providing a foundation for approaiemquery processing over traditional (static) relatiatedh. Briefly,
the idea is to apply the Haar wavelet decomposition to thatinglation to obtain a compact summary that comprises a&tsele
small collection ofwavelet coefficientsThe results of [3, 9, 11] have demonstrated that fast andrateapproximate query
processing engines can be designed to operate solely alecempact wavelet summaries. Wavelet summaries can also gi
accuratehistogramsof the underlying data distribution at multiple levels o$oéution, thus providing valuable primitives for
effective data visualization.

In the setting of static relational tables, the Haar wavetatsform is well understood, and scalable wavelet decaitipn
algorithms for constructing wavelet summaries have beemwkrfor some time [3, 11]. Typically, such algorithms asswahe
least linear space and several passes over the data. D=tenstg models introduce the novel challenge of maintaittieg
topmost wavelet coefficients over a dynamic data distribufiendered as a stream of updates), while only utilizsimgll space
and time(i.e., significantly sublinear in the size of the data dimttion),

SCIENTIFIC FUNDAMENTALS

TheHaar Wavelet Decomposition. Consider the one-dimensional data veetet [2, 2,0, 2, 3, 5,4, 4] comprisingV = 8 data
values. In generaly denotes the data set size 40 is defined as the integer index domdin ..., N — 1}; also, without loss
of generality,)V is assumed to be a power ®{to simplify notation). The Haar Wavelet Transform (HWT)wfs computed
as follows. The data values are first averaged together js@ite get a new “lower-resolution” representation of thadeith
the pairwise averaggs$?, %42, 355 4] — [2/1 4, 4]. This averaging loses some of the informatiorinTo restore the
original a values detail coefficientshat capture the missing information are needed. In the HW&5e detail coefficients are
the differences of the (second of the) averaged values tneradmputed pairwise average. Thus, in this simple exarfglthe
first pair of averaged values, the detail coefficierit i§ince22;2 = 0, for the seconditis-1 since% = —1. No information
is lost in this process — one can reconstruct the eight valiihe original data array from the lower-resolution arraptining
the four averages and the four detail coefficients. Thisyia& averaging and differencing process is recursiveljieghpn the
lower-resolution array of averages until the overall ageris reached, to get the full Haar decomposition. The finallHiVa

is given byw,, = [11/4, -5/4,1/2,0,0, —1, —1, 0], that is, the overall average followed by the detail coeffits in order of
increasing resolution. Each entryqn, is called awavelet coefficienfThe main advantage of using, instead of the original
data vectow is that for vectors containing similar values most of theadefoefficients tend to have very small values. Thus,
eliminating such small coefficients from the wavelet transf (i.e., treating them as zeros) introduces only smatirerwhen
reconstructing the original data, resulting in a very dffecform of lossy data compression [10].



A useful conceptual tool for visualizing and understandihg 0 @
HWT process is therror tree structure [9] (shown in Fig. 1 for the

example array:). Each internal tree nodg corresponds to a wavelet
e : ) _ cl @
coefficient (with the root node, being the overall average), and ledf=0
nodesa[i] correspond to the origina_l data-array entries. This view :f\I: 1 c2 c3
lows us to see that the reconstruction of afif depends only on the
log N + 1 coefficients in the path between the root aifd; symmetri- | =5 ¢4 c5 c6 c7
cally, it means a change irji] only impacts itdog NV 4 1 ancestors in
an easily computable way. Theipportfor a coefficientc; is defined | =3 @
as the contiguous range of data-array thas used to reconstruct (i.e., alol alll a2l al3l al4l al51 al6l al7l

the range of data/leaf nodes in the subtree rooteg) aNote that the
supports of all coefficients at resolution levedf the HWT are ex- Figure 1:Error-tree structure for the example data aray

actly the2! (disjoint) dyadic rangef size N /2! = 216 N~ over[N], ¥V =38)-

defined ask; j, = [k - 28 N1 . (k+1)-2leN—l 1] fork =

0,...,2 — 1 (for each resolution level = 0, ..., log N). The HWT can also be conceptualized in terms of vector inner
product computations: let; ;. denote the vector withy,  [i] = 2!~1°¢ Y for i € R, ; and0 otherwise, foi =0, ..., log N and

k=0,...,2! —1; then, each of the coefficients in the HWTotan be expressed as the inner product with one of theV
distinct Haawavelet basis vectors
{3(di41,26 — Prg1,2641) : 1 =0,...,logN — 1,k =0,...,2" = 1} U {¢o,0}

