%a Data Mining and Knowledge Discovery, 7, 187-214, 2003
(© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Building Decision Trees with Constraints

MINOS GAROFALAKIS minos@bell-labs.com
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974, USA

DONGJOON HYUN hyundong@organ kaist.ac.kr
Korea Advanced Institute of Science and Technology and Advanced Information Technology Research Center,
Taejon, Korea

RAJEEV RASTOGI rastogi@bell-labs.com
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974, USA

KYUSEOK SHIM* shim@ee.snu.ac.kr
Seoul National University and Advanced Information Technology Center, Seoul, Korea

Editors: Fayyad, Mannila, Ramakrishnan

Received November 30, 2000, Revised November 21, 2001

Abstract. Classification is an important problem in data mining. Given a database of records, each with a
class label, a classifier generates a concise and meaningful description for each class that can be used to classify
subsequent records. A number of popular classifiers construct decision trees to generate class models. Frequently,
however, the constructed trees are complex with hundreds of nodes and thus difficult to comprehend, a fact that calls
into question an often-cited benefit that decision trees are easy to interpret. In this paper, we address the problem
of constructing “simple” decision trees with few nodes that are easy for humans to interpret. By permitting users
to specify constraints on tree size or accuracy, and then building the “best” tree that satisfies the constraints, we
ensure that the final tree is both easy to understand and has good accuracy. We develop novel branch-and-bound
algorithms for pushing the constraints into the building phase of classifiers, and pruning early tree nodes that
cannot possibly satisfy the constraints. Our experimental results with real-life and synthetic data sets demonstrate
that significant performance speedups and reductions in the number of nodes expanded can be achieved as a result
of incorporating knowledge of the constraints into the building step as opposed to applying the constraints after
the entire tree is built.

Keywords: data mining, classification, decision tree, branch-and-bound algorithm, constraint

1. Introduction

Background and motivation. Classification is an important problem in data mining. Under
the guise of supervised learning, classification has been studied extensively by the Al
community as a possible solution to the “knowledge acquisition” or “knowledge extraction”
problem. Briefly, the input to a classifier is a training set of records, each of which is a tuple

*To whom correspondence should be addressed.

188 GAROFALAKIS ET AL.

of attribute values tagged with a class label. A set of attribute values defines each record.
Attributes with discrete domains are referred to as categorical, while those with ordered
domains are referred to as numeric. The goal is to induce a concise model or description
for each class in terms of the attributes. The model is then used to classify (i.e., assign class
labels to) future records whose classes are unknown.

Classification has been successfully applied to wide range of application areas, such
as medical diagnosis, weather prediction, credit approval, customer segmentation, and
fraud detection. Many different techniques have been proposed for classification, including
Bayesian classification (Cheeseman et al., 1988), neural networks (Bishop, 1995; Ripley,
1996), genetic algorithms (Goldberg, 1989) and tree-structured classifiers (Breiman et al.,
1984). Among these proposals, decision tree classifiers (Murthy, 1998) have found the
widest applicability in large-scale data mining environments. There are several reasons for
this. First, compared to neural networks or a Bayesian classifiers, decision trees offer a
very intuitive representation that is easy to assimilate and translate to standard database
queries (Agrawal et al., 1992; Breiman et al., 1984). Second, while training neural net-
works can take large amounts of time and thousands of iterations, decision tree induc-
tion is efficient and is thus suitable for large training sets. Furthermore, decision tree
generation algorithms do not require additional information besides that already con-
tained in the training data (e.g., domain knowledge or prior knowledge of distributions
for the data or class labels) (Fayyad, 1991). Finally, the accuracy of decision tree
classifiers is comparable or even superior to that of other classification techniques
(Mitchie et al., 1994). The work reported in this paper focuses on decision tree
classifiers.

Example 1.1. Figure 1(a) shows an example training set for a loan approval application.
There is a single record corresponding to each loan request, each of which is tagged with
one of two labels—accept if the loan request is approved or reject if the loan request is
denied. Each record is characterized by two attributes, salary and education, the former
numeric and the latter categorical with domain {high-school, undergraduate, graduate}.
The attributes denote the income and the education level of the loan applicant. The goal
of the classifier is to deduce, from the training data, concise and meaningful conditions
involving salary and education under which a loan request is accepted or rejected.

salary education label salary < 20,000
10,000 high-school reject

40,000 | under-graduate | accept

accept

" education in {graduate
15,000 | under-graduate | reject © '

75,000 graduate accept
18,000 graduate accept accept [reject

yes,

(a) (b)

Figure 1. Decision trees.

BUILDING DECISION TREES WITH CONSTRAINTS 189

Figure 1(b) depicts a decision tree for our example training data. Each internal node of
the decision tree has a test involving an attribute, and an outgoing branch for each possible
outcome. Each leaf has an associated class. In order to classify new records using a decision
tree, beginning with the root node, successive internal nodes are visited until a leaf is
reached. At each internal node, the test for the node is applied to the record. The outcome
of the test at an internal node determines the branch traversed, and the next node visited.
The class for the record is simply the class of the final leaf node. Thus, the conjunction of
all the conditions for the branches from the root to a leaf constitute one of the conditions
for the class associated with the leaf. For instance, the decision tree in figure 1(b) approves
a loan request only if salary > 20,000 or education € {graduate}; otherwise, it rejects the
loan application.

A number of algorithms for inducing decision trees have been proposed over the years
(e.g., CLS (Hunt et al., 1966), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART (Breiman
etal., 1984), SLIQ (Mehtaet al., 1996), SPRINT (Shafer et al., 1996), PUBLIC (Rastogi and
Shim, 1998), BOAT (Gehrke et al., 1999)). Most of these algorithms consist of two distinct
phases, a building (or growing) phase followed by a pruning phase. In the building phase,
the training data set is recursively partitioned until all the records in a partition have the same
class (i.e., the partition is pure). For every partition, a new node is added to the decision tree;
initially, the tree has a single root node for the entire data set. For a set of records in a partition
P, atest criterion ¢ for further partitioning the set into Py, ..., P, is first determined. New
nodes for Py, ..., P, are created and these are added to the decision tree as children of the
node for P. Also, the node for P is labeled with test ¢, and partitions Py, ..., P, are then
recursively partitioned. A partition in which all the records have identical class labels is not
partitioned further, and the leaf corresponding to it is labeled with the class.

The building phase constructs a tree that is “perfect,” in the sense that it accurately
classifies every record from the training set. However, one often achieves greater accuracy
in the classification of new objects by using an imperfect, smaller decision tree rather than
one which perfectly classifies all known records (Quinlan and Rivest, 1989). The reason
is that a decision tree which is perfect for the known records may be overly sensitive to
statistical irregularities and idiosyncrasies of the training set. Thus, most algorithms perform
a pruning phase after the building phase in which nodes are iteratively pruned to prevent
“overfitting” of the training data and to obtain a tree with higher accuracy. A number of
pruning strategies have been proposed in the literature including MDL pruning (Fayyad
and Irani, 1993; Mehta et al., 1995; Quinlan and Rivest, 1989; Wallace and Patrick, 1993),
cost-complexity pruning (Quinlan, 1987), and pessimistic pruning (Quinlan, 1987).

Even after pruning, the decision tree structures induced by existing algorithms can be
extremely complex, comprising hundreds or thousands of nodes and, consequently, very
difficult to comprehend and interpret. The situation is only exacerbated by the voluminous,
high-dimensional training data sets that are characteristic of modern decision support appli-
cations. This is a serious problem and calls into question an often-cited benefit of decision
trees, namely that they are easy to assimilate by humans. In many scenarios, users are only
interested in obtaining a “rough picture” of the patterns in their data; for example, during an
interactive data mining and exploration session, a user is primarily interested in obtaining
a fast, concise (and reasonably accurate) decision tree model to quickly identify the key

190 GAROFALAKIS ET AL.

patterns/rules in the underlying data. In such scenarios, users may actually find a simple,
comprehensible, but only approximate decision tree much more useful than an accurate
(e.g., MDL-optimal) tree that involves a lot of detail. The idea of simple, approximate
decision trees becomes even more attractive by the fact that the size and accuracy of a
decision tree very often follow a law of “diminishing returns”—for many real-life data sets,
adding more nodes to the classifier results in monotonically decreasing gains in accuracy.
As a consequence, in many situations, a small decrease in accuracy is accompanied by a
dramatic reduction in the size of the tree. For example, Bohanec and Bratko (1994) con-
sider a decision tree for deciding the legality of a white-to-move position in chess. They
demonstrate that while a decision tree with 11 leaves is completely accurate, a subtree
with only 4 leaves is 98.45% accurate, and a subtree with only 5 leaves is 99.57% accu-
rate. Thus, more than half the size of the accurate tree accounts for less than 0.5% of the
accuracy!

Our contributions. In this paper, we attempt to remedy the aforementioned problem by
developing novel algorithms that allow users to effectively trade accuracy for simplicity
during the decision tree induction process. Our algorithms give users the ability to specify
constraints on either (1) the size (i.e., number of nodes); or, (2) the inaccuracy (i.e., MDL
cost (Mehta et al., 1995; Quinlan and Rivest, 1989; Rastogi and Shim, 1998) or number
of misclassified records) of the target classifier, and employ these constraints to efficiently
construct the “best possible” decision tree. More specifically, let T denote the “accurate” de-
cision tree built during traditional decision tree induction. Our work addresses the following
two constrained induction problems:

(1) Size-constrained decision trees. Given an upper bound k on the size (i.e., number of
nodes) of the classifier, build an accuracy-optimal subtree of T with at most k nodes;
that is, build the subtree of T with size at most k that minimizes either (a) the total
MDL cost, or (b) the total number of misclassified records.

