
Approximate Geometric Query Tracking
over Distributed Streams

Minos Garofalakis
School of Electronic and Computer Engineering

Technical University of Crete
minos@softnet.tuc.gr

Abstract

Effective Big Data analytics pose several difficult challenges for modern data management architectures.
One key such challenge arises from the naturally streaming nature of big data, which mandates efficient
algorithms for querying and analyzing massive, continuous data streams (that is, data that is seen only
once and in a fixed order) with limited memory and CPU-time resources. Such streams arise naturally
in emerging large-scale event monitoring applications; for instance, network-operations monitoring
in large ISPs, where usage information from numerous sites needs to be continuously collected and
analyzed for interesting trends. In addition to memory- and time-efficiency concerns, the inherently
distributed nature of such applications also raises important communication-efficiency issues, making it
critical to carefully optimize the use of the underlying network infrastructure. In this paper, we provide
a brief introduction to the distributed data streaming model and the Geometric Method (GM), a generic
technique for effectively tracking complex queries over massive distributed streams. We also discuss
several recently-proposed extensions to the basic GM framework, such as the combination with stream-
sketching tools and local prediction models, as well as more recent developments leading to a more
general theory of Safe Zones and interesting connections to convex Euclidean geometry. Finally, we
outline various challenging directions for future research in this area.

1 Introduction

Traditional data-management systems are typically built on a pull-based paradigm, where users issue one-shot
queries to static data sets residing on disk, and the system processes these queries and returns their results.
For several emerging application domains, however, data arrives and needs to be processed on a continuous
(24 × 7) basis, without the benefit of several passes over a static, persistent data image. These continuous data
streams arise naturally in new large-scale event monitoring applications, that require the ability to efficiently
process continuous, high-volume streams of data in real time. Such monitoring systems are routinely employed,
for instance, in the network installations of large Telecom and Internet service providers where detailed usage
information (Call-Detail-Records (CDRs), SNMP/RMON packet-flow data, etc.) from different parts of the
underlying network needs to be continuously collected and analyzed for interesting trends. Other examples

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

103

include real-time analysis tools for financial data streams, and event and operations monitoring applications for
enterprise clouds and data centers. As both the scale of today’s networked systems, and the volumes and rates
of the associated data streams continue to increase with no bound in sight, algorithms and tools for effectively
analyzing them are becoming an important research mandate.

Large-scale stream processing applications rely on continuous, event-driven monitoring, that is, real-time
tracking of measurements and events, rather than one-shot answers to sporadic queries. Furthermore, the vast
majority of these applications are inherently distributed, with several remote monitor sites observing their local,
high-speed data streams and exchanging information through a communication network. This distribution of the
data naturally implies critical communication constraints that typically prohibit centralizing all the streaming
data, due to either the huge volume of the data (e.g., in IP-network monitoring, where the massive amounts of
collected utilization and traffic information can overwhelm the production IP network [13]), or power and band-
width restrictions (e.g., in wireless sensornets, where communication is the key determinant of sensor battery
life [28]). Finally, an important requirement of large-scale event monitoring is the effective support for track-
ing complex, holistic queries that provide a global view of the data by combining and correlating information
across the collection of remote monitor sites. For instance, tracking aggregates over the result of a distributed
join (the “workhorse” operator for combining tables in relational databases) can provide unique, real-time in-
sights into the workings of a large-scale distributed system, including system-wide correlations and potential
anomalies [7]. Monitoring the precise value of such holistic queries without continuously centralizing all the
data seems hopeless; luckily, when tracking statistical behavior and patters in large scale systems, approximate
answers (with reasonable approximation error guarantees) are often sufficient. This often allows algorithms to
effectively tradeoff efficiency with approximation quality (e.g., using sketch-based stream approximations [7]).

Given the prohibitive cost of data centralization, it is clear that realizing sophisticated, large-scale distributed
data-stream analysis tools must rely on novel algorithmic paradigms for processing local streams of data in situ
(i.e., locally at the sites where the data is observed). This, of course, implies the need for intelligently decom-
posing a (possibly complex) global data-analysis and monitoring query into a collection of “safe” local queries
that can be tracked independently at each site (without communication), while guaranteeing correctness for the
global monitoring operation. This decomposition process can enable truly distributed, event-driven processing
of real-time streaming data, using a push-based paradigm, where sites monitor their local queries and commu-
nicate only when some local query constraints are violated [7, 34]. Nevertheless, effectively decomposing a
complex, holistic query over the global collections of streams into such local constraints is far from straightfor-
ward, especially in the case of non-linear queries (e.g., norms or joins) [34].