Intuitively, wavelet coefficients with larger support caa higher weight in the reconstruction of the original dadtues.
To equalize the importance of all HWT coefficients, a commommalization scheme is to scale the coefficient values at lev
(or, equivalently, the basis vectaps) by a factor of,/N/2!. This normalization essentially turns the HWT basis veioio
anorthonormal basis— letting ¢} denote the normalized coefficient values, this fact has mmrtant consequences: (1) The
energy(squared_,-norm) of thea vector is preserved in the wavelet domain, thaliig|3 = (a,a) = >, a[i]* = >,(c})? (by
Parseval's theorem); and, (2) Retaining fhi¢argest coefficients inbsolute normalized valugves the (provably) bed-term
approximation in terms of.; (or, sum-squared) error in the data reconstruction (fovargbudget of coefficient8) [10].

The HWT and its key properties also naturally extend to tree admulti-dimensionatiata distributions; in that case, the
inputa is ad-dimensional data array, comprising entries, and the HWT of: results in ad-dimensional wavelet-coefficient
arrayw, with N? coefficient entries. The supportsétlimensional Haar coefficients afedimensional hyper-rectangles (over
dyadic ranges ifN]%), and can be naturally arranged in a generalized errosstraeture [5, 6].

Wavelet Summaries on Streaming Data. Abstractly, the goal is to continuously track a compact samnof the B topmost
wavelet coefficient values for a dynamic data distributieotera rendered as a continuous stream of updates. Algorithms for
this problem should satisfy the keynall space/timeequirements for streaming algorithms; more formallyeaning wavelet
algorithms should (ideally) guarantee Eblinear space usagéor storing a synopsis of the stream), &)blinear per-item
update timgto maintain the synopsis), and (8)blinear query timéto produce a, possibly approximate, wavelet summary),
where “sublinear” typically means polylogarithmic in therdain sizeN. The streaming wavelet summary construction prob-
lem has been examined under two distinct data streaminglsiode

¢ Wavelets in the Ordered Aggregate (Time Series) StreamodghMHere, the entries of the input data vectoare rendered
over time in the increasing (or, decreasing) order of thexndbmain values. This means, for instance, that (or, the set of
all updates ta[1]) is seen first, followed by 2], thenqa[3], and so on. In this case, the set of tRegopmost HWT values over
a can be maintainedxactlyin small space and time, using a simple algorithm based oenfoe-tree structure (Fig. 1) [7]:
Consider reading (an update to) iteifi + 1] in the stream; that is, all items;] for j < i have already streamed through. The
algorithm maintains the following two sets of (partial) fozents:

1. HighestB HWT coefficient values for the portion of the data vector sthrs far; and,

2. log N + 1 straddlingpartial HWT coefficients, one for each level of the error tr&elevel [, indexi straddleshe HWT
basis vector, ., wherej € [k - 2'°8 V=L (k + 1) - 2l°eN=l _1]. (Note that there ist most onesuch basis vector per
level.)

When the(i + 1)*" data item is read, the value for each of the affected stragdivefficients is updated. With the arrival of
the (i + 1)*" item, some coefficients may no longer be straddling (i.eir ttomputation is now complete). In that case, the
value of these coefficients is compared against the thertiset of B highest coefficients, and only the largest coefficient
values in the combined set are retained. Also, for levelsrevhestraddling coefficient has been completed, a new stragddl

Iwithout loss of generality, a domain fV]? is assumed for thé-dimensional case.



coefficient is initiated (with an initial value df). In this manner, at every position in the time series strahmset of theB
topmost HWT coefficients is retained exactly.

