
Chapter 5

FILTERING, PUNCTUATION, WINDOWS AND
SYNOPSES

David Maier1, Peter A. Tucker2 and Minos Garofalakis3
1OGI School of Science & Engineering at OHSU, 20000 NW Walker Road, Beaverton, OR
97006;2Whitworth College, 300 W Hawthorne Road, Spokane, WA 99251; 3Bell Laboratories,
Lucent Technologies, Murray Hill, NJ 07974

Abstract: This chapter addresses some of the problems raised by the high-volume, non-
terminating nature of many data streams. We begin by outlining challenges
for query processing over such streams, such as outstripping CPU or memory
resources, operators that wait for the end of input and unbounded query state.
We then consider various techniques for meeting those challenges. Filtering
attempts to reduce stream volume in order to save on system resources.
Punctuations incorporate semantics on the structure of a stream into the stream
itself, and can help unblock query operators and reduce the state they must
retain. Windowing modifies a query so that processing takes place on finite
subsets of full streams. Synopses are compact, efficiently maintained
summaries of data that can provide approximate answers to particular queries.

Key words: data stream processing, disordered data, stream filtering, stream punctuation,
stream synopses, window queries

1. INTRODUCTION: CHALLENGES FOR
PROCESSING DATA STREAMS

The kinds of manipulations users would like to perform on data streams

are reminiscent of operations from database query processing, OLAP and
data mining: selections, aggregations, pattern-finding. Thus, one might hope
that data structures and algorithms developed for those areas could be carried
over for use in data stream processing systems. However, existing

2 Chapter 5

approaches may be inadequate when confronted with the high-volume and
unbounded nature of some data streams, along with the desire for near-real
time results for stream operations.

The data rate for a stream might outstrip processing resources on a steady
or intermittent (bursty) basis. Thus extensive CPU processing or secondary
storage access for stream elements may be infeasible, at least for periods of
time. Nor can one rely on buffering extensive amounts of the stream input in
memory. For some applications, such as network monitoring, a few seconds
of input may exhaust main memory. Furthermore, while buffering might
handle bursty input, it does so at a cost of delaying results to users.

The potentially unbounded nature of data streams also creates problems
for existing database query operators, or for particular implementations of
them. Blocking operators, such as group-by, difference and sort, and
blocking implementations, such as most join algorithms, cannot in general
emit any output until the end of one or more of the inputs is reached. Thus
on a continuous data stream, they will never produce any output. In the case
of join, there are alternative implementations, such as symmetric hash join
(Wilschut and Apers, 1991) that are non-blocking, and hence more suitable
for use with streams. But the other operators mentioned are inherently
blocking for any implementation. Even if an operator has a non-blocking
implementation, if it is stateful, such as join and duplicate elimination, it will
accumulate state without limit, eventually becoming memory bound.

Thus, extensions or alternatives for current query processing and data
analysis techniques are needed for streams. In this chapter, we survey
several approaches to these challenges, based on data reduction, exploiting
semantics of data streams, and approximation. We first cover exact and lossy
filtering techniques, which attempt to reduce data stream volumes early in
the processing chain, in order to reduce the computational demands on later
operations. We then consider the use of stream “punctuation” to incorporate
knowledge about the internal structure in a data stream that might be useful
in unblocking operators or limiting the amount of state that must be retained.
We then consider “windowed” versions of classical operators, which can be
viewed as a continuous user query being approximated by a series of queries
over finite subsequences of an unbounded stream. In this context we also
briefly consider issues with disordered inputs. The final class of techniques
we cover are synopses, which in the stream case can be considered as
representations of data streams that a) summarize the stream input, b) can be
maintained online at stream input rates, c) occupy much less space the full
data, and d) can be used to provide exact or approximate answers to some
class of user queries.

5. Filtering, Punctuation, Windows and Synopses 3

2. STREAM FILTERING: VOLUME REDUCTION

Faced with stream volumes beyond what available resources allow
processing in their entirety, a stream processor can simply abort, or
somehow reduce the volume to a manageable level. Such reduction can take
several forms: precise filtering, data merging, or data dropping.

2.1 Precise Filtering

Precise filtering extracts some portion of a stream query for application
nearer the stream source, with the expectation of reducing stream volume
while not changing the final query answer. Filtering operations generally
need to be simple, such as selection or projection, and applicable on an item-
by-item basis, so as not to consume extensive processing cycles or memory.
Filtering should also avoid introducing long delays into time-critical data
streams. This filtering may happen at the stream source, near the stream-
processing system, or in between.

A source may support subscription to a substream of the full data stream.
For example, the Virtual Object Ring Buffer (VORB) facility of the
RoadNet project (Rajasekar et al., 2004) supports access to real-time
information from an environmental-sensing network. A VORB client can
request a substream of this information restricted on (geographic) space,
time and attribute. Financial feeds also support filtering, such as on specific
stocks or currencies.

Hillston and Kloul (2001) describe an architecture for an online auction
system where active network nodes serve as filters on the bid stream. Such a
node can filter out any bid for which a higher bid has already been handled
for the same item. (It is also possible that highest bid information is
periodically disseminated from the central auction server to the active
network nodes, as otherwise an active node is only aware of bid values that it
handles.) Such processing is more complex than item-at-a-time filtering. It
essentially requires an anti-semijoin of incoming bids with a cache of
previous bids. However, the space required can be reduced from what is
required for a general semijoin by two considerations. First, only one record
needs to be retained for each auction item – the one with the maximum price
so far. (Actually, just the item ID and bid price suffice.) Second, the cache of
previous bids does not need to be complete – failure to store a previous bid
for an item only means that later items with lower prices are not filtered at
the node. Thus an active node can devote a bounded cache to past
information, and select bids to keep in the cache based on recency or
frequency of activity on an item.

4 Chapter 5

Gigascope (Johnson et al., 2003) is a stream-processing system targeted
at network monitoring and analysis. It supports factoring of query conditions
that can be applied to the raw data stream arriving at the processor. These
conditions can be applied in the network interface subsystem. In some
versions, these filter conditions are actually pushed down into a
programmable network interface card (NIC).

