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ABSTRACT
In complex event processing (CEP), simple derived event (SDE)

tuples are combined in pattern matching procedures to derive com-

plex events (CEs) of interest. Big Data applications analyze event

streams online and extract CEs to support decision making proce-

dures. At massive scale, such applications operate over distributed

networks of sites where efficient CEP requires reducing communi-

cation as much as possible. Besides, events often encompass various

types of uncertainty assigned on event attribute values, occurrence

or detection rules. Therefore, massively distributed Big event Data

applications in a world of uncertain events call for communication-

efficient, uncertainty-aware CEP solutions, which is the focus of

this work. As a proof-of-concept, we show how we bridge the gap

between two recent CEP prototypes which utilize IBM PROactive

Technology ONline as their CEP engine and each extend it towards

only one of the dimensions of distribution and uncertainty.

CCS CONCEPTS
• Information systems → Data streams; • Applied comput-
ing → Event-driven architectures; • Computer systems or-
ganization → Distributed architectures.
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1 INTRODUCTION
Complex event processing (CEP) refers to a generic computational

paradigm where simple derived event (SDE) tuples are combined in

pattern matching procedures so as to derive higher level, complex

events (CE) of interest. Consider, for exhibition purposes, a mobile

fraud detection application. A rule (pattern) of the form “Report

long (lasting more than Y minutes) calls to premium locations”

requires two SDEs to occur in sequence. The SDE of the initiation

of a call to a premium location should be followed by the SDE of its

duration surpassing a certain threshold Y. In case this sequence of

SDEs occurs, a full pattern match exists. The corresponding output

CE constitutes a high level representation of the business event,

which in this particular occasion captures a mobile fraud incident.

Modern Big Data applications analyze event streams in an online

fashion and aim at extracting CEs in real-time so as to support

critical decision making procedures. In our simple running example,

streams refer to ongoing call records and CEs correspond to mobile

fraud detection pattern matches. The decision that needs to be

made in real-time involves the cut-off of an ongoing call in case

it matches a fraud pattern, so that further monetary losses for the

telecom provider are avoided.

Big Data applications at massive scale usually operate over dis-

tributed, networked architectures. This is because data are not gen-

erated within corporate data centers, public or hybrid clouds but

instead, event streams originate from a number of geo-distributed

sites. Distributed architectures are ubiquitous in Big Data applica-

tion scenarios ranging from Internet-of-Things (IoT) and wireless

sensor networks to smart city, smart energy grid or smart factory

settings. In all these scenarios, data gathering and processing de-

vices of any type (wearables, smartphones, sensors on machine

particles, antennas) are physically present near the sources of the

data streams or constitute such sources. The event generating sites

in our example are mobile devices moving in city centers and ru-

ral areas, which transmit call related information to one or more

communication antenna sites serving these calls as users commute.

Moreover, the query source site may lie at a corporate data center

regulating mobile fraud issues.
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In such settings optimizing the delivery of event analytics re-

quires reducing communication as much as possible. This is be-

cause should we let all sites continuously transmit sampled quanti-

ties involved in various analytics procedures towards the central

query site, the whole network will become overloaded hindering

the online, real-time delivery of detected CEs. Moreover, for battery-

powered sensors communication is a major cause of energy drain.

Additionally, Big event Data often encompass different levels

of uncertainty. As past works have pointed out [5], uncertainty

may come on the event attribute values, propagate on the event

occurrence or the rule that defines the pattern to be checked for

matching may be applied with a certain level of confidence. In our

mobile fraud scenario, uncertainty on event attribute may come

from attaching a confidence (probability) in characterizing a call

destination as premium, which inevitably propagates on the cor-

responding CE occurrence. Furthermore, domain experts, based

on prior knowledge, may have defined that the CEs detected by

the fraud pattern truly indicate a mobile fraud incident only at a

percentage of the observed cases. The latter is a probability value

attached on the rule. One can add another source of uncertainty

that stems from the need of forecasting events with a certain prob-

ability before they occur, instead of reporting their appearance [4],

or from performing approximate CEP with quality guarantees [26].

Therefore, what is required in massively distributed Big event

Data applications operating in a world of uncertain events are

solutions that can provide communication-efficient, uncertainty-

aware CEP. This is the focus of this paper. In particular, given an

uncertainty-aware event analytics query posed over a network of

sites, the techniques we propose construct in-situ filters for each site.

Our in-situ filters suppress communication among sites by being

constructed in a way so that, if their conditions are not satisfied, a

CE cannot have occurred even upon combining event data from

the various sites. Events whose communication is suppressed are

initially cached at sites but, if they continue to be suppressed as

time passes, they expire due to window constraints. Thus, their

communication may be avoided altogether.

Our approach is backed by probability theory and communica-

tion protocols. Past research efforts and prototypes have focused

on one of these aspects, either reducing communication during

CEP procedures over distributed settings [12, 13] or synthesizing

probabilities of SDEs so as to produce an overall probability of the

output CE (for instance, see [9, 32]). Hence, to our knowledge, our

techniques are the first that elaborate on communication-efficient,

uncertainty-aware event analytics over distributed settings.

The contributions of this work are summarized below:

• Wepropose, to our knowledge for the first time in CEP, uncertainty-

aware in-situ filters which are installed on the sites of a dis-

tributed setting and suppress unnecessary communication of

uncertain events during the execution of CEP queries. The filters

achieve that by being constructed in such a way so that, if they

are not violated by at least one site, a global CE over the network

of sites cannot have occurred even upon combining event data

from all of them. Thus, communication can be safely avoided.

• Wepropose a novelmonitoring protocol for executing uncertainty-

aware CEP over distributed settings, composed of a number of

sites, in a communication-efficient manner. Our protocol fully

exploits the installation of the constructed in-situ filters on sites.

• As a proof-of-concept of the applicability of our techniques in

real systems, we show howwe bridge the gap between two recent

prototypes. The FERARI streaming multi-cloud platform [12, 13],

which provides communication-efficient event analytics over

distributed settings but neglects uncertainty aspects, and the

work by Correia et al [7] which elaborates on handling event

uncertainty but requires continuous event transmissions, not ac-

counting for efficiency over distributed settings. Both prototypes

utilize IBM PROactive Technology ONline (Proton) [1] as their

CEP engine and each extend it towards the respective aspect. To

illustrate the proposed approach in real world scenarios, we use

a mobile fraud detection use case from the telecom domain.

2 OVERVIEW & MOTIVATION
The following motivating example better exhibits our contributions

and helps us provide an overview of our approach. Consider a

more intriguing, compared to our introductory example, query

of the form: “Trigger an alarm when the number (count) of calls

to premium locations made by a specific caller during the past Y
minutes is above T with probability higher than C”. Note that each
call of a callerID can be handled by a different antenna site and

thus, the total call count for that callerID may be spread over the

network (Figure 1). Hence, one needs to aggregate respective data

for each callerID at a central site to answer the query, which is

daunting from a communication perspective. Assume, for exhibition

purposes, that each international call destination is attributed a

confidence value (probability) p of being premium. This confidence

value may be set by a domain expert or get derived from past

data [6, 28]. Therefore, each call to a potentially premium location

is a Bernoulli random variable. The total number of calls (Bernoulli

trials) made by a callerID is the sum of the number of calls that

have been handled by all antennas {A1, . . . ,AN }:
∑N
i=1 ni = n, with

ni being the local count of calls for callerID at antenna Ai . Let X
denote the random variable representing the count of such calls to

potentially premium locations throughout the network of antennas.

Then X follows a Binomial distribution, i.e., X ∼ B(n,p), where n is

the total number of such calls made by callerID the last Y minutes

and p the probability of a call destination being premium.