Theorem 1 ([7]) The topmosB HWT coefficients can be maintained exactly in the orderedeagde (time series) streaming
model using) (B + log N) space and)(B + log N) processing time per item.

Similar algorithmic ideas can also be applied to more sajchied wavelet thresholding schemes (e.g., that optificize
error metrics other thah,) to obtain space/time efficient wavelet summarization @flgms in the ordered aggregate model [8].

o Wavelets in the General Turnstile Streaming Modere, updates to the data vectoran appear in any arbitrary order in the
stream, and the final vector entries are obtained by imlgliaggregating the updates for a particular index domaineza\iore
formally, in the turnstile model, each streaming update i of the form(i, +v), denoting a net change dfv in the ai]
entry; that is, the effect of the update is to 6gt < a[i] +v. (The model naturally generalizes to multi-dimensionahdéor d
data dimensions, each updéte, . . .,i4), tv) effects a net change dfv on entryaliy, .. ., i4].) The problem of maintaining
an accurate wavelet summary becomes significantly more leocmfen moving to this much more general streaming model.
Gilbert et al. [7] prove a stronigwer boundon the space requirements of the problem: for arbitrarystilenstreaming vectors,
nearly all of the data must be stored to recover the BpIWT coefficients.

Existing solutions for wavelet maintenance over turngdiégéa streams rely on randomized schemes that return only an
approximatesynopsis comprising (at mosB Haar coefficients that is provably near-optimal (in termshef captured energy
of the underlying vector) assuming that the data vectosfasitheé'small-B property” (i.e., most of its energy is concentrated in
a small number of HWT coefficients) — this assumption is tgflicsatisfied for most real-life data distributions [7]. ©of the
key ideas is to maintain a randomizAMS sketch2], a broadly applicable stream synopsis structure cosimggirandomized
linear projections of the streaming data vectorBriefly, anatomic AMS sketcbf « is simply theinner product(a, ) =
>, ali]é(7), where denotes a random vector of four-wise independenvalued random variates.

Theorem 2 ([1, 2]) Consider two (possibly streaming) data vectesndb, and letZ denote the)(log(1/6))-wise median of
O(1/€?)-wise means of independent copies of the atomic AMS sketdbgit> ", a[i]¢;(i)) (>, bi]¢;(i)). Then|Z —(a, b)| <
¢||al|2]|b]|2 with probability> 1 — §.

Thus, using AMS sketches comprising oﬂjlogiﬂ) atomic counters, the vector inner prodgetd) can be approximated
to within +e||a||2||b||2 (hence implying an-relative error estimate for the squargglnorm||a||3).

Since Haar coefficients afare inner products with a fixed set of wavelet-basis vectbesabove theorem forms the key to
developing efficient, approximate wavelet maintenancerétygns in the turnstile model. Gilbert et al. [7] proposeotusion
(termed “GKMS” in the remainder of the discussion) that feesi primarily on the one-dimensional case. GKMS maintains
an AMS sketch for the streaming data vecioiTo produce the approximafg-term representation, GKMS employs the con-
structed sketch of to estimate the inner product@fwith all wavelet basis vectorgssentially performing an exhaustive search
over the space of all wavelet coefficients to identify impattones. More formally, assuming that there B-goefficient ap-
proximate representation of the signal with energy at lgfst|2 (“small B property”), the GKMS algorithm uses a maintained
AMS sketch to exhaustively estimate each Haar coefficiedtsmbects up taB of the largest coefficients (excluding those
whose square is less than||a||3/B, wheree < 1 is the desired accuracy guarantee). GKMS also uses te@sitased on
range-summable random variables constructed using Reglémdodes to reduce or amortize the cost of this exhaustigech
by allowing the sketches of basis vectors (with potenti@hge supports) to be computed more quickly.

Theorem 3 ([7]) Assuming there exists B-term representation with energy at leagta||3, then, with probability at least
1 — 4, the GKMS algorithm finds a representation of at mBstoefficients that captures at legdt— €)n of the signal energy
||a]|3, usingO(log? N log(N/&)B?/(ne)?) space and per-item processing time.