2.2 Data Merging

Data merging seeks to condense several data items into one in such a
way that the ultimate query can still be evaluated. Consider a query that is
computing the top-5 most active network flows in terms of bytes sent. (Here
a flow is defined by a source and destination IP address and port number.)
Byte-count information for packets from the same flow can be combined and
periodically transferred to the stream-processing system. This approach is
essentially what routers do in generating Netflow records (Cisco Systems,
2001), reducing the volume of data that a network monitoring or profiling
application needs to deal with. Of course, only certain queries on the
underlying network traffic will be expressible over the aggregated Netflow
records. A query looking for the most active connections is expressible, but
not an intrusion-detection query seeking a particular packet signature.
Merging can be viewed as a special case of synopsis. (See Section 6.)

2.3 Data Dropping

Data dropping (also called load shedding) copes with high data rates by
discarding data items from the processing stream, or limiting the processing
of selected items. Naïve dropping happens in an uncontrolled manner – for
example, items are evicted without processing from an overflowed buffer.
More sophisticated dropping schemes introduce some criterion that identifies
which data items to remove, based for example, on the effect upon the
accuracy of the answer or an attempt to get a fair sample of a data stream.

The simplest approaches can be termed blind dropping: the decision to
discard a data item is made without reference to its contents. In the crudest
form, blind dropping discards items when CPU or memory limits are
exceeded: Data items are dropped until the stream-processing system catches
up. Such a policy can be detrimental to answer quality, with long stretches of
the input being unrepresented. Better approaches attempt to anticipate
overload and spread out the dropped data items, either randomly or
uniformly. For example a VORB client can throttle the data flow from a data
source, requesting a particular rate for data items, such as 20 per minute.

5. Filtering, Punctuation, Windows and Synopses 5

Dropping can take place at the stream source, at the leaves of a stream
query, or somewhere in the middle of a query plan. The Aurora data stream
manager provides an explicit drop operator that may be inserted at one or
more places in a network of query operators (Tatbul et al., 2003). The drop
can eliminate items randomly or based on a predicate (which is termed
semantic dropping). Another approach to intra-query dropping is the
modification of particular operators. Das et al. (2003) and Kang and
Naughton (2003) present versions of window join (see Section 4) that shed
load by either dropping items or avoiding the join of particular items.

Whatever mechanism is used for dropping data items, key issues are
determining how much to drop and maximizing answer quality for a given
drop rate. The Aurora system considers essentially all placements of drop
operators in an operator network (guided by heuristics) and precomputes a
sequence of alternative plans that save progressively more processing cycles,
called a load-shedding road map (LSRM). For a particular level of cycle
savings, Aurora selects the plan that maximizes the estimated quality of
service (QoS) of the output. QoS specifications are provided by query clients
and indicate, for example, how the utility of an answer drops off as the
percentage of full output decreases, or which ranges of values are most
important. The two window-join algorithms mentioned above attempt to
maximize the percentage of join tuples produced for given resource limits.
Das et al. point out that randomized dropping of tuples in a join can be
ineffective by this measure. Consider a join between r tuples and s tuples on
attribute A. Any resources expended on an r tuple with r.A = 5 is wasted if
the only s tuple with s.A = 5 has been discarded. They instead collect
statistics on the distribution of join values, and retain tuples that are likely to
contribute to multiple output tuples in the join. Kang and Naughton look at
how to maximize output of a window join given limitations on
computational or memory resources. They demonstrate, for example, with
computational limits, the operator should favor joining in the direction of the
smaller window to the larger window. For limited memory, however, it is
better to allocate that resource to storing tuples from the slower input.

There are tensions in intelligent data dropping schemes, however. On one
hand, one would like to select data items to discard carefully. However, a
complicated selection process can mean more time is spent selecting a data
item to remove than is saved by removing it. Similarly, the value of a data
item in the answer may only be apparent after it passes through some initial
operators. For example, it might be compared to frequent data values in a
stream with which it is being joined. However, discarding a data item in the
middle of a query plan means there are “sunk costs” already incurred that
cannot be reclaimed.

6 Chapter 5

2.4 Filtering with Multiple Queries

For any of the filtering approaches – precise filtering, data merging and
data dropping – the situation is more complicated in the (likely) scenario that
multiple queries are being evaluated over the data streams. Now, the
combined needs of all the queries must be met. With precise filtering, for
example, the filter condition will need to be the union of the filters for the
individual queries, which means the processing of the raw stream may be
more complex, and the net reduction in volume smaller. In a semantic data-
dropping scheme, there may be conflicts in that the least important data
items for one query are the most important for another. (In the multi-query
case, Aurora tries to ensure different users receive answers of approximately
equal utility according to their QoS specifications.)

3. PUNCTUATIONS: HANDLING UNBOUNDED
BEHAVIOR BY EXPLOITING STREAM
SEMANTICS

Blocking and stateful query operators create problems for a query engine
processing unbounded input. Let us first consider how a traditional DBMS
executes a query plan over bounded data. Each query operator in the plan
reads from one or more inputs that are directly beneath that operator. When
all data has been read from an input, the operator receives an end of file
(EOF) message. Occasionally a query operator will have to reread the input
when it receives EOF (e.g., a nested-loops join algorithm). If not, the query
operator has completed its work. A stateful query operator can purge its state
at this point. A blocking operator can output its results. Finally, the operator
can send the EOF message to the next operator along in the query plan.

The EOF message tells a query operator that the end of the entire input
has arrived. What if a query operator knew instead that the end of a subset of
the input data set had arrived? A stateful operator might purge a subset of the
state it maintains. A blocking operator might output a subset of its results.
An operator might also notify the next operator in the query plan that a
subset of results had been output. We will explain how “punctuations” are
included in a data stream to convey knowledge about ends of data subsets.

For example, suppose we want to process data from a collection of
environmental sensors to determine the maximum temperature each hour
using a DBMS. Since data items contain the time they were emitted from the
sensor, we can assume that data from each sensor is sorted (non-decreasing)
on time. In order to calculate the maximum temperature each hour from a
single sensor, we would use the following query (in SQL):

5. Filtering, Punctuation, Windows and Synopses 7

SELECT MAX(temp)
FROM sensor
GROUP BY hour;
Unfortunately, since group-by is blocking and the input is unbounded,

this query never outputs a result. One solution is to recognize that hour is
non-decreasing. As data items arrive, the group-by operator can maintain
state for the current hour. When a data item arrives for a new hour, the
results for the current hour can be output, and the query no longer blocks.