The approach in FERARI [12, 13] will attempt to avoid continu-

ous central data collection by constructing in-situ filters that are

not uncertainty-aware, in the sense that they consider all poten-

tially premium locations as surely premium. Assuming a city with

N antennas, an in-situ filter for each site will be: each antenna Ai
suppresses communication if the local count Xi of calls of callerID

is at most
T
N , whereT is the threshold on the call count in the given

query. This is because if Xi ≤
T
N at all antenna sites, then globally

X =
∑N
i=1 Xi ≤

∑N
i=1

T
N = T . Thus, if an antenna Ai finds Xi >

T
N

for calls within the last Y minutes, it will transmit this data to the

query site, because only then it is possible that X has exceeded the

T threshold. Afterwards, the central site will prompt the rest of the

N − 1 antennas to communicate the call count for that callerID
within the last Y minutes. But the “with probability higher than

C” criterion is not applied anywhere in the in-situ filters. Thus,

instead of narrowing down transmitted SDEs based on two crite-

ria, i.e., count of calls to premium locations and the confidence on
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caller callee call start time duration

62 23 11:10:23 May-10 22

38 45 11:10:24 May-10 21

34 22 11:10:23 May-10 13

83 19 11:10:25 May-10 5

10 22 11:10:24 May-10 6

18 26 11:10:24 May-10 7

26 30 11:10:24 May-10 8

34 41 11:10:24 May-10 9

Antenna Sites 
Smartphone Users Commute
Call Status updates

SDE Stream

Local Computation
• In-situ Filter Application
• Monitoring Protocol

Coordinator

62 23 11:10:23 05 - 10 22 0,41

38 45 11:10:24 05 - 10 21 0,43

34 22 11:10:23 05 - 10 13 0,41

83 19 11:10:25 05 - 10 6 0,42

10 22 11:10:24 05 – 10 6 0,4

18 26 11:10:24 05 – 10 8 0,4

26 30 11:10:24 05 – 10 7 0,41

34 41 11:10:24 05 - 10 9 0,42

caller callee call start time duration p

Figure 1: An instance of site network organization into a
bottom tier (telecom antennas) and a top tier (coordinator
- query site). Each site applies the in-situ filter and executes
the monitoring protocol proposed by our approach.

these locations being premium, only one such criterion is used. This

increases potentially unnecessary transmissions.

On the other hand, should one simply use the extension of Proton

provided by Correia et al [7], she will need to accumulate all data to

the query site before being able to check whether the uncertainty

criterion applies and whether events can be pruned because of it.

Our contribution comes exactly because of the ability of our

in-situ filters to account for both the distribution and uncertainty

dimensions of the posed query. In particular, our in-situ filters

will recognize the fact that if globally X ∼ B(n,p), then for each

antennaAi ,Xi ∼ B(ni ,p). Our techniques exploit probability theory
to recognize that, for common p, the binomial distribution is self-

decomposable, i.e., if Xi ∼ B(ni ,p) → X =
∑N
i=1 Xi ∼ B(n,p).

Therefore, the in-situ filter constructed by our approach will be (as

explained in Section 4.3): each Ai suppresses communication if the

probability of the local count Xi of calls of callerID is at most
T
N

with probability above
N√
1 −C: Pr [Xi ≤

T
N ] ≥

N√
1 −C , where C

is the (un)certainty threshold in the posed query. The latter filter

accounts for both the criteria (call count, confidence) included in

the posed query. Further details on the generic approach for in-situ

filter construction, decomposable distributions and communication

protocol operation follow throughout our study.

3 PRELIMINARIES
Network of Sites. We assume a distributed, two-tiered setting

composed of N sites {A1, . . . ,AN } at the bottom tier and a query

source site (top-tier), which we term as the coordinator site. The

coordinator poses a query involving event data that are gathered

across the N sites and engages the CEP operators outlined below.

An instance of this architecture, for the motivating example of

Section 2, is shown in Figure 1.

Target Queries. Our algorithms engage popular operator cate-

gories [11]. All operators that are admissible in our setup bear a

windowW , which expresses the maximum time window within

which the input events of an operator should appear. This operator

list includes:

• NON_AGGRegation operators with NON_AGGR ∈ {AND, OR, SEQ}:
– AND outputs a CE when all participating SDEs occur inW .

– SEQ outputs a CEwhen all participating SDEs occur in specified
sequence inW .

– OR outputs a CE whenever any participating SDE occurs inW .

• AGGRegation operators, AGGR ∈ {AVERAGE, COUNT, SUM}.
Note that the naming may differ from one CEP engine to another.

For instance, IBMProton employed in our proof-of-concept uses ALL
instead of AND, supports OR via ALL and ABSENCE (logical negation)

operators as well as uses SEQUENCE rather than SEQ.
In this work we target thresholded CEP queries on both the

aggregation and uncertainty values. Generalizing the rationale of

our motivating example in an SQL-like syntax (m ≥ 1, 0 < C ≤ 1):

PATTERN NON_AGGR(AGGR1 Q T1, . . . , AGGRm Q Tm) Q
[WHERE list_conditions ]

[PARTITION BY partition_key ]

HAVING Q.certainty>C
WITHIN window_constraints

where Q ∈ {>, <, ≤, ≥}. Compartments embraced in [] are optional.

The WHERE clause refers to filter conditions on individual attributes

or predicates, the PARTITION BY clause partitions the incoming

events based on some key attribute, WITHIN expresses the desired
window constraints and HAVING accounts for our uncertainty crite-

rion. Instantiating the above for the example of Section 2 gives:

PATTERN (COUNT(Call_Detail_Record CDR) ≥ T) Q
WHERE CDR.destination ∈ possibly_premium_locations
PARTITION BY CDR.callerID
HAVING Q.certainty>C
WITHIN Y minutes

where no NON_AGGR operator is needed.

Uncertainty Assumptions. As in the vast majority of related

works [5], we employ an event independence assumption and also

assume that sites handle independent streams. Other common prac-

tices, such as employing a Markovian or Bayesian [5] hypothesis

for event and stream dependence, are left for future work.

4 OUR APPROACH
4.1 Decomposition to Individual Aggregations
Given the independence assumption, for NON_AGGR ∈ {AND, SEQ},
Q.certainty>C holds if the same uncertainty criterion is satisfied

in each AGGRj Q Tj , j ∈ {1, . . . ,m} engaged in the query Q . This
is because the certainty of AND,SEQ results as a product of the

certainties of AGGRj Q Tj. Thus, these operators can output a CE

when the certainty of each AGGRj Q Tj is higher than C . For an OR
operator, we require at least one AGGRj Q Tj to have a certainty

value higher than C for the rule to output a CE. Therefore, the

initial query can be decomposed to individual sub-queries:

PATTERN (AGGRj Q Tj) Q j
[WHERE list_conditions ]

[PARTITION BY partition_key ]

HAVING Qj.certainty>C
WITHIN window_constraints
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Based on the above discussion, the uncertainty criterionC is checked

for every sub-query and, thus, we henceforth focus on constructing

in-situ filters for each Qj. Note that, as in the example of Section 2,

the variable X describing AGGRj follows a probability distribution

f (.), i.e., X ∼ f (.). The parameters that are included in the paren-

thesis may differ from one probability distribution to another. f (.)
becomes known to the coordinator, obtained either theoretically

(as in the example of Section 2) or empirically based on gathered

data samples as described in Section 4.4.

4.2 Decomposable Probability Distributions
Our techniques are applicable when X can be decomposed to in-

dividual Xi ∼ f (.) for each site Ai , so that either X =
∑N
i=1 Xi

or X =
∏N

i=1 Xi . Linear or weighted combinations of Xi s are also
supported. This property holds for large families of distributions.

Table 1 summarizes some popular, supported distributions.

