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DEFINITION
Unlike conventional database query-processing engines that require several passes over a static data image, streaming data-
analysis algorithms must often rely on building concise, approximate (but highly accurate)synopsesof the input stream(s) in
real-time (i.e., in one pass over the streaming data). Such synopses typically require space that is significantly sublinear in the
size of the data and can be used to provideapproximate query answers.

The collection of the top (i.e., largest) coefficients in thewavelet transform(or, decomposition) of an input data vector is
one example of such a key feature of the stream.Waveletsprovide a mathematical tool for the hierarchical decomposition of
functions, with a long history of successful applications in signal and image processing [10]. Applying the wavelet transform
to a (one- or multi-dimensional) data vector and retaining aselect small collection of the largest wavelet coefficient gives a very
effective form of lossy data compression. Suchwavelet summariesprovide concise, general-purpose summaries of relational
data, and can form the foundation for fast and accurate approximate query processing algorithms.

HISTORICAL BACKGROUND
Haar waveletshave recently emerged as an effective, general-purpose data-reduction technique for approximating an underlying
data distribution, and providing a foundation for approximate query processing over traditional (static) relationaldata. Briefly,
the idea is to apply the Haar wavelet decomposition to the input relation to obtain a compact summary that comprises a select
small collection ofwavelet coefficients. The results of [3, 9, 11] have demonstrated that fast and accurate approximate query
processing engines can be designed to operate solely over such compact wavelet summaries. Wavelet summaries can also give
accuratehistogramsof the underlying data distribution at multiple levels of resolution, thus providing valuable primitives for
effective data visualization.

In the setting of static relational tables, the Haar wavelettransform is well understood, and scalable wavelet decomposition
algorithms for constructing wavelet summaries have been known for some time [3, 11]. Typically, such algorithms assumeat
least linear space and several passes over the data. Data streaming models introduce the novel challenge of maintainingthe
topmost wavelet coefficients over a dynamic data distribution (rendered as a stream of updates), while only utilizingsmall space
and time(i.e., significantly sublinear in the size of the data distribution),

SCIENTIFIC FUNDAMENTALS
The Haar Wavelet Decomposition. Consider the one-dimensional data vectora = [2, 2, 0, 2, 3, 5, 4, 4] comprisingN = 8 data
values. In general,N denotes the data set size and[N ] is defined as the integer index domain{0, . . . , N −1}; also, without loss
of generality,N is assumed to be a power of2 (to simplify notation). The Haar Wavelet Transform (HWT) ofa is computed
as follows. The data values are first averaged together pairwise to get a new “lower-resolution” representation of the data with
the pairwise averages[ 2+2

2 , 0+2
2 , 3+5

2 , 4+4
2 ] = [2, 1, 4, 4]. This averaging loses some of the information ina. To restore the

originala values,detail coefficientsthat capture the missing information are needed. In the HWT,these detail coefficients are
the differences of the (second of the) averaged values from the computed pairwise average. Thus, in this simple example,for the
first pair of averaged values, the detail coefficient is0 since2−2

2 = 0, for the second it is−1 since0−2
2 = −1. No information

is lost in this process – one can reconstruct the eight valuesof the original data array from the lower-resolution array containing
the four averages and the four detail coefficients. This pairwise averaging and differencing process is recursively applied on the
lower-resolution array of averages until the overall average is reached, to get the full Haar decomposition. The final HWT of a
is given bywa = [11/4,−5/4, 1/2, 0, 0, −1, −1, 0], that is, the overall average followed by the detail coefficients in order of
increasing resolution. Each entry inwa is called awavelet coefficient. The main advantage of usingwa instead of the original
data vectora is that for vectors containing similar values most of the detail coefficients tend to have very small values. Thus,
eliminating such small coefficients from the wavelet transform (i.e., treating them as zeros) introduces only small errors when
reconstructing the original data, resulting in a very effective form of lossy data compression [10].
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Figure 1:Error-tree structure for the example data arraya

(N = 8).