The bulk of early work on data-stream processing has focused on developing space-efficient, one-pass al-
gorithms for performing a wide range of centralized computations on massive data streams; examples include
computing quantiles [22], estimating distinct values [20], and set-expression cardinalities [16], counting frequent
elements (i.e., “heavy hitters”) [5, 11, 29], approximating large Haar-wavelet coefficients [10], and estimating
join sizes and stream norms [1, 2, 15]. Monitoring distributed data streams has attracted substantial research
interest in recent years [6, 31], with early work focusing on the monitoring of single values, and building ap-
propriate models and filters to avoid propagating updates if these are insignificant compared to the value of
simple linear aggregates (e.g., to the SUM of the distributed values). For instance, [32] proposes a scheme
based on “adaptive filters” — that is, bounds around the value of distributed variables, which shrink or grow
in response to relative stability or variability, while ensuring that the total uncertainty in the bounds is at most
a user-specified bound. Still, in the case of linear aggregate functions, deriving local filter bounds based on a
global monitoring condition is rather straightforward, with the key issue being how to intelligently distribute the
available aggregate “slack” across all sites [3, 9, 24].

In this paper, we focus on recently-developed algorithmic tools for effectively tracking a broad class of
complex queries over massive, distributed data streams. We start by describing the key elements of a generic
distributed stream-processing model and define a broad class of distributed query-tracking problems addressed
by our techniques. We then give an overview of the Geometric Method (GM) [34, 25] for distributed threshold

104

monitoring that lies at the core of our distributed query-tracking methodology, and briefly discuss recent exten-
sions to the basic GM framework that incorporate stream sketches [17] and local prediction models [18, 19]. We
also summarize recent developments leading to a more general theory of Safe Zones for geometric monitoring
and interesting connections to convex Euclidean geometry [27]. Finally, we conclude with a brief discussion of
new research directions in this space.

2 Distributed Data Streaming and the Geometric Method

Data-Stream Processing. Recent years have witnessed an increasing interest in designing data-processing
algorithms that work over continuous data streams, i.e., algorithms that provide results to user queries while
looking at the relevant data items only once and in a fixed order (determined by the stream-arrival pattern).
Data-stream processing turns the paradigm of conventional database systems on its head: Databases typically
have to deal with a stream of queries over a static, bounded data set; instead, a stream processing engine has
to effectively process a static set of queries over continuous streams of data. Such stream queries are typically
continuous, implying the need for continuous, real-time monitoring of the query answer over the changing
stream.

Formally, a data stream can be modeled as a massive, dynamic, one-dimensional vector v[1 . . . N] that, at
any point in time, captures the current state of the stream. Note that this is a very generic, powerful model —
for instance, in the case of streams of relational tuples (rendering a dynamic relational table), this vector v is
essentially the (dynamic) frequency distribution vector of the underlying relational table whose values capture
the counts of different tuples (i.e., attribute value combinations) in the relation. (Multi-attribute relational tables
can naturally be handled in this abstract model by simply “unfolding” the corresponding multi-dimensional
frequency distribution on one vector dimension using standard techniques, e.g., row- or column-major). As
an example, in the case of IP routers monitoring the number of TCP connections and UDP packets exchanged
between source and destination IP addresses, the stream vector v has 2 × 264 entries capturing the up-to-date
frequencies for specific (source, destination) pairs observed in TCP connections and UDP packets routed through
router j. (For instance, the first (last) 264 entries of v could be used for TCP-connection (respectively, UDP-
packet) frequencies.) The size N of the stream vector v vector is defined as the product of the attribute domain
size(s) which can easily grow very large. 1 The dynamic vector v is rendered through a continuous stream of
updates, where each update effectively modifies values in v — the nature of these update operations gives rise
to different data streaming models, such as time-series, cash-register, and turnstile streams [30].