Both discrete and continuous probability distributions are sup-

ported by our approach. Discrete distributions, include Binomial,

Poisson (shown in the table) and Geometric together with the Neg-

ative Binomial or Poisson Binomial distributions (not shown in the

table). Continuous cases involve the Normal, Gamma, Exponential,

Cauchy, Chi-square and Logistic (approximated via Normal). Fur-

thermore, logarithmic versions of supported distributions include,

among others, the popular cases of Log-Normal and Log-Logistic.

For the log-versioned distributions X =
∏N

i=1 Xi holds, instead of

X =
∑N
i=1 Xi , which holds in the rest of the provided examples.

With respect to the telecom domain employed in our motivating

example (Section 2) and our proof-of-concept (Section 5), besides the

Binomial distribution, Exponential [20], LogNormal and LogLogis-

tic distribution [10] can be used to model (abnormal) time intervals

between calls of a particular caller, handled by different antennas in

the network. Moreover, the Poisson distribution can be applied in

modeling suspicious traffic [17], for instance, caused in the network

by numbers of a certain subscriber. Finally, in our proof-of-concept

we exploit the Normal distribution to assess potentially fraudulent

calls when only the charged, instead of the actual, duration of calls

are known to data analysts due to caller privacy constraints.

The first three columns of Table 1 include the name of the distri-

bution, its Probability Density Function (PDF) and an explanation

of its parameters, respectively. The last column of Table 1 refers to

our proof-of-concept (Section 5), highlighting which of the cited dis-

tributions are present in the uncertain extension of IBM Proton [7].

We believe that as uncertainty-aware CEP gets more and more at-

tention, such functionality will be provided by other engines as well.

Note that the fourth column of Table 1 just presents examples of

plausible decompositions. Other ways of breaking up X to Xi s may

also be admissible. For instance, the work of Moschopoulos [27] can

serve as a generic tool for decomposing the Gamma distribution

even when the scale parameters of Xi s differ. We will comment of

the fifth column of Table 1 shortly.

Finally, note that Xi ∼ f (.) allows the probability distribution to

incorporate different parameters in f (.) compared to X ∼ f (.). A
study on self-decomposable and infinitely divisible distributions,

which admit our in-situ filters (Section 4.3) and can be supported by

our approach, is included in the book by Steutel and Harn [31]. We

will shortly discuss how to encounter situations where f (.) may

differ among the sites.

4.3 In-situ Filter Construction
Let us now examine how in-situ filters are constructed when X can

be expressed either as a sum or a product of Xi s. The probabilistic
criterion in our query Q j can be written as Pr [X Q Tj ] > C , thus,
no CE can be outputted if this probability is lower or equal to C .

Definition 4.1. (Global Filter) The global filter is the condition:

Pr [X Q Tj ] ≤ C (1)

where Q ∈ {>, <, ≤, ≥}, such that no CEs can be outputted by the

evaluation ofQ j even upon combining event data from {A1, . . . ,AN }.

This is the global filter which we break into in-situ filters for each

site Ai . Lemma 4.2 explains how this is performed. In Lemma 4.2

notice that Inequalities 2,3 useXi R
Tj
N andXi R N

√
Tj , respectively,

while the global filter in Inequality 1 says X Q Tj . In particular, the

direction and the inequality used in Inequality 1 is complementary

to that of Inequalities 2,3. Recall that R, Q ∈ {>, <, ≤, ≥}. Thus, if

≥ or > is present in Inequality 1, the in-situ filter in Inequalities 2,3

should use < or ≤ respectively, and vice versa.

Lemma 4.2. (In-situ Filters)
(i) When X =

∑N
i=1 Xi , the in-situ filter that should be locally

installed at each site Ai ∈ {A1, . . . ,AN } is given by:

Pr [Xi R
Tj

N
] ≥

N√
1 −C, ∀Ai ∈ {A1, . . . ,AN } (2)

(ii) When X =
∏N

i=1 Xi , for positive Tj and random variables (see
Table 1 for log-versioned distributions), the in-situ filter that
should be locally installed at each site Ai ∈ {A1, . . . ,AN } is
given by:

Pr [Xi R
N
√
Tj ] ≥

N√
1 −C, ∀Ai ∈ {A1, . . . ,AN } (3)

Proof. (i) Analyzing ≥ from the set {>, <, ≤, ≥} suffices as

the rest of the cases are analogous. Using ≥, Inequality 1 turns

to Pr [X ≥ Tj ] ≤ C , while Inequality 2 turns to Pr [Xi <
Tj
N ] ≥

N√
1 −C . Thus:

(2) ⇒

N∏
i=1

Pr [Xi <
Tj

N
] = Pr [�Xi ≥

Tj

N
] ≥ 1 −C ⇔

Pr [∃Xi ≥ Tj

N
] ≤ C ⇒ C ≥ Pr [∃Xi ≥ Tj

N
] ≥

Pr [
N∑
i=1

Xi ≥ Tj ] = Pr [X ≥ Tj ]

Hence, Inequality 2 ⇒ Inequality 1. No CE can be outputted

by Q j and communication can safely be avoided by all sites.

(ii) Again for the case of Q corresponding to ≥:

(3) ⇒

N∏
i=1

Pr [Xi <
N
√
Tj ] = Pr [�Xi ≥

N
√
Tj ] ≥ 1 −C ⇒

C ≥ Pr [∃Xi ≥ N
√
Tj ] ≥ Pr [

N∏
i=1

Xi ≥ Tj ] = Pr [X ≥ Tj ]

�
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Distribution PDF Remarks

Decomposition

Example

In-situ Filter for

1 −CDF (X , T ) > C
CEP

Engine

Normal
1√
2πσ

e
−
(x−µ )2

2σ 2 , ∀x ∈ R
Xi ∼ Normal (µi , σ 2

i )

X =
N∑
i=1

Xi ∼ Normal (
N∑
i=1

µi ,
N∑
i=1

σ 2

i )

N√
1 −C ≤

CDF (Xi ,
T
N )

✔

Log-Normal
1

xσ
√
2π

e
−
(lnx−µ )2

2σ 2 ,
∀x > 0

µ ∈ R(,mean)

σ > 0 (, st.dev.)

Xi ∼ LoдNormal (µi , σ 2

i )

X =
N∏
i=1

Xi ∼ LoдNormal (
N∑
i=1

µi ,
N∑
i=1

σ 2

i )

N√
1 −C ≤

CDF (Xi ,
N√T )

✔

Chi-Square
1

2
ν /2Γ

(
ν
2

) x ν
2
−1e−

x
2

∀x > 0

ν ∈ N+degrees
of freedom

Xi ∼ x 2(νi )

X =
N∑
i=1

Xi ∼ x 2(
N∑
i=1

νi )

N√
1 −C ≤

CDF (Xi ,
T
N )

✘

Cauchy
1

πs
[
1+( x−νs )2

] ∀x ∈ R
ν ∈ R(location)
s > 0 (scale)

Xi ∼ Cauchy(νi , si )

X =
N∑
i=1

Xi ∼ Cauchy(
N∑
i=1

νi ,
N∑
i=1

si )

N√
1 −C ≤

CDF (Xi ,
T
N )

✘

Poisson
λx e−λ

x !
∀x ∈ N
λ > 0

Xi ∼ Poisson(λi )

X =
N∑
i=1

Xi ∼ Poisson(
N∑
i=1

λi )

N√
1 −C ≤

CDF (Xi ,
T
N )

✘

Gamma
1

Γ(α )θα xα−1e−
x
α

∀x > 0

α > 0(shape)

θ > 0 (scale)

Xi ∼ Gamma(αi , θ )

X =
N∑
i=1

Xi ∼ Gamma(
N∑
i=1

αi , θ )

N√
1 −C ≤

CDF (Xi ,
T
N )

✔

Logistic
e−

x−ν
s

s
(
1+e−

x−ν
s

)
2

∀x ∈ R
ν ∈ R(location)
s > 0 (scale)

Xi ∼ Loдist ic(νi , si ) (approx.)