A useful conceptual tool for visualizing and understandingthe
HWT process is theerror tree structure [9] (shown in Fig. 1 for the
example arraya). Each internal tree nodeci corresponds to a wavelet
coefficient (with the root nodec0 being the overall average), and leaf
nodesa[i] correspond to the original data-array entries. This view al-
lows us to see that the reconstruction of anya[i] depends only on the
log N +1 coefficients in the path between the root anda[i]; symmetri-
cally, it means a change ina[i] only impacts itslog N + 1 ancestors in
an easily computable way. Thesupportfor a coefficientci is defined
as the contiguous range of data-array thatci is used to reconstruct (i.e.,
the range of data/leaf nodes in the subtree rooted atci). Note that the
supports of all coefficients at resolution levell of the HWT are ex-
actly the2l (disjoint)dyadic rangesof sizeN/2l = 2log N−l over[N ],
defined asRl,k = [k · 2log N−l, . . . , (k + 1) · 2log N−l − 1] for k =
0, . . . , 2l − 1 (for each resolution levell = 0, . . . , log N ). The HWT can also be conceptualized in terms of vector inner-
product computations: letφl,k denote the vector withφl,k[i] = 2l−log N for i ∈ Rl,k and0 otherwise, forl = 0, . . . , log N and
k = 0, . . . , 2l − 1; then, each of the coefficients in the HWT ofa can be expressed as the inner product ofa with one of theN
distinct Haarwavelet basis vectors:

{ 1
2 (φl+1,2k − φl+1,2k+1) : l = 0, . . . , log N − 1; k = 0, . . . , 2l − 1} ∪ {φ0,0}

Intuitively, wavelet coefficients with larger support carry a higher weight in the reconstruction of the original data values.
To equalize the importance of all HWT coefficients, a common normalization scheme is to scale the coefficient values at level l
(or, equivalently, the basis vectorsφl,k) by a factor of

√

N/2l. This normalization essentially turns the HWT basis vectors into
anorthonormal basis— letting c∗i denote the normalized coefficient values, this fact has two important consequences: (1) The
energy(squaredL2-norm) of thea vector is preserved in the wavelet domain, that is,||a||22 = 〈a, a〉 =

∑

i a[i]2 =
∑

i(c
∗

i )
2 (by

Parseval’s theorem); and, (2) Retaining theB largest coefficients inabsolute normalized valuegives the (provably) bestB-term
approximation in terms ofL2 (or, sum-squared) error in the data reconstruction (for a given budget of coefficientsB) [10].

The HWT and its key properties also naturally extend to the case ofmulti-dimensionaldata distributions; in that case, the
inputa is ad-dimensional data array, comprisingNd entries1, and the HWT ofa results in ad-dimensional wavelet-coefficient
arraywa with Nd coefficient entries. The supports ofd-dimensional Haar coefficients ared-dimensional hyper-rectangles (over
dyadic ranges in[N ]d), and can be naturally arranged in a generalized error-treestructure [5, 6].

Wavelet Summaries on Streaming Data. Abstractly, the goal is to continuously track a compact summary of theB topmost
wavelet coefficient values for a dynamic data distribution vectora rendered as a continuous stream of updates. Algorithms for
this problem should satisfy the keysmall space/timerequirements for streaming algorithms; more formally, streaming wavelet
algorithms should (ideally) guarantee (1)sublinear space usage(for storing a synopsis of the stream), (2)sublinear per-item
update time(to maintain the synopsis), and (3)sublinear query time(to produce a, possibly approximate, wavelet summary),
where “sublinear” typically means polylogarithmic in the domain sizeN . The streaming wavelet summary construction prob-
lem has been examined under two distinct data streaming models.

•Wavelets in the Ordered Aggregate (Time Series) Streaming Model.Here, the entries of the input data vectora are rendered
over time in the increasing (or, decreasing) order of the index domain values. This means, for instance, thata[1] (or, the set of
all updates toa[1]) is seen first, followed bya[2], thena[3], and so on. In this case, the set of theB topmost HWT values over
a can be maintainedexactlyin small space and time, using a simple algorithm based on theerror-tree structure (Fig. 1) [7]:
Consider reading (an update to) itema[i + 1] in the stream; that is, all itemsa[j] for j ≤ i have already streamed through. The
algorithm maintains the following two sets of (partial) coefficients:

1. HighestB HWT coefficient values for the portion of the data vector seenthus far; and,

2. log N + 1 straddlingpartial HWT coefficients, one for each level of the error tree. At level l, indexi straddlesthe HWT
basis vectorφl,k, wherej ∈ [k · 2log N−l, (k + 1) · 2log N−l − 1]. (Note that there isat most onesuch basis vector per
level.)