(2) Accuracy-constrained decision trees. Given an upper bound C on the inaccuracy (total
MDL cost or number of misclassified records) of the classifier, build a size-optimal
subtree of T with inaccuracy at most C; that is, build the smallest subtree of T whose
total MDL cost or number of misclassified records does not exceed C.

Thus, our constraint-based framework enables the efficient induction of decision tree clas-
sifiers that are simple and easy to understand, and, at the same time, have good accuracy
characteristics.

A naive approach to building the desired optimal subtree that satisfies the user-specified
size or accuracy constraint is to first grow the full (accurate) tree T, and then employ algo-
rithms based on dynamic programming to prune away suboptimal portions of T until the
constraint is satisfied. We propose time- and memory-efficient dynamic programming algo-
rithms for pruning T to optimal size- and accuracy-constrained subtrees. Similar algorithms
for the optimal pruning of accurate decision trees have also been proposed in the earlier
work of Bohanec and Bratko (1994) and Almuallim (1996), where the accuracy measure
was assumed to be the number of misclassified training set records (i.e., the “resubstitution
error” of Breiman et al. (1984)). Our algorithms extend that earlier work by also considering

BUILDING DECISION TREES WITH CONSTRAINTS 191

the MDL cost of a subtree. Furthermore, our dynamic programming algorithms are much
more efficient than those of Bohanec and Bratko and conceptually much simpler than the
“left-to-right” dynamic programming procedure of Almuallim.

The problem with such naive approaches is that they essentially apply the size/accuracy
constraints as an afterthought, i.e., after the complete decision tree has been built. Obviously,
this could result in a substantial amount of wasted effort since an entire subtree constructed
in the building phase may later be pruned when size/accuracy constraints are enforced.
If, during the building phase, it is possible to determine that certain nodes will be pruned
during the subsequent constraint-enforcement phase, then we can avoid expanding the
subtrees rooted at these nodes. Since building a subtree typically requires repeated scans to
be performed over the data, significant reductions in I/O and improvements in performance
can be realized.

The major contribution of our work is the development of novel decision tree induction
algorithms that push size and accuracy constraints into the tree-building phase. Our algo-
rithms employ branch-and-bound techniques to identify, during the growing of the decision
tree, nodes that cannot possibly be part of the final constrained subtree. Since such nodes are
guaranteed to be pruned when the user-specified size/accuracy constraints are enforced, our
algorithms stop expanding such nodes early on. Thus, our algorithms essentially integrate
the constraint-enforcement phase into the tree-building phase instead of performing one
after the other. Furthermore, by only pruning nodes that are guaranteed not to belong to
the optimal constrained subtree, we are assured that the final (sub)tree generated by our
integrated approach is exactly the same as the subtree that would be generated by a naive
approach that enforces the constraints only after the full tree is built. Determining, during the
building phase, whether a node will be pruned by size or accuracy constraints is problematic,
since the decision tree is only partially generated. To guarantee that only suboptimal parts
of the tree are pruned, requires us to estimate, at each leaf of the partial tree, a lower bound
on the inaccuracy (MDL cost or number of misclassifications) of the subtree rooted at that
leaf (based on the corresponding set of training records). Our branch-and-bound induction
algorithms apply adaptations of our earlier results (Rastogi and Shim, 1998) on estimat-
ing such lower bounds to the problem of constructing size/accuracy-constrained decision
trees. Our experimental results on real-life as well as synthetic data sets demonstrate that
our approach of pushing size and accuracy constraints into the building phase can result
in dramatic performance improvements compared to the naive approach of enforcing the
constraints only after the full tree is built. The performance speedups, in some cases, can
be as high as two or three orders of magnitude.

Roadmap. The remainder of this paper is organized as follows. Section 3 provides an
overview of the building and pruning phases of a traditional decision tree classifier along
the lines of SPRINT (Shafer et al., 1996) and CART (Breiman et al., 1984). In Section 4, we
describe our dynamic programming algorithms for the naive solution of optimally pruning
a fully-grown decision tree. Section 5 presents our integrated decision tree construction
algorithms that push size and accuracy constraints into the tree-building phase. In Section 6,
we discuss the findings of an extensive experimental study of our constrained decision tree
induction algorithms using both synthetic and real-life data sets. Finally, Section 7 concludes
the paper.

192 GAROFALAKIS ET AL.

2. Related work

In this section, we provide a brief survey of related work on decision tree classifiers. The
growing phase for the various decision tree generation systems differ in the algorithm
employed for selecting the test criterion T for partitioning a set of records. CLS (Hunt et al.,
1966), one of the earliest systems, examines the solution space of all possible decision trees
to some fixed depth. It then chooses a test that minimizes the cost of classifying a record.
The cost is made up of the cost of determining the feature values for testing as well as
the cost of misclassification. ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) replace the
computationally expensive look-ahead scheme of CLS with a simple information theory
driven scheme that selects a test that minimizes the information entropy of the partitions
(we discuss entropy further in Section 3), while CART (Breiman et al., 1984), SLIQ (Mehta
et al., 1996) and SPRINT (Shafer et al., 1996) select the test with the lowest GINI index.
Classifiers like C4.5 and CART assume that the training data fits in memory. SLIQ and
SPRINT, however, can handle large training sets with several million records. SLIQ and
SPRINT achieve this by maintaining separate lists for each attribute and pre-sorting the
lists for numeric attributes. We present a detailed description of SPRINT, a state of the
art classifier for large databases, in Section 3. In more recent work, Gehrke et al. (1998)
propose a unifying framework, termed RainForest, for scaling up existing decision-tree
algorithms. The basic idea of the RainForest framework lies in the use of sufficient statistics
(termed AV C-sets) for top-down decision-tree induction; this guarantees scalable versions of
existing decision-tree algorithms without modifying the final result. An optimistic approach
to decision-tree induction, termed BOAT, has also been proposed by Gehrke et al. (1999).
BOAT exploits statistical techniques to construct an initial tree based on only a small
subset of the data and refine it to arrive at the final decision tree. As a consequence, BOAT
can build several levels of the tree in only two scans over the training data, resulting in
substantial performance gains over previous algorithms. None of these earlier proposals
has considered the problem of building decision-tree classifiers in the presence of size or
accuracy constraints.

An important class of pruning algorithms are those based on the Minimum Description
Length (MDL) principle (Fayyad and Irani, 1993; Mehta et al., 1995; Quinlan and Rivest,
1989; Wallace and Patrick, 1993). Consider the problem of communicating the classes for a
set of records. Since a decision tree partitions the records with a goal of separating those with
similar class labels, it can serve as an efficient means for encoding the classes of records.
Thus, the “best” decision tree can then be considered to be the one that can communicate the
classes of the records with the “fewest” number of bits. The cost (in bits) of communicating
classes using a decision tree comprises of (1) the bits to encode the structure of the tree
itself, and (2) the number of bits needed to encode the classes of records in each leaf of
the tree. We thus need to find the tree for which the above cost is minimized. This can be
achieved as follows. A subtree S is pruned if the cost of directly encoding the records in S
is no more than the cost of encoding the subtree plus the cost of the records in each leaf of
the subtree. In Mehta et al. (1995), it is shown that MDL pruning (1) leads to accurate trees
for a wide range of data sets, (2) produces trees that are significantly smaller in size, and
(3) is computationally efficient and does not use a separate data set for pruning.

BUILDING DECISION TREES WITH CONSTRAINTS 193

In addition to MDL pruning described earlier, there are two other broad classes of pruning
algorithms. The first includes algorithms like cost-complexity pruning (Quinlan, 1987) that
first generate a sequence of trees obtained by successively pruning non-leaf subtrees for
whom the ratio of the reduction in misclassified objects due to the subtree and the number
of leaves in the subtree is minimum. A second phase is then carried out in which separate
pruning data (distinct from the training data used to grow the tree) is used to select the tree
with the minimum error. In the absence of separate pruning data, cross-validation can be
used at the expense of a substantial increase in computation. The second class of pruning
algorithms, pessimistic pruning (Quinlan, 1987), do not require separate pruning data, and
are computationally inexpensive. Experiments have shown that this pruning leads to trees
that are “too” large with high error rates.

The above-mentioned decision tree classifiers only consider “guillotine-cut” type tests
for numeric attributes. Since these may result in very large decision trees when attributes are
correlated, in Fukuda et al. (1996), the authors propose schemes that employ tests involving
two (instead of one) numeric attributes and consider partitions corresponding to grid regions
in the two-dimensional space. In Fayyad and Irani (1993) and Zihed et al. (1997), the authors
use the entropy minimization heuristic and MDL principle for discretizing the range of a
continuous-valued attribute into multiple intervals.

The PUBLIC decision-tree construction algorithm proposed in Rastogi and Shim (1998)
integrates the pruning phase into the building phase. During building, PUBLIC employs a
lower bound on the MDL cost of a node to detect if the node is guaranteed to be pruned
during MDL pruning. If that is the case, PUBLIC prunes the node and stops expanding the
decision tree in that direction. As a consequence, PUBLIC achieves substantial reduction in
I/O costs compared to traditional decision-tree induction algorithms. Furthermore, by using
a guaranteed lower bound on the MDL cost, PUBLIC guarantees that the tree generated by
its integrated approach is exactly the same as the tree that would have been generated as a
result of executing building and pruning sequentially, one after the other.

