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ABSTRACT
The proliferation of XML as a standard for data representation and ex-
change in diverse, next-generation Web applications has created an em-
phatic need for effective XML data-integration tools. For several real-life
scenarios, such XML data integration needs to be DTD-directed – in other
words, the target, integrated XML database must conform to a prespecified,
user- or application-defined DTD. In this paper, we propose a novel formal-
ism, XML Integration Grammars (XIGs), for specifying DTD-directed in-
tegration of XML data. Abstractly, an XIG maps data from multiple XML
sources to a target XML document that conforms to a predefined DTD.
An XIG extracts source XML data via queries expressed in a fragment
of XQuery, and controls target document generation with tree-valued at-
tributes and the target DTD. The novelty of XIGs consists in not only their
automatic support for DTD-conformance but also in their composability:
an XIG may embed local and remote XIGs in its definition, and invoke
these XIGs during its evaluation. This yields an important modularity prop-
erty for our XIGs that allows one to divide a complex integration task into
manageable sub-tasks and conquer each of them separately. To efficiently
evaluate XIGs we provide algorithms for merging XML queries in an XIG
and for scheduling queries and embedded XIGs. These lead to an effective
framework, as well as a design tool for XQuery, for effectively specifying
and computing complex, DTD-directed XML integration.

Categories and Subject Descriptors: H.2.4 [Database Manage-
ment]: Distributed Databases

General Terms: Algorithms, Design, Experimentation.

Keywords: XML, Data Integration, Grammar

1. INTRODUCTION
XML [9] is rapidly emerging as the dominant standard for data rep-
resentation and exchange on the Web. The ubiquity of XML, in
conjunction with the diversity of next-generation Web applications
that rely on it as a data-exchange format, clearly highlights the need
for effective XML integration tools, i.e., tools that can efficiently
collect data from multiple distributed XML sources and incorporate
it in a target XML document. In practice, such XML integration is
typically DTD-directed – that is, the integration task is constrained
by a predefined DTD that the target XML document is required to
conform to. The need for DTD-conformance is evident in real-life
�
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data exchange: enterprises agree on a common DTD and then ex-
change and interpret their XML data based on this predefined DTD.
Another important application of DTD-conformance concerns secu-
rity: the integrated XML document, as a view of the original data,
is required to conform to a prespecified view DTD in order to both
hide confidential information and facilitate effective formulation of
user queries over the secure integrated view.
Example 1.1: Consider the XML-to-XML transformation of pro-
motional data for a car sale. The source data is specified by the
DTD ������
	�� depicted in Fig. 1(a), in which ‘  ’ indicates one or more
occurrences. It consists of cars promoted and their features.
Each feature is identified by a fid, a key of the feature, and
may be composed of other features. To exchange the data, one
wants to convert the source data to a target document conforming
to the DTD � ���
	�� given in Fig. 1(c) (we omit the definition of ele-
ments of PCDATA type). The target DTD groups features under
each car for sale, along with the composition hierarchy of each
feature. Observe that the target DTD is recursive: the element
type features is indirectly defined in terms of itself.

As another example, consider a view for car dealers. Each dealer
maintains a local XML document specified by a source DTD � �� ���
	���� ,
which describes the dealer, cars carried by the dealer, and invoice,
as depicted in Fig. 1(b). Some information is confidential, such as
invoice and quantity, as indicated by the shadowed nodes in
Fig. 1(b), which should not be made public. To hide the confiden-
tial data, one wants to define a view for each dealer such that the
dealer data can only be accessed through the view. As a user in-
terface the dealers want to provide the view DTD � �

����	���� given in
Fig. 1(c) and requires the views to conform to � �

���
	���� . Here the
inStock status of a car is yes if its quantity in the original
document is no less than 1; this disjunction in the target DTD leads
to a non-deterministic structure. �

Ensuring the conformance of an integrated XML document (cre-
ated through multiple XML data sources) to a predefined target
DTD is a non-trivial problem. First, note that the target DTD it-
self may specify a fairly complex schema structure, e.g., recursive
and/or non-deterministic with disjunctions. Second, the integra-
tion task may be large-scale and naturally “hierarchical” – in other
words, the integration may involve a large number of distributed
data sources, where some of the sources are virtual, in the sense
that they are views that need to be created via XML integration. This
latter requirement suggests that effective XML-integration specifi-
cations should be composable, such that large, complex integration
tasks can be built via composition of simpler sub-tasks. This is
along the same lines as modularity in programming-language prin-
ciples – the key idea is to divide a complex task into manageable
sub-tasks and conquer each sub-task separately.
Example 1.2: Let us consider integration of XML data for car
dealers in a region together with sale promotion data. The re-
gional integration is to extract data from XML sources and con-
struct a single target document that consists of sale data, informa-
tion of all the dealers in the region, and cars carried by these
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<!ELEMENT promotion (sale 	 )
<!ELEMENT sale (make, model, features)
<!ELEMENT features (feature 	 )
<!ELEMENT feature (desc, features)
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���������
:

<!ELEMENT dealer (name, address, cars)>
<!ELEMENT cars (car 	 )
<!ELEMENT car (make, model, price, inStock)
<!ELEMENT inStock (yes | no)

(c) Target DTDs

Figure 1: Example: Car sale and car dealers

dealers and promoted by sale. As shown in Fig. 2(a), the XML
sources include (1) a sale document conforming to DTD � ����
	�� ,and (2) dealer views conforming to � �

���
	���� , as described in Ex-
ample 1.1. The target document is required to conform to the DTD
� given in Fig. 2(b). Specifically, the integration is to transform
the sale source data to � ����	�� , and collect dealer information
from the views; for each dealer, it only gathers data for cars that
are promoted by sale.

This integration task is rather complex. First, the target DTD is
recursive and non-deterministic; its DTD graph (Fig. 2(c)) is cyclic
and contains dashed edges (we use dashed edges to denote disjunc-
tion to distinguish from solid edges for concatenation). Second, the
integration is “hierarchical”: it involves a number of XML views
distributed across the dealers’ sites, which are in turn the result
of transformation from local documents conforming to � �� ���
	���� .
These views serve not only as data sources for the regional integra-
tion, but also as independent user interfaces for the dealers. Third,
there is dependency on different parts of the target document: the
generation of cars under dealers depends on promotion.
Putting these in a single integration specification makes it hard to
design, read and verify the correctness of the specification. �
Why not Use XQuery or XSLT? Obviously, a straightforward
solution to DTD-directed XML data integration would be to em-
ploy some well-known XML query language (e.g., XQuery [11],
XSLT [12]) to define an integrated XML view, and then check whether
the resulting view conforms to the prescribed DTD. Unfortunately,
such an obvious approach quickly runs into a number of technical
difficulties. First and foremost, using full XML query languages
to define an integrated view cannot guarantee DTD-conformance.
Specifically, type inference for such derived XML views is too ex-
pensive to be used in practice: it is intractable for extremely re-
stricted view definitions, and undecidable for realistic views [2].
Similarly, accurate XML type checking is a hard problem – thus,
languages such as XQuery typically implement only approximate
type checking. Worse still, such an approach provides no guid-
ance whatsoever on how to specify a DTD-conforming XML view.
This means that DTD-directed integration becomes a trial-and-error
process where, if a resulting view fails to type-check, the view def-
inition needs to be modified and the type-checking process must
be repeated. For complex integration mappings, reaching a DTD-
conforming integrated view through repeated trial-and-error can be
a very long and arduous process. Second, while Turing-Complete
XML query languages (such as XQuery) can express very complex
integration mappings, optimization for such languages still remains
to be explored, and their complexity makes it desirable to work
within a more limited formalism. That is, when it comes to large-
scale XML data integration, it is often desirable to trade excessive
expressive power for efficiency and ease-of-use.
Prior Work. Although a number of integration systems have been

developed for semistructured data and XML [3, 6, 13, 16, 10, 15,
24, 25], they typically provide very little support for modularity or
ensuring DTD-conformance, especially when the prescribed DTD
is recursive and/or non-deterministic. Similarly, in the realm of
commercially-available systems, support for modular, DTD-directed
XML data integration is either non-existent or still at a fairly prim-
itive stage. Nimble’s Integration suite (www.nimble.com) allows
users to pose queries over distributed XML data sources to syn-
thesize a result XML document but does not address the issues of
schema conformance or modular integration specifications. BEA’s
WebLogic Integration and Liquid Data suites (www.bea.com) al-
low for XML-to-XML transformations through a visual mapping
tool that allows users to specify simple matchings between schema
elements; it is unclear how these tools can be used to specify com-
plex, hierarchical integration with a complicated target DTD.