Data-stream processing algorithms aim to compute functions (or, queries) on the stream vector v at different
points during the lifetime of the stream (continuous or ad-hoc). Since N can be very large, the typical require-
ment here is that these algorithms work in small space (i.e., the state maintained by the algorithm) and small
time (i.e., the processing time per update), where “small” is understood to mean a quantity significantly smaller
than Θ(N) (typically, poly-logarithmic in N). Several such stream-processing algorithms are known for various
data-analysis queries [1, 2, 5, 10, 11, 15, 16, 20, 22, 29].

Distributed Data Streaming. The naturally distributed nature of large-scale event-monitoring applications
(such as the ones mentioned earlier) implies one additional level of complexity, in the sense that there is no
centralized observation point for the dynamic stream vector v; instead, v is distributed across several sites. More
specifically, we consider a distributed computing environment, comprising a collection of k remote sites and a
designated coordinator site. Streams of data updates arrive continuously at remote sites, while the coordinator
site is responsible for generating approximate answers to (possibly, continuous) user queries posed over the
collection of remotely-observed streams (across all sites). Following earlier work in the area [3, 7, 9, 14, 32],
our distributed stream-processing model does not explicitly allow direct communication between remote sites;

1 Note that streaming algorithms typically do not require a priori knowledge of N .

105

j

local update streams local update streams

Site 1 Site k
State−Update

Coordinator
Approximate Answer

Messages

vk1v

User Query Q(v)

for Q(v)

Global Streams

v= Σ λ j v

e

u
1

u
2

u
3

u
4
 u

5
 A

re
a

 w
h

e
re

 f
(v

)
>

T

v

Figure 1: (a) Distributed stream processing architecture. (b) Geometric Method: Estimate vector e⃗, drift vectors
uj , convex hull enclosing current v (dotted outline), and bounding balls B(e+ 1

2∆vj ,
1
2∥∆vj∥).

instead, as illustrated in Figure 1(a), a remote site exchanges messages only with the coordinator, providing it
with state information on its (locally-observed) streams. 2 Note that such a hierarchical processing model is,
in fact, representative of a large class of applications, including network monitoring where a central Network
Operations Center (NOC) is responsible for processing network traffic statistics (e.g., link bandwidth utilization,
IP source-destination byte counts) collected at switches, routers, and/or Element Management Systems (EMSs)
distributed across the network.

Each remote site j ∈ {1, . . . , k} observes (possibly, several) local update streams that incrementally render
a local stream vector vj capturing the current local state of the observed stream(s) at site j. All local stream
vectors vj in our distributed streaming architecture change dynamically over time — when necessary, we make
this dependence explicit, using vj(t) to denote the state of the vector at time t (assuming a consistent notion of
“global time” in our distributed system). The unqualified notation vj typically refers to the current state of the
local stream vector.

We define the global stream vector v of our distributed stream(s) as any weighted average (i.e., convex
combination) of the local stream vectors {vj}; that is, v =

∑k
j=1 λjvj , where

∑
j λj = 1 and λj ≥ 0 for all

j. (Again, to simplify notation, we typically omit the explicit dependence on time when referring to the current
global vector.) Our focus is on the problem of effectively answering user queries (or, functions) over the global
stream vector at the coordinator site. Rather than one-time query/function evaluation, we assume a continuous-
querying environment which implies that the coordinator needs to continuously maintain (or, track) the answers
to queries as the local update streams vj evolve at individual remote sites. There are two defining characteristics
of our problem setup that raise difficult algorithmic challenges for our query tracking problems:

• The distributed nature and large volumes of local streaming data raise important communication and space/-
time efficiency concerns. Naı̈ve schemes that accurately track query answers by forcing remote sites to ship
every remote stream update to the coordinator are clearly impractical, since they can impose an inordinate bur-
den on the underlying communication infrastructure (especially, for high-rate data streams and large numbers of
remote sites). Furthermore, the voluminous nature of the local data streams implies that effective streaming tools
are needed at the remote sites in order to manage the local stream vectors in sublinear space/time. Thus, a prac-
tical approach is to adopt the paradigm of continuous tracking of approximate query answers at the coordinator
site with strong guarantees on the quality of the approximation. This allows schemes that can effectively trade-
off space/time/communication efficiency and query-approximation accuracy in a precise, quantitative manner.