This approach breaks down when the input is not sorted. Even in our
simple scenario, data items can arrive out-of-order to the group-by operator
for various reasons. We will discuss disorder in data streams in Section 5. By
embedding punctuations into the data stream and enhancing query operators
to exploit punctuations, the example query will output results before
receiving an EOF, even if data arrive out-of-order.

3.1 Punctuated Data Streams

A punctuation is an item embedded into a data stream that denotes the
end of some subset of data (Tucker et al., 2003). At a high level, a
punctuation can be seen as a predicate over the data domain, where data
items that pass the predicate are said to match the punctuation. In a
punctuated stream, any data item that matches a punctuation will arrive
before that punctuation. Given a data item d and a punctuation p, we will use
match(d,p) as the function that indicates whether a d matches p.

The behaviors exhibited by a query operator when the EOF message is
received may also be partially performed when a punctuation is received.
Clearly, EOF will not arrive from unbounded inputs, but punctuations break
up the unbounded input into bounded substreams. We define three kinds of
behaviors, called punctuation behaviors, to describe how operators can take
advantage of punctuations that have arrived. First, pass behavior defines
when a blocking operator can output results. Second, keep behavior defines
when a stateful operator can release some of its state. Finally, propagate
behavior defines when an operator can output punctuations.

In the environmental sensor example, data output from each sensor are
sorted on time. We can embed punctuations into the stream at regular
intervals specifying that all data items for a particular prefix of the sorted
stream have arrived. For example, we can embed punctuations at the end of
each hour. This approach has two advantages: First, we do not have to
enhance query operators to expect sorted input (though we do have to
enhance query operators to support punctuations). Second, query operators
do not have to maintain sorted output.

8 Chapter 5

3.2 Exploiting Punctuations

Punctuation behaviors exist for many query operators. Non-trivial
behaviors are listed in Tables 5-1, 5-2, and 5-3. The pass behavior for group-
by says that results for a group can be output when punctuations have arrived
that match all possible data items that could participate in that group. The
keep behavior for group-by says that state for a group can be released in
similar circumstances. Finally, the propagate behavior for group-by says that
punctuations that match all possible data items for a group can be emitted
(after all results for that group have been output). For example, when group-
by receives the punctuation marking the end of a particular hour, the results
for that hour may be output, state required for that hour can be released, and
a punctuation for all data items with that hour can be emitted. Notice that
ordering of data items on the hour attribute does not matter. Even if data
arrives out of order, as long as the punctuation correctly denotes the end of
each hour, the results will still be accurate.

Many query operators require specific kinds of punctuations. We saw
above that the pass behavior for group-by was to output a group when
punctuations had arrived that matched all possible data items that can
participate in that group. A set of punctuations P describes a set of attributes
A if, given specific values for A, every possible data item with those attribute
values for A matches some punctuation in P. For example, punctuations from
the environment sensors that denote the end of a particular hour describe the
hour attribute, since they match all possible data items for a particular hour.

Table 5-1. Non-trivial pass behaviors for blocking operators, based on punctuations that have
arrived from the input(s).
Group-by Groups that match punctuations that describe the grouping attributes.
Sort Data items that match punctuations that have arrived covering all

possible data items in a prefix of the sorted output.
Difference (S1-S2) Data items in S1 that are not in S2 and match punctuations from S2.

Table 5-2. Non-trivial propagation behaviors for query operators, based on punctuations that
have arrived from the input(s).
Select All punctuations.
Dupelim All punctuations.
ProjectA The projection of A on punctuations that describe the projection attributes.
Group-by Punctuations that describe the group-by attributes.
Sort Punctuations that match all data in a prefix of the sorted output.
Join The result of joining punctuations that describe the join attributes.
Union Punctuations that equal some punctuation from each other inputs.
Intersect Punctuations that equal some punctuation from each other inputs.
Difference Punctuations that equal some punctuation from each other inputs.

5. Filtering, Punctuation, Windows and Synopses 9

Table 5-3. Non-trivial keep behaviors for stateful query operators, based on punctuations that
have arrived from the input(s).
Dupelim Data items that do not match any punctuations received so far.
Group-by Data items that do not match punctuations describing the grouping attributes.
Sort Data items that do not match any punctuations covering all data items in the

prefix of the sorted output defined in the pass behavior.
Join Data items that do not match any punctuations from the other input that

describe the join attributes.
Intersect Data items that do not match any punctuations from the other input.
Difference Data items that do not match any punctuations from the other input.

3.3 Using Punctuations in the Example Query

Suppose in the environmental sensor example each sensor unit outputs
data items that contain: sensor id, temperature, hour, and minute. Thus an
example stream from sensor 3 might contain: [<3,75,1,15>, <3,78,1,30>,
<3,75,1,45>, <3,76,2,0>, <3,75,2,15>, …]. We would like to have the
sensors emit punctuations that denoted the end of each hour, to unblock the
group-by operator. We treat punctuations as stream items, where
punctuations have the same schema as the data items they are matching and
each attribute contains a pattern. Table 5-4 lists the patterns an attribute in a
punctuation can take.

Table 5-4. Punctuation patterns
Pattern Representation Match Rule
wildcard * All values.
constant c The value c.
list {c1,c2,…} Any value ci in the list.
range (c1,c2) Values greater than c1 and less than c2.

We want punctuations embedded into the data stream denoting the end of

data items for a specific hour. One possible instantiation of such a stream
might be (where the punctuation is prefixed with P): [<3,75,1,15>,
<3,78,1,30>, <3,75,1,45>, <3,76,2,0>, P<*,*,1,*>, <3,75,2,15>]. All data
items containing the value 1 for hour match the punctuation.

How will punctuations that mark the end of each hour help our example
query, where we take input from many sensors? We examine each operator
in turn. Suppose our query plan is as in Figure 5-1, and each sensor emits
punctuations at the end of an hour. As data items arrive at the union
operator, they are immediately output to the group-by operator. Note that
union does not attempt to enforce order. Due to the propagation invariant for
union, however, punctuations are not immediately output as they arrive.
Instead, union stores punctuations in its state until all inputs have produced

10 Chapter 5

equal punctuations. At that point, a punctuation is output denoting the end of
data items for that hour.