X =
N∑
i=1

Xi ∼ Loдist ic(
N∑
i=1

νi ,

√
N∑
i=1

s2i )

N√
1 −C ≤

CDF (Xi ,
T
N )

✔

Log-Logistic
(β/α )(x/α )β−1(

1+(x/α )β
)
2

∀x > 0

α > 0(scale)

β > 0 (shape)

ν = loд(α )
s = 1/β

Xi ∼ LoдLoдist ic(νi , si ) (approx.)

X =
N∏
i=1

Xi ∼ LoдLoдist ic(
N∑
i=1

νi ,

√
N∑
i=1

s2i )

N√
1 −C ≤

CDF (Xi ,
N√T )

✘

Exponential λe−λx ∀x > 0

λ > 0 (rate)

Xi ∼ Gamma( αi
N∑
i=1

αi

, 1

λ )

X =
N∑
i=1

Xi ∼ Exp(λ)

N√
1 −C ≤

CDF (Xi ,
T
N )

✔

Binomial

(n
x
)
px (1 − p)n−x

x = 0, 1, . . . , n
p ∈ [0, 1]
n ∈ N

Xi ∼ Binomial (ni , p)

X =
N∑
i=1

Xi ∼ Binomial (
N∑
i=1

ni , p)

N√
1 −C ≤

CDF (Xi ,
T
N )

✔

Table 1: Some supported probability distributions, uncertainty criteria and respective in-situ filter examples. PDF: Probability
Density Function, CDF: Cumulative Distribution Function. For log-versioned distributions X =

∏N
i=1 Xi instead of X =

∑N
i=1 Xi

holds due to the use of logarithms. 1 − CDF (X ,T ) > C ⇔ P[X > T ] > C in the fifth column exemplifies the query uncertainty
criterion, which corresponds to the global filter: P[X > T ] ≤ C based on Inequality 1. The column then shows the instantiations
of Inequality 2 or Inequality 3 per distribution. The last column indicates which of these distributions are supported by the
CEP Engines used in our Proof-of-Concept.

Inequality 2 and Inequality 3 are the in-situ filters we construct

based on how X can be decomposed to individual Xi s, one for each
site Ai . The fifth column of Table 1 illustrates further application

examples of Inequality 2 and Inequality 3 for the cited distributions.

When the query poses an uncertainty criterion: 1−CDF (X ,Tj ) > C
⇔ P[X > Tj ] > C , it interprets to the global filter P[X > Tj ] ≤ C
(Inequality 1). CDF stands for Cumulative Distribution Function.

Handling Variations in Local Probability Distributions. So
far, we have assumed that X ∼ f (.) and each Xi ∼ f (.) follow
the same probability distribution f (in Table 1 the Exponential

distribution is an exception to that observation) although various

parameters, means and variances among X ∼ f (.) and Xi ∼ f (.)
can differ. The natural question that arises regards what if the PDF

of Xi differs for each site and from that of X , i.e. for some (one or

more) site Ak , say Xk ∼ дk (.) where дk differs from f .
It is important to note that X comes from combining data from

the various sites {A1, . . . ,AN }. Therefore, if X ∼ f (.), it is impos-

sible for Xi s to follow arbitrary probability distributions. It is only

a very narrow subset of PDFs that are allowed for Xi s so that their

synthesis in the form of either X =
∑N
i=1 Xi or X =

∏N
i=1 Xi yields

X ∼ f (.). Given this, even if there exists Xk ∼ дk (.), there should
be a variable transformation to turn Xk ∼ дk (.) into X

′
k ∼ f (.) and

then X ′
k should be used in the respective sum or product for X .

Popular transformations include Linear transformations such

as multiplying by, dividing by or adding a constant to Xi and non-

linear transformations such as Logarithmic, Square root, Power,

Inverse, Reciprocal, Cube Root and Exponential transformation.

Please refer to Kutner et al [22] and Leemis and McQueston [24]

for more details on transforming one probability distribution to

another. For instance, applying a square root-like transformation

to a Chi-square distributed random variable provides a Normal

approximation [19]. Both these distributions are supported by our

techniques as shown in Table 1. Thus, if X ∼ Normal(µ,σ 2) but

Xk is initially found (see Section 4.4) to follow a Chi-square dis-

tribution, then applying such a transformation on Xk produces

X ′
k ∼ Normal(µk ,σ

2

k ) and X
′
k should be used in producing X in an

additive form (see first row of Table 1).
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Coordinator

If f(.) known from probabilistic modelling go to 5

1. መf(. ) (kernel, histogram) estimation
2. For each Candidate f(.) from supported PDFs

compute: E መf − f
2

2

3. Choose f(.)  with MISE
4. Repeat steps 1 to 4 for each site Ai ∈ A1, ⋯ , AN

5. Set X~f .
6. Transmit Xi~f(. ) to each site Ai

Sites 
Transmit 
SDEs

(a) Initialization Phase

Coordinator

ProbXi ≥
N
1 − C ⇒ Ai caches relevant events

ProbXi <
N
1 − C ⇒ Ai contacts coordinator

ProbXi = Pr[Xi ⋛
Tj

N
] or ProbXi = Pr Xi ⋛

N Ti

(see Table 1) 

𝑃𝑟𝑜𝑏𝑋𝑖 <
𝑁
1 − 𝐶 𝑃𝑟𝑜𝑏𝑋𝑖 ≥

𝑁
1 − 𝐶

𝑃𝑟𝑜𝑏𝑋𝑖 ≥
𝑁
1 − 𝐶 𝑃𝑟𝑜𝑏𝑋𝑖 ≥

𝑁
1 − 𝐶

(b) Monitoring Phase

Coordinator

1. Request cached events from sites A1, ⋯ , AN

2.1 SyncCase A when Pr 𝑋 ⋚ 𝑇𝑗 > 𝐶 :  

2.1.1 Produce CEs, receive new events

2.1.2 If Pr 𝑋 ⋚ 𝑇𝑗 > 𝐶 go to 2.1.1

2.1.3 If Pr 𝑋 ⋚ 𝑇𝑗 ≤ 𝐶 go to Initialization phase 

2.2 SyncCase B when Pr 𝑋 ⋚ 𝑇𝑗 ≤ 𝐶(global filter holds):

2.2.1 Slack Allocation 
2.2.2 Go to Monitoring phase

Sites 
Transmit 
SDEs

(c) Synchronization Phase

Figure 2: Distributed Monitoring Protocol Operation

4.4 Distributed Monitoring Protocol
Our proposed framework divides its operation into three phases,

namely (a) Initialization, (b) Monitoring and (c) Synchronization

phases, as described below.