A potential problem lies in the query time requirements & @KMS algorithm: even with the Reed-Muller code opti-
mizations, the overall query time for discovering the togftioients remains superlinear ¥ (i.e., at Ieasﬂ(g%Nlog N)),
violating the third requirement on streaming schemes. @tss renders direct extensions of GKMS to multiple dimensio
infeasible since it implies an exponential explosion inrgumst (requiring at leagh (N ) time to cycle through all coefficients
in d dimensions). In addition, the update cost of the GKMS atbariislinear in the size of the sketdince the whole data
structure must be “touched” for each update. This is probtenfior high-speed data streams and/or even moderatesietch
synopses.

To address these issues, Cormode et al. [5] propose a ndwtbadhat relies on two key technical ideas. First, theykvo
entirely in the wavelet domairinstead of sketching the original data entries, their élgms sketch the wavelet-coefficient
vectorw, as updates arrive. This avoids any need for complex rangerstble hash functions (i.e., Reed-Muller codes).



Second, they empldyash-based groupinig conjunction withefficient binary-search-like techniquesenable very fast updates
as well as identification of important coefficients in polysmithmic time.

— Sketching in the Wavelet Domairhe first technical idea in [5] relies on the observation thiatpossible efficiently produce
sketch synopses of the strealinectly in the wavelet domainThat is, the impact of each streaming update can be tradslat
on the relevant wavelet coefficients. By the linearity prips of the HWT and the earlier description, an update todéita
entries corresponds to only polylogarithmically many &icgfnts in the wavelet domain. Thus, on receiving an update it
can be directly converted ©©(polylog(/N)) updates to the wavelet coefficients, and an approximatéctskeepresentation of
the wavelet coefficient vectas, can be maintained.

— Time-Efficient Updates and Large-Coefficient Searclsé®tching in the wavelet domain means that, at query timeapan
proximate representation of the wavelet-coefficient veetpis available, and can be employed to identify all those coieffits
that are “large”, relative to the total energy of the déta |3 = ||a|3. While AMS sketches can provide such estimates (a point
query is just a special case of an inner product), queryinganes much too slow taking at Iee@(}zN) time to find which of
the N coefficients are thé3 largest. Instead, the schemes in [5] rely odivcide-and-conqueor binary-search-likeapproach

for finding the large coefficients. This requires the abiiitefficiently estimate sums-of-squares fwoupsof coefficients, cor-
responding to dyadic subranges of the donjaih Low-energy regions can then be disregarded, recursingamhigh-energy
groups — this guarantees no false negatives, as a groupchtics a high-energy coefficient will also have high enexgy

a whole. The algorithms of [5] also emplogndomized, hash-based groupiafydyadic groups and coefficients to guarantee
that each update only touches a small portion of the syndpsis guaranteeing very fast update times.

The key to the Cormode et al. solution is a hash-based pridiabi
synopsis data structure, term@&mtoup-Count Sketch (GCS3jat can esti- X h(id(x))
mate the energy of fixed groups of elements from a vegtof size N un- .=\ o
der the turnstile streaming model [5]. This translates t@sd streaming ‘ ‘ ‘ ‘ ‘ ‘ ]\ ] /t repetitions
Ly-norm estimation problems (one per group). A simple solutimuld N~
be to keep an AMS sketch of each group separately; howesg tran b buckets 1 f(x\rue (3(‘)"*\\_
bemany(e.qg., linear inV') groups, implying space requirements that are ‘ ‘ ‘ \‘ ‘ ‘ ‘ ‘
O(N). Streaming updates should also be processed as quicklgsibleo
The GCS synopsis requires small, sublinear space and talidérsesar time ¢ subbuckets
to process each stream update item; more importantly, a @& grovide
a high-_probak_JiIity es_timate of the energy of a group Wit_kthiaaive error ¢ times) to a bucket of groups (usifgid(z))) and then
e||w]|3 in sublinear time In a nutshell, the GCS synopsis first part|t|0n§ sub-bucket within the bucket (usifz)), where an
items ofw into their group using aid () function (which, in the case apms counter is updated.
of Haar coefficients, is trivial since it corresponds to fixgedic ranges
over[N]), and then randomly maps groups to buckets using a hash func-
tion (). Within each bucket, a second stage of hashing of items tébauokets is applied (using another hash functfdin
where each contains an atomic AMS sketch counter in ordestimate thel, norm of the elements in the bucket. As with
most randomized estimation schemes, a GCS synopsis caspitglependent instantiations of this basic randomized struc
ture, each with independently chosen hash function pairs f()) and¢ families for the AMS estimator; during maintenance,
a streaming updater, u) is used to update each of th&MS counters corresponding to element(A pictorial representation
is shown in Fig. 2.) To estimate the energy of a grgufor each independent instantiation = 1,...,t of the bucketing
structure, the squared values of all the AMS counters intbetsickets corresponding to bucket (¢) are summed, and then
themedianof theset values is returned as the estimate.