Bohanec and Bratko (1994) and Almuallim (1996) propose algorithms based on dynamic
programming that, given a fully-grown, accurate decision tree, find optimal subtrees that
satisfy a user-specified constraint on either size (i.e., number of nodes) or accuracy (i.e.,
number of misclassifications). Our algorithms extend that earlier work by also considering
the MDL cost of a subtree and are much more efficient than those of Bohanec and Bratko,
and conceptually much simpler than the “left-to-right” dynamic programming procedure
of Almuallim. Most importantly, both of these earlier proposals enforce the constraints
only after the full decision tree has been built. Obviously, this could result in a substantial
amount of wasted effort since an entire subtree constructed in the building phase may later
be pruned when size/accuracy constraints are enforced. Our algorithms, on the other hand,
adapt an integrated approach based on the PUBLIC framework and are thus much more
efficient.

3. Preliminaries

In this section, we present a brief overview of the building and pruning phases of a tradi-
tional decision tree classifier. More detailed descriptions of existing decision tree induction

194 GAROFALAKIS ET AL.

procedure BUILDTREE(S):

1. Initialize root node using data set S procedure PRUNETREE(Node N):

2. Initialize queue @ to contain root node 1. if N is a leaf return (C(S) + 1)
3. while Q is not empty do { minCost; := PRUNETREE(N:);

4 dequeue the first node N in @ minCosts := PRUNETREE(N3);

5. if node N is not pure { minCosty := min{C(S) +1,
6
7
8
9

Ll ol

for each attribute A Coptit(N) + 1+ minCost; + minCosts };

Evaluate splits on attribute A 5. if minCosty = C(S)+1
Use best split to split N into N; and No» 6. prune child nodes Ny and N from tree
Append Ny and N to Q 7. return minCosty
10. }
1.}
() (b)

Figure 2. (a) Tree-building algorithm; (b) Tree-pruning algorithm.

algorithms can be found in earlier literature (Breiman et al., 1984; Gehrke et al., 1998;
Murthy, 1998; Rastogi and Shim, 1998; Shafer et al., 1996).

3.1. Tree-building phase

The overall algorithm for growing a decision tree classifier is depicted in figure 2(a). Basi-
cally, the tree is built breadth-first by recursively partitioning the data until each partition
is pure (i.e., it only contains records belonging to the same class). The splitting condition
for partitioning the data is of the form (1) A < v, if A is a numeric attribute (v is a value in
the domain of A); or, (2) A € V, if A is a categorical attribute (V is a set of values from
A’s domain). Thus, each split is binary.l

The splitting condition for each internal node of the tree is selected so that it minimizes an
impurity function, such as the entropy, of the induced data partitioning (Breiman et al., 1984).
(We should, of course, note that there exist split-attribute and split-point selection meth-
ods that are not impurity-based, e.g., methods based on the Chi-squared or the G-squared
test (Murthy, 1998).) For a set of records S, the entropy E(S) is defined as —) ipjlogp;,
where p; is the relative frequency of class j in §. Thus, the more homogeneous a set is
with respect to the classes of records in the set, the lower is its entropy. The entropy of
a split that divides S with n records into sets S; with n; records and S, with n; records
is E(S1,8) = %E(Sl) + %E(Sz). Consequently, the split with the least entropy is the
one that provides the best separation among classes, and is thus chosen as the best split
for a node. An alternative impurity function for choosing splitting conditions is the Gini
index (Shafer et al., 1996). For a set S of records, the Gini index is defined as 1 —) j p%,
where p; is the relative frequency of class j in S.

3.2. Tree-pruning phase

To prevent overfitting of the training data, the MDL principle (Rissanen, 1978, 1989) is
applied to prune the tree built in the growing phase and make it more general. Briefly, the

BUILDING DECISION TREES WITH CONSTRAINTS 195

Table 1. Notation.

Symbol Description

T Full tree constructed at the end of the building phase

T, Partially-built tree at some stage of the building phase

Ty Final subtree of T (satisfying the user-specified constraints)
R Root of tree constructed during the building phase

a Number of attributes

N Generic node of the decision tree

S Set of records in node N

Ni, No Children of node N

C(S) Cost of encoding the classes for records in S

Cspiitf(N) Cost of encoding the split at node N
k Constraint on the number of nodes in the final tree

C Constraint on the MDL cost/number of misclassified records in the final tree

MDL principle states that the “best” tree is the one that can be encoded using the smallest
number of bits. Thus, the goal of the tree-pruning phase is to find the subtree of the tree
grown in the tree-building phase that can be encoded with the least number of bits.

In what follows, we first present a scheme for encoding decision trees. We then describe
a pruning algorithm that, in the context of our encoding scheme, finds the minimum MDL-
cost subtree of the tree constructed in the growing phase. Table 1 summarizes some of the
notation used throughout this paper; additional notation will be introduced when necessary.

Cost of encoding data records. Let a set S contain n records each belonging to one of ¢
classes, n; being the number of records with class i. The cost of encoding the classes for
the n records (Quinlan and Rivest, 1989) is given by2

i n+k—1 n n!
Bl k-1 B

In the above equation, the first term is the number of bits to specify the class distribution,
that is, the number of records with classes 1, ..., k. The second term is the number of bits
required to encode the class for each record once it is known that there are n; records with
class label i. In Mehta et al. (1995), it is pointed out that the above equation is not very
accurate when some of the n; are either close to zero or close to n. Instead, they suggest
using the following equation from Krichevsky and Trofimov (1981), which is what we adopt
in this paper for the cost C(S) of encoding the classes for the records in set S.

n k—1 n T
c(S = i log — log — + log ————. 1
) Zn 0g -+ —5—log 7 +log s (1)

In Eq. (1), the first term is simply n x E(S), where E(S) is the entropy of the set S of records.
Also, since k < n, the sum of the last two terms in Eq. (1) is always non-negative. We utilize

196 GAROFALAKIS ET AL.

this property later in the paper when computing a lower bound on the cost of encoding the
records in a leaf.

Cost of encoding the tree. 'The cost of encoding the tree comprises three distinct compo-
nents: (1) the cost of encoding the structure of the tree; (2) the cost of encoding for each
split, the attribute and the value for the split; and, (3) the cost of encoding the classes of
data records in each leaf of the tree.

The structure of the tree can be encoded by using a single bit in order to specify whether a
node of the tree is an internal node (1) or leaf (0). Thus, the bit string 11000 encodes the tree
in figure 1(b). (Since we are considering only binary decision trees, this encoding technique
for tree structures is near-optimal (Quinlan and Rivest, 1989).) The cost of encoding each
split involves specifying the attribute that is used to split the node and the value for the
attribute. The splitting attribute can be encoded using log a bits (since there are a attributes),
while specifying the value depends on whether the attribute is categorical or numeric. Let
v be the number of distinct values for the splitting attribute in records at the node. If the
splitting attribute is numeric, then since there are v — 1 different points at which the node
can be split, log(v — 1) bits are needed to encode the split point. On the other hand, for a
categorical attribute, there are 2" different subsets of values of which the empty set and the
set containing all the values are not candidates for splitting. Thus, the cost of the split is
log(2¥ — 2). For an internal node N, we denote the cost of describing the split by Cy;;;(N).
Finally, the cost of encoding the data records in each leaf is as described in Eq. (1). In the rest
of the paper, we refer to the cost of encoding a tree computed above as the MDL cost of the
tree.

Pruning algorithm. As explained earlier, the goal of the pruning phase is to compute the
minimum MDL-cost subtree of the tree T constructed in the building phase. Briefly, this is
achieved by traversing T in a bottom-up fashion, pruning all descendents of a node N if the
cost of the minimum-cost subtree rooted at N is greater than or equal to C(S) + 1 (i.e., the
cost of directly encoding the records corresponding to N). The cost of the minimum-cost
subtree rooted at NV is computed recursively as the sum of the cost of encoding the split and
structure information at N (Cy,;;(N) + 1) and the costs of the cheapest subtrees rooted at
its two children. Figure 2(b) gives the pseudocode for the pruning procedure; more details
can be found in Rastogi and Shim (1998).

4. The naive approach: Constraint-based decision tree pruning

The pruning phase described in the previous section computes the subtree of 7 with min-
imum MDL cost (recall that T is the complete tree constructed during the tree-building
phase). In this section, we consider more general constraints on the size and accuracy of the
desired subtree of T', and develop algorithms for computing the subtree of T that satisfies
these constraints.> The motivation for employing these richer constraints is to allow users
to obtain approximate decision tree classifiers that are simple, easy to comprehend and, at
the same time, fairly accurate. More specifically, we consider the following constraints on
the desired subtree Ty of T':

BUILDING DECISION TREES WITH CONSTRAINTS 197

1. Size constraint. For a given k, Ty contains at most k nodes and has the minimum
possible MDL cost (or number of misclassified records).

2. Accuracy constraint. For a given C, T has an MDL cost (or number of misclassified
records) at most C and has the minimum possible number of nodes.

The number of misclassified records (i.e., the “resubstitution error” of Breiman et al.
(1984) is, in some respect, a measure of the accuracy of the decision tree based on the given
training set. Specifically, it is the sum of the number of misclassified training records in
each leaf of the tree. A record is said to be misclassified if its class label differs from the
label for the leaf (which is essentially the majority class in the corresponding set of records).
SPRINT (Shafer et al., 1996) actually uses the number of misclassified training records in
each leaf as the cost of encoding the corresponding set of data records.

Note that our size and accuracy constraints are fairly general and can, in fact, be used to
specify the final tree computed by the pruning step of a traditional classifier (as described
in Section 3). For instance, if we choose k to be very large, then the subtree Ty of T that
satisfies our size constraint is identical to the subtree constructed by a classifier like PUBLIC
(Rastogi and Shim, 1998) which uses MDL pruning. Thus, our constraints capture the two
important dimensions of decision trees—size and accuracy.