Active XML (AXML) [1, 23] proposes a novel notion of inten-
tional XML documents with embedded function calls to remote
Web services. AXML is designed to support data exchange and
Web-service calls via an unlimited class of embedded functions;
furthermore, it also supports XML data integration through the use
of XML tree templates with embedded function calls. However, this
template-based approach to integration can typically only produce
mild variations of a fixed document structure. The functionality of
AXML for supporting embedded Web services is, in a sense, com-
plementary to the problem of DTD-directed XML integration, where
the goal is to construct an integrated view guaranteed to conform
to a predefined, possibly complex DTD.

Closest to our work are Attribute Integration Grammars (AIGs),
a grammar-based formalism for schema-directed integration of re-
lational data in XML [5, 4]. AIGs extend a target DTD with tuple-
valued attributes and SQL queries over the relations. These earlier
proposals are, however, inadequate for XML integration. First, they
are restricted to flat, relational sources [5, 4]. Second, and perhaps
most importantly, while AIGs guarantee schema-conformance, they
are not composable: a large integration task must be specified with
a single AIG on top of a large DTD. Developing an effective, mod-
ular solution for large-scale, DTD-directed XML data integration
poses a whole new set of difficult research challenges, including
the need for a significantly more powerful, composable formalism
and novel optimization/evaluation techniques.
Our Contributions. In this paper, we propose a novel formalism,
XML Integration Grammars (XIGs), for the modular specification
of complex, DTD-directed XML integration tasks. More concretely
the key contributions of our work are summarized as follows.
� Introduction of XIGs: The First Composable Specification
Language to Support Complex, DTD-Directed XML Integra-
tion. Our XIG formalism represents the first effort for modular,
DTD-directed XML integration, by incorporating tree attribution,
XQuery, and embedded local/remote XIG calls. In a nutshell, XIGs
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are built using localized semantic rules around productions in the
target DTD which can comprise (1) queries over the XML sources
expressed in a fragment of the XQuery language, and (2) embed-
ded XIG calls which can be either local (i.e., executed at the same
site) or remote (i.e., executed remotely). Our XIG semantic rules
guarantee DTD-conformance by constructing tree-valued attributes
following the target DTD productions. XIGs are also composable:
local/remote XIGs can be treated as “black-box” functions return-
ing DTD-conforming XML trees, and can be embedded in an XIG
definition in order to compute certain tree-valued attributes. Thus,
XIGs support modular specifications of XML integration, with ben-
efits including ease of specification/verification and reusable code.

Note that our XIG formalism is not yet another XML transfor-
mation language; instead, XIGs are to serve as a user/application-
level interface for specifying DTD-directed integration in XQuery.
XIGs provide guidance on how to specify XML integration in a
manner that automatically guarantees DTD conformance. Further-
more, XIGs rely on semantic rules that are local to each DTD pro-
duction, thereby allowing integration sub-tasks to be declaratively
specified for each production in isolation – this allows our XIGs
to simplify a complex integration task by breaking it into small,
production/element-specific pieces that can be specified indepen-
dently. XIG definitions rely solely on DTDs and XQuery, and there
is no need to study any new, specialized integration language. More-
over, XIGs can be defined using some specific XQuery fragment that
allows for more optimizations than full-fledged XQuery, and, thus,
can promise better performance. We are currently developing APIs
and tools to facilitate integration specifications with XIGs.
� XIG-Based Middleware-System Architecture for DTD-Directed
Integration, Incorporating Novel, Efficient XIG-Evaluation Al-
gorithms. Based on our XIG formalism, we propose a middle-
ware system for DTD-directed XML integration, along with algo-
rithms for efficiently evaluating XIGs. Note that, in principle, it
may be possible to translate any XIG into an XQuery expression
and evaluate it using an XQuery-execution engine; however, tak-
ing a middleware-based approach to XIG evaluation allows us to
devise several effective, XIG-specific optimization techniques that
can be applied outside the generic XQuery engine. More specif-
ically, we demonstrate how to capture recursive DTDs and recur-
sive XIGs in a uniform framework, and propose a cost-based al-
gorithm for scheduling local XML queries/XIGs and remote XIGs
to maximize parallelism. We also provide an algorithm for merg-
ing multiple XQuery expressions into a single query without us-
ing “outer-union/outer-join”. Combined with possible optimiza-
tion techniques for the XQuery fragment used in XIG definitions,
such optimizations can yield efficient evaluation strategies for DTD-
directed XML integration.
� Preliminary Results from a Prototype System Implementa-
tion Validating our Approach. We have implemented a prototype

middleware system for DTD-directed XML integration based on our
XIG formalism and algorithms. Our prototype is built on top of
the Galax XQuery engine (db.bell-labs.com/galax) and has
been tested with several synthetic XML data sets. Our experimen-
tal results validate our approach, clearly demonstrating the effec-
tiveness of our XIG query-merging optimizations. Another set of
experiments based on randomly-generated XIG query-dependency
graphs verifies the effectiveness of our XIG-scheduling strategies.

Our XIGs are a first, yet concrete, step toward XML integration
directed by XML Schema [28]. The ultimate goal is to provide
a design tool for XQuery to facilitate schema-directed integration
of XML data, validating constraints in parallel with DTD-directed
XML document generation in a uniform framework (note that run-
time constraint/DTD checking is quite different from static analysis
of consistency of XML Schema). The notion of XIGs is inspired by
composable [14] and higher-order [27] attribute grammars, which
have proved useful in compiler construction. XIGs are not mild
extensions of those formalisms: their definitions and evaluations
are very different. Among other things, the attribute grammar for-
malisms are to parse an input string with a source context-free
grammar and then compute attributes associated with the parse tree;
in contrast, XIGs are to generate an XML tree directed by a target
DTD; the target XML tree is computed via queries in a fragment of
XQuery rather than syntactic parsing.

2. PRELIMINARIES
DTDs. Without loss of generality, we define a DTD to be
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,
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�����

is a finite set of element types;
�

is a distinguished type
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�����

, called the root type;
	

defines the element types: for each�
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�����
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	�� � 

is a regular expression of the following form:����� �������������! #"$ #%�& �('('(')� %+*, �%�&.- '('/' -0%+*, �% �

where " is the empty word, % is a type in
�����

(referred to as a child
type of

�
), and ‘ - ’, ‘

�
’ and ‘  ’ denote disjunction, concatenation

and the Kleene star, respectively (we use ‘ - ’ instead of ‘  ’ to avoid
confusion). We refer to

�21 	�� � 
as the production of

�
. It

has been shown in [5] that all DTDs can be converted to this form
in linear time by introducing new element types. To simplify the
discussion we do not consider XML attributes, which can be easily
incorporated. Examples of DTDs can be found in Figs. 1 and 2.