Sensors DBMS

Union

Group-By

Figure 5-1. Possible query tree for the environment sensor query.

When a data item arrives at group-by, the appropriate group is updated,
in this case, the maximum temperature for a specific hour. When a
punctuation denoting the end of an hour arrives, group-by can output results
for that hour, clear out its state for that hour, and emit a new punctuation
denoting the end of data items for that hour. Thus, the query is unblocked,
and the amount of state required has been reduced, making it more
appropriate for unbounded data streams.

3.4 Sources of Punctuations

We have seen how punctuated streams help query operators. However,
we have not explained how punctuations get into a data stream. We posit a
logical operator that embeds punctuations and can occur in various places: at
the stream source, at the edge of the query processor, or after query operators
within the query. We call this operator the insert punctuation operator. There
are many different schemes for implementing the insert punctuation
operator. Which scheme to choose depends on where the information resides
for generating punctuation. We list some alternatives below:
• Source or sensor intelligence: The stream source may know enough to

emit a punctuation. For example, the individual environmental sensors
produced data sorted on time. When an hour ended, the sensor emitted
punctuation that all reports for that hour had been output.

• Knowledge of access order: Scan or fetch operations may know
something about the source, and generate punctuations based on that
knowledge. For example, if scan is able to use an index to read a source,

5. Filtering, Punctuation, Windows and Synopses 11

it may use information from that index to tell when all values for an
attribute have been read.

• Knowledge of stream or application semantics: An insert punctuation
operator may know something about the semantics of its source. In the
environmental example, temperature sensors might have temperature
limits, say -20F and 125F. An insert punctuation operator can output two
punctuations immediately: One that says there will not be any
temperature reports below -20F and another that says there will not be
any reports above 125F.

• Auxiliary information: Punctuation may be generated from sources
other than the input stream, such as relational tables or other files. In the
environmental example, we might have a list of all the sensor units. An
insert punctuation operator could use that to determine when all sensors
output results for a particular hour, and embed the punctuation itself. This
approach can remove punctuation logic from the sensors.

• Operator semantics: Some query operators impose semantics on output
data items. For example, the sort operator can embed punctuations based
on its sort order. When it emits a data item, it can follow that data item
with a punctuation stating that no more data items will appear that
precede that item in order.

3.5 Open Issues

We have seen that punctuations can improve the behavior of individual
query operators for processing unbounded data streams. One issue not
addressed yet is how to determine if punctuations can improve the behavior
of entire queries. There are two questions here: First, what kinds of queries
can be helped by punctuations? Not all queries can be improved by
punctuations; we would like to be able to characterize those that can. The
second question is, given a query (that we believe can be improved by
punctuations), what kinds of punctuations will help that query? We refer to
the set of punctuations that will be emitted from a stream source as the
punctuation scheme of that source. In the sensor query, a punctuations
scheme that describes the hour attribute helps the query, but so do schemes
that punctuate every 20 minutes, or at the end of every second hour.

A related question is, of the kinds of punctuation schemes that will
improve the behavior of a query, which are most efficient? Again referring
to the environmental query, if punctuations are emitted at the end of each
hour, memory usage is minimized since state is purged as soon as possible.
However, this choice maximizes the number of punctuations in the stream. If
instead punctuations are embedded every six hours, then memory usage is

12 Chapter 5

increased but the number of punctuations in the stream is reduced and the
processing time for them is reduced.

One final issue relates to query optimization. Given a logical query, do
two (or more) equivalent query plans exist that exhibit different behaviors
based on the same input punctuation scheme? For example, if one query plan
is unblocked by the scheme and another is not, then choosing the unblocked
query plan is most logical. Optimizing for state size is more difficult, since
punctuation schemes do not give guarantees on when a particular
punctuation will arrive. However, it would be useful for a query optimizer to
choose the query plan with the smallest predicted requirement for memory.

3.6 Summary

Punctuations are useful for improving the behavior of queries over
unbounded data streams, even when the input arrives out-of-order. Query
operators act on punctuations based on three kinds of behaviors: Pass
behavior defines when a blocking operator can output results. Keep behavior
defines what state must be kept by a stateful operator. Propagation behavior
defines when an operator can emit punctuation.

4. WINDOWS: HANDLING UNBOUNDED
BEHAVIOR BY MODIFYING QUERIES

Windowing operates on the level of either a whole query or an individual
operator, by changing the semantics from computing one answer over an
entire (potentially unbounded) input streams to repeated computations on
finite subsets (windows) of one or more streams. Two examples:
1. Consider computing the maximum over a stream of temperature readings.

Clearly, this query cannot emit output while data items are still arriving.
A windowed version of this query might, for example, compute the
maximum over successive 3-minute intervals, emitting an output for each
3-minute window.

2. Consider a query that matches packet information from two different
network routers. Retaining all items from both sources in order to
perform a join between them will quickly exhaust the storage of most
computing systems. A windowed version of this query might restrict the
matching to packets that have arrived in the last 15 seconds. Thus, any
packet over 15 seconds old can be discarded, once it has been compared
to the appropriate packets from the other input.
There are several benefits from modifying a query with windows.

5. Filtering, Punctuation, Windows and Synopses 13

• An operation, such as aggregation, that would normally be blocking can

emit output even while input continues to arrive.
• A query can reduce the state it must retain to process the input streams.
• Windowing can also reduce computational demands, by limiting the

amount of data an operation such as join must examine at each iteration.
There have been many different ways of defining windows proposed.

The size of a window can be defined in terms of the number of items or by
an interval based on an attribute in the items, such as a timestamp. The
relationship between successive window instances can vary. In a tumbling
window (Carney et al., 2002), successive window instances are disjoint,
while in a sliding window the instances overlap. Window instances may
have the same or different sizes. For example, in a landmark window
(Gehrke et al., 2001), successive instances share the same beginning point
(the landmark), but have successively later endpoints.