In the following subsections, we present algorithms for computing the optimal size- or
accuracy-constrained subtree T of T'. Like the earlier work of Bohanec and Bratko (1994)
and Almuallim (1996), our “naive approach” algorithms are based on dynamic programming
and assume an input that consists of the complete tree T and the constraint (k or C). Our work,
however, also considers the MDL-cost formulation of the accuracy constraint, whereas their
work focuses on only the number of misclassifications. Further, our algorithms are much
more efficient than that of Bohanec and Bratko (1994) (which is quadratic in the size of T')
and conceptually much simpler than the “left-to-right” dynamic programming procedure
of Almuallim (which has time and memory demands similar to our algorithms).

4.1. Computing an optimal size-constrained subtree

Minimum MDL cost. Our algorithm for finding the minimum MDL-cost subtree of T with
at most k£ nodes consists of two distinct steps. First, procedure COMPUTECOST (depicted
in figure 3(a)) is executed to compute the minimum MDL-cost subtrees rooted at nodes of
T . Second, procedure PRUNETOSIZEK (depicted in figure 3(b)) is run to prune suboptimal
portions of T so that the final subtree 7 contains at most k nodes.

Procedure COMPUTECOST employs dynamic programming to compute (in Tree[N, /].
cost) the cost of the minimum-cost subtree rooted at node N and containing at most / nodes.
The key idea here is that Tree[N, /].cost is the minimum of (1) C(S) + 1, i.e., the cost of
directly encoding records in N; and, (2) for 1 < k; <1 — 2, Cyiy(N) + 1+ Tree[Ny,
ki].cost + Tree[N,, I — k; — 1].cost, i.e., the cost of splitting node N plus the costs of the
minimum-cost subtrees rooted at N’s children, where the total number of nodes in these
subtrees does not exceed [— 1. Procedure COMPUTECOST is initially invoked with the root
node R of the full tree T and the constraint £ on the number of nodes.

After procedure COMPUTECOST completes execution, Tree[N, [].left stores the size of
the left subtree in the minimum cost subtree of size at most / rooted at N. Note that if

198 GAROFALAKIS ET AL.

procedure CoMPUTECOST(Node N, integer 1):
. if Tree[N,l].computed = true
return Tree[N,l].cost
. Tree[N,l].left := 0
. ifl < 3 or N is aleaf

1

2

3

4 procedure PRUNET0S1ZEK (Node N, integer [):
5. Tree[N,l].cost := C(S) +1

6

7

8

9

1. if N is a leaf return

2. ifl < 3 or Tree[N,l].left = 0

3. Prune nodes N, and No
(and their descendants)

. else {
Tree[N,l].cost := C(S) +1
for ky :==1to!l — 2do {
. ko =1 —ky —1
10. Cost := Cypri(N) + 1+
+ CoMPUTECOST(Ny, k1) +
+ CoMPUTECOST(Na, k2)

4. else {

5. k1 = Tree[N,l].left

6. kri=1l—-k -1

7 PRUNETOSIZEK(Vy, k1)
8

9

11. if Cost < Tree[N,l].cost { PRUNETOSIZEK (N, k»)
12. Tree[N,l].cost := Cost } ’
13. Tree[N,l].1eft := &, 10. return
14. }
5. }
16. }
17. Tree[N,l].computed := true
18. return Tree[N ,!].cost
(a) (b)

Figure 3. Algorithms for (a) Computing minimum MDL-cost subtrees (b) Pruning suboptimal subtrees.

Tree[N, [].left = 0, then the minimum cost subtree rooted at N with maximum size /
consists of only the node N. Procedure PRUNETOSIZEK is then called to prune nodes from
T that do not belong to the minimum MDL-cost subtree of size at most /. It is invoked with
R and k as the input parameters.

Minimum number of misclassified records. ~ Algorithm COMPUTECOST can be easily mod-
ified to compute the subtree Ty with the minimum number of misclassified records and size
at most k. The reason for this is that the dynamic programming relationship for minimizing
MDL cost also holds for minimizing the number of misclassified records. More specifically,
if Tree[N, [].cost stores the minimum number of misclassified records among all the sub-
trees rooted at N, then Tree[N, [].cost is the minimum of (1) the number of misclassified
recordsin N,and (2) for 1 < k; <[—2,Tree[Ny, k;].cost + Tree[N,,! —k; — 1].cost. Thus,
to minimize the number of misclassifications, COMPUTECOST simply needs to be modified
as follows. First, instead of setting Tree[N, /].cost to C(S) + 1 in steps 5 and 7, we simply
set Tree[N, [].cost to the number of misclassified records in node N. Second, we delete the
term Cps(N) -+ 1 from the right-hand side of the assignment statement in Step 10.

Time and space complexity. The time complexity of COMPUTECOST is O(nk), where n
is the number of nodes in T and k is the upper bound on the desired tree size. This is
because for a node N and /! < k, COMPUTECOST can be invoked at most k£ — [/ times, once
from each invocation of COMPUTECOST with N’s parent and one of / + 1, . . ., k. Procedure

BUILDING DECISION TREES WITH CONSTRAINTS 199

PRUNETOSIZEK can be shown to have time complexity O(n) since it visits each node at
most once. Thus, the overall time complexity for computing the minimum cost subtree is
O (nk). The space complexity of the procedure is also O (nk), since it only needs to store
(in Tree[N, []) the cost and left-subtree size for the “best” subtree rooted at node N with
size at most / < k.

4.2. Computing an optimal accuracy-constrained subtree

We now consider the problem of computing the subtree of 7 with the minimum number of
nodes and MDL cost (or number of misclassified records) at most C. Our proposed solution
works by invoking procedure COMPUTECOST on the root nodes R of T with increasing
bounds on the number of nodes / (beginning with / = 1 and considering increments of 1),
until an / is reached for which Tree[R, /].cost is less than or equal to C. This solution
obtained for this value of / represents the minimum-size subtree that satisfies the constraint
C on the MDL cost (or number of misclassified records). The crucial observation here
is that the invocation COMPUTECOST(R, /) can reuse the results of the previous invocation
COoMPUTECOST(R, [— 1)—thus, costs that were already computed during earlier invocations
do not need to be recomputed during the current invocation. Finally, procedure PRUNETO-
S1zEK is invoked with R and the final (optimal) value of / to prune unnecessary nodes from 7.

The space and time complexity of the above algorithm is O (n/), where 7 is the number
of nodes in the complete tree T and / is the number of nodes in the target tree T (i.e., the
first value of the size bound for which the accuracy constraint C is satisfied).

5. The integrated approach: Pushing constraints into tree-building

The dynamic programming algorithms presented in Section 4 (as well as those in Almuallim
(1996) and Bohanec and Bratko (1994) enforce the user-specified size/accuracy constraints
only after a full decision tree has been grown by the building algorithm. As a consequence,
substantial effort (both I/O and CPU computation) may be wasted on growing portions of
the tree that are subsequently pruned when constraints are enforced. Clearly, by “pushing”
size and accuracy constraints into the tree-building phase, significant gains in performance
can be attained. In this section, we present such integrated decision tree induction algo-
rithms that integrate the constraint-enforcement phase into the tree-building phase instead
of performing them one after the other.

Our integrated algorithms are similar to the BUILDTREE procedure depicted in figure 2(a).
The only difference is that periodically or after a certain number of nodes are split (this
is a user-defined parameter), the partially built tree T, is pruned using the user-specified
size/accuracy constraints.* Note, however, the pruning algorithms of Section 4 cannot be
used to prune the partial tree.

The problem with applying constraint-based pruning (figure 3) before the full tree has
been built is that, in procedure COMPUTECOST, the MDL cost of the cheapest subtree rooted
ataleaf N is assumed to be C(S) + 1 (Steps 4 and 5). While this is true for the fully-grown
tree, it is not true for a partially-built tree, since a leaf in a partial tree may be split later thus
becoming an internal node. Obviously, splitting node N could result in a subtree rooted

200 GAROFALAKIS ET AL.

at N with cost much less than C(S) + 1. Thus, C(S) + 1 may over-estimate the MDL
cost of the cheapest subtree rooted at N and this could resulting in over-pruning; that is,
nodes may be pruned during the building phase that are actually part of the optimal size-
or accuracy-constrained subtree. This is undesirable since the final tree may no longer be
the optimal subtree that satisfies the user-specified constraints.

In order to perform constraint-based pruning on a partial tree 7, and still ensure that
only suboptimal nodes are pruned, we adopt an approach that is based on the following
observation. (For concreteness, our discussion is based on the case of size constraints.)
Suppose U is the cost of the cheapest subtree of size at most k of the partial tree T,,. Note
that this subtree may not be the final optimal subtree, since expanding a node in 7, could
cause its cost to reduce by a substantial amount, in which case, the node along with its
children may be included in the final subtree. U does, however, represent an upper bound
on the cost of the final optimal subtree Tr. Now, if we could also compute lower bounds on
the cost of subtrees of various sizes rooted at nodes of T, then we could use these lower
bounds to determine the nodes N in T, such that every potential subtree of size at most
k (of the full tree T') containing N is guaranteed to have a cost greater than U. Clearly,
such nodes can be safely pruned from T, since they cannot possibly be part of the optimal
subtree whose cost is definitely less than or equal to U .

While it is relatively straightforward to compute U (using procedure COMPUTECOST on
T,), we still need to (1) estimate the lower bounds on cost at each node of the partial tree
T,, and (2) show how these lower bounds can be combined with the upper bound U (in a
“branch-and-bound” fashion) to identify prunable nodes of T),. We address these issues in
the subsections that follow.