An XML document (tree) 3 conforms to a DTD � if (1) there
is a unique node, the root, in 3 labeled with

�
; (2) each node in 3

is labeled either with an
�����

type
�

, called an
�

element, or with
PCDATA, called a text node; (3) each

�
element has a list of children

of elements and text nodes such that their labels are in the regular
language defined by

	�� � 
; and, (4) each text node carries a string

value (PCDATA) and is a leaf of the tree. We call 3 a document
(instance) of � if 3 conforms to � .
XQuery. XIGs can be defined with any fragment of XQuery that
supports FLWR constructs [11] and permits effective optimization.



Specifications of XML integration typically do not need a Turing-
Complete language. The trade-off for the expressive power of the
full-fledged XQuery is to leverage techniques for optimization and
termination analyses that are not applicable to Turing-Complete
languages, and to efficiently conduct XML integration tasks com-
monly found in practice.

Given a fragment of XQuery, we extend its syntax by incorporat-
ing XIG calls in the top level let clauses. Specifically, we con-
sider the class of queries defined as follows:����� �����
	��������� ������� ����	�	���������� ��� 	�	���� �"!$#

: %�& !(')� %�& !('
where * is a query in the fragment, + is an XIG, , # is the URI of+ (for remote XIG), and , is the URI of a source XML document.
Here , # : + � ,  denotes a remote XIG call, and + � ,  is a local
XIG call. The semantics of a query “

���
-�.�/ � �1032�4 5�6 ���87 ” is
to first evaluate the XIG, assign the result of the evaluation to $x as
a constant, and then evaluate the XQuery expression * . We refer to
this extension as XQ � . As will be seen shortly, an XIG is defined
with a target DTD � and is evaluated to an XML document of � ;
thus the XIG can be viewed as an XML expression of “type” � .

As will be seen in Sec. 5, although theoretically any XIG can be
translated to an XQuery function and be evaluated using an XQuery-
execution engine, there are performance reasons for not doing this.

3. XML INTEGRATION GRAMMARS (XIGs)
XIG Syntax. An XIG + is a partial function from a collection 0
of XML sources to documents of a target DTD � , referred to as an
XIG from 0 to � and denoted by + �$0 1 � . Specifically, let
� � ��������� 	�� ��

; then, + is defined on top of � as follows.
� Attributes: For each element type

�
in
�����

, + defines an in-
herited attribute 9;:�< � �  and a synthesized attribute =?> : � �  ,
whose values are a single XML element. Inherited attributes
are computed top-down and are used to pass data parameter,
whereas synthesized attributes are computed bottom-up and
are used to hold partial results (XML subtrees).

� Rules: For each production @ � � 1 � in
	

, + defines a
set A;B?C�D � @  of semantic rules consisting of: (1) for each child
type % in � , a rule for computing 9;:E< �GF  by extracting data
from sources via an XQ � query, which may take the parent
9;:�< � �  as a parameter; and, (2) for the parent type

�
, a rule

for =H>�: � �  by grouping together =H>�: �GF  for all % in � .
� Input/Output: The sources 0 is called the input of + , the

value of the synthesized attribute =H>�: �JI  of the root is the
output of + , and � is the type of + .

Given an input 0 , + � 0  returns =?> : �JI� , which is an XML docu-
ment conforming to the target DTD � .
Example 3.1: Fig. 3 gives an XIG that defines a view for local
dealers: given the URI , of a local document specified by the DTD
� �� ���
	���� of Fig. 1(b), + � ����	����

� ,  returns an XML document con-
forming to � �

���
	���� of Fig. 1(c). Thus + � ���
	���� can be treated as
a function: ���� ����	����

1 � �
���
	���� . The XIG is defined on top of

the (target) view DTD � �
���
	���� with XQ � queries and tree attribu-

tion. For each element type
�

in � �
���
	���� , it defines two attributes9;:E< � �  and =H>�: � �  , which contain a single XML element as their

value. For each production of � �
���
	���� , it defines a set of rules via

XQ � to compute the inherited attributes of the children, using the
inherited attribute of the parent as a parameter. In addition, there is
a single rule for computing the synthesized attribute of the parent,
by collecting the synthesized attributes of its children. �

For a production @ � � 1 � , the semantic rules A;B?C�D � @  en-
force that =H>�: � �  is indeed an

�
element. The generic form of the

(per-production) XIG semantic rules is as follows.

XIG: K 
��� ��� � LGMON
dealer P name, address, cars

Inh(name)= Q U/dealer/name R ; Inh(address) = Q U/dealer/addr R ;
Inh(cars) = Q U/dealer/cars R ;
Syn(dealer) = <dealer> Q Syn(name) RSQ Syn(address) RQ Syn(cars) R </dealer>

cars P car 	
Inh(car) T for $c in Inh(cars)/car return $c;
Syn(cars) = <cars> Q
U Syn(car) R </cars>

car P make, model, price, inStock
Inh(make) = Q Inh(car)/make R ; Inh(model) = Q Inh(car)/model R ;
Inh(price) = Q Inh(car)/invoice/price R ; Inh(inStock) = Q Inh(car) R ;
Syn(car) = <car> Q Syn(make) RVQ Syn(model) RQ Syn(price) RSQ Syn(inStock) R </car>

inStock P (yes + no)
Inh(yes) = Q if Inh(inStock)[invoice/quantity < 1]

then <empty/> else <yes/> R
Inh(no) = Q if Inh(inStock)[invoice/quantity < 1]

then <no/> else <empty/> R
Syn(inStock) = Q if Inh(inStock)[invoice/quantity < 1]

then Syn(no) else Syn(yes) R
yes PXW

Syn(yes) = Y[Z]\ L�^�_;`aN /* similarly for no */

name P PCDATA
Syn(name) = <name> Q Inh(name)/text() R </name>
/* similarly for address, make, model, price */

Figure 3: XIG + � ���
	����
� ,  defining dealer views

� @ � � 1 � ��������� . Then, A;B?C�D � @  is defined as =?> : � �  ���7 � 9;:E< � �  abc- �c/?-(�  � , where
7

is an XQ � query that returns PC-
DATA and treats 9;:�< � �  as a constant parameter. See, e.g., the rule
for production name

1
PCDATA in the XIG + � ���
	���� of Fig. 3.

� @ � � 1 % & � '('(')� % * . Then, A;B?C�D � @  consists of 9;:�< �GFEd  �7fe � 9;:�< � �   , for each gihkjml �anpo , and =H>�: � �  � <A>
� =H>�: �GF�q  '('('=H>�: �GF]r  � </A>, where, for each gshtj�l �unvo , 7 e

is an XQ � query that
returns a single element (subtree). As an example, see the rules for
car

1
make,model,price,inStock in + � ���
	���� .� @ � � 1 %�&.- '('(' -0%+* . Then A;B�C�D � @  is defined as:wux]y &�z d ' = let $c :=

�({ & wux]y &�| '}' return ~ if � e & �
�;' then
� e & wax]y &�| '�'

else <empty/> � /* for ����� � ����� */,��� x &�| ' = let $c :=
� { & wux]y &�| '}' return~ if � & & �
�;' then <A>

��� x &�z q ' </A> else . . .
else if � * & �
�;' then <A>

��� x &�z r ' </A> else <empty/> �
where

7 {
is an XQ � query, referred to as the condition query of

A;B?C�D � @  , which is evaluated only once for all the rules in A;B�C�D � @  ;7 e
is an XQ � query that returns a single element; and, the � e ’s are

mutually-exclusive Boolean XQ � expressions: one and only one � e
is true for all g�h�j�l ��nvo . See, e.g., the rules for the production in-
Stock

1
yes+no in + � ���
	���� .