1. Initialization Phase:A central event data collection takes place

at the coordinator after the reception of the posed query, gathering

events from sites for a predefined time interval. These will be used

so that the distribution which X follows is estimated, if it cannot be

imposed by the probabilistic model (e.g., as in Section 2). Hence, the

coordinator applies a density estimation method (such as kernel

density estimation, histograms) to obtain an empirical estimation

of the PDF of X . Then, using the set of supported decomposable

distributions, some of which are presented in Table 1, the coordina-

tor computes the Mean Integrated Squared Error (MISE) for each:

E(∥ ˆf − f ∥2
2
) where E(.) denotes the expected value,

ˆf is the esti-

mated PDF and f the candidate one from the set of decomposable

distributions. It then picks the one with the minimum MISE and

sets X ∼ f (.). If the global filter in Inequality 1 holds, the coor-

dinator follows the same density estimation process for each site

Ai and computes Xi ∼ f (.) as well. Then, the PDF of each Xi is
transmitted to the respective Ai s and the network proceeds to the

Monitoring phase (outlined below). Otherwise, if the global filter

does not hold, central data collection should keep taking place as

CEs are indeed produced. We emphasize that, if the local PDF of Xi
differs from the one of X , the discussion about handling variations

in local probability distributions (see end of Section 4.3) applies

and possible variable transformations take place. Furthermore, the

chosen PDF f (.), used for both X and Xi s, is allowed to change to

another supported distribution only after a Synchronization phase

(also outlined below). However, Xi s may update the parameters,

such as mean and variance, of their own PDF f (.) as more data

arrive locally at Ai s.
2. Monitoring Phase: Each Ai receives timestamped uncertain

event tuples. Ai computes any alterations on the parameters of the

PDF of Xi using only local data that are included in the current

window and satisfy conditions of the WHERE clause. Given this,Ai

checks if the in-situ filters of Inequality 2 or Inequality 3, depending

on the nature of the decomposition as described in Section 4.3, are

satisfied. In case the in-situ filters are satisfied in all the sites, no

communication takes place and each site Ai caches its relevant
events. If the local filter is violated in at least one siteAi , a synchro-
nization phase takes place. Otherwise cached events expire as the

window slides.

3. Synchronization Phase: A central data collection takes place

at the coordinator. This involves all arriving or cached event tuples

that are included in the current window and satisfy the conditions

of the WHERE clause. We distinguish the following two cases:

• Sync Case A: If Inequality 1 does not hold and, thus, CEs are

indeed produced, continuous communication of events observed

at {A1, . . . ,AN } takes place. Event tuples are used at the coordi-

nator to produce CEs and to update the parameters of the PDF

of X , if needed. Inequality 1 is checked again with the reception

of new tuples. In case at some point Inequality 1 holds true, the

coordinator enters the Initialization phase.

• Sync Case B: If Inequality 1 holds true, the central event collection
took place in vain, since no CEs are produced. We call such

synchronizations as False Positive (FP) ones. However, if no CE

is produced, the data eachAi communicated have not being used

in pattern matches. If the coordinator does nothing and simply

tells the sites to switch to the Monitoring phase again, another

FP synchronization will be very likely. For instance, if no event

tuple arrives or expires in the sites which caused the previous

synchronization, their in-situ filters will be violated as soon as

they re-enter the Monitoring phase. A situation with continuous,

most likely FP, synchronizations should be avoided, if possible. In

order to achieve that, the coordinator performs a slack allocation
effort which is outlined below. If slack allocation is successful,

the protocol returns to the Monitoring phase with new in-situ

filters. Otherwise, the protocol simply switches to the Monitoring

phase.

Slack Allocation: During slack allocation, the coordinator at-

tempts to decrease the uncertainty threshold in Inequality 2 or
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Inequality 3 for the violating sites, so that they are less likely to be

violated immediately after switching to the Monitoring phase. For

the non-violating sites the corresponding threshold is increased.

To illustrate how this is performed, for ease of exposition, let us de-

note with ProbXi either Pr [Xi R
Tj
N ] or Pr [Xi R N

√
Tj ] depending

on how decomposition is achieved for X . Slack allocation works

when

∏N
i=1 ProbXi > 1 − C . This is because there is the require-

ment that

N∏
i=1

ProbXi does not fall below 1 − C , as explained in

the proofs of Lemma 4.2(i) and Lemma 4.2(ii). Given this and the

fact that the protocol is in Sync Case B, the coordinator computes

1−C∏N
i=1 ProbXi

= ∆ < 1. This is a ratio expressing the quantity (slack)

remaining for

∏N
i=1 ProbXi to approach 1 −C . To avoid short-term

FP synchronizations, the coordinator distributes ∆ among the, say

K < N , sites whose in-situ filter was violated during the current

synchronization. Therefore, the in-situ filter for those sites is loos-

ened to
N√
1 −C ·

K√∆, while for the remaining sites the in-situ filter

becomes stricter:
N√
1 −C · 1

(N−K )
√
∆
. Notice that, by adjusting the

uncertainty thresholds as above,

∏N
i=1 ProbXi ≥ 1 −C still holds,

provided the new in-situ filters hold in all sites. Hence, if slack

allocation leads to a situation where all new in-situ filters hold,

the protocol switches to the Monitoring phase by a corresponding

message from the coordinator to sites including the new in-situ

filter for each. The slacks
K√∆ and

1

N−K√∆
remain fixed until the

next synchronization. Otherwise, a Monitoring phase with no new

slack allocation (i.e., using the usual filters) takes place.

Example 4.3. Assume a set up of N = 3 sites with C = 0.8 and

K = 1. Thus, 1−C = 0.2,
N√
1 −C = 0.58. In particular, consider only

A1 violates its in-situ filter with ProbX1
= 0.5 <

N√
1 −C = 0.58,

while for the other two sites ProbX2
= 0.9, ProbX3

= 0.9. These

yield

∏N
i=1 ProbXi = 0.405 > 0.2 = 1 −C and therefore ∆ = 0.49.

Based on this, the decreased threshold for A1 will be
N√
1 −C · ∆ =

0.28, while the increased thresholds forA2,A3 will be set to
N√
1 −C ·

1√
∆
= 0.82. At the time the slack allocation is performed all the

three thresholds are satisfied by ProbX1
, ProbX2

, ProbX3
and slack

allocation leaves enough “space” for the probabilities to change

(upon switching to the Monitoring phase) and still avoid a violation

of the new in-situ filters.

5 PROOF-OF-CONCEPT

As a proof-of-concept of the applicability of our approach on real

CEP engines, we comment on how our techniques bridge the gap

between two recent prototypes that extend the same CEP engine,

that is IBM Proton [1], one towards uncertainty handling [7], while

the other [12, 13] towards distributed settings.

5.1 Proton and Uncertainty Handling
In our discussion so far, for ease of presentation, we used CEP query

formulations that resemble SQL syntax. Individual CEP engines

may adopt query languages that deviate from such syntax and

still support our techniques. For instance, Proton, abiding by the

concepts discussed by Etzion and Niblett [11], organizes CEP in

an Event Processing Network (EPN) which is composed of Event

CEs

Filtering

Matching

Deriving

Incoming/ 
Input Events

Participant Events

Matching Set

Within 
Context

Event Processing Agent (Inside View)

Figure 3: EPA Basic Structure.

Processing Agents (EPAs). With respect to our previous discussion,

one may think of EPAs as CEP operators linked together when one

EPA provides input to another. Since a detailed description of the

main concepts of Proton is included in the work of Correia et al [7],

to avoid overlap, we here only describe the basic structure of an

EPA so as to exhibit at which point our filters are installed. An EPA

performs from at least one and up to three logical steps, as shown

in Figure 3:

• The filtering step has nothing to do with our in-situ filters. It

concerns simple filter conditions for selecting relevant events

from the input. In our motivating example of Section 2, such filter

conditions involve that the call must be outgoing and the call

destination should be in the set of potentially premium locations.

• The matching step takes all events that passed the filtering and

looks for matches between these events, using an event process-

ing pattern or some other kind of matching criterion. The output

of this step is the matching set. Compared to the target queries

described in Section 3, this corresponds to the PATTERN compart-

ment of the posed query. To be more precise, an EPA can host

either a NON_AGGR or an AGGR operator. So, to form the PATTERN
compartment of the generic query formulation presented in Sec-

tion 3, one needsm EPAs, one for each AGGRj, to provide input
to a NON_AGGR EPA.

• The derivation takes the output from the matching step and

produces the output events by applying a derivation formula.

Note that in Figure 3, “within context” interprets to the window

constraints of the query formulation in Section 3 but, in general,

it may involve other kinds of dynamic context as well. Please see

Proton’s documentation [1] for a more detailed presentation.