Figure 2:The GCS data structure: Elemenis hashed

Theorem 4 ([5]) The GCS can estimate the energy of item groups of the veatsthin additive errore||w||3 with probability
> 1 — ¢ using space of) (% log §) counters, per-item update time ©f(log 3 ), and query time o (2 log 5 ).

To recover coefficients with large energy in thesector, the algorithm employstderarchical search-tree structuren top
of [V]: Each level in this tree structure induces a certain paniitig of elements into groups (corresponding to the nodimat
level), and per-level GCS synopses can be used to efficieattyver the high-energy groups at each level (and, thusklyui
zero in on high-energy Haar coefficients). Using these id€asmode et al. [5] demonstrate that the accuracy guaraintee

of Theorem 3 can be obtained usity Bi;j]%iN - log Bi‘j]%N) space,O(log” N - log Bi‘j]%N) per item processing timend
O(% -log N - log Bi‘j?%N) query time. In other words, their GCS-based solution guasmsublinear spaead query time,

as well as per-item processing times that are sublimeire size of the stream synopsisheir results also naturally extend to
the multi-dimensional case [5].

KEY APPLICATIONS
Wavelet-based summaries are a general-purpose dataicetiool, and the maintenance of such summaries over agmiis



data streams has several important applications, inadige-scale IP network monitoring and network-eventirag (e.g.,
for detecting network traffic anomalies or Denial-of-Seevattacks), approximate query processing over warehquoate
streams, clickstream and transaction-log monitoringligdaveb-server farms, and satelite- or sensornet-basésemental
monitoring.

DATA SETS

Several publicly-available real-life data collectionsv@aeen used in the experimental study of streaming wavalet s
maries; examples include the US Census Bureau dataiset:(//www.census.gov/), the UCI KDD Archive fttp:
//kdd.ics.uci.edu/), and the UW Earth Climate and Weather Data Archivetp://www-k12.atmos.washington.
edu/k12/grayskies/).

FUTURE DIRECTIONS

The area of streaming wavelet-based summaries is rich atighdsting algorithmic questions. The bulk of the disaussiere
focuses onl,-error synopses. The problem of designing efficient stragmiethods for maintaining wavelet summaries that
optimize fornon-L, error metrics(e.g., general, error) under a turnstile streaming model remains open. ndpitng for
non-Ls error implies more sophisticated coefficient thresholdiogemes based on dynamic programming over the error-tree
structure (e.qg., [6, 8]); while such methods can be effityjeniplemented over ordered aggregate streams [8], no #paee
efficient solutions are known for turnstile streams. Dagliith physically-distributed streanaso raises interesting issues for
wavelet maintenance, such as trading off approximatiolityweith communicatiotgin addition to time/space). The distributed
AMS sketching algorithms of Cormode and Garofalakis [4] barapplied to maintain an approximate wavelet representati
over distributed turnstile streams, but several issues, (@ppropriate prediction models for local sites) remgiaro Finally,
from a systems perspective, the problem of incorporatingeled summaries in industrial-strength data-streamingress, and
testing their viability in real-life scenarios remains ape
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