� @ � � 1 % �
. Then, A;B?C�D � @  is defined as:wux]y &�z '��

for $b in
� & wux]y &�| '}' where C($b) return $b,

and =H>�: � �  � <A> �i=?> : �GF  </A>, where
7

is an XQ � query
that may return a (possibly empty) set of elements, � is an XQ �
Boolean expression, and ‘ � ’ is a list constructor. For each

.��
gen-

erated by
7

, the rules for processing % are evaluated, treating
.c�

as a value of 9;:�< �GF  . Then, the rule for =H>�: � �  groups together the
corresponding =?> : �GF  ’s into a list using � in the default document
order. See, e.g., the rules for cars

1
car

�
in + � ���
	���� .� @ � � 1 " . Then, A;B�C�D � @  is defined as =H>�: � �  � 7 � 9;:E< � �   ,

where
7

is an XQ � query such that
7 � 9;:E< � �   returns either <A/>,

or <empty/> if the value of =H>�: � �  is not to be included in the
target document. See, e.g., the rule for yes

1 " in + � ���
	���� .

Several subtleties are worth mentioning. First, recall that =H>�: � � 
is defined in terms of =?> : �GF[d  . In the rule for computing =H>�: � � 
one may replace =?> : �GF d  with the XQ � query for computing =H>�: �GF d 



(defined in the rules for % e ). For example, in the XIG + � ����	���� , the
rules for dealer and car can be rewritten as:
dealer � name, address, cars

Inh(cars) = ~ U/dealer/cars � ;
Syn(dealer) = <dealer> ~ U/dealer/name �

~ U/dealer/addr ��~ Syn(cars) � </dealer>

car � make, model, price, inStock
Inh(inStock) = ~ Inh(car) � ;
Syn(car) = <car> ~ Inh(car)/model �k~ Inh(car)/make �

~ Inh(car)/invoice/price ��~ Syn(inStock) � </car>
These substitutions can avoid unnecessary computation of inherited
attributes that are not needed elsewhere. Second, as XIGs support
tree attribution and return XML trees, semantic attributes can be
computed via other XIGs; such an example will be given in the
rule for Syn(promotion) in the XIG + of Fig. 5. Furthermore, as
embedded XIGs ensure conformance to their target DTDs, one can
use them as expressions without complicating the type analyses.
This makes XIGs composable. Finally, observe that when 9;:�< � � 
is the empty tree,

7 � 9;:�< � �   is not necessarily empty.

XIG Semantics. We next give a simple operational semantics for
an XIG + �i0 1 � . Given an instance of 0 , + evaluates its
attributes via its rules, and returns =H>�: �JI  of the root

�
of � as its

output. The evaluation is carried out top-down, using a stack. The
root

�
is first pushed onto the stack. For each node

�
at the top

of the stack, we compute its subtree =H>�: � �  . To do this, we first
identify the production @ � � 1 � in � , and for each % in � ,
we evaluate 9;:�< �GF  using the semantic rules in A;B�C�D � @  . The exact
procedure depends on the specific form of the @ production. For
example, if @ � � 1 % & � '('/' � % * , then for each % e , we com-
pute 9;:�< �GF d  by evaluating

7fe � 9;:�< � �   ; we then push % e onto the
stack and proceed to process them in the same way using the value
of 9;:�< �GF d  ; then, after all the % e ’s are evaluated and popped off
the stack (i.e., when all the =H>�: �GFEd  ’s are available), we compute
=?> : � �  by collecting all the =H>�: �GF d  ’s, such that

�
has a unique% e child for each gih�j�l ��npo . (The process for other production rules

is similar; due to space constraints, we defer the details to the full
paper.) Finally, after =H>�: � �  is computed, we pop

�
off the stack,

and use =?> : � �  to evaluate other nodes until no more nodes are in
the stack. At this stage, =H>�: �JI  is computed and returned as the
output of the XIG evaluation. Note that for each

�
, its inherited

attribute is evaluated first, then its synthesized attribute, which is
an
�

-subtree. The evaluation takes one-sweep: each
�

element is
visited twice, first pushed onto the stack and then popped off after
its subtree is constructed. It should be mentioned the conceptual
evaluation strategy given above is just to illustrate the semantics of
XIGs; we shall provide optimization techniques in Section 6.

4. CASE STUDY
To illustrate the idea of DTD-directed integration with XIGs, con-

sider the integration described in Example 1.2. The regional inte-
gration is to extract data from dealer views and a sale document,
and construct a target document conforming to the target DTD �
of Fig. 2(b), where the dealer views are themselves mapped from
local sources at dealer’s sites. We divide this task into three parts,
and specify each with an XIG as follows.
� + � ���
	���� � ���� ���
	����

1 � �
���
	���� is the XIG of Fig. 3 that defines

a view for dealers: given the URI , of a local document specified
by the DTD � �� ���
	���� of Fig. 1(b), + � ���
	����

� ,  returns an XML doc-
ument conforming to � �

���
	���� of Fig. 1(c). Each local dealer has a+ � ���
	���� residing at its site and serving as a view. While the view
DTD � �

���
	���� is visible to the users, the source DTD � �� ���
	���� and the
definition of + � ���
	���� are not. The view does not reveal confidential
information about invoice and quantity.

XIG: K ������� L���N
promotion P sale 	

Inh(sale) T for $c in X/sale/cars/car return $c;
Syn(promotion) = <promotion> Q
U Syn(sale) R </promotion>

sale P make, model, features
Inh(make)= Q Inh(sale)/make R ; Inh(model)= Q Inh(sale)/model R ;
Inh(features) = Q Inh(sale)/fids R ;
Syn(sale) = <sale> Q Syn(make) RSQ Syn(model) RQ Syn(features) R </sale>

features P feature 	
Inh(feature) T for $f in Inh(features)/fid return $f;
Syn(features) = <features> Q
U Syn(feature) R </features>

feature P desc, features
Inh(desc)=X/sale/features/feature[fid=Inh(feature)]/desc;
Inh(features)=X/sale/features/feature[fid=Inh(feature)]/fids;
Syn(feature)=<feature> Q Syn(desc) R
Q Syn(features) R </feature>

make P PCDATA /* similarly for model, desc */
Syn(make) = Q Inh(make) R

Figure 4: XIG + ���
	��
� 0  for converting sale data

XIG: K L�������N
db P dealers, promotion

Syn(db) = <db> Q Syn(dealers) RVQ Syn(promotion) R </db>

promotion P sale 	
Syn(promotion) = K ������� L���N

dealers P dealer 	
Inh(dealer) = for $Y in R/dlink return $Y;
Syn(dealers) = <dealers> Q
U Syn(dealer) R </dealers>

dealer P name, address, cars
Inh(name) = let $p := Inh(dealer)/U � /* similarly for */

let $u := Inh(dealer)/U /* address, cars */
let $v = $p: K 
��������� ($u)
return $v/dealer/name;

Syn(dealer) = <dealer> Q Syn(name) RSQ Syn(address) RQ Syn(cars) R </dealer>

cars P car 	
Inh(car) T let $s := K ������� L���N

for $c in Inh(cars)/car
$c’ in $s/promotion/sale

where $c/make=$c’/make and $c/model=$c’/model
return $c;

Syn(cars) = <cars> Q
U Syn(car) R </cars>

car P make, model, price, inStock
Syn(car) = Inh(car)

name P PCDATA /* similarly for address */
Syn(name) = Inh(name);

Figure 5: XIG + �	� � 0  for regional integration

� + ����	�� � � ����
	��
1 � ���
	�� is an XIG that converts sale data: given

the URI 0 of a sale document specified by � �����	�� of Fig. 1(a),+ ���
	��
� 0  returns an XML document conforming to the DTD � ���
	��

of Fig. 1(c). This XIG + ���
	�� is local: it is at the integration site.
� + is an XIG for regional integration: it is defined with + � ���
	����
as a remote XIG and + ���
	�� as a local XIG. It takes as input the URI0 of the sale source and an XML file