The uncertain version of Proton incorporates uncertainty either

on the matching or the derivation step within an EPA. Assigning

uncertainty in the derivation step essentially tags each output CE

with a certainty value. So, this involves the probability of the CE to

have occurred or the experts’ confidence on the rule (EPA) itself. On

the other hand, uncertainty in the matching step involves uncertain

conditions and comes exactly on the pattern matching process.

That is, an AGGR (or NON_AGGR) operator is examined during

the matching step and a full pattern match for it can only occur

if the (un)certainty threshold holds. Therefore, this is also where

the HAVING Q.Certainty> C of our generic query formulation in

Section 3 corresponds to. For supporting such kind of uncertainty

criterion within the matching step of an EPA, each SDE or CE

possesses a built-in Certainty attribute that stores the certainty of

this event. An event has a default certainty value equal to 1, while

it can have any value between (0-1].

With respect to the supported distributions, the uncertain ver-

sion of Proton supports all the distributions that are marked with a
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Figure 4: Intra-site structure in FERARI. An Apache Storm
topology runs at each site. The CEP Engine module is
ProtonOnStorm [2].

✔ in Table 1. These include [7] the Normal, Log-Normal, Exponen-

tial, Gamma, Logistic (a.k.a. Sigmoid) and Binomial distributions.

Moreover, the uncertain version of Proton implements built-in func-

tions for computing the PDF, CDF, Mean, Var(iance) of each of these

distributions.

5.2 The FERARI Platform
Complementarily to the approach by Correia et al [7], which en-

riches Proton with uncertainty-aware querying and processing

functionality, the FERARI platform [12, 13] presents extensions to

Proton that enable it to operate both (a) exploiting parallelization

opportunities within corporate data centers, public or hybrid clouds

and (b) in a geo-distributed manner, i.e., performing CEP across a

network of sites.

In FERARI, every site in the network runs an Apache Storm [16]

topology composed of the following Spouts and Bolts as illustrated

in Figure 4:

• Input Spout: or Input Events in Figure 4, where streaming tuples

arrive or events from other sites are fed into the CEP Engine.

• CEP Engine (multiple Bolts): IBM ProtonOnStorm [2] is the uti-

lized CEP engine. ProtonOnStorm breaks its functionality to mul-

tiple Bolts which allows for different degrees of parallelization

in different event extraction steps. Please refer to the documen-

tation of ProtonOnStorm [2] for further details on its internals.

ProtonOnStorm receives the input events from the Input Spout

and, having processed them according to the respective EPA(s),

it emits CEs towards the Time Machine Bolt.

• Time Machine Bolt: caches events from the CEP Engine and

solves out-of-order issues.

• Gatekeeper Bolt: responsible for handling generic streaming op-

erators, such as non-linear functions [18].

• Communicator Bolt: responsible for communication (of Output

Events in Figure 4) among sites and towards the coordinator.

A query is submitted at a central site and a FERARI Optimizer

acts as the coordinator. It rewrites the query so that it is decomposed

to individual EPAs - one for each site. These EPAs incorporate in-

situ filters for communication-efficient execution of the distributed

CEP process, but the filters are not uncertainty-aware. An example

of such a filter is presented in Section 2 and additional examples

are included in our case study (Section 5.3). Finally, the optimizer

transmits a JSON file to every site, including configuration of in-situ

filters and of the EPAs where they are installed, as well as other

Storm topology and communication parameters.

5.3 Towards Uncertainty-Aware FERARI
Let us now see how our techniques bridge the gap between the

two prototypes. First, we focus at the level of the network of sites.

Should the FERARI optimizer act as the coordinator, it should be

extended to account for the probabilistic filters we propose in this

work together with the monitoring protocol that we introduce in

Section 4.3 and Section 4.4, respectively. Given the fact that the

optimizer already supports (rewrites queries and constructs site

configurations using) in-situ filters that are not uncertainty-aware

and also executes some kind of distributedmonitoring protocol with

equivalent number of phases, implementing the proposed function-

ality essentially involves: (a) density estimation per site and overall

during the initialization phase, (b) support for uncertainty-aware

EPAs per site during the Monitoring phase and (c) implementation

of the Synchronization phase, as described in Section 4.4.

(a) and (c) simply involve extending the code of the optimizer so

that proper site configurations are transmitted by the coordinator at

the beginning and end of the Initialization and the Synchronization

phase. During these phases, sites only need to know if the events

of the posed query should be cached in the Time Machine Bolt or

transmitted via the Communicator Bolt. The rest is done in the coor-

dinator. More precisely, at the beginning of the Initialization phase,

the coordinator instructs the sites to transmit every relevant event

broadcasting a corresponding message. At the end of this phase, it

transmits separate site configurations including uncertainty-aware

EPAs formed according to the query and the in-situ filters we pro-

pose. Similarly, during the Synchronization phase, the coordinator

informs the sites whether they need to transmit every event that

has been cached or currently arrives (Sync Case A), or switch again

to the Monitoring phase, potentially with new in-situ filters should

the slack allocation succeeds (Sync Case B).

The job that needs to be done at individual sites is to indepen-

dently execute the Monitoring phase and apply the in-situ filters

we introduce in this work. If a site finds that its in-situ filter is

violated, it informs the coordinator. Note that EPAs are defined and

executed withing the CEP engine. Therefore, we should practically

find a way to combine the functionality of the prototype in Correia

et al [7] and FERARI [13] so that we can install the in-situ filters we

propose and execute our distributed monitoring protocol. However,

the prototype in Correia et al [7] accepts definitions of uncertainty-

aware EPAs, but can only be installed at the coordinator and let

sites transmit events as soon as they occur. On the other hand,

FERARI does not include support for defining uncertainty-aware

EPAs but supports distributed monitoring over the network and

parallel processing within each site.

There are three ways to go to implement (b) combining the

virtues of each of the prototypes:

• Option 1: The first option is to replace ProtonOnStorm with the

uncertainty-aware version of Proton, encapsulating the latter

version in a single Bolt. The pros of such an approach is that it

directly exploits the built-in functionality regarding uncertainty

handling as well as the readily available infrastructure for dis-

tributed processing over a number of sites provided by FERARI.

Nonetheless, the cons come from the fact that the parallel process-

ing of various EPAs within each of the sites should be manually

configured as the uncertainty-aware Proton does not take care
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of that and its functionality is not split into separate Bolts. Fur-

thermore, contrary to ProtonOnStorm, the uncertainty-aware

version of Proton is not open source.

• Option 2: A second option would be to implement the required

functionality for uncertainty handling within ProtonOnStom, but

this requires expert insights on the internals of both versions of

the CEP engine.

• Option 3: A third option is to use ProtonOnStorm as is in the

FERARI platform, configure each non uncertainty-aware EPA to

output the events that produced a CE packed together with the

CE itself and implement the part of the evaluation which involves

uncertainty handling outside the CEP engine. In particular, this

functionality can be implemented within the GateKeeper Bolt

as with non-linear function handling. This approach preserves

the open source nature of the platform and unleashes support

for all the distributions cited in Table 1. Importantly, it decouples

uncertainty handling from the adopted CEP Engine. Thus, one

can then easily use Proton or alternative CEP engines, such as

Esper which has already been incorporated in the FERARI ar-

chitecture [23]. On the down side, this option overburdens the

Time Machine Bolt with queuing the input events of each CE

until they are dequeued and re-processed by the GateKeeper.

From the application perspective, these options do not make a

difference. The application just needs to build the query using, for

instance, an authoring tool [7] and the coordinator should cooperate

with the sites to accomplish the rest. In the next section, we present

a use case scenario which better exhibits the functionality of each

of the prototypes discussed in Section 5.1 and Section 5.2 as well as

the breakthrough our in-situ filters bring.