5. DEALING WITH DISORDER

Stream query approaches such as windowing often require that data
arrive in some order. For example, consider the example from Section 3,
where we want the maximum temperature value from a group of sensors
each hour. This query can be modified to a window query that reports the
maximum temperature data items in each hour interval is output, as follows
(using syntax similar to CQL (Arasu et al., 2003)):

SELECT MAX(temp)
FROM sensor [RANGE 60 MINUTES];
In a simple implementation, when a data item arrives that belongs to a

new window, the results for the current window is “closed”, its maximum is
output, and state for a new window is initialized. However, such an
implementation assumes that data arrive in sorted order. Suppose the data
items do not quite arrive in order. How can we accurately determine if a
window is closed?

5.1 Sources of Disorder

A data stream is in disorder when it has some expected arrival order, but
its actual arrival order does not follow the expected arrival order exactly. It
may be nearly ordered, but with a few exceptions. For example, the
following list of integers is in disorder: [1,2,3,5,4,6,7,9,10,8]. Clearly the list
is close to being in order, and can be put back in order with buffering.

Disorder can arise in a data stream for several reasons: Data items may
take different routes, with different delays, from their source; the stream

14 Chapter 5

might be a combination of many sources with different delays; the ordering
attribute of interest (e.g., event start time) may differ from the order in which
items are produced (e.g., event end time). Further, an operator in a stream
processing system may not maintain sort order in its output, even if the data
items arrive in order. For a simple example, consider the union operator.
Unless it is implemented to maintain sorted order, its output will not
necessarily be ordered.

5.2 Handling Disorder

A query operator requiring ordered data can be modified to handle data
streams in disorder. First, it must know the degree of disorder in the stream:
how far away from sorted order each data item in the stream can be. There
are two approaches we discuss: global disorder properties and local
disorder properties. Once the operator can determine the degree of disorder,
it has a least two choices on how to proceed. It can put its input into sorted
order, or it can process the input out of order.

5.2.1 Expressing the Degree of Disorder in a Data Stream

The degree of disorder can be expressed using global or local stream
constraints. A global disorder property is one that holds for the entire stream.
Several systems use this approach. In Gigascope (Johnson et al., 2003), the
degree of disorder can be expressed in terms of the position of a data item in
the stream, or in terms of the value of the sorting attribute in a data item. A
stream is increasing within

�
 if, for a data item t in stream S, no data item

arrived
�
 items before t on S that precede t in the sort order. Thus, disorder is

expressed in terms of a data item’s position in the stream. Similarly, a stream
is banded-increasing (�) for an attribute A if, for a data item t in stream S, no
data item precedes t in S with a value for A greater than t.A + � ..

Related to these notions from Gigascope are slack in Aurora (Carney et
al., 2002) and k-constraints in STREAM (Babu et al., 2004). In Aurora, an
operator that requires sorted input is given an ordering specification, which
contains the attribute on which the order is defined and a slack parameter.
The slack parameter specifies how out of order a data item might arrive, in
terms of position. In STREAM, a k-constraint specifies how strictly an input
adheres to some constraint. One kind of k-constraint is k-ordering, where k
specifies that out-of-order items are at most k positions away from being in
order. Note that k = 0 implies sorted input.

There are two advantages to using a global disorder property approach.
First, it is relatively simple to understand in that it is generally expressed
with a single integer. Second, it generally gives a bound on the amount of

5. Filtering, Punctuation, Windows and Synopses 15

state required during execution and the amount of latency to expect in the
output. However, global disorder properties also have disadvantages. First, it
is not always clear what the constraint should be for non-leaf query operators
in a query plan. For example, suppose a query has a windowed aggregate
operator above the union of five inputs. We may know the degree of disorder
of each input to the union, but what is the degree of disorder for the output of
union? A second disadvantage is that it is generally not flexible. A bursty
stream will likely have a higher degree of disorder during bursts and a lower
degree during lulls. If we want accurate results, we must set global disorder
constraint to the worst-case scenario, increasing the latency at other times.

A second way to express the degree of disorder is through local disorder
properties (Tucker and Maier, 2003). In this method, we are able to
determine through properties of the stream the degree of disorder during
execution. One method to determining local disorder is to use punctuations.
Appropriate punctuation on an ordering attribute can be used, for example,
to close a window for a windowed operator. Punctuations are propagated to
other operators higher up in the query plan. Thus, there is not the problem of
how disorder in lower query operators translates to disorder in operators
further along in a query tree. In STREAM, the k value for a k-constraint can
dynamically change based on data input, similar to a local disorder property.
A monitoring process checks the input data items as they arrive, and tries to
detect when the k value for useful constraints changes during execution.

The main advantage of using a local disorder property approach is its
flexibility. The local disorder property approach can adapt to changes in the
stream, such as bursts and lulls. However, since the degree of disorder may
not remain static throughout execution, we cannot determine a bound for the
state requirement as we can with global disorder properties.

5.2.2 Processing Disordered Data Streams

Once an operator knows the degree of disorder in its input, it can begin
processing data from the input stream. One approach in handling disorder is
to reorder the data as they arrive in the leaf operators of the query, and use
order-preserving operators throughout the query. In Aurora, disordered data
streams are ordered using the BSort operator. BSort performs a buffer-based
sort given an ordering specification. Suppose n is the slack in the ordering
specification. Then the BSort operator sets up a buffer of size n+1, and as
data items arrive they are inserted into the buffer. When the buffer fills, the
minimum data item in the buffer according to the sort order is evicted. Note
that if data items arrive outside the slack parameter value, they are still
placed in the buffer and output as usual. Thus, the BSort operator is only an
approximate sort, and its output may still be in disorder.

16 Chapter 5

As data are sorted (at least approximately), later operators should
preserve order. Some operators, such as select and project, already maintain
the input order. It is a more difficult task for other operators. Consider an
order-preserving version of union, and suppose it is reading from two inputs
already in order. Union outputs the minimum data item, according to the sort
order, from the two inputs. This implementation is simple for reliable inputs,
but data streams are not always reliable. Suppose one of the inputs to union
stalls. The union operator cannot output data items that arrive on the other
input until the stalled input resumes. Maintaining order in other operators,
such as join, is also non-trivial.

Instead of forcing operators to maintain order, an alternative is for data to
remain disordered, and process each data item as it arrives. Many operators
(again select and project are good examples) do not require data to arrive in
order. However, operators that require some sort of ordered input must still
determine the degree if disorder in the input. If we use one of the global
disorder property approaches, then we must estimate the degree of disorder
of the output based on the global disorder properties of the input. However,
if we use punctuations, then disorder information is carried through the
stream automatically using each operator’s propagation behaviors.