�
containing information

for dealers in the region. Specifically,
�

consists of a sequence of
dlink’s, and each dlink is of the form

� , # � ,  , where , # is the
URI of + � ���
	���� and , is the URI of the local source data at the same
dealer site1. The XIG + invokes + ���
	��

� 0  and , # � + � ���
	����
� , 

for each
� , # � ,  to collect data from dealer sources and then con-

structs an XML document conforming to the target DTD of Fig. 2(b).
+ � ���
	���� has been presented in Fig. 3. + ���
	�� and + are presented

next.
Sale Data. An XIG + ���
	�� � � �����	��

1 � ���
	�� for converting sale
data is given in Fig. 4. Given a source 0 , + ���
	��

� 0  is evalu-
ated top-down. Starting from promotion, it uses an XQ � query

1Assume that the definition of % � ����	���� is not accessible to anyone except
the dealer, and that the local source document is only accessible to the dealer
or via % � ���
	���� , although their URIs are public.
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to extract car elements from 0 , and treats each car
. 5 as a

value of Inh(sale). For each
. 5 the rules for sale are evaluated,

which compute Inh(make), Inh(model) and Inh(features) by
extracting the corresponding fields from

. 5 , and invoke the rules for
features in turn. Note that features is recursively defined
and thus its subtree has an unbounded depth. The depth is deter-
mined at run time: if the XQ � query for computing Inh(feature)
does not find any fid, the rules for computing feature sub-
tree are not triggered, the list � Syn(feature) is empty, and the
construction of features subtree is complete. After all the sub-
trees Syn(features) are constructed, Syn(sale) is computed,
followed by Syn(promotion). This shows that XIGs are capa-
ble of expressing XML integration with a recursive DTD. Note that
XIGs adopt a data-driven semantics: the XML tree height in the re-
cursive case and the choice of a production in the non-deterministic
case are determined by queries on the source data at run-time.
Regional Integration. Finally, we provide an XIG + in Fig. 5
for integrating XML data of car dealers and promotion informa-
tion. It is defined with embedded XIGs: local XIG + ���
	�� and re-
mote XIGs + � ���
	���� . The local XIG + ���
	�� is invoked to produce=?> : ��� I���������	
���
 , which is an XML tree conforming to the pro-
motion type of the target DTD � . To produce Syn(dealers),
it first finds from the input document

�
the URI $p of the view+ � ���
	���� and the URI $u of the local dealer source for each dealer.

For each pair ($p, $u), it then invokes the remote XIG + � ���
	���� via
$p: + � ���
	���� ($u) to compute its view. The result of the computation,
$v, is shipped back to the integration site and is used as a con-
stant in the queries for computing Inh(name), Inh(address) and
Inh(cars). To find the cars that are promoted, i.e., those appearing
in + ���
	��

� 0  , + invokes + ���
	��
� 0  and selects cars that are in both

$v and + ���
	��
� 0  . For each car $c selected, it simply returns $c

as Syn(car), since + � ����	���� ensures that $c indeed conforms to the
car type in the target DTD � . This example shows how a complex
integration task can be carried out in terms of component XIGs.

5. XML INTEGRATION WITH XIGs
XIG Middleware Architecture. We propose a middleware system
for XIG evaluation. As shown in Fig. 6(a), our middleware takes

an XIG + as an input, evaluates + and generates an XML docu-
ment conforming to the target DTD of + . More specifically, our
XIG middleware servers use a local XQuery engine to evaluate XQ �
queries over local data sources. An XIG server also communicates
with other servers. It invokes a remote XIG +� along the same lines
as a remote procedure call: it sends a request along with appropri-
ate data parameters to the server where +  is located; the remote
server then evaluates +� and sends the result back. Note that a re-
mote XIG may in turn invoke XIGs at other servers. For example,
as depicted in Fig. 6(b), server 1 invokes remote XIGs at servers 2,
3 and 4, and to evaluate the remote XIG call of server 1, server 2 in
turn invokes XIGs at servers 4 and 5.

Note that, although theoretically one can translate an XIG spec-
ification of a complex integration task into a large XQuery function
(by simply merging the localized semantic rules for all DTD pro-
ductions), such brute-force query-merging typically leads to poor
performance in practice. First, injudicious query merging relies
on the optimizer of the underlying XQuery-engine to optimize a
large query, schedule execution of queries and XIGs, and produce
efficient execution plans. However, even sophisticated relational
optimizers do not work well on large SQL queries, not to men-
tion XQuery optimizers that remain to be explored. Indeed, inju-
dicious query-merging has proved ineffective in relational publish-
ing/integration practice, and this was one of the main motivations
for developing middleware systems and appropriate optimization
techniques [4, 5, 6, 15, 26]. Second, it is possible to develop opti-
mization techniques that are effective for the specific XQ� fragment
used in our XIGs but are not applicable to XQuery in general and are
unlikely to be supported inside a generic XQuery engine. This sug-
gests that potential optimizations developed for our XQ � fragment
should probably be accommodated in our middleware server (out-
side the XQuery engine). Third, XQuery specification [11] has not
yet defined remote procedure calls, and thus the feasibility of such
a brute-force XIG-to-XQuery translation is pending the availability
of XQuery support for remote procedure calls.

Thus, central to our XIG middleware is an XIG optimizer mod-
ule (Fig. 6(a)) whose goal is to generate an efficient execution plan
that minimizes the response time of an XIG evaluation. After an
initial parsing phase, which derives the dependency relation on the
queries of the input XIG + , our XIG optimizer generates an exe-
cution plan for + using a cost-based approach that: (1) merges cer-
tain queries in + that are processed at the same source into a larger
query to reduce communication costs, (2) schedules execution of
XQ � queries and XIGs to increase parallelism, and (3) leverages an
external optimizer for (partially-merged) XQ � queries to produce
efficient XQ� -execution plans. Finally, the execution plan is carried
out, by evaluating optimized (merged) XQ � queries embedded in
+ via a local XQuery engine, and by invoking remote XIG calls.
Compared to its counterparts for XML publishing [5, 10, 15] and
relational data integration in XML [4], our XIG optimizer raises a
number of new issues that we briefly address below; we provide
detailed optimization algorithms in Section 6.
XIG Recursion vs. DTD Recursion. Our XIG-based integration
framework involves two forms of recursion: recursive target DTDs
and recursive XIGs (i.e., XIGs defined in terms of themselves). In
contrast, previous work on XML integration/publishing either ig-
nores recursion or considers recursive DTDs only [5, 4].

The key observation here is that recursive DTDs can be captured
with recursive XIGs. Indeed, the computation of any recursively-
defined

�
-elements can be rewritten to an equivalent local, recur-

sive XIG +�� . For example, we can easily define a recursive XIG for
computing the recursively-defined features elements in Fig. 4.
The rewriting is conducted in the parsing phase of the XIG mid-
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dleware of Fig. 6(a). This allows us to handle the two forms of
recursion in a uniform framework.

Recursive XIG evaluation also raises termination issues. To avoid
potential infinite invocation loops, our XIG middleware servers em-
ploy a dynamic control mechanism based on keeping track of local
XIG invocations and using that information to detect cycles in the
call chain. Furthermore, XIG servers also cache the results of XIG
evaluations to avoid possible redundant computation. (Due to space
constraints, the details of dealing with recursion and recursive XIG
evaluation are deferred to the full paper.)
Query Dependencies. XIGs support sideways information passing
in an implicit way: common computation is specified with an XIG,
which is invoked wherever it is needed. For example, the XIG +
of Fig. 5 uses + ����	�� to specify the computation of the promotion
subtree, and invokes + ���
	�� at two different places where the subtree
is needed. This yields a more flexible information passing mecha-
nism than other proposals, e.g., data passing between siblings [4].
However, naive evaluation of + may lead to repeated evaluation of
+ ���
	�� . To eliminate unnecessary XIG recomputation, our system
explicitly captures the dependencies among XIG queries through a
query dependency graph.