• General, non-linear queries/functions imply fundamental and difficult challenges for distributed monitoring.
2Of course, sites can always communicate with each other through the coordinator — this would only increase communication load

by a factor of 2.

106

For the case of linear functions, a number of approaches have been proposed that rely on the key idea of allocat-
ing appropriate “slacks” to the remote sites based on their locally-observed function values (e.g., [3, 32, 24]).
Unfortunately, it is not difficult to find examples of simple non-linear functions on one-dimensional data, where
it is basically impossible to make any assumptions about the value of the global function based on the values
observed locally at the sites [34]. This renders conventional slack-allocation schemes inapplicable in this more
general setting.

The Geometric Method (GM). Sharfman et al. [34] consider the fundamental problem of distributed threshold
monitoring; that is, determine whether f(v) < τ or f(v) > τ , for a given (general) function f() over the global
stream vector and a fixed threshold τ . Their key idea is that, since it is generally impossible to connect the
locally-observed values of f() to the global value f(v), one can employ geometric arguments to monitor the
domain (rather than the range) of the monitored function f(). More specifically, assume that at any point in time,
each site j has informed the coordinator of some prior state of its local vector vp

j ; thus, the coordinator has an
estimated global vector e = vp =

∑k
j=1 λjv

p
j . Clearly, the updates arriving at sites can cause the local vectors

vj to drift too far from their previously reported values vp
j , possibly leading to a violation of the τ threshold. Let

∆vj = vj − vp
j denote the local delta vector (due to updates) at site j, and let uj = e+∆vj be the drift vector

from the previously reported estimate at site j. We can then express the current global stream vector v in terms
of the drift vectors:

v =
k∑

j=1

λj(v
p
j +∆vj) = e+

k∑
j=1

λj∆vj =
k∑

j=1

λj(e+∆vj).

That is, the current global vector is a convex combination of drift vectors and, thus, guaranteed to lie somewhere
within the convex hull of the delta vectors around e. Figure 1(b) depicts an example in d = 2 dimensions. The
current value of the global stream vector lies somewhere within the shaded convex-hull region; thus, as long as
the convex hull does not overlap the inadmissible region (i.e., the region {v ∈ R2 : f(v) > τ} in Figure 1(b)),
we can guarantee that the threshold has not been violated (i.e., f(v) ≤ τ)).

The problem, of course, is that the ∆vj’s are spread across the sites and, thus, the above condition cannot
be checked locally. To transform the global condition into a local constraint, we place a d-dimensional bound-
ing ball B(c, r) around each local delta vector, of radius r = 1

2∥∆vj∥ and centered at c = e + 1
2∆vj (see

Figure 1(b)). It can be shown that the union of all these balls completely covers the convex hull of the drift
vectors [34]. This observation effectively reduces the problem of monitoring the global stream vector to the
local problem of each remote site monitoring the ball around its local delta vector.

More specifically, given the monitored function f() and threshold τ , we can partition the d-dimensional
space into two sets A = {v : f(v) ≤ τ} and A = {v : f(v) > τ}. (Note that these sets can be arbitrarily
complex, e.g., they may comprise multiple disjoint regions of Rd.) The basic protocol is now quite simple:
Each site monitors its delta vector ∆vj and, with each update, checks whether its bounding ball B(e + 1

2∆vj ,
1
2∥∆vj∥) is monochromatic, i.e., all points in the ball lie within the same region (A or A). If this is not the case,
we have a local threshold violation, and the site communicates its local ∆vj to the coordinator. The coordinator
then initiates a synchronization process that typically tries to resolve the local violation by communicating with
only a subset of the sites in order to “balance out” the violating ∆vj and ensure the monochromicity of all local
bounding balls [34]. In the worst case, the delta vectors from all k sites are collected, leading to an accurate
estimate of the current global stream vector, which is by definition monochromatic (since all bounding balls
have 0 radius).

The power of the GM stems from the fact that it is essentially agnostic of the specific (global) function f(v)
being monitored.3 Note that the function itself is only used at a remote site when checking the monochromicity

3The assumption that GM only monitors functions of the (weighted) average of local stream vectors is not really restrictive: Numerous
complex functions can actually be expressed as functions of the average using simple tricks, such as adding additional dimensions to the
stream vectors, e.g., [4].