5.3 Summary

Many operators, such as window operators, are sensitive to window
order. However, as streams are not always reliable data sources, disorder
may arise. To handle disorder, an operator must first determine the degree of
disorder in its inputs. Once the degree of disorder is determined, then the
operator can either resort the data process the data out-of-order. We have
presented different ways to express disorder in a stream, and the advantages
and disadvantages of sorting data compared to processing data out-of-order.

6. SYNOPSES: PROCESSING WITH BOUNDED
MEMORY

Two key parameters for processing user queries over continuous,
potentially unbounded data-streams are (1) the amount of memory made
available to the on-line algorithm, and (2) the per-item processing time
required by the query processor. Memory, in particular, constitutes an
important design constraint since, in a typical streaming environment, only
limited memory resources are available to the data-stream processing
algorithms. In such scenarios, we need algorithms that can summarize the
underlying streams in concise, but reasonably accurate, synopses that can be

5. Filtering, Punctuation, Windows and Synopses 17

stored in the allotted amount of memory and can be used to provide
approximate answers to user queries along with some reasonable guarantees
on the quality of the approximation. Such approximate, on-line query
answers are particularly well suited to the exploratory nature of most data-
stream processing applications such as, e.g., trend analysis and fraud or
anomaly detection in telecom-network data, where the goal is to identify
generic, interesting or “out-of-the-ordinary” patterns rather than provide
results that are exact to the last decimal.

In this section, we briefly discuss two broad classes of data-stream
synopses and their applications. The first class of synopses, termed AMS
sketches, was originally introduced in an influential paper by Alon, Matias,
and Szegedy (1996) and relies on taking random linear projections of a
streaming frequency vector. The second class of synopses, termed FM
sketches, was pioneered by Flajolet and Martin (1985) and employs hashing
to randomize incoming stream values over a small (i.e., logarithmic-size)
array of hash buckets. Both AMS and FM sketches are small-footprint,
randomized data structures that can be easily maintained on-line over rapid-
rate data streams; furthermore, they offer tunable, probabilistic accuracy
guarantees for estimating several useful classes of aggregate user queries. In
a nutshell, AMS sketches can effectively handle important aggregate queries
that rely on bag semantics for the underlying streams (such as frequency-
moment or join-size estimation), whereas FM sketches are useful for
aggregate stream queries with set semantics (such as estimating the number
of distinct values in a stream). Before describing the two classes of sketches
in more detail, we first discuss the key elements of a stream-processing
architecture based on data synopses.

6.1 Data-Stream Processing Model

Our generic data-stream processing architecture is depicted in Figure 5-2.
In contrast to conventional DBMS query processors, our query-processing
engine is allowed to see the data tuples in relations rRR ,...,1 only once and
in the fixed order of their arrival as they stream in from their respective
source(s). Backtracking over a stream and explicit access to past tuples is
impossible; furthermore, the order of tuples arrival for each streaming
relation iR is arbitrary and duplicate tuples can occur anywhere over the
duration of the stream. (In general, the stream rendering each relation iR
can comprise tuple deletions as well as insertions, and the sketching
techniques described here can readily handle such update streams.)

Consider an aggregate query Q over relations rRR ,...,1 and let N denote
an upper bound on the total number of streaming tuples. Our data-stream
processing engine is allowed a certain amount of memory, typically

18 Chapter 5

significantly smaller than the total size of its inputs. This memory is used to
continuously maintain a concise sketch synopsis of each stream iR (Figure
5-2). The key constraints imposed on such synopses are that: (1) they are
much smaller than the size of the underlying streams (e.g., their size is
logarithmic or poly-logarithmic in N); and, (2) they can be easily maintained,
during a single pass over the streaming tuples in the (arbitrary) order of their
arrival. At any point in time, the approximate query-processing engine can
combine the maintained collection of synopses to produce an approximate
answer to query Q.

Figure 5-2. Synopsis-based stream query processing architecture.

6.2 Sketching Streams by Random Linear Projections:
AMS Sketches

Consider a simple stream-processing scenario where the goal is to
estimate the size of a binary equi-join of two streams 1R and 2R on join
attribute A, as the tuples of 1R and 2R are streaming in. Without loss of
generality, let }1,...,0{][−= MM denote the domain of the join attribute A,
and let)(if k be the frequency of attribute value i in kR . Thus, we want to
produce an estimate for the expression Q = � ⋅

i
ifif)()(21 . Clearly,

estimating this join size exactly requires space that is at least linear in M,
making such an exact solution impractical for a data-stream setting.

In their influential work, Alon et al. (1996, 1999) propose a randomized
join-size estimator for streams that can offer strong probabilistic accuracy
guarantees while using space that can be significantly sublinear in M. The
basic idea is to define a random variable X that can be easily computed over
the streaming values of AR .1 and AR .2 such that: (1) X is an unbiased (i.e.,

5. Filtering, Punctuation, Windows and Synopses 19

correct on expectation) estimator for the target join size, so that E[X] = Q;
and, (2) X's variance can be appropriately upper-bounded to allow for
probabilistic guarantees on the quality of the Q estimate. This random
variable X is constructed on-line from the two data streams as follows:
• Select a family of four-wise independent binary random variables

}1,...,0:{ −= Miiξ , where each iξ assumes a value of either +1 or –1,
each with probability ½. Informally, the four-wise independence
condition means that for any 4-tuple of iξ variables and for any 4-tuple of
{+1, -1} values, the probability that the values of the variables coincide
with those in the {+1, -1} 4-tuple is exactly 1/16 (the product of the
equality probabilities for each individual iξ). The crucial point here is
that, by employing known tools for the explicit construction of small
sample spaces supporting four-wise independence, such families can be
efficiently constructed on-line using only)(log MO space.

• Define 21 XXX ⋅= , where � ⋅=
i ikk ifX ξ)(, for k=1,2. The scalar

quantities 1X and 2X are called the atomic AMS sketches of streams 1R
and 2R , respectively. Each kX is simply a random linear projection
(i.e., an inner product) of the frequency vector of attribute ARk . with the
random vector of iξ ’s that can be efficiently generated from the
streaming values of ARk . : Initialize a counter with 0=kX and simply
add iξ to kX whenever value i is observed in the ARk . stream.