The query dependency graph of an XIG + contains a node for
each query/XIG in + , and a directed edge from

7 & to
7��

if and
only if the result of

7 & is consumed by
7 �

. For example, the de-
pendency graph of the XIG + of Fig. 5 is depicted in Fig. 7(a), in
which

7 � 9;:�< � �  and
7 � =H>�: � �  denote the queries for com-

puting 9;:�< � �  and =H>�: � �  , respectively. The graph describes top-
down dependencies on inherited attributes, bottom-up dependen-
cies on synthesized attributes, and producer-consumer relationships
introduced by embedded (local and remote) XIGs. Note that there
is a single node representing the XIG + ���
	�� , which is evaluated
once and its result is used to compute both Syn(db) and Inh(car).
Also, note that, once recursively-defined elements are rewritten as
recursive XIGs (XQ � functions), the parsing phase of the middle-
ware inspects whether the query dependency graph is cyclic and
allows only directed, acyclic graph (DAG). (Cyclic dependency
graphs are infeasible and are rejected for evaluation.)
Query Scheduling. Based on the query dependencies in an XIG,
our XIG-middleware optimizer orders the execution of queries/XIGs
such that local queries and remote XIGs can be evaluated in par-
allel. For example, consider the dependency of Fig. 7(b), where7 & �/' '(' �a7�� are local queries and + is a remote XIG call. One may
want to execute

7��
before

7 �
and

7��
such that + can be evalu-

ated by another server in parallel with
7�� ��7 �

, and thus improve
the overall response time. It is, however, nontrivial to develop an
optimal scheduling strategy. Among other things, XIGs are com-
plex tasks and a remote XIG may trigger other remote XIGs. For
example, referring to Fig. 6(b), server 1 triggers remote XIGs at
servers 2 and 4, while the remote XIG at server 2 may invoke an-
other XIG at server 4, competing for the resources of server 4.
Query Merging. Another optimization technique is to merge mul-
tiple XQ � queries into a single query. For example, an XIG without
remote XIG calls can be easily rewritten as a single XQ � query. The
merged XQ � queries can then be optimized via an XQ � optimizer
(Fig. 6(a)). Query merging could reduce the communication over-
head between the middleware and the underlying XQuery engine,
and thus potentially speed up the query execution. On the other
hand, injudicious query merging may change the query dependency
graph, lead to unnecessary delay of other query executions, and de-
crease parallelism. For example, merging

7 � �;7����a7��
of Fig. 7(b),

results in the query dependency DAG shown in Fig. 7(c). As a re-
sult, the remote XIG call + is delayed as it becomes dependent on7 �

and
7��

as well, thus decreasing the potential parallelism among
remote XIGs and local queries. Clearly, the decision of whether
or not to merge certain queries should be cost-based; furthermore,
given the dependence of execution cost on scheduling, query merg-
ing and scheduling are obviously dependent on each other.

6. XIG EVALUATION AND OPTIMIZATION
We next present two cost-based algorithms, scheduling and merg-

ing XQ � /XIG expressions, to improve the response time of XIG
evaluation. These can be combined with optimizations for XQ �
queries, i.e., the middleware is open to and can accommodate opti-
mization techniques for specific XQuery fragments.
Scheduling an XIG Evaluation. Assume a given query depen-
dency DAG that captures the data and execution dependencies be-
tween the various components (namely, XQ � and XIG expressions)
comprising an XIG. Note here that, although XQ � queries are typi-
cally executed locally, XIG nodes can be either local or remote (i.e.,
with the XIG executed at a remote server). Effectively schedul-
ing such an XIG-dependency DAG over an architecture of dis-
tributed servers is a very challenging problem. In addition to all the
complications typically associated with scheduling a DAG of inter-
dependent (i.e.,precedence-constrained) tasks over a distributed ar-
chitecture (e.g., communication overhead, parallel execution), a
crucial, distinguishing characteristic of our problem is that XIGs
are complex tasks that can invoke other (local or remote) XIG tasks
for their evaluation. In essence, this means that, instead of simply
utilizing a single server, the evaluation of an XIG node in the query
dependency DAG can utilize several different servers (through em-
bedded remote XIG calls). This strict co-scheduling requirement
makes our XIG-scheduling problem quite different from those stud-
ied in the context of conventional scheduling for parallel/distributed
systems, where the assumption is that either each task uses a sin-
gle site [20] or that tasks can be migrated across different subsets
of sites [8, 17].2 Similarly, work on dynamic/adaptive schedul-
ing strategies for distributed database and data-integration systems
(e.g., [21, 7]) is applicable only at run-time, that is, when the query
plan is actually executed. In contrast, our focus here is on compile-
time scheduling in order to determine an effective XIG-evaluation
plan; thus, our scheduling model needs to be able to capture all the
complexities of XIG evaluation.

Given an XIG query dependency graph 4 , determining a sched-
ule for 4 over the underlying architecture of distributed servers that
2Note that the corresponding scheduling problem for AIG evaluation [4]
also assumes only single-site queries.



minimizes the overall XIG execution time (i.e., the makespan of the
schedule) is an essential step in optimizing XIG evaluation. Our
scheduler needs to make its decisions at XIG-optimization time,
which means that it needs to rely on estimates for query/XIG ex-
ecution costs, result sizes, and communication overheads. In our
development and ongoing implementation, we assume that each
server � in the underlying system offers a query/XIG-costing API
that, given a query/XIG node

-
to be executed at � returns (1) an

estimate
� �G- 

for the processing time of
-
’s execution on � ; and, (2)

a subset of sites
� �G- 

(including � ) that are utilized in the evalu-
ation of

-
(where  � �G-   �� l , if

-
is an XIG node with embedded

remote XIG calls).3 Thus, for each node
-

in the dependency graph,
the underlying server APIs provide us with the execution time of

-
as well as the (sub)set of servers used during this execution. Our
XIG-scheduling problem can then be abstracted as follows.

XIG SCHEDULING( 4 , � ,
� � 

,
� � 

)� Given: A dependency DAG
� � &G% ����'

defining a partial order (prece-
dence) relation “ � ” over a set of tasks % � ~  & �
	�	�	H�� * � ; set of distributed
servers � . For each task

 ��% ,
	 & �' is the execution time of


and O& �'��� is the set of servers used during


’s execution.� Find: An assignment of start times to tasks start

� % ����� , such that:

1. Concurrently-executing tasks do not collide on servers – that is, for
all ������ , if � start &  e 'u� start &  e '���	 &  e '�'G��� � start & ��]'u� start & �� '��	 & �� '}'G� �� � then O&  e '!� O& ��]'$�"� .

2. Precedence constraints are satisfied – that is, for all
 e � ��

we have
start & �� '$# start &  e '%� 	 &  e ' ; and,

3. The schedule makespan &('
) e ~ start &  e '*�3	 &  e ' � is minimized.

It is easy to verify that our XIG-scheduling problem is actu-
ally the precedence-constrained generalization of the Set Schedul-
ing problem recently introduced by Goel et al. [18]. Even for their
simpler case of fully-independent tasks (i.e., + ��, ), Goel et al.
demonstrate that the problem is -/. -hard and hard to approximate,
by giving a simple, approximation-preserving reduction from the
Minimum Graph Coloring problem [18]. Given the intractability
of our XIG SCHEDULING problem, we now propose a heuristic
scheduling algorithm for query dependency graphs that produces
an approximate solution to our scheduling problem.