107

of its local ball, which essentially boils down to solving a minimization/maximization problem for f() within
the area of that ball. This may, of course, be complex but it also enables the GM to effectively trade local
computation for communication.

From Threshold Crossing to Approximate Query Tracking. Consider the task of monitoring (at the coordi-
nator) the value of a function f() over the global stream vector v to within θ relative error. (Our discussion here
focuses on relative error – the case of monitoring to within bounded absolute error can be handled in a similar
manner.) Since all the coordinator has is the estimated value of the global stream vector e = vp based on the
most recent site updates vp

j , our monitoring protocol would have to guarantee that the estimated function value
carries at most θ relative error compared to the up-to-date value f(v) = f(v(t)), that is f(vp) ∈ (1± θ)f(v) 4,
which is obviously equivalent to monitoring two threshold queries on f(v):

f(v) ≥ f(vp)

1 + θ
and f(v) ≤ f(vp)

1− θ
.

These are exactly the threshold conditions that our approximate function tracking protocols will need to monitor.
Note that f(vp) in the above expression is a constant (based on the latest communication of the coordinator with
the remote sites). Similar threshold conditions can also be derived when the local/global values of f() are only
known approximately (e.g., using sketches [1, 2] or other streaming approximations) — the threshold conditions
just need to account for the added approximation error [17].

3 Enhancing GM: Sketches and Prediction Models

In this section, we give an overview of more recent work on extending the GM with two key stream-processing
tools, namely sketches and prediction models [17, 18, 19].

GM and AMS Sketches. Techniques based on small-space pseudo-random sketch summaries of the data have
proved to be very effective tools for dealing with massive, rapid-rate data streams in centralized settings [8].
The key idea in such sketching techniques is to represent a streaming frequency vector v using a much smaller
(typically, randomized) sketch vector (denoted by sk(v)) that (1) can be easily maintained as the updates in-
crementally rendering v are streaming by, and (2) provide probabilistic guarantees for the quality of the data
approximation. The widely used AMS sketch (proposed by Alon, Matias, and Szegedy in their seminal pa-
per [2]) defines the entries of the sketch vector as pseudo-random linear projections of v that can easily main-
tained over the stream of updates. AMS sketch estimators can effectively approximate inner-product queries
v · u =

∑
i v[i] · u[i] over streaming data vectors and tensors. Such inner products naturally map to several

interesting query classes, including join and multi-join aggregates [15], range and quantile queries [21], heavy
hitters and top-k queries [5], and approximate histogram and wavelet representations [10]. The AMS estima-
tor function fAMS() computed over the sketch vectors of v and u is complex, and involves both averaging and
median-selection over the components of the sketch-vector inner product [1, 2]. Formally, viewing each sketch
vector as a two-dimensional n × m array (where n = O(1

ϵ2
), m = O(log(1/δ)) and ϵ, 1 − δ denote desired

bounds on error and probabilistic confidence (respectively)), the AMS estimator function is defined as:

fAMS(sk(v), sk(u)) = median
i=1,...,m

{ 1

n

n∑
l=1

sk(v)[l, i] · sk(u)[l, i] }, (14)

and guarantees that, with probability ≥ 1− δ, fAMS(sk(v), sk(u)) ∈ (v · u± ϵ∥v∥∥u∥) [1, 2].
Moving to the distributed streams setting, note that our discussion of the GM thus far has assumed that

all remote sites maintain the full stream vector (i.e., employ Θ(N) space), which is often unrealistic for real-
life data streams. In our recent work [17], we have proposed novel approximate query tracking protocols that

4 Throughout, the notation x ∈ (y ± z) is equivalent to |x− y| ≤ |z|.

108

exploit the combination of the GM and AMS sketch estimators. The AMS sketching idea offers an effective
streaming dimensionality-reduction tool that significantly expands the scope of the original GM, allowing it to
handle massive, high-dimensional distributed data streams in an efficient manner with approximation-quality
guarantees. Furthermore, the linearity of AMS sketches implies that they can be trivially merged (by simple
component-wise addition), making them particularly suitable to our distributed streams settings [7]. A key
technical observation is that, by exploiting properties of the AMS estimator function, geometric monitoring can
now take place in a much lower-dimensional space, allowing for communication-efficient monitoring. Another
technical challenge that arises is how to effectively test the monochromicity of bounding balls in this lower-
dimensional space with respect to threshold conditions involving the highly non-linear median operator in
the AMS estimator fAMS() (Equation (14)). We have proposed a number of novel algorithmic techniques to
address these technical challenges, starting from the easier cases of L2-norm (i.e., self-join) and range queries,
and then extending them to the case of general inner-product (i.e., binary-join) queries. Our experimental study
with real-life data sets demonstrates the practical benefits of our approach, showing consistent gains of up to
35% in terms of total communication cost compared to state-of-the-art methods; furthermore, our techniques
demonstrate even more impressive benefits (of over 100%) when focusing on the communication costs of data
(i.e., sketch) shipping in the system.