5.4 Mobile Fraud Detection: A Case Study
In our case study, we utilize (masked due to company’s security

policies) fraud detection rules from the telecommunications domain,

resembling the ones used in FERARI [13]. Event patterns expressing

masked rules for mobile fraud detection are analyzed in separate

sections below. We form a scenario where uncertainty comes from

incomplete data due to subscriber privacy policies. In particular,

because we have access to a privacy-aware version of each Call

Detail Record (CDR), we are not aware about the actual duration

of the call handled by each antenna, but we only know the charged

duration in minutes. This, together with the fact that neither the

plan of the caller nor the number of charged units for each call

are made known to us, introduces uncertainty with respect to the

actual duration of a call. Moreover, we are not aware about the

actual expense of the call, since the plan of a user may impose zero

charges up to a certain call duration or prepaid card deposit and

only start charging the parts of the calls that deviate from the plan.

We study calls to Voice over IP (VoIP) destinations and in one

of the queries we exploit knowledge about the fact that such calls

may be characterized as suspicious with a certain probability (con-

fidence) 0 < p < 1. This introduces another type of uncertainty

similar to the one in Section 2. Recall that in all such cases the call

count, sum of duration or sum of monetary cost of each call may

be spread across the network of antennas handling these calls, as

subscribers commute.

Without any further knowledge, to confront this situation, for

each update on the duration of the call (and the sums of such up-

dates) we consider the charged duration of the call as the actual

duration plus a certain amount of error incorporated in it. There-

fore, we model the actual duration of the call as a random variable

following a Normal distribution centered in the middle of the dura-

tion interval with a standard deviation such that [µ − 3σ , µ + 3σ ]
covers 99% of the duration. We apply a similar model for the call

cost assuming charges would come per second from the beginning

of the call.

We present sample analytics queries in natural language, while

in Figure 5 and Figure 6 we present the respective EPAs along with

specifying where in the network they are executed. It is important

to note that in all the cases the application is oblivious to the under-

lying site distribution and it only specifies the EPA as if it would be

executed locally in a machine. The coordinator (FERARI optimizer)

is then responsible for locally installing this EPA (marked with “at

coordinator” in the figures) and decompose it to EPAs installed on

individual sites in the scope of the distributed execution (marked

with “at each site Ai ” in the figures).

For each EPA we only show how the query is conveyed from

natural language to the steps that take place inside the EPA, ex-

emplifying the generic structure of Figure 3. For the filtering step,

we show the filtering expression; for the matching step, we note

the pattern variables and the respective thresholds; while for the

deriving step, we mention the value assignments. Note that sites

essentially forward modified (excluding irrelevant to the CEP query

attributes) input events when their in-situ filters do not hold. Hence,

they do not communicate any final CEs to the coordinator. There-

fore, the EPAs that are to be executed at individual sites have an

output marked as temporary CEs, i.e.,“TempCE”. Importanty, in the

matching step of each EPA we note the matching condition which

has the reverse inequality compared to the in-situ filter. This is

because, if P[Xi ≤ T /N ] ≥
N√
1 −C is the corresponding in-situ

filter, the matching condition for potentially producing a CE is

P[Xi ≤ T /N ] <
N√
1 −C . The correspondence of variables toX and

Xi s are highlighted in red in Figure 5 and Figure 6.

LongToVoIPCalls: For each callerID, provide an alert when (i)

within the last Y minutes, (ii) she makes calls with a VoIP prefix, (iii)

and the total (sum) duration of these calls is larger than T minutes

with probability above C. Figure 5(a) shows the uncertainty-aware

EPA as posed by the application. Since the prototype in Correia

et al [7] does not account for distributed processing, this EPA will

be executed only at the coordinator and all sites will transmit all

relevant events as soon as they occur. The filtering step of the EPA

includes the simple conditions of the call being outgoing (‘O’) and

of ‘VoIP’ prefix. The matching step expresses the criteria for full

pattern matches to occur: total (sum) duration of these calls is larger

thanT minutes with probability aboveC , and finally the derivation

step assigns a value to the total sum along with the certainty of the

extracted CE.

Figure 5(b) shows the FERARI version of the same EPA, i.e., with-

out support for uncertainty, while Figure 5(c) exhibits how the coor-

dinator will decompose it to individual EPAs installed at each site. In

particular if SumLenдthIsXi > T /N in at least one site, this site will

inform the coordinator which will perform a non uncertainty-aware
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synchronization process. If SumLenдthIsXi ≤ T /N for all sites, no

communication takes place because X =
∑N
i=1 SumLenдthIsXi ≤∑N

i=1T /N = T .
Finally, Figure 5(d) illustrates the contributions of the in-situ

filters we propose. In Figure 5(d) we show how the coordinator,

having received the EPA of Figure 5(a) (the coordinator’s EPA is

the same for our approach and that of Correia et al [7]) as input,

will decompose it to individual, this time uncertainty-aware, EPAs

per site.

ExpensiveToVoIPCall: For each callerID, provide an alert when

(i) within the last Y minutes, (ii) she makes calls with a VoIP prefix,

(iii) and the total (sum) cost of these calls is larger than T monetary

units with probability above C. The above query is equivalent with

respect to the EPA representation with the “LongToVoIPCalls” one,

since they both involve thresholded summations of uncertain dura-

tions and monetary costs, respectively. Therefore in Figure 5 we

only present the case of the “LongToVoIPCalls” query.

FrequentToVoIPCalls: For each callerID, provide an alert when (i)
within the last Y minutes, (ii) she makes calls with a VoIP prefix, (iii)

and the probability of more than T, each suspicious with p, calls is
higher than C. Similar observations can be extracted for this query

illustrated in Figure 6. The difference here is that we have a count

of calls to monitor and since each such call is suspicious at a certain

level of confidence (Bernoulli trial with p success probability), this

count essentially corresponds to a Binomial variable that exceeds

the threshold T with probability above C. This is the new pattern

that is noted in the matching step of Figure 6(a).

Figure 6(b) shows the FERARI version of the same EPA without

support for uncertainty, while in Figure 6(c) the coordinator decom-

poses the EPA of Figure 6(b) to individual EPAs installed at each

site. If CallCountIsXi ≤ T /N for all sites,

∑N
i=1CallCountIsXi ≤∑N

i=1T /N = T and thus no synchronization takes place.

Finally, Figure 6(d) illustrates how the coordinator will decom-

pose the EPA of Figure 6(a) to individual, uncertainty-aware EPAs

and send respective configurations to sites, as entailed by this work.

5.5 Preliminary Evaluation Results
For our evaluation we used anonymized data provided by a large

telecom provider [12, 13]. More precisely, we utilized approximately

160.000.000 Call Detail Records from the provider’s network from

the period between 01.01.2015 and 12.01.2015. In our preliminary

evaluation, we compare the communication cost entailed by our

approach to one that mixes FERARI with an uncertainty aware

coordinator. More precisely, recall that FERARI applies in-situ fil-

ters which are not uncertainty aware (see Figures 5(b),5(c) and

Figures 6(b),6(c)). What passes through those filters goes to the

coordinator where an installation of what was previously termed as

“Uncertainty-aware Proton” applies all evaluation aspects related

to uncertainty. On the contrary, our approach applies uncertainty-

aware in-situ filters (Section 4.3) and the introduced monitoring

protocol (Section 4.4). We then measure the ratio of the commu-

nication cost (number of transmitted messages) entailed by our

techniques versus this mixed approach. Note that, from our com-

parative analysis, we exclude the naive approach of centralizing

all data to the coordinator and then let “Uncertainty-aware Proton”

process event tuples, since it entails an amount of communication

last Y minutes
per CallerID

CE

Filtering

SUM

Deriving

Calls

1-CDFNormal(SumLengthIsX,T)>C

Uncertainty-aware Proton EPA (only at coordinator)
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CallsLengthSum: SumLengthIsX

other_party_tel_number_prefix=076
AND call_direction=O

(a) EPA Structure under Correia et al [7] executed only at the

coordinator

CE
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(c) EPA Structure in FERARI’s Sites