5.1. Computing lower bounds on subtree costs

To obtain lower bounds on the cost (either MDL cost or number of misclassifications)
of a subtree at arbitrary nodes of T, we first need to be able to compute lower bounds
for subtree costs at leaf nodes that are “yet to be expanded”. These bounds can then be
propagated “upwards” to obtain lower bounds for other nodes of T,,. Obviously, any subtree
rooted at node N must have an MDL cost of at least 1, and thus 1 is a simple, but conservative
estimate for the MDL cost of the cheapest subtree at leaf nodes that are “yet to be expanded”.
In our earlier work (Rastogi and Shim, 1998), we have derived more accurate lower bounds
on the MDL cost of subtrees by also considering split costs. More specifically, let S be the
set of records at node N and ¢ be the number of classes for the records in S. Also, let n;
be the number of records belonging to class i in S, and n; > n;y; for 1 < i < ¢ (that
is, ny, ..., n. are sorted in the decreasing order of their values). As before, a denotes the
number of attributes. In case node N is not split, that is, s = 0, then the minimum MDL
cost for a subtree at N is C(S) + 1. For values of s > 0, a lower bound on the MDL cost
of encoding a subtree with s splits (or, 2 * s + 1 nodes) and rooted at node N is given by
the following theorem.

Theorem 5.1. The MDL cost of any subtree with s splits (2 % s + 1 nodes) and rooted at

node N is at least2%s + 1 +sxloga+ Y i_ ,n;.

BUILDING DECISION TREES WITH CONSTRAINTS 201

Proof: The cost of encoding the structure of a subtree with s splits is 2 % s 4 1 since a
subtree with s splits has s internal nodes and s + 1 leaves, and we require one bit to specify
the type for each node. Each split also has a cost of at least loga to specify the splitting
attribute. The final term is the cost of encoding the data records in the s + 1 leaves of the
subtree.

Let n;; denote the number of records belonging to class 7 in leaf j of the subtree. A class
i is referred to as a majority class in leaf j if n;; > ny; for every other class & in leaf j (in
the case that, for two classes i and k, n;; = ny;, then one of them is arbitrarily chosen as the
majority class). Thus, each leaf has a single majority class, and every other class in the leaf
that is not a majority class is referred to as a minority class. Since there are s + 1 leaves,
there can be at most s + 1 majority classes, and at least c — s — 1 classes are a minority
class in every leaf.

Consider a class i that is a minority class in leaf j. Due to Eq. (1), C(S;), the cost of
encoding the classes of records in the leaf is at least Y . n;; * E(S;) where S; is the set
of records in leaf j and), n;; is the total number of records in leaf j. Since for class i,

E(S;) contains the term Z"# log %, the records of class i in leaf j contribute at least
i "'y 1

nij) * (Z':""” log Z};—';”) to C(S;). Furthermore, since class i is a minority in leaf j, we
have % > 2 and so the records with class 7 in leaf j contribute at least n;; to C(S;).
Thus, if L is the set containing the ¢ — s — 1 classes that are a minority in every leaf, then
the minority classes i in L across all the leaves contribute) ,_, n; to the cost of encoding
the data records in the leaves of the subtree.

Since we are interested in a lower bound on the cost of the subtree, we need to consider
the set L containing ¢ — s — 1 classes for which), _; n; is minimum. Obviously, the above
cost is minimum for the ¢ — s — 1 classes with the smallest number of records in S, that
is, classes s + 2, ..., c. Thus, the cost for encoding the records in the s + 1 leaves of the

subtree is at least) i, n;. O

Example 5.2. Consider a database with two attributes age and car type. Attribute age is a
numeric attribute, while car type is categorical with domain {family, truck, sports}. Also,
each record has a class label that is one of low, medium, or high, and which indicates the
risk level for the driver. Let a “yet to be expanded” leaf node N contain the following set S
of data records.

age car type label
16 truck high

24 sports high

32 sports medium
34 truck low

65 family low

The minimum MDL-cost subtrees at N with 1 and 2 splits are as shown in figures 4(a)
and (b), respectively. The minimum MDL cost for encoding each node is presented next to

202 GAROFALAKIS ET AL.

1+log 2 1+log2

1 1+1 1 1+log2

[16, truck, high]

[16, truck, high] ~ [65, family, low] :
[24, sports, high] (34, truck, low] (24, sports h'gh}]
182, sports, medium] [32, sports, medium] [65, family, low]
[34, truck, low]
(a) 1 split (b) 2 splits

Figure 4. Minimum MDL-cost subtrees with 1 and 2 splits.

it and the records in each leaf node are listed. Each node has a cost of 1 for encoding its
type. In addition, internal nodes have an additional MDL cost of log?2 for specifying the
splitting attribute. Furthermore, in figure 4(a), the second leaf node contains a record with
class medium which is different from the class for the leaf, and it thus has an extra cost of
at least 1. The remaining leaf nodes in both subtrees are all pure nodes and so do not incur
any additional costs.

The minimum MDL cost of each subtree is the sum of the minimum costs for all the
nodes. Thus, a lower bound on subtrees with 1 split is 5, while for subtrees with 2 splits, it
is 7, which are identical to the lower bounds for the subtree costs due to Theorem 5.1.

The following corollary from the proof of Theorem 5.1 establishes a similar lower bound
on the number of misclassified records. (S, ¢, and n1, ..., n. are as in Theorem 5.1.)

Corollary 5.3. The number of misclassified records in any subtree with s splits (2% s + 1

nodes) and rooted at node N is at least Y ;__, n;.

Theorem 5.1 and Corollary 5.3 give lower bounds on the MDL cost and number of
misclassifications in any subtree with s splits, and can be used to estimate lower bounds on
the cost of a subtree with at most / nodes rooted at a node N. Assuming MDL costs and
s = %, this is simply the minimum of (1) C(S) + 1 (MDL cost of subtree with O splits),
and (2) for 1 <i < s, the lower bound on the MDL cost of a subtree with i splits and rooted
at N (as described in Theorem 5.1).

5.2. Computing an optimal size-constrained subtree

Minimum MDL cost. As described earlier, our integrated constraint-pushing strategy in-
volves the following three steps, which we now describe in more detail: (1) compute the
cost of the cheapest subtree of size (at most) k of the partial tree 7, (this is an upper bound
U on the cost of the final optimal tree Ty); (2) compute lower bounds on the cost of subtrees
of varying sizes that are rooted at nodes of the partial tree 7,; and, (3) use the bounds

BUILDING DECISION TREES WITH CONSTRAINTS 203

procedure COMPUTECOSTUSINGCONSTRAINTS(Node N, integer):
1. if Tree[N, {].computed = true

2 return [Tree[N, [].realCost, Tree[N, [].lowCost]

3. elseif[<3 or N is a “pruned” or “not expandable” leaf

4. Tree[N, I].realCost := Tree[N, [].lowCost := C(9) +1

5. else if N is a “yet to be expanded” leaf {

6 Tree[N, I].realCost := C(S) + 1

7 Tree[N, [].JowCost := lower bound on cost of subtree cost rooted at N with at most ! nodes
8. else {

9 Tree[N, I].JowCost := Tree[N, {].realCost := C(S) + 1;

10. fork;:=1tol—2do{

11. ko:=1—Fk —1

12. [realCosty, lowCost;] := COMPUTECOSTUSINGCONSTRAINTS(N, k1)
13. [realCosta, lowCosts] := COMPUTECOSTUSINGCONSTRAINTS(N,, ko)
14. if realCosty + Clpit(IV) + 1 4 realCosty < Tree[N, I].realCost

15. Tree[N, {].realCost := realCost; + Cspit(IN) + 1 4 realCosts

16. if lowCost1 + Cypit(N) + 1 + lowCosty < Tree[N,].lowCost

17. Tree[N, {].lowCost := lowCost1 + Ciypir(N) + 1 + lowCosts

18. }

19. }

20. Tree[N, l].computed := true
21. return [Tree[N, {].realCost, Tree[N, [].lowCost]

Figure 5. Algorithm for computing minimum MDL-cost subtrees using lower bounds.

computed in steps (1) and (2) to identify and prune nodes that cannot possibly belong to the
optimal constrained subtree 7. Procedure COMPUTECOSTUSINGCONSTRAINTS (depicted
in figure 5) accomplishes the first two steps, while procedure PRUNEUSINGCONSTRAINTS
(depicted in figure 6) achieves step (3).