When the(i + 1)th data item is read, the value for each of the affected straddling coefficients is updated. With the arrival of
the (i + 1)th item, some coefficients may no longer be straddling (i.e., their computation is now complete). In that case, the
value of these coefficients is compared against the the current set ofB highest coefficients, and only theB largest coefficient
values in the combined set are retained. Also, for levels where a straddling coefficient has been completed, a new straddling

1Without loss of generality, a domain of[N ]d is assumed for thed-dimensional case.
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coefficient is initiated (with an initial value of0). In this manner, at every position in the time series stream, the set of theB
topmost HWT coefficients is retained exactly.

Theorem 1 ([7]) The topmostB HWT coefficients can be maintained exactly in the ordered aggregate (time series) streaming
model usingO(B + log N) space andO(B + log N) processing time per item.

Similar algorithmic ideas can also be applied to more sophisticated wavelet thresholding schemes (e.g., that optimizefor
error metrics other thanL2) to obtain space/time efficient wavelet summarization algorithms in the ordered aggregate model [8].

•Wavelets in the General Turnstile Streaming Model.Here, updates to the data vectora can appear in any arbitrary order in the
stream, and the final vector entries are obtained by implicitly aggregating the updates for a particular index domain value. More
formally, in the turnstile model, each streaming update is apair of the form(i,±v), denoting a net change of±v in thea[i]
entry; that is, the effect of the update is to seta[i]← a[i]±v. (The model naturally generalizes to multi-dimensional data: ford
data dimensions, each update((i1, . . . , id),±v) effects a net change of±v on entrya[i1, . . . , id].) The problem of maintaining
an accurate wavelet summary becomes significantly more complex when moving to this much more general streaming model.
Gilbert et al. [7] prove a stronglower boundon the space requirements of the problem: for arbitrary turnstile streaming vectors,
nearly allof the data must be stored to recover the topB HWT coefficients.

Existing solutions for wavelet maintenance over turnstiledata streams rely on randomized schemes that return only an
approximatesynopsis comprising (at most)B Haar coefficients that is provably near-optimal (in terms ofthe captured energy
of the underlying vector) assuming that the data vector satisfies the“small-B property” (i.e., most of its energy is concentrated in
a small number of HWT coefficients) — this assumption is typically satisfied for most real-life data distributions [7]. One of the
key ideas is to maintain a randomizedAMS sketch[2], a broadly applicable stream synopsis structure comprising randomized
linear projections of the streaming data vectora. Briefly, anatomic AMS sketchof a is simply theinner product〈a, ξ〉 =
∑

i a[i]ξ(i), whereξ denotes a random vector of four-wise independent±1-valued random variates.

Theorem 2 ([1, 2]) Consider two (possibly streaming) data vectorsa andb, and letZ denote theO(log(1/δ))-wise median of
O(1/ǫ2)-wise means of independent copies of the atomic AMS sketch product(

∑

i a[i]ξj(i))(
∑

i b[i]ξj(i)). Then,|Z−〈a, b〉| ≤
ǫ||a||2||b||2 with probability≥ 1− δ.

Thus, using AMS sketches comprising onlyO( log(1/δ)
ǫ2 ) atomic counters, the vector inner product〈a, b〉 can be approximated

to within±ǫ||a||2||b||2 (hence implying anǫ-relative error estimate for the squaredL2 norm||a||22).
Since Haar coefficients ofa are inner products with a fixed set of wavelet-basis vectors,the above theorem forms the key to

developing efficient, approximate wavelet maintenance algorithms in the turnstile model. Gilbert et al. [7] propose a solution
(termed “GKMS” in the remainder of the discussion) that focuses primarily on the one-dimensional case. GKMS maintains
an AMS sketch for the streaming data vectora. To produce the approximateB-term representation, GKMS employs the con-
structed sketch ofa to estimate the inner product ofa with all wavelet basis vectors, essentially performing an exhaustive search
over the space of all wavelet coefficients to identify important ones. More formally, assuming that there is aB-coefficient ap-
proximate representation of the signal with energy at leastη||a||22 (“small B property”), the GKMS algorithm uses a maintained
AMS sketch to exhaustively estimate each Haar coefficient and selects up toB of the largest coefficients (excluding those
whose square is less thanηǫ||a||22/B, whereǫ < 1 is the desired accuracy guarantee). GKMS also uses techniques based on
range-summable random variables constructed using Reed-Muller codes to reduce or amortize the cost of this exhaustivesearch
by allowing the sketches of basis vectors (with potentiallylarge supports) to be computed more quickly.