Using the four-wise independence property for the iξ ’s, it is easy to verify
that the atomic estimate X constructed using the process above is an
unbiased estimate for Q and its variance can be appropriately upper bounded
(Alon et al., 1996, 1999). Furthermore, note that, by virtue of linearity,
handling deletions in the stream(s) becomes straightforward: To delete an
occurrence of value i, simply subtract iξ from the running counter.

As an example, suppose the AR .1 and AR .2 streams comprise, in order,
the data values [1, 1, 2, 3, 1, 3] and [3, 1, 3, 1, 1], respectively. Projecting on
the family of random variables iξ , the atomic sketches of the two streams
are 3213132111 23 ξξξξξξξξξ ++=+++++=X and 312 23 ξξ +=X ,
respectively. Using a specific family of binary random variates, say =ξ

}1,1,1{ 321 −=+=−= ξξξ , we get the atomic AMS sketches =1X -3+1-2
= -4 and =2X -3-2 = -5, and the atomic estimate =X (-4)(-5) = 20, which
approximates the true size of the binary join, i.e., 13.

The approximation guarantees of the randomized AMS join-size estimate
can be improved using standard boosting techniques that maintain several
independent instantiations of the above-described process, and use averaging
and median-selection operators over the atomic X estimates to boost
accuracy and probabilistic confidence (Alon et al. 1996, 1999). Thus, the
AMS sketch for each stream (Figure 5-2) essentially comprises several
independent atomic AMS sketch instances (constructed by simply selecting

20 Chapter 5

independent random seeds for generating the families of four-wise
independent ξ 's for each instance).

Extensions of the Basic Method and Applications. The basic ideas of
AMS (more generally, random-linear-projection) sketches have found
applications in a number of important data-stream processing problems.
Dobra et al. (2002, 2004) extend the techniques and results of Alon et al. to
handle the estimation of complex, multi-join aggregate queries over streams;
they also develop algorithms for effectively processing multiple such queries
concurrently over a collection of streams by intelligently sharing sketching
space and processing. Feigenbaum et al. (1999) and Indyk (2000) use
random linear projections to accurately estimate pL norms over vectors
rendered as streams of item arrivals. AMS sketches are also employed by
Charikar et al. (2002) to efficiently process top-k queries over a stream of
items, and Gilbert et al. (2001, 2002) to build approximate histograms and
wavelet decompositions over streams. Recent work has also demonstrated
the utility of AMS sketching in dealing with more complex stream-
processing scenarios, such as approximating queries with spatial predicates
(e.g., overlap joins) over streams of multi-dimensional spatial data (Das et
al., 2004), or estimating tree-edit-distance similarity joins over streaming
XML documents (Garofalakis and Kumar, 2003).

6.3 Sketching Streams by Hashing: FM Sketches

Consider the problem of estimating the number of distinct values in a
stream of arriving attribute values R.A, where the domain of the attribute is
again assumed, without loss of generality, to be }1,...,0{][−= MM . (Here,
R can denote the union of any subset of the iR streams in Figure 5-2.) As a
simple example, for the stream [1, 3, 1, 3, 5, 3, 7] the exact number of
distinct values is 3; note that, unlike joins, this query has set semantics (i.e.,
the multiplicity of values appearing in the stream is unimportant). Once
again, this estimation problem can be solved exactly in space that is linear in
M, which could be impractical in a data-stream setting.

To build a small-space estimate for the number of distinct values in a
stream, Flajolet and Martin (1985) employ a combination of: (1) a hash
function h() that maps incoming data values uniformly and independently
over the collection of binary strings in the input data domain [M]; and, (2)
the lsb() operator that returns the position of the least-significant 1-bit in its
input binary string. The basic idea in their scheme is to map each incoming
data value i to lsb(h(i)). Obviously, }1log,...,0{))((−∈ Mihlsb and,

5. Filtering, Punctuation, Windows and Synopses 21

furthermore, it is easy to verify that lsb(h(i))=k with probability)1(2 +− k for
each 1log,...,0 −= Mk .

An atomic FM sketch maintained by the basic Flajolet-Martin scheme is
simply a bit-vector of size)(log MO . This bit-vector is initialized to all
zeros and, for each incoming stream value i, the bit located at position
lsb(h(i)) is switched on. The key observation here is that, by virtue of the
exponentially-decaying probabilities for the lsb(h()) values, we expect a
fraction of)1(2 +− k of the distinct values in the stream to map to location k in
the bit-vector; in other words, if D denotes the number of distinct values in
the stream, we expect D/2 values to map to bit 0, D/4 values to map to bit 1,
and so on. Thus, intuitively, at any point in the stream, the location l of the
leftmost zero in the FM bit-vector sketch provides a good basic estimate of

Dlog , or Dl ≈2 .
Again, the accuracy and probabilistic confidence of FM-sketching

estimates can be boosted using several independent instantiations of the
process above (i.e., several atomic FM sketches with independently-chosen
hash functions). Detailed analyses and formal results for FM-sketching
techniques can be found in (Alon et al., 1996; Flajolet and Martin, 1985;
Ganguly et al., 2003). FM sketches can also handle deletions in the stream:
The basic idea is to maintain a counter (instead of a bit) for each location of
the synopsis vector, and simply increment (decrement) the counter at
location lsb(h(i)) for each insertion (respectively, deletion) of value i.

Extensions of the Basic Method and Applications. Recent work has
extended the ideas of FM (i.e., hashing-based) sketches and explored their
use in different data-stream processing domains. Gibbons (2001) employs
the idea of hashing into buckets with exponentially decaying probabilities to
obtain a distinct sample summary for estimating SQL aggregates with a
DISTINCT clause. Ganguly et al. (2003) extend the basic FM sketch
synopsis structure and propose novel estimation algorithms for estimating
general set-expression cardinalities over streams of updates. Finally,
Considine et al. (2004) propose FM-sketching techniques for approximate,
communication-efficient aggregation over wireless sensor networks.