In a nutshell, our scheduling algorithm (termed SCHEDXIG) be-
longs to the class of list-scheduling algorithms, originally intro-
duced by Graham for multiprocessor scheduling [19]. SCHEDXIG
maintains a list 0 of ready tasks (i.e., tasks whose predecessors
in the dependency graph 4 have already completed), and sched-
ules the next ready task

- h10 at the earliest possible start time
(i.e., the earliest time at which all servers in

� �G- 
become avail-

able). Since our goal is to minimize the overall execution time
in the schedule for 4 , we maintain the tasks in the ready list 0
sorted in decreasing order of “criticality”, where the criticality of
a ready task

-
(denoted by crit

�G- 
) captures

-
’s potential in becom-

ing the bottleneck (i.e., lie in the critical path) for the parallel ex-
ecution of 4 . Note that estimating the criticality of a task node
in the complex-task model used in our XIG-scheduling problem is
non-trivial – our criticality measure needs to account not only for
the serialization effects in the parallel execution (introduced by the
dependency edges in 4 ), but also for the possibility of collisions
of independently-executed tasks utilizing the same server(s). Our
SCHEDXIG algorithm employs such a criticality measure that is
a simple-to-compute lower bound crit

�G- 
on the parallel-execution

3To simplify the exposition, we assume that the query/XIG-processing time	 & �' also includes the cost of communicating input/output data to/from the
executing server 2 , which also allows us to leave result-size estimates out
of our scheduling-problem formulation. Both aspects can be incorporated
into our scheduling model and algorithms in a straightforward fashion.

time of all DAG paths rooted at task node
-

and captures both the se-
rialization and the server-collision effects mentioned above. More
formally, let paths

�G- 
denote the set of all paths rooted at task

-
(including

-
itself) and leading to some “sink” node in 4 , and let4 �G-  denote the corresponding subgraph of 4 . Also, given a task-

, define the server-usage vector v
�G- 

of
-

to be a numeric vector of
dimensionality  �  (i.e., the number of servers in the system), and
components defined as: v

�G-  j g o � � �G-  if g8h � �G-  , and 3 otherwise
(where we assume, w.l.o.g, that � � � l ��4�� '(' ' �  �  � ). Thus, v

�G- 
basically captures the processing-time requirements of

-
on each

server used during
-
’s execution. We estimate the criticality of

-
,

crit
�G- 

, as the maximum of the following two quantities:
1. The Critical-Path Length under

-
, CP

�G-  �157698�:<;
paths =?>A@�CBED ;9: � �AF  � , which captures the effects of dependencies

(i.e., serialization constraints) in the parallel execution of 4 �G-  ;
and,

2. The Maximum Server Load under
-
, SL

�G-  �G576H8 e � BED ;�I =?>A@
v
�AF  j g o � , which captures the effects of possible server colli-

sions and server bottlenecks during the parallel execution.

Example 6.1: Consider a simple instance of our XIG SCHEDUL-
ING problem, with J tasks + � � - & � '('(')�]- � � and the task depen-
dencies

- & 1 - � 1 - �
,
- & 1 - �

. Assume a K -server configuration,
and let v

�G- &  � j 4�� 3 � 3 o , v
�G- �  � j 3 �ML � 3 o , v

�G- �/ � j N � 3 � 3 o , and
v
�G- �  � j 3 � 3 � lO3 o . It is easy to see that, in this scenario, CP

�G- &  �576H8 �H4 - L - N �
4 - lP3 � � l9N and SL
�G- &  �Q576H8 � j 4 - N �PL � lP3 o � �

lP3 , which implies that crit
�G-  �/57698 � CP

�G- &  � SL
�G- &  � � l9N ; that

is, the dominant factor in this parallel execution comes from the
serialization in the

- & 1 - � 1 - �
dependency chain. In contrast,

assume that
- �

is a complex (XIG) task that utilizes both servers
4

and K , i.e., v
�G- �/ � j 3 � lO3 � lO3 o . It is again easy to see that, in this

case, even though the critical-path length CP
�G- &  remains the same,

the maximum server load becomes SL
�G- &  �R57698 � j 4 - N � lP3 - L �lP3 o � � l L , which implies that crit

�G-  � SL
�G- &  � l L – thus, the

dominant execution-time factor has shifted to the processing bot-
tleneck created by the collision of

- �
and

- �
on server

4
. �

The pseudo-code for our SCHEDXIG algorithm is given in Fig. 8;
its worst-case time complexity is S �Jn  �  �T?U<V n  (e.g., using a max-
heap for 0 ). Note that, even though we presented the algorithm
SCHEDXIG as an optimization-time technique, it is actually an on-
line algorithm that can readily be used to schedule XIG executions
at run-time (based on task-criticality estimates) as servers become
available. Finally, we should note that our complex-task model
can be generalized along the lines of the preemptable/time-shared
resource model of [17] to allow for servers to be effectively time-
shared across different tasks, since, e.g., an XIG node can typically
impose different processing requirements on the remote servers it
utilizes. This gives rise to several challenging scheduling issues
that we are exploring in our ongoing work.

Merging Queries. Query merging may also speed up XIG evalu-
ation; however, it can also change the dependency DAG and, thus,
the execution schedule (and corresponding evaluation cost). Thus,
query merging and scheduling are clearly inter-dependent. Our
query merging problem is to determine, given a dependency graph4 , what query nodes to merge such that the estimated response
time of the resulting dependency graph 4  (i.e., the makespan of
the schedule returned by SCHEDXIG

� 4 

) is minimized.

Given a dependency graph 4 , there are exponentially many choices
for merging queries in 4 ; moreover, recall that the scheduling prob-
lem is already intractable. Given the inherent difficulty of the prob-
lem, we outline a greedy heuristic algorithm, termed MERGEXIG,
that iteratively calls our SCHEDXIG scheduler for optimizing XIG
query merging and evaluation. In a nutshell, MERGEXIG takes



Procedure SCHEDXIG & � � � '
Input: XIG dependency graph

�
, set of servers � .

Output: Schedule start & ' for executing
�

over � .
begin
1. for each node


in
�

do
2. compute crit & �' := &('
) ~ CP & �'a� SL & �' �
3. � := list of ready XQ � /XIG tasks in

�
in decreasing order of crit & �'

4. while �Q�� � do
5.


:= �s� � � /* first ready task in � */

6. start & �' := earliest time in our schedule that all servers in  & �'
become available

7. � := list of tasks in
�

that become ready after the
completion of


(in decreasing crit & ' )

8. � := merge( �����i� � �J� � )
9. endwhile
end

Figure 8: Our XIG-Scheduling Algorithm.

an XIG dependency graph 4 as input and returns an efficient eval-
uation schedule as output. At each step, MERGEXIG considers
each pair of query nodes

�[7 & �a7 �  in 4 that are processed at the
same source for potential merging into a single query node

7
(re-

sulting in a new dependency graph 4  ); the query pair resulting
in the (acyclic) dependency graph 4  with the lowest SCHEDXIG-
estimated evaluation cost (i.e., the smallest makespan for SCHEDXIG� 4   ) is merged. The iteration in MERGEXIG continues until no
further cost reduction is possible; at that time, SCHEDXIG is in-
voked on the final (merged) dependency graph to determine the
final XIG execution schedule. It is easy to see that the worst-case
time complexity of MERGEXIG (or, our entire XIG optimization
procedure) is S �Jn

�  �  T?UCV n  .
Next, we consider how to merge a pair of queries, namely, given

a query pair
�[7 & ��7 �  , how to generate a single query

7
to compute

both
7 & and

7��
. For a pair of queries that are not dependent on

each other, the merged query can be simply expressed as:
<result> <q1> ~ � & � </q1> <q2> ~ � � � </q2> </result>

It is straightforward to separate and extract the results of
7 & and7 �

from the result of the merged query.
Now, consider a pair (

7 & ��7��/ where
7��

uses the result of
7 & .