Theorem 3 ([7]) Assuming there exists aB-term representation with energy at leastη||a||22, then, with probability at least
1− δ, the GKMS algorithm finds a representation of at mostB coefficients that captures at least(1 − ǫ)η of the signal energy
||a||22, usingO(log2 N log(N/δ)B2/(ηǫ)2) space and per-item processing time.

A potential problem lies in the query time requirements of the GKMS algorithm: even with the Reed-Muller code opti-
mizations, the overall query time for discovering the top coefficients remains superlinear inN (i.e., at leastΩ( 1

ǫ2 N log N)),
violating the third requirement on streaming schemes. Thisalso renders direct extensions of GKMS to multiple dimensions
infeasible since it implies an exponential explosion in query cost (requiring at leastO(Nd) time to cycle through all coefficients
in d dimensions). In addition, the update cost of the GKMS algorithm is linear in the size of the sketchsince the whole data
structure must be “touched” for each update. This is problematic for high-speed data streams and/or even moderate sizedsketch
synopses.

To address these issues, Cormode et al. [5] propose a novel solution that relies on two key technical ideas. First, they work
entirely in the wavelet domain: instead of sketching the original data entries, their algorithms sketch the wavelet-coefficient
vectorwa as updates arrive. This avoids any need for complex range-summable hash functions (i.e., Reed-Muller codes).
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Second, they employhash-based groupingin conjunction withefficient binary-search-like techniquesto enable very fast updates
as well as identification of important coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain.The first technical idea in [5] relies on the observation thatit is possible efficiently produce
sketch synopses of the streamdirectly in the wavelet domain. That is, the impact of each streaming update can be translated
on the relevant wavelet coefficients. By the linearity properties of the HWT and the earlier description, an update to thedata
entries corresponds to only polylogarithmically many coefficients in the wavelet domain. Thus, on receiving an update to a, it
can be directly converted toO(polylog(N)) updates to the wavelet coefficients, and an approximate (sketch) representation of
the wavelet coefficient vectorwa can be maintained.

– Time-Efficient Updates and Large-Coefficient Searches.Sketching in the wavelet domain means that, at query time, anap-
proximate representation of the wavelet-coefficient vector wa is available, and can be employed to identify all those coefficients
that are “large”, relative to the total energy of the data‖wa‖

2
2 = ‖a‖22. While AMS sketches can provide such estimates (a point

query is just a special case of an inner product), querying remains much too slow taking at leastΩ( 1
ǫ2 N) time to find which of

theN coefficients are theB largest. Instead, the schemes in [5] rely on adivide-and-conqueror binary-search-likeapproach
for finding the large coefficients. This requires the abilityto efficiently estimate sums-of-squares forgroupsof coefficients, cor-
responding to dyadic subranges of the domain[N ]. Low-energy regions can then be disregarded, recursing only on high-energy
groups — this guarantees no false negatives, as a group that contains a high-energy coefficient will also have high energyas
a whole. The algorithms of [5] also employrandomized, hash-based groupingof dyadic groups and coefficients to guarantee
that each update only touches a small portion of the synopsis, thus guaranteeing very fast update times.

b buckets

c subbuckets

x h(id(x))

t repetitions

f(x) +u   (x)ξ

Figure 2:The GCS data structure: Elementx is hashed
(t times) to a bucket of groups (usingh(id(x))) and then
a sub-bucket within the bucket (usingf(x)), where an
AMS counter is updated.