GM and Prediction Models. In other recent work [18, 19], we have proposed a novel combination of the ge-
ometric method with local prediction models for describing the temporal evolution of local data streams. (The
adoption of prediction models has already been proven beneficial in terms of bandwidth preservation in dis-
tributed settings [7].) We demonstrate that prediction models can be incorporated in a very natural way in the
geometric method for tracking general, non-linear functions; furthermore, we show that the initial geometric
monitoring method of Sharfman et al. [25, 34] is only a special case of our, more general, prediction-based geo-
metric monitoring framework. Interestingly, the mere utilization of local predictions is not enough to guarantee
lower communication overheads even when predictors are quite capable of describing local stream distributions.
We establish a theoretically solid monitoring framework that incorporates conditions that can lead to fewer con-
tacts with the coordinator. We also develop a number of mechanisms, along with extensive probabilistic models
and analysis, that relax the previously introduced framework, base their function on simpler criteria, and yield
significant communication benefits in practical scenarios.

4 Towards Convex Safe Zones

In followup work to the GM, Keren et al. [25] propose a simple, generic geometric monitoring strategy that can
be formally shown to encompass the original GM scheme as a special case. Briefly, assuming we are monitoring
the threshold condition f(v) ≤ τ , the idea is to define a certain convex subset C of the admissible region A =
{v : f(v) ≤ τ} (i.e., a convex admissible subset), which is then used to define Safe Zones (SZs) for the local drift
vectors: Site j simply monitors the condition uj = e + ∆vj ∈ C. The correctness of this generic monitoring
scheme follows directly from the convexity of C, and our earlier observation that the global stream vector v
always lies in the convex hull of uj , j = 1, . . . , k: If uj ∈ C for all nodes j then, by convexity, this convex hull
(and, therefore v) lies completely within C and, therefore, the admissible region (since C ⊆ A). (Note that the
convexity of C plays a crucial role in the above correctness argument.)

While the convexity of C is needed for the correctness of the monitoring scheme, it is clear that the size of
C plays a critical role in its efficiency: Obviously, a larger C implies fewer local violations and, thus, smaller
communication/synchronization overheads. This, in turn, implies a fairly obvious dominance relationship over
geometric distributed monitoring schemes: Given two geometric algorithms A1 and A2 (for the same distributed
monitoring problem) that use the convex admissible subsets C1 and C2 (respectively), algorithm A1 is provably
superior to A2 if C2 ⊂ C1. Note that, in the simple case of linear functions f(), the admissible region A itself
is convex, and therefore one can choose C = A; however, for more complicated, non-linear functions, A is

109

non-convex and quite complex. Thus, finding a “large” convex subset of A is a crucial component of effective
geometric monitoring.

Interestingly, the bounding ball constraints of the GM can also be cast in terms of a convex admissible
subset (denoted by CGM) that can be mathematically shown to be equivalent to the intersection of the (possibly,
infinitely many) half-spaces defined by points at the boundary of the admissible region A [25]. Furthermore, as
demonstrated in our recent work [27], while the GM can achieve good results and is generic (i.e., can be applied
to any monitoring function), its performance can be far from optimal since its underlying SZ CGM is often
far too restrictive. In several practical scenarios, CGM can be drastically improved by intersecting much fewer
half-spaces in order to obtain provably larger convex admissible subsets, giving significantly more efficient
monitoring schemes. In a nutshell, our proposed Convex Decomposition (CD) method works by identifying
convex subsets of the inadmissible region, and using them to define non-redundant collections of half-spaces
that separate these subsets from the admissible region [27]. Our CD methodology can be applied to several
important approximate query monitoring tasks (e.g., norms, range aggregates, and joins) giving provably larger
SZs and substantially better performance than the original GM.