In particular, consider a production
�!1 � , and we want to merge

the queries for computing 9;:E< � �  (
7 & ) and 9;:�< �GF  (

7 �
), where %

is in � . If
7 & yields a sequence of values of 9;:E< � �  , we want the

merged query
7

to compute a corresponding sequence of 9;:�< �GF 
values. We associate a “key” with each value of 9;:�< �GF  in order
to determine the position of the % element in the target XML docu-
ment. The key of an 9;:�< �GF  value is generated by concatenating the
key of the corresponding 9;:�< � �  value $x and an id � ��� ($x). Here
� ��� is a Skolem function that, given a value, generates a unique
id (see, e.g., [22] for discussions on Skolem functions). Using the
keys, the synthesized attribute =H>�: � �  can be computed by sort-
merging the values of =H>�: �GF  for all % in � w.r.t. key values.

For example, recall the rules associated with a production
� 1

% & �('('(')� % * (similarly for other productions). Let query
7 & com-

pute 9;:�< � �  and return either a single s-element
<s> <val> 	 </val> <key> 
 </key> </s>,

or a sequence of s-elements enclosed by a tag <seq>, where � is a
value of 9;:�< � �  and � is the key of � . Then, the merged query for
computing 9;:�< �GFEd  is (abusing XQuery syntax):

let $a :=
� & return~ if $a/s

then <s> <val> ~ � e ($a/s/val) � </val>
<key> ~ ($a/s/key,  ��� ($a/s/val)) � </key> </s>

else <seq> for $a’ in $a/seq/s
let $v := $a’/val
let $k := $a’/key
return <s> <val> ~ � e ($v) � </val>

<key> ~ ($k,  ��� ($v)) � </key> </s>
</seq> �
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Figure 9: Effectiveness of query merging on XIG + � ����	����
The query returns either a single pair ( 9;:E< �GF  , key) or a sequence
of such pairs depending on the input 9;:E< � �  . (Note that the sibling
and parent/child relations are captured by the keys.) This example
shows how to merge a pair of queries with dependency on them.

It is worth mentioning that our query-merging strategy given
above does not introduce any null values, in contrast to the out-
union/outer-join approaches of [5, 4, 15, 10]. Also observe that
merging is not carried out if it does not reduce the total cost of XIG
evaluation.

7. EXPERIMENTAL EVALUATION
We next present preliminary results from an experimental eval-

uation of our XIG-based techniques. A prototype of our XIG-
based middleware has been built on top of the Galax XQuery engine
(db.bell-labs.com/galax) and Java RMI. The source databases
are built based on the source DTD ���� ���
	���� and ���� ���
	���� by using the
Toxgene data generator (www.cs.toronto.edu/tox/toxgene).
The database size,  � %  , is given as the number of cars. A fraction
� of the cars are on sale. For the recursive definition of feature
in the sale data (recall �������	�� from Fig. 1(c)), we generate 1 to 3 ran-
dom features for each car and the depth of the recursion is limited
to 2. The experiments were run on a distributed system connected
by a local area Ethernet. Each site has a 2.4GHz Pentium 4 pro-
cessor and 512M RAM. The cost of an XQuery query is estimated
by pre-running the query in Galax. In future implementation of
XQuery engines, APIs may be provided for query cost estimation.
Unless otherwise stated, each experiment was run N times and the
average is reported.
Query Merging. Figure 9 shows the impact of query merging on
the performance of the XIG + � ���
	���� for different database sizes.
Since + � ���
	���� only involves a single server, scheduling is not needed
here. The results clearly indicate that the evaluation strategy with
query merging outperforms the one without merging. The perfor-
mance gain is about 30% for large databases. Note that the gain
comes from reducing the number of Galax calls, as Galax does not
support query optimization and thus merged queries are not op-
timized by Galax. The performance gain from query merging is
expected to be further improved pending the availability of opti-
mization in XQuery engines (to our knowledge, no stable XQuery
engine supports all of our queries and optimizations).

Our Alg.
optimal
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Figure 10: Scalability and benefits of query composability

Query Composability. The next set of experiments verifies the
scalability and benefits of our XIG evaluation algorithm (namely,



Parameter Meaning Value
PathLen Length of root-to-leaf path [4, 8]
NoRoots No. of root nodes [1, 5]
ProbXIG Probability of XIG-call nodes 0.5
FanIn Node fan-in 1
FanOut Node fan-out [2, 4]
QueryCost Local query cost (msec) [10, 300]
XIGCost Remote XIG cost (msec) [100, 3000]
N No. of servers [2, 20]

Table 1: Settings for dependency graph generation

SCHEDXIG and MERGEXIG put together) with two workloads� & and
� �

. To better demonstrate the impact of remote XIG
calls,

� & slightly extends the XIG + �	� � 0  of Fig. 5 by adding
a remote XIG which encodes the join in the rule for computing
Inh(car), while

� �
further extends + � ���
	���� in

� & by adding an
extra join on the car model. Both workloads were run on the dis-
tributed system. Figure 10 compares the evaluation time of

� �
obtained by using our evaluation algorithm with that of an optimal
scheduling and merging strategy, which is computed manually as
the XIGs involved are simple. In Fig. 10,  � %  and � are fixed
as NC3<3C3 and lP3�� , respectively. The number of servers � and the
number of URIs

�
are varied from 5 to 20. The remote calls are

uniformly distributed over the servers. The results show that our
algorithm performs well; indeed, its performance nearly matches
the optimal one. Furthermore, Fig. 10 indicates that our algorithm
also scales well – its evaluation time decreases when the number �
of servers increases, i.e., it is roughly linear in l b � ; moreover, the
performance is better when the � /

�
ratio gets larger. The results

of evaluating
� & are similar.

Scheduling. To study workload sensitivity of our criticality-based
XIG-Scheduling algorithm (denoted as CRIT), we compare its per-
formance with two traditional scheduling algorithms Shortest Task
First (STF) and Longest Task First (LTF) using randomly-generated
XIG query-dependency graphs. Table 1 gives parameter settings
for our random dependency-graph generator. Each node in a graph
has a single parent (i.e., fan-in of l ), whereas node fan-out is cho-
sen uniformly between

4
and J . The length of root-to-leaf path is

chosen uniformly between J and
L
. The probability of a node be-

ing an XIG call is 3 ' N , and its execution site is distributed uniformly
among all servers. The ranges of costs for queries and XIG-calls are
determined based on the response times obtained by using our pro-
totype. Figure 11 depicts the performance of the algorithms. Each
simulation was run lP3<3 times to obtain sufficient confidence inter-
vals of average elapsed times. The number of servers, � , varies
from

4
to
4 3 . Clearly, when � is small (e.g., � � 4 ), scheduling

is a non-issue and all algorithms perform similarly. However, as �
increases, CRIT does better at exploiting parallelism, and it outper-
forms STF and LTF by more than J 3�� and �<3�� , respectively.
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Figure 11: Effectiveness of XIG-Scheduling
These results show that our query-merging algorithm is effective

for optimizing XIG evaluation, and that our XIG-scheduling tech-
nique significantly outperforms traditional scheduling algorithms.

8. CONCLUSION
We have proposed a novel language, XIGs, for specifying XML

integration. XIGs automatically support conformance to a target
DTD, and allow one to build a large, complex integration via com-
position of component XIGs. We have also developed novel op-
timization algorithms for evaluating XIGs. We are currently de-
veloping APIs to simplify XIG specifications, and exploring index
structures for efficient evaluation. We also plan to identify practical
XQuery fragments for XIG optimization and termination analyses.
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