The key to the Cormode et al. solution is a hash-based probabilistic
synopsis data structure, termedGroup-Count Sketch (GCS), that can esti-
mate the energy of fixed groups of elements from a vectorw of sizeN un-
der the turnstile streaming model [5]. This translates to several streaming
L2-norm estimation problems (one per group). A simple solution would
be to keep an AMS sketch of each group separately; however, there can
bemany(e.g., linear inN ) groups, implying space requirements that are
O(N). Streaming updates should also be processed as quickly as possible.
The GCS synopsis requires small, sublinear space and takes sublinear time
to process each stream update item; more importantly, a GCS can provide
a high-probability estimate of the energy of a group within additive error
ǫ‖w‖22 in sublinear time. In a nutshell, the GCS synopsis first partitions
items ofw into their group using anid() function (which, in the case
of Haar coefficients, is trivial since it corresponds to fixeddyadic ranges
over [N ]), and then randomly maps groups to buckets using a hash func-
tion h(). Within each bucket, a second stage of hashing of items to sub-buckets is applied (using another hash functionf(),
where each contains an atomic AMS sketch counter in order to estimate theL2 norm of the elements in the bucket. As with
most randomized estimation schemes, a GCS synopsis comprisest independent instantiations of this basic randomized struc-
ture, each with independently chosen hash function pairs(h(), f()) andξ families for the AMS estimator; during maintenance,
a streaming update(x, u) is used to update each of thet AMS counters corresponding to elementx. (A pictorial representation
is shown in Fig. 2.) To estimate the energy of a groupg, for each independent instantiationm = 1, . . . , t of the bucketing
structure, the squared values of all the AMS counters in the sub-buckets corresponding to buckethm(g) are summed, and then
themedianof theset values is returned as the estimate.

Theorem 4 ([5]) The GCS can estimate the energy of item groups of the vectorw within additive errorǫ‖w‖22 with probability
≥ 1− δ using space ofO

(

1
ǫ3 log 1

δ

)

counters, per-item update time ofO
(

log 1
δ

)

, and query time ofO
(

1
ǫ2 log 1

δ

)

.

To recover coefficients with large energy in thew vector, the algorithm employs ahierarchical search-tree structureon top
of [N ]: Each level in this tree structure induces a certain partitioning of elements into groups (corresponding to the nodes atthat
level), and per-level GCS synopses can be used to efficientlyrecover the high-energy groups at each level (and, thus, quickly
zero in on high-energy Haar coefficients). Using these ideas, Cormode et al. [5] demonstrate that the accuracy guarantees
of Theorem 3 can be obtained usingO(B3 log N

ǫ3η3 · log B log N
ǫηδ ) space,O(log2 N · log B log N

ǫηδ ) per item processing time,and

O( B3

ǫ3η3 · log N · log B log N
ǫηδ ) query time. In other words, their GCS-based solution guarantees sublinear spaceandquery time,

as well as per-item processing times that are sublinearin the size of the stream synopsis. Their results also naturally extend to
the multi-dimensional case [5].

KEY APPLICATIONS
Wavelet-based summaries are a general-purpose data-reduction tool, and the maintenance of such summaries over continuous

4



data streams has several important applications, including large-scale IP network monitoring and network-event tracking (e.g.,
for detecting network traffic anomalies or Denial-of-Service attacks), approximate query processing over warehouse update
streams, clickstream and transaction-log monitoring in large web-server farms, and satelite- or sensornet-based environmental
monitoring.

DATA SETS
Several publicly-available real-life data collections have been used in the experimental study of streaming wavelet sum-
maries; examples include the US Census Bureau data sets (http://www.census.gov/), the UCI KDD Archive (http:
//kdd.ics.uci.edu/), and the UW Earth Climate and Weather Data Archive (http://www-k12.atmos.washington.

edu/k12/grayskies/).

FUTURE DIRECTIONS
The area of streaming wavelet-based summaries is rich with interesting algorithmic questions. The bulk of the discussion here
focuses onL2-error synopses. The problem of designing efficient streaming methods for maintaining wavelet summaries that
optimize fornon-L2 error metrics(e.g., generalLp error) under a turnstile streaming model remains open. Optimizing for
non-L2 error implies more sophisticated coefficient thresholdingschemes based on dynamic programming over the error-tree
structure (e.g., [6, 8]); while such methods can be efficiently implemented over ordered aggregate streams [8], no space/time
efficient solutions are known for turnstile streams. Dealing with physically-distributed streamsalso raises interesting issues for
wavelet maintenance, such as trading off approximation quality with communication(in addition to time/space). The distributed
AMS sketching algorithms of Cormode and Garofalakis [4] canbe applied to maintain an approximate wavelet representation
over distributed turnstile streams, but several issues (e.g., appropriate prediction models for local sites) remain open. Finally,
from a systems perspective, the problem of incorporating wavelet summaries in industrial-strength data-streaming engines, and
testing their viability in real-life scenarios remains open.
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