Procedure COMPUTECOSTUSINGCONSTRAINTS distinguishes among three classes of leaf
nodes in the partial tree. The first class includes leaf nodes that still need to be expanded (“yet
to be expanded”). The two other classes consist of leaf nodes that are either the result of a
pruning operation (“pruned”) or cannot be expanded any further because they are pure (“not
expandable”). COMPUTECOSTUSINGCONSTRAINTS uses dynamic programming to compute
in Tree[N, /].realCost the MDL cost of the cheapest subtree of size at most / that is rooted
at N in the partially-built tree—this is similar to procedure COMPUTECOST (figure 3). In
addition, COMPUTECOSTUSINGCONSTRAINTS also computes in Tree[N, /].lowCost, a lower
bound on the MDL cost of the cheapest subtree with size at most / that is rooted at N (if the
partial tree were expanded fully)—the lower bounds on the MDL cost of subtrees rooted
at “yet to be expanded” leaf nodes (Theorem 5.1) are used for this purpose. The only dif-
ference between the computation of the real costs and the lower bounds is that, for a “yet
to be expanded” leaf node N, the former uses C(S) + 1 while the latter uses the lower
bound for the minimum MDL-cost subtree rooted at N. Procedure COMPUTECOSTUSING-
CONSTRAINTS is invoked with input parameters R and k, where R is the root of T), and &

204 GAROFALAKIS ET AL.

procedure PRUNEUSINGCONSTRAINTS(Node N, integer [, real B):
1. Mark node N

2. if B < Bound[N, /] return

3. fori:=1toldo

4. if B > Bound[N, 4]

5. Bound[N, ¢] := B

6. if Tree[N, {].lowCost > B or Tree[N, !].lowCost = C(S) + 1 return
7. else if N is not a leaf node and [> 3 {

8 for ki :=1tol —2do{

9 ko =1—-—k —1

10. if Coprit(N) + 14 Tree[N1, ki].lowCost + Tree[Ny, ko].lowCost < B {
11. By := B — (Cspiit(N) + 1)— Tree[Na, ko].lowCost

12. By := B — (Cypiit(N) + 1)— Tree[N1, k1].JowCost

13. PRUNEUSINGCONSTRAINTS(Ny, k1, B1);

14. PRUNEUSINGCONSTRAINTS (N3, k2, Bs);

15. }

16. }

17. }

Figure 6. Branch-and-bound pruning algorithm.

is the constraint on the number of nodes. Again, note that U = Tree[R, k].realCost repre-
sents an upper bound on the cost of the final optimal subtree satisfying the user-specified
constraints.

Once the real costs and lower bounds are computed, the next step is to identify prunable
nodes N in T, and prune them. A node N in T, is prunable if every potential subtree
of size at most k (after “yet to be expanded leaves” in T, are expanded) that contains
node N is guaranteed to have an MDL cost greater than Tree[R, k].realCost. Invoking pro-
cedure PRUNEUSINGCONSTRAINTS (illustrated in figure 6) with input parameters R (root
node of T},), k, and Tree[R, k].realCost (upper bound on the cost of Tr) ensures that every
non-prunable node in T, is marked (see Theorem 5.4, below). Thus, after PRUNEUSING-
CONSTRAINTS completes execution, it is safe to prune all unmarked nodes from T, since
these cannot possibly be in the MDL-optimal subtree T with size at most k.

Intuitively, procedure PRUNEUSINGCONSTRAINTS works by using the computed lower
bounds at nodes of T, in order to “propagate” the upper bound (Tree[R, k].realCost) on
the cost of Ty down the partial tree T, (Steps 11-14). Assume that some node N (with
children N; and N,) is reached with a “size budget” of / and a cost bound of B. If there
exists some distribution of / among N; and N, such that the sum of the corresponding lower
bounds does not exceed B (Steps 8—10), then N; and N, may belong the optimal subtree
and PRUNEUSINGCONSTRAINTS is invoked recursively (Steps 11-14) to (a) mark N; and
N, (Step 1), and (b) search for nodes that need to be marked in the corresponding subtrees.
Thus, nodes N; and N, will be left unmarked if and only if, for every possible size budget
that reached N, no combination was ever found that could beat the corresponding upper
bound B.

BUILDING DECISION TREES WITH CONSTRAINTS 205

More formally, consider anode N’ in the subtree of T}, rooted at N and let/ and B denote
the size budget and cost upper bound propagated down to N (parent of N; and N,). We
say that N’ is prunable with respect to (N, I, B) if every potential subtree of size at most /
(after T, is fully expanded) that is rooted at N and contains N’, has an MDL cost greater
than B. PRUNEUSINGCONSTRAINTS is based on the following key observation: If N’ is not
prunable with respect to (N, [, B), then, for some 1 < k; <[—2,

1. Cypiis(N) + 14 Tree[Ny, ki].lowCost + Tree[N>, I — ki — 1].JlowCost < B, and
2. N’ is not prunable with respect to (N1, ki, B — (Cypiie(N) + 1)— Tree[N,, [— ky — 1].
lowCost).

That is, if N’ is not prunable with respect to (N, [, B) then there exists a way to distribute
the size budget / along the path from N down to N’ such that the lower bounds on the MDL
cost never exceed the corresponding upper bounds, on all the nodes in the path. Obviously,
N’ is not prunable (i.e., should be marked) if it is not prunable with respect to some triple
(N, 1, B). Based on these observations, we can formally prove the correctness of procedure
PRUNEUSINGCONSTRAINTS.

TheoremS.4. IfanodeinT), isnotprunable, thenitis marked by procedure PRUNEUSING-
CONSTRAINTS.

Proof: Let N be anode in T, that is not prunable. We need to show that it is marked by the
procedure. Since N is not prunable, there must exist a subtree of size at most k containing
N (after “yet to be expanded” leaves in the partial tree have been expanded) whose cost is
less than or equal to Tree[R, k].realCost—Ilet T’ be this subtree. Let Ny = R, ..., N,, = N
be the sequence of nodes from R to N in T’. We use induction to show that each node N;
along the path is marked by PRUNEUSINGCONSTRAINTS. More specifically, we show that
PRUNEUSINGCONSTRAINTS is invoked for each node N; along the path with / greater than
or equal to the number of nodes in the subtree rooted at N; in T’ and B greater than or equal
to the cost of the subtree rooted at N; in T".

Clearly, the base case holds since N; = R is marked initially when procedure PRUNE-
USINGCONSTRAINTS is first invoked on R, and T’ contains at most k£ nodes and cost of 7"’
is at most Tree[R, k].realCost. Suppose the condition holds for N;. We show that it also
holds for N;;1. Let S; and S, denote the left and right subtrees of N; in T’ rooted at its left
and right children, N; and N,, respectively. Without loss of generality, let Ny = N, ;. Let
k; and C; denote the number of nodes and the cost of subtree S;, respectively. We need to
show that PRUNEUSINGCONSTRAINTS is invoked for N;; with [> k; and B > C; (this
also ensures that N; | gets marked). Consider the invocation of PRUNEUSINGCONSTRAINTS
with parameters N;, / and B. By the induction hypothesis, B > Cy;;(N;) + 14 C1 + Co.
From the definition of lower bounds, C; > Tree[N;, ki].lowCost and C, > Tree[N,,
k;].lowCost, and thus it follows that B > Tree[N;, /].lowCost. Also, since T’ is compact,
Tree[N;, [].lowCost < Cypis(N;)+1+C +C, < C(S)+ 1. Thus, since N; is not a leaf node
I > 3,and Cyp;;(N;)+1+C1+C; < B, itfollows that procedure PRUNEUSINGCONSTRAINTS
is invoked with N;41, k; and By > C; (Step 9). O

206 GAROFALAKIS ET AL.

As an optimization, procedure PRUNEUSINGCONSTRAINTS maintains the array Bound[]
in order to reduce computational overheads. Each entry Bound[N, /] is initialized to 0 and
is used to keep track of the maximum value of B with which PRUNEUSINGCONSTRAINTS
has been invoked on node N with size budget /’ > [. The key observation here is that if a
node N’ in the subtree rooted at N is not prunable with respect to (N, I, B), then it is also
not prunable with respect to (N, ', B'), for all B’ > B, [’ > [. Intuitively, this says that if
we have already reached node N with a cost bound B’ and size budget !/, then invoking
PRUNEUSINGCONSTRAINTS on N with a smaller bound B < B’ and smaller size budget
[< I’ cannot cause any more nodes under N to be marked. Thus, when such a situation is
detected, our marking procedure can simply return (Step 2).

Note that when unmarked nodes are pruned from T, they are also deleted from the queue
0O maintained in the BUILDTREE procedure—this ensures that they are not expanded during
the building phase. Further, at the end of the building phase, we still need to run proce-
dures COMPUTECOST and PRUNETOSIZEK (Section 4) to derive the final optimal subtree T’
that satisfies the user-specified size constraint. This is because procedure PRUNEUSINGCON-
STRAINTS marks nodes conservatively, which implies that the tree returned by PRUNEUSING-
CONSTRAINTS may contain multiple subtrees with minimal MDL cost. This final step is then
necessary to select one subtree to return to the user.

Minimum number of misclassified records. Our integrated algorithms for optimizing MDL
cost can readily be modified to compute the optimal size-constrained subtree which mini-
mizes the number of misclassified records. The basic idea is to (1) set the real cost for every
leaf node equal to the number of misclassified records in the leaf, and (2) compute the lower
bounds on subtree costs using Corollary 5.3.

Time and space complexity. The time complexity of Procedure COMPUTECOSTUSING-
CONSTRAINTS is O(nk), where n is the number of nodes in T, and & is the upper bound
on the desired tree size. The worst-case time complexity of procedure PRUNEUSINGCON-
STRAINTS is exponential in k—however, in practice, as indicated by our experiments, it is
much lower (close to linear in k) due to our optimizations involving the Bound[] array. The
space complexity is O (nk) (to store the Tree[] and Bound[] arrays).

5.3. Computing an optimal accuracy-constrained subtree

We now discuss how procedures COMPUTECOSTUSINGCONSTRAINTS and PRUNEUSING-
CONSTRAINTS can be used to compute the subtree with the minimum number of nodes and
a certain maximum user-specified cost C. The key idea is to first compute, for the partial
tree T, the smallest / for which there exists a subtree of 7, whose cost does not exceed
the user-specified cost constraint C. This can be computed (as described in Section 4) by
repeatedly invoking procedure COMPUTECOSTUSINGCONSTRAINTS with increasing values
of [until an / is reached at which Tree[R, [].realCost falls below or equals C. Note that,
concurrently with the real cost of subtrees, the procedure also computes lower bounds on
subtree costs for nodes in 7),. Thus, PRUNEUSINGCONSTRAINTS can be invoked on the root
R of T, with inputs (1) the final value of /, i.e., the value at which the cost of a subtree (of

BUILDING DECISION TREES WITH CONSTRAINTS 207

size [) of T, falls below C, and (2) the user-specified constraint C. This results in nodes for
whom there could (potentially) exist a subtree of size at most / with cost less than or equal
to C, being marked. Unmarked nodes can then be pruned from 7,.