5 Conclusions and Future Directions

We have given a brief introduction to the distributed data streaming model and the Geometric Method (GM),
a generic technique for effectively tracking complex queries over massive distributed streams. We have also
discussed recently-proposed extensions to the basic GM framework, such as the combination with AMS stream
sketches and local prediction models, as well as recent developments leading to a more general theory of Safe
Zones for geometric monitoring and interesting connections to convex Euclidean geometry. The GM framework
provides a very powerful tool for dealing with continuous query computations over distributed streaming data;
see, for instance, [33] for a novel application of the GM to continuous monitoring of skyline queries over
fragmented dynamic data.

Continuous distributed streaming is a vibrant, rapidly evolving field of research, and a community of re-
searchers has started forming around theoretical, algorithmic, and systems issues in the area [31] Naturally,
there are several promising directions for future research. First, the single-level hierarchy model (depicted in
Figure 1(a)) is simplistic and also introduces a single point of failure (i.e., the coordinator). Extending the
model to general hierarchies is probably not that difficult (even though effectively distributing the error bounds
across the internal hierarchy nodes can be challenging [7]); however, extending the ideas to general, scalable
distributed architectures (e.g., P2P networks) raises several theoretical and practical challenges. Second, while
most of the proposed algorithmic tools have been prototyped and tested with real-life data streams, there is still
a need for real system implementations that also address some of the key systems questions that arise (e.g., what
functions and query language to support, how to interface to real users and applications, and so on). We have
already started implementing some of the geometric monitoring ideas using Twitter’s Storm/λ-architecture, and
exploiting these ideas for large-scale, distributed Complex Event Processing (CEP) in the context of the FERARI
project (www.ferari-project.eu). Finally, from a more foundational perspective, there is a need for de-
veloping new models and theories for studying the complexity of such continuous distributed computations.
These could build on the models of communication complexity [26] that study the complexity of distributed
one-shot computations, perhaps combined with relevant ideas from information theory (e.g., distributed source
coding). Some initial results in this direction have recently appeared for the case of simple norms and linear
aggregates, e.g., [12, 23].

Acknowledgements. This work was partially supported by the European Commission under ICT-FP7-FERARI
(Flexible Event Processing for Big Data Architectures), www.ferari-project.eu.

110

References
[1] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. “Tracking Join and Self-Join Sizes in Limited Storage”. In Proc.

of the 18th ACM Symposium on Principles of Database Systems, May 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. “The Space Complexity of Approximating the Frequency Moments”. In Proc.
of the 28th Annual ACM Symposium on the Theory of Computing, May 1996.

[3] B. Babcock and C. Olston. “Distributed Top-K Monitoring”. In Proc. of the 2003 ACM SIGMOD Intl. Conference
on Management of Data, June 2003.

[4] S. Burdakis and A. Deligiannakis. “Detecting Outliers in Sensor Networks Using the Geometric Approach”. In Proc.
of the 28th Intl. Conference on Data Engineering, Apr. 2012.

[5] M. Charikar, K. Chen, and M. Farach-Colton. “Finding Frequent Items in Data Streams”. In Proc. of the Intl.
Colloquium on Automata, Languages, and Programming, July 2002.

[6] G. Cormode and M. Garofalakis. “Streaming in a Connected World: Querying and Tracking Distributed Data
Streams”. Tutorial in 2007 ACM SIGMOD Intl. Conf. on Management of Data, June 2007.

[7] G. Cormode and M. Garofalakis. “Approximate Continuous Querying over Distributed Streams”. ACM Transactions
on Database Systems, 33(2), June 2008.

[8] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. “Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches”. Foundations and Trends in Databases, 4(1-3), 2012.

[9] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. “Holistic Aggregates in a Networked World: Dis-
tributed Tracking of Approximate Quantiles”. In Proc. of the 2005 ACM SIGMOD Intl. Conference on Management
of Data, June 2005.

[10] G. Cormode, M. Garofalakis, and D. Sacharidis. “Fast Approximate Wavelet Tracking on Streams”. In Proc. of the
10th Intl. Conference on Extending Database Technology (EDBT’2006), Mar. 2006.