Temp
CE

Filtering

SUM

Deriving
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N
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(d) EPA Structure in This Work’s Sites. Coordinators EPA is

equivalent to Fig. 5(a)

Figure 5: EPA Structure for LongToVoIPCalls Query in each
Prototype

analogous to the number of relevant records in the utilized dataset,

precisely known even before running any actual experiment. Fur-

ther note that we do not evaluate the accuracy of the rules since

our techniques do not affect that accuracy. Our in-situ filters and

communication protocol do not affect how well real mobile fraud

cases are pinpointed, which depends on how much suitable is the

rule, but reduce the communication cost while evaluating these

rules. Our preliminary experiments simulated Option 3 among

those mentioned in Section 5.3, mainly because it is more easy to

patch the open source code of the GateKeeper Bolt with libraries of

decomposable distributions along with built-in functions for PDF,

CDF etc. For instance, one may import the JDistlib Library
1
for

supporting such distributions.

1
http://jdistlib.sourceforge.net/
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Figure 6: EPA Structure for FrequentVoIPCalls Query in
each Prototype

We experiment with different values of C and N . We vary C
between 0.5 and 0.9, while 3 ≤ N ≤ 10. To study the effect of N on

the constructed in-situ filters, we initially set N = 3 and monitor

all calls that are handled by no more than 3 antennas. Then, at each

step h, we increase the value of N to N = 3 + h ≤ 10. Thus, in the

next steps all calls handled by at most 3 + h antennas are included

in the evaluation and the respective value of N is uniformly set

in their in-situ filter. Our results show that the ratio of messages

communicated by the mixed FERARI approach over those of this

work, i.e, r =
#MesдFERARI
#MesдThis exceeds a factor of 10 for (C = 0.9,N =

3) and averages to a factor of 4 across the ranges of used values for

C and N . The positive, regarding communication reduction, effect

of our in-situ filters fades for values ofC approaching 0.5, in which

case the ratio r is to approach a value of 1. Furthermore, it fades

as N approaches 10 (i.e., when subscribers commute fast and the

number of antennas potentially handling their call can grow large),

because then (a) the quantity
T
N used in Inequality 2 approaches

zero and (b) the quantity
N√
1 −C in the same inequality approaches

1. Again then, the ratio r is to approach a value of 1. To handle high

N values, one can incorporate sampling techniques such as those

discussed in Giatrakos et al [18], which we leave for future work.

6 ADDITIONAL APPLICATIONS
Our techniques are directly applicable for serving uncertainty-

aware event analytics (a) across various Big Data platforms and (b)

over heterogeneous clusters with CPU and GPU accelerators.

Cross-platform Event Analytics: the need to provide event ana-
lytics across a number of Big Data platforms may arise for a number

of reasons. First, because Big Data platforms evolve over time. Thus,

some event processing pipelines may be set up over an Apache

Storm [16] installation, while some others may exploit the more

recent FlinkCEP API in Apache Flink [14]. Second, because parts

of the CEP task may be more efficiently executed in a specific plat-

form. Consider a CEP application which engages SDEs involving

the processing of graph interactions, such as likes or friend requests

in social networks, together with non-graph related SDEs. The ap-

plication can exploit both the GraphX API in Spark [15] and the

Spark Streaming API to process each SDE category. Third, because

cross-platform execution may be mandatory. Consider for instance

information pipelines that span coalitions of organizations each

using its preferred Big Data platform. In all these cases, naively

communicating event data across platforms could affect the time

performance of the overall event analytics execution. For instance,

one needs to repartition and convert event tuples to micro-batches

in order to get cross-platform analytics across Flink and Spark

Streaming. This may not only affect the logical organization of the

processing, but also the physical task execution.

Event Analytics over Heterogeneous Clusters/Clouds: There
is a recent trend in major cloud providers, such as Amazon AWS, to

provide High Performance Computing (HPC) cloud infrastructure

by allowing clients use CPU andGPU servers on-demand, optimized

for specific applications. Prior work [8] on hardware accelerated

CEP has pointed out that the benefits provided by GPUs strongly

depend on the amount of event data transferred among the main

(CPU) and the GPU memory. By reducing such communication

to a minimum, our techniques can efficiently serve this aspect of

distributed, uncertainty-aware CEP execution as well.

7 RELATEDWORK
CEP under Uncertainty. A key survey on uncertain CEP is pro-

vided by Alevizos et al [5]. There, the work by Wang et al [32] is

reported as the only one that considers uncertain CEP over dis-

tributed settings. However, contrary to our work, the work byWang

et al does not impose in-situ filters in order to avoid communication.

Instead, the proposed technique lets every site compute probabil-

ities of full or partial pattern matches locally per site and then

accumulates these results to a central site to compute the final CEs.

These final CEs are then forwarded to the CEP query source. The

techniques we develop significantly differ because, by employing

in-situ filters, we totally suppress communication among sites in



DEBS ’19, June 24–28, 2019, Darmstadt, Germany Giatrakos, et al.

case these local filters indicate that a CE cannot have occurred even

upon synthesizing data from other sites.

Distributed CEP. The seminal work of Akdere et al [3] elabo-

rates on communication- efficient evaluation of SEQ,AND operators,
based on the application of a push-pull rationale under determinis-

tic event occurrence. The coordinator sets the most rare events that

are input to an operator in push mode and the more frequent ones

in pull mode. Events in push mode are transmitted by the various

sites towards the coordinator when they occur, while the rest are

cached until their state changes to push mode. The state of an event

input changes to push mode, by a corresponding message from the

coordinator, upon the occurrence of the more rare events. Apart

from the fact that the proposed technique does not account for un-

certainty, it is further restricted to SEQ,AND. This holds because the
push-pull rationale can only be applied to operators which require

all their inputs to occur before they output a CE and thus, sites can

suppress communication unless rare events occur.

Communication-efficient, distributed CEP also appears in Her-

mes [29], PADRES [25], Cordies [21] and DHCEP [30]. The focus,

there, is to choose an alternative site in the network that lies closer

to the event sources to act as the coordinator. Because the coor-

dinator is closer to event sources, the total communication in the

network is reduced by avoiding having event data being routed in

long paths towards the query source, which finally receives only the

produced CEs. Among them, Hermes uses a Distributed Hash Table

(DHT) and picks the coordinating site in order to minimize the hop

count in the paths event data follow. DHCEP uses a network usage

metric in order to choose a proper coordinator. Network usage

is the sum of products of dataRate × latency on communication

links. Hence, all these techniques that choose the position of the

coordinator are orthogonal to our in-situ filters and distributed

monitoring protocol.

8 CONCLUSIONS AND FUTUREWORK
In this work, we analyzed the distributed execution of uncertainty-

aware event analytic queries. Our queries engage both aggregation

and non-aggregation operators and incorporate thresholds on both

the aggregation and uncertainty values. To reduce the amount of

communicated data when such queries are executed, we introduced

uncertainty-aware in-situ filters to be installed on individual sites

of the distributed, networked architecture. We further proposed a

novel distributed monitoring protocol that exploits these in-situ

filters to suppress communication as much as possible. Finally, we

elaborated on system aspects and explained how our work bridges

the gap between two recent prototypes that have been proposed

in the literature. Our future work heads towards further exploring

Options 1-3 mentioned in Section 5.3, dealing with high values of

N , potentially via sampling among sites (Section 5.5), as well as

exploiting our techniques in the context of event forecasting [4]

across Big Data platforms and heterogeneous clusters (Section 6).
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