6. Experimental results

In order to investigate the performance gains that can be realized as a result of pushing con-
straints into the building phase, we conducted experiments on real-life as well as synthetic
data sets. We used the PUBLIC (Rastogi and Shim, 1998) algorithm to construct decision
trees. The PUBLIC algorithm integrates the building and pruning phases that were described
separately in Section 3. However, it does not perform any constraint-based pruning. Thus,
we extended the PUBLIC algorithm to (1) enforce size/accuracy constraints after the build
phase (as described in Section 4), and (2) push size/accuracy constraints during the build
phase (as described in Section 5). We refer to the former algorithm as PUBLIC without
constraint pushing, while the latter algorithm is referred to as PUBLIC with constraint push-
ing. We only considered the size constraint with MDL cost in our experiments—thus, for a
given k, we were interested in computing the tree with at most k nodes and the minimum
MDL cost.

Since real-life data sets are generally small, we also used synthetic data sets to study
the benefits of constraint pushing on larger data collections. The primary purpose of the
synthetic data sets was to examine sensitivity to parameters such as noise, number of classes,
and number of attributes. Synthetic data sets allowed us to vary the above parameters in a
controlled fashion. All of our experiments were performed using a Sun Ultra-60 machine
with 512 MB of RAM and running Solaris 2.7.

Our experimental results with both real-life and synthetic data sets clearly demonstrate the
effectiveness of integrating user-specified constraints into the tree-building phase. We found
that our constraint-pushing algorithms always result in significant reductions in execution
times that are sometimes as high as two or three orders of magnitude.

6.1. Algorithms

In our experiments, we compared the execution times and the number of nodes generated
for four algorithms, whose characteristics we summarize below.

e PUBLIC(1) with/without constraint pushing: This is PUBLIC with/without constraint
pushing with the very conservative estimate of 1 as the cost of the cheapest subtree
rooted at a “yet to be expanded” leaf node.

e PUBLIC(S) with/without constraint pushing: This is PUBLIC with/without constraint
pushing; it considers subtrees with splits for the minimum cost subtree at a “yet to be
expanded” leaf node, and includes the cost of specifying the splitting attribute for splits
(see Theorem 5.1).

The constraint-pushing algorithms are implemented using the same code base as PUBLIC
except that they perform size-constraint-based pruning while the tree is being built. The

208 GAROFALAKIS ET AL.

Table 2. Real-life data sets.

Data set No. of attributes No. of classes No. of records Nodes in final tree
Letter 16 26 13368 1989
Satimage 36 7 4435 185

tree itself is built breadth-first, and the pruning procedure is invoked repeatedly for each
level, after all the nodes at the level have been split.

6.2. Real-life data sets

We experimented with two real-life data sets whose characteristics are illustrated in Table 2.
These data sets were obtained from the UCI Machine Learning Repository.’ Data sets in
the UCI Machine Learning Repository often do not have both training and test data sets.
For these data sets, we randomly chose 2/3 of the data and used it as the training data set.
The last column in Table 2 contains the number of nodes in the final tree constructed by
PUBLIC without constraint pruning.

6.3. Results with real-life data sets

For the two real-life data sets, we plot the number of nodes generated by the algorithms
and their execution times in figures 7 and 8, respectively. In our experiments, we vary &,
the constraint on the number of nodes in the final tree. Intuitively, the number of nodes
generated is a good measure of the work done by a classifier, since decision tree classifiers
spend most of their time splitting the generated nodes. From figure 7, it follows that the
constraint-pushing algorithms generate significantly fewer nodes than the algorithms that
enforce the size constraint only after the build is complete. The reductions are much larger
for smaller values of k and, in a number of cases, exceed two orders of magnitude. The
improvements in the number of nodes split are also reflected in the graphs for execution

1000 T T T T 5000 -
WithoutConstraintPushing(1) —— WithoutConstraintPushing(1) ——
- WithoutConstraintPushing(S) - - - 4500 ¢ WithoutConstraintPushing(S) - 1
S gl WithConstraintPushing(1) ~—+-- 2 4000 - WithConstraintPushing(1) —
g WithConstraintPushing(S) * g WithConstraintPushing(S)
§ g 3500 r
2 600 2 3000
§ § 2500 r
+~ 400 « 2000 r
o o ©
T @ 1500 -
o " e o
§ 200 - § 1000 t)
500 e
Q X s L s L L O Rt ks L
3 13 23 33 43 53 63 3 103 203
K K
(a) Satimage (b) Letter

Figure 7. Real-life data sets: Number of nodes generated.

BUILDING DECISION TREES WITH CONSTRAINTS 209

1000 T T T T 3000 y
WithoutConstraintPushing(1) ——— WithoutConstraintPushing(1) ———
WithoutConstraintPushing(S) ——- WithoutConstraintPushing(S) -

800 - WithConstraintPushing(1) -+] 2500 WithConstraintPushing(1) ~+-

s WithConstraintPushing(S) -~ s WithConstraintPushing(S) —-x
D D
23 @ 2000
D D
2 600 2
= — 1500 p
£ 400 e 2
3) 3 1000 r
D o D
a a
200 ¢ - 500 |
0 o) . \ . . 0 ”7*_,‘ e e A '
3 13 23 33 43 53 63 3 103 203
K K
(a) Satimage (b) Letter

Figure 8. Real-life data sets: Execution time (secs).

times in figure 8. The only exception is when £ = 203 for the Letter data set. Here, the
computational overhead of the branch-and-bound pruning algorithm causes the running
times of the constraint-pushing algorithms to be higher, even though they generate fewer
nodes. However, since trees with more than 100 nodes are difficult to assimilate and interpret,
we typically expect the value of k to be fairly small (less than 200) in most cases. Thus,
from the graphs, we can conclude that, in general, pushing tree-size constraints into the
building phase does indeed yield substantial performance speedups.

Note that the number of nodes generated by algorithms that enforce the size constraint
only after the building phase has completed, is a constant, independent of k. In contrast,
the integrated constraint-pushing algorithms are sensitive to k. As k is increased, the final
optimal tree contains more nodes and fewer nodes are pruned by our branch-and-bound
pruning algorithm. We should point out, however, that the pruning is still effective and the
number of nodes generated increases linearly with k.

6.4. Synthetic data sets

In order to study the sensitivity of our algorithms to parameters such as noise in a controlled
environment, we generated synthetic data sets using the data generator used in Agrawal et al.
(1993), Mehta et al. (1996), Rastogi and Shim (1998), and Shafer et al. (1996) and available
from the IBM Quest home page.® Every record in the data sets has nine attributes and a
class label which takes one of two values. A description of the attributes for the records is
depicted in Table 3. Among the attributes, elevel, car, and zipcode are categorical, while all
others are numeric. Different data distributions were generated by using one of ten distinct
classification functions to assign class labels to records. We only considered functions 3,
4,5, and 6 for our experiments, since we found these to be a representative set. Function 3
uses predicates over two attributes, while functions 4, 5, and 6 have predicates with ranges
on three attributes. Further details on these functions can be found in Agrawal et al. (1993).
To model fuzzy boundaries between the classes, a perturbation factor for numeric attributes
can be supplied to the data generator (Agrawal et al., 1993). In our experiments, we used

210 GAROFALAKIS ET AL.

Table 3. Description of attributes in synthetic data sets.

Attribute Description Value
salary Salary Uniformly distributed from 20000 to 150000
commission Commission If salary > 75000 then commission is zero
else uniformly distributed from 10000 to 75000
age Age Uniformly distributed from 20 to 80
elevel Education level Uniformly chosen from 0 to 4
car Make of the car Uniformly chosen from 1 to 20
zipcode Zip code of the town Uniformly chosen from 9 to available zipcodes
hvalue Value of the house Uniformly distributed from 0.54£100000 to 1.5k100000
where k € {0, ..., 9} depends on zipcode
hears Years house owned Uniformly distributed from 1 to 30
loan Total loan amount Uniformly distributed from 0 to 500000
12000 — — — T 1e+06 T — —
WithoutConstraintPushing(1}) —— WithoutConstraintPushing(1) ——
- WithoutConstraintPushing(S) - WithoutConstraintPushing(S)
& 10000 WithConstraintPushing{1) - © 100000 WithConstraintPushing(1) -+ 1
g WithConstraintPushing(S) - g WithConstraintPushing(S) -
& 8000 | T 10000 ¢
) S
3 8
T 6000 [3 1000 |
p= =z
> 4000 | S 100}
& &
E 5
2 2000 e 10 G
I I —— e })) ‘
3 13 23 63 3 9 15 21 27
K K
(a) Function 3 (b) Function 4

Figure 9. Synthetic data sets: Number of nodes generated.

a perturbation factor of 5%. We also varied the noise factor from 2 to 10% to control the
percentage of noise in the data set. The number of records for each data set was set to
50000.

6.5. Results with synthetic data sets

The results for synthetic data sets are similar to those for real-life data sets, and are illustrated
for Functions 3 and 4 in figures 9 and 10. For each data set, the maximum value that we
consider for k is about half of the number of nodes in the final tree constructed by PUBLIC
without any constraints. These numbers, for the four functions, are presented in Table 4.
For each data set, the noise factor was set to 10%. From the figures, it is easy to see that the
constraint-pushing algorithms outperform the others by a significant margin. For smaller
values of &, performance speedups of more than an order of magnitude are easily realized
as a result of pushing size constraints. While the performance gains become smaller as & is

BUILDING DECISION TREES WITH CONSTRAINTS 211

Table 4. Synthetic data sets: Number of nodes without a constraint.