[11] G. Cormode and S. Muthukrishnan. “What’s Hot and What’s Not: Tracking Most Frequent Items Dynamically”. In
Proc. of the 22nd ACM Symposium on Principles of Database Systems, June 2003.

[12] G. Cormode, S. Muthukrishnan, and K. Yi. “Algorithms for distributed functional monitoring”. ACM Transactions
on Algorithms, 7(2), 2011.

[13] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. “Gigascope: A Stream Database for Network Applica-
tions”. In Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data, June 2003.

[14] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. “Distributed Set-Expression Cardinality Estimation”. In Proc.
of the 30th Intl. Conference on Very Large Data Bases, Sept. 2004.

[15] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing Complex Aggregate Queries over Data Streams”.
In Proc. of the 2002 ACM SIGMOD Intl. Conference on Management of Data, June 2002.

[16] S. Ganguly, M. Garofalakis, and R. Rastogi. “Processing Set Expressions over Continuous Update Streams”. In
Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data, June 2003.

[17] M. Garofalakis, D. Keren, and V. Samoladas. “Sketch-based Geometric Monitoring of Distributed Stream Queries”.
In Proc. of the 39th Intl. Conference on Very Large Data Bases, Aug. 2013.

[18] N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster. “Prediction-based Geometric Moni-
toring of Distributed Data Streams”. In Proc. of the 2012 ACM SIGMOD Intl. Conference on Management of Data,
May 2012.

[19] N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, and A. Schuster. “Distributed Geometric Query Moni-
toring using Prediction Models”. ACM Transactions on Database Systems, 39(2), May 2014.

[20] P. B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to Distinct Values Queries and Event Reports”. In
Proc. of the 27th Intl. Conference on Very Large Data Bases, Sept. 2001.

[21] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. “How to Summarize the Universe: Dynamic Mainte-
nance of Quantiles”. In Proc. of the 28th Intl. Conference on Very Large Data Bases, Aug. 2002.

111

[22] M. B. Greenwald and S. Khanna. “Space-Efficient Online Computation of Quantile Summaries”. In Proc. of the
2001 ACM SIGMOD Intl. Conference on Management of Data, May 2001.

[23] Z. Huang, K. Yi, and Q. Zhang. “Randomized algorithms for tracking distributed count, frequencies, and ranks”. In
Proc. of the 31st ACM Symposium on Principles of Database Systems, May 2012.

[24] R. Keralapura, G. Cormode, and J. Ramamirtham. “Communication-efficient distributed monitoring of thresholded
counts”. In Proc. of the 2006 ACM SIGMOD Intl. Conference on Management of Data, June 2006.

[25] D. Keren, I. Sharfman, A. Schuster, and A. Livne. “Shape-Sensitive Geometric Monitoring”. IEEE Transactions on
Knowledge and Data Engineering, 24(8), Aug. 2012.

[26] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[27] A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M. Garofalakis, and V. Samoladas. “Monitoring Distributed
Streams using Convex Decompositions”. In Proc. of the 41st Intl. Conference on Very Large Data Bases, Aug. 2015.

[28] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “The Design of an Acquisitional Query Processor for
Sensor Networks”. In Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data, June 2003.

[29] G. S. Manku and R. Motwani. “Approximate Frequency Counts over Data Streams”. In Proc. of the 28th Intl.
Conference on Very Large Data Bases, Aug. 2002.

[30] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. Foundations and Trends in Theoretical Computer
Science, 1(2), 2005.

[31] NII Shonan Workshop on Large-Scale Distributed Computation, Shonan Village, Japan, January 2012.
http://www.nii.ac.jp/shonan/seminar011/.

[32] C. Olston, J. Jiang, and J. Widom. “Adaptive Filters for Continuous Queries over Distributed Data Streams”. In Proc.
of the 2003 ACM SIGMOD Intl. Conference on Management of Data, June 2003.

[33] O. Papapetrou and M. Garofalakis. “Continuous Fragmented Skylines over Distributed Streams”. In Proc. of the
30th Intl. Conference on Data Engineering, Apr. 2014.

[34] I. Sharfman, A. Schuster, and D. Keren. “A geometric approach to monitoring threshold functions over distributed
data streams”. In Proc. of the 2006 ACM SIGMOD Intl. Conference on Management of Data, June 2006.

112