Function No. 3 4 5 6
Nodes in final tree 119 63 217 175
2500 T T T T T 4000 T T T
WithoutConstraintPushing(1) —— WithoutConstraintPushing(1) ——
WithoutConstraintPushing(S) - 3500 | WithoutConstraintPushing(S) - -
2 WithConstraintPushing(1) - WithConstraintPushing(1) -
— 2000 WithConstraintPushing(S) - T 3000 - WithConstraintPushing(S}) - |
8 8
e e 2500
l<1§> 1500 1 '0§>
Lt = 2000 - 1
5 S
£ 1000 | £ 1500 -]
o o
5 5 1000 |]
% 500 f «
500 -]
0B *)) . . Y — . . *
3 13 23 33 43 53 63 3 9 15 21 27
K K
(a) Function 3 (b) Function 4

Figure 10. Synthetic data sets: Execution time (secs).

increased, they still remain significant, ranging from 100% for Function 3 when k = 63 to
1000% for Function 4 when k = 27.

We also performed experiments to study the effects of noise on the performance of our
algorithms. We varied noise from 2% to 10% for every function, and found that the execution
times of the algorithms on all the data sets were very similar. As a result, in figures 11 and
12, we only plot the number of generated nodes and execution times for Functions 5 and 6.
We fixed the size constraint £ to be 33 for both data sets. From the graphs, it follows that
both execution times and the number of nodes generated increase as the noise is increased.
This is because as the noise is increased, the size of the tree and thus the number of nodes
generated increases. Furthermore, the running times for the algorithms without constraint

10000 — — — 10000 - - —
WithoutConstraintPushing(1) —— WithoutConstraintPushing(1) ——
> WithoutConstraintPushing(S) . WithoutConstraintPushing(S) - -
o 8000 WithConstraintPushing(1) - | 2 8000 | WithConstraintPushing(1) - -
S WithConstraintPushing(S) = 1 WithConstraintPushing(8) =
5 5
(O]
S 6000 S 6000
<« D
el o
2 2
= 4000 = 4000
o [S)
5 F 5
£ 2000 1 E 2000 | 1
= - =
o < R o : ; ;
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
Noise Factor Noise Factor
(a) Function 5 {(b) Function 6

Figure 11. Synthetic data sets: Number of nodes generated.

212 GAROFALAKIS ET AL.

3000 3000
WithoutConstraintPushing(1) —— WithoutConstraintPushing(1) ——
WithoutConstraintPushing(S) ----x-- WithoutConstraintPushing(S) -
2500 WithConstraintPushing(1) - 4 2500 + WithConstraintPushing(1) =
s WithConstraintPushing(S) e n WithConstraintPushing(S)
@ @
¢, 2000 @9 2000 +
@ @
£ €
F 1500 = 1500
= [
° o
3 1000 3 1000
Q e [}
= X
a fin]
500 f i 500 |
- e DA A—- S . W % - at— x
0 . : . 0 . . .
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
Noise Factor Noise Factor
(a) Function 5 (b) Function 6

Figure 12. Synthetic data sets: Execution time (secs).

pushing increase at a faster rate than those for the integrated algorithms as the noise factor is
increased. Thus, integrating size constraints with tree building results in better performance
improvements at higher noise values.

7. Conclusions

In this paper, we have proposed a general framework that enables users to specify constraints
on the size and accuracy of decision trees. The motivation for such constraints is to allow
the efficient construction of decision tree classifiers that are easy to interpret and, at the
same time, have good accuracy properties.

We have proposed novel algorithms for pushing size and accuracy constraints into the
tree-building phase. Our algorithms use a combination of dynamic programming and
branch-and-bound techniques to prune early (during the growing phase) portions of the
partially-built tree that cannot possibly be part of the optimal subtree that satisfies the
user-specified constraints. Enforcing the constraints while the tree is being built prevents a
significant amount of effort being expended on expanding nodes that are not part of the opti-
mal subtree. Our experimental results with real-life and synthetic data sets corroborate this
fact, and clearly demonstrate the effectiveness of our integrated constraint-enforcement and
building algorithms. Our proposed integrated algorithms deliver significant performance
speedups that are, in many cases, in the range of two or three orders of magnitude.

Acknowledgments

The work of Dongjoon Hyun and Kyuseok Shim was partially supported by the Korea Sci-
ence and Engineering Foundation (KOSEF) through the Advanced Information Technology
Research Center (AlTrc).

Notes

1. To simplify the presentation, we concentrate on binary decision trees in the remainder of the paper. However,
our algorithms can be extended to handle the more general case of k-ary splits in a straightforward manner.

BUILDING DECISION TREES WITH CONSTRAINTS 213

2. All logarithms in the paper are to the base 2.

. If there are multiple subtrees of T satisfying the constraint, then our algorithms compute one of them.

4. Determining a “good” value for the frequency of the pruning operation depends on a number of different factors,
including data-set and memory sizes and the actual tradeoff between pruning cost and benefit. In practice, we
have found that the simple heuristic rule of invoking the pruning procedure once per level of the tree (i.e., after
all nodes at a given level have been split) performs reasonably well (Section 6).

5. Available at http://www.ics.uci.edu/ mlearn/MLRepository.html.

6. The URL for the page is http://www.almaden.ibm.com/cs/quest/demos.html.

(95}

References

Agrawal, R., Ghosh, S.P., Imielinski, T., Iyer, B.R., and Swami, A.N. 1992. An interval classifier for database
mining applications. In Proceedings of the 18th International Conference on Very Large Data Bases, Vancouver,
Canada, pp. 560-573.

Agrawal, R., Imielinski, T., and Swami, A. 1993. Database mining: A performance perspective. IEEE Transactions
on Knowledge and Data Engineering, 5(6):914-925.

Almuallim, H. 1996. An efficient algorithm for optimal pruning of decision trees. Artificial Intelligence, 83:346—
362.

Bishop, C.M. 1995. Neural Networks for Pattern Recognition. New York: Oxford University Press.

Bohanec, M. and Bratko, I. 1994. Trading accuracy for simplicity in decision trees. Machine Learning, 15:223—
250.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and Regression Trees. Chapman
and Hall.

Cheeseman, P., Kelly, J., Self, M. et al. 1988. AutoClass: A Bayesian classification system. In 5th Int’l Conf. on
Machine Learning. Morgan Kaufman.

Fayyad, U. 1991. On the Induction of Decision Trees for Multiple Concept Learning. PhD Thesis, The University
of Michigan, Ann arbor.

Fayyad, U. and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes for classification
learning. In Proc. of the 13th Int’l Joint Conference on Artificial Intelligence, pp. 1022-1027.

Fukuda, T., Morimoto, Y., and Morishita, S. 1996. Constructing efficient decision trees by using optimized numeric
association rules. In Proceedings of the 22nd International Conference on Very Large Data Bases, Bombay,
India.

Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. 1999. BOAT—optimistic decision tree construction.
In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia,
Pennsylvania.

Gehrke, J., Ramakrishnan, R., and Ganti, V. 1998. RainForest—A framework for fast decision tree construction
of large datasets. In Proceedings of the 24th International Conference on Very Large Data Bases, New York,
USA.

Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Morgan Kaufmann.

Hunt, E.B., Marin, J., and Stone, P.J. (Eds.). 1966. Experiments in Induction. Academic Press, New York.

Krichevsky, R. and Trofimov, V. 1981. The performance of universal encoding. IEEE Transactions on Information
Theory, 27(2):199-207.

Mehta, M., Agrawal, R., and Rissanen, J. 1996. SLIQ: A fast scalable classifier for data mining. In Proceedings
of the Fifth International Conference on Extending Database Technology (EDBT’96), Avignon, France.

Mehta, M., Rissanen, J., and Agrawal, R. 1995. MDL-based decision tree pruning. In Proceedings of the First
International Conference on Knowledge Discovery and Data Mining, Montreal, Canada.

Mitchie, D., Spiegelhalter, D.J., and Taylor, C.C. 1994. Machine Learning, Neural and Statistical Classification.
Ellis Horwood.

Murthy, S.K. 1998. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining
and Knowledge Discovery, 2(4):345-389.

Quinlan, J.R. 1986. Induction of decision trees. Machine Learning, 1:81-106.

Quinlan, J.R. 1987. Simplifying decision trees. Journal of Man-Machine Studies, 27:221-234.

214 GAROFALAKIS ET AL.

Quinlan, J.R. and Rivest, R.L. 1989. Inferring decision trees using minimum description length principle. Infor-
mation and Computation, 80(3):227-248.

Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufman.

Rastogi, R. and Shim, K. 1998. PUBLIC: A decision tree classifier that integrates building and pruning. In
Proceedings of the 24th International Conference on Very Large Data Bases, New York, USA, pp. 404-415.

Ripley, B.D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.

Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14:465-471.

Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific Publ. Co.

Shafer, J., Agrawal, R., and Mehta, M. 1996. SPRINT: A scalable parallel classifier for data mining. In Proceedings
of the 22nd International Conference on Very Large Data Bases, Mumbai (Bombay), India.

Wallace, C.S. and Patrick, J.D. 1993. Coding decision trees. Machine Learning, 11:7-22.

Zihed, D.A., Rakotomalala, R., and Feschet, F. 1997. Optimal multiple intervals discretization of continuous
attributes for supervised learning. In Proceedings of the Third International Conference on Knowledge Discovery
and Data Mining, Newport Beach, California.