6.4 Summary

AMS and FM sketches represent two important classes of randomized
synopsis data structures for streaming data with several applications in
stream-processing problems. Besides having a small memory footprint and
being easily computable in the streaming model, these sketch synopses can
also easily handle deletions in the streams. An additional benefit of both

22 Chapter 5

AMS and FM sketches is that they are composable; that is, they can be
individually computed over a distributed collection of sites (each observing
only a portion of the stream) and then combined (e.g., through simple
addition or bit-wise OR) to obtain a sketch summary of the overall stream.

Several other types of (deterministic and randomized) stream synopses
have been proposed for different streaming problems. Vitter’s reservoir-
sampling scheme for constructing a uniform random sample over an insert-
only stream (Vitter, 1985) is probably one of the first known stream-
summarization techniques. Greenwald and Khanna (2001) and Manku and
Motwani (2002) propose deterministic, small-footprint stream synopses for
computing approximate quantiles and frequent itemsets, respectively. Datar
et al. (2002) consider the problem of maintaining approximate counts over a
sliding window of an input stream; their proposed (deterministic)
exponential histogram synopses employ histogram buckets of exponentially-
growing sizes and require space that is only poly-logarithmic in the size of
the sliding window. Other stream-synopsis structures for sliding-window
computation have been recently proposed by Gibbons and Tirthapura (2002),
and Arasu and Manku (2004).

7. DISCUSSION

We wish to raise two points in closing. The first is that there are areas of
overlap among the various techniques described in this chapter. For
example, a windowed aggregate query is not that different from a group-by
query on the window attribute with appropriate punctuation. Both serve to
unblock a normally blocking operation, and both limit the amount of state
the operations in a query must maintain. The second is that these techniques
can sometimes be used in combination. For example, the Data Triage
architecture of the TelegraphCQ system switches to computing a synopsis of
an incoming data stream when it must drop tuples because it cannot keep up
with the current data rate (Reiss and Hellerstein, 2004).

ACKNOWLEDGEMENTS

We would like to thank Leonidas Fegaras, Jin Li, Vassilis Papadimos,
Tim Sheard and Kristin Tufte for discussions on punctuations, window
queries and disorder, as well as Rajeev Rastogi for numerous discussions on
stream synopses. The first two authors were supported in part by DARPA
through NAVY/SPAWAR contract N66001-99-108908 and by NSF ITR
award IIS 0086002.

5. Filtering, Punctuation, Windows and Synopses 23

REFERENCES

Alon, N., Gibbons, P., Matias, Y., Szegedy, M., 1999, Tracking join and self-join sizes in
limited storage, in Proceedings of ACM PODS Conference, pp. 10–20.

Alon, N., Matias, Y., Szegedy, M., 1996, The space complexity of approximating the
frequency moments, in Proceeding of ACM STOC Conference, pp. 20–29.

Arasu, A., Babu, S., Widom, J., 2003, The CQL continuous query language: semantic
foundations and query execution, Stanford University TR No. 2003-67 (unpublished).

Arasu, A., Manku, G. S., 2004, Approximate counts and quantiles over sliding windows, in
Proceedings of ACM PODS Conference, pp. 286-296.

Babu, S., Srivastava, U., Widom, J., 2004, Exploiting k-constraints to reduce memory
overhead in continuous queries over data streams, ACM TODS, 29(3):545–580.

Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S., 2002, Monitoring streams – A new class of data
management applications, in Proceedings of VLDB Conference, pp. 215–226.

Charikar, M., Chen, K., Farach-Colton, M., 2002, Finding frequent items in data streams,
in Proceedings of ICALP Conference, pp. 3–15.

Cisco Systems, 2001, Netflow Services Solutions Guide.
Considine, J., Li, F., Kollios, G., Byers J., 2004, Approximate aggregation techniques for

sensor databases, in Proceedings of IEEE ECDE Conference, pp. 449–460.
Das, A., Gehrke, J., Riedewald, M., 2003, Approximate join processing over data streams,

in Proceedings of ACM SIGMOD Conference, pp. 40–51.
Das, A., Riedewald, M., Gehrke, J., 2004, Approximation techniques for spatial data, in

Proceedings of ACM SIGMOD Conference, pp. 695–706.
Datar, M., Gionis, A., Indyk, P., Motwani, R., 2002, Maintaining stream statistics over

sliding windows, in Proceedings of SODA Conference, pp. 635-644.
Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R., 2002, Processing complex aggregate

queries over data streams, in Proceedings of ACM SIGMOD Conference, pp. 61–72.
Dobra, A., Garofalakis, M., Gehrke, J., Rastogi, R., 2004, Sketch-based multi-query

processing over data streams, in Proceedings of EDBT Conference, pp. 551–568.
Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M., 1999, An approximate 1L -

difference algorithm for massive data streams, Proc. IEEE FOCS Conference, p. 501.
Flajolet, P., Martin, N., 1985, Probabilistic counting algorithms for data base applications,

JCSS Journal, 31(2):182–209.
Ganguly, S., Garofalakis, M., Rastogi, R., 2003, Processing set expressions over

continuous update streams, in Proceedings of ACM SIGMOD Conference, pp. 265–276.
Garofalakis, M., Kumar, A., 2003, Correlating XML data streams using tree-edit distance

embeddings, in Proceedings of ACM PODS Conference, pp. 143–154.
Gehrke, J., Korn, F., Srivastava, D., 2001, On computing correlated aggregates over

continual data streams, in Proceedings of ACM SIGMOD Conference, pp. 13–24.
Gibbons, P., 2001, Distinct sampling for highly-accurate answers to distinct values queries

and event reports, in Proceedings of VLDB Conference, pp. 541–550.
Gibbons, P., Tirthapura, S., 2002, Distributed streams algorithms for sliding windows, in

Proceedings of ACM SPAA Conference, pp. 63-72.
Gilbert, A. C., Kotidis, Y., Muthukrishnan, S., Strauss, M., 2001, Surfing wavelets on

streams: one-pass summaries for approximate aggregate queries, in Proceedings of
VLDB Conference, pp. 79–88.

Gilbert, A. C., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M., 2002, Fast,
small-space algorithms for approximate histogram maintenance, in Proceedings of
ACM STOC Conference, pp. 389–398.

24 Chapter 5

Greenwald, M. B., Khanna, S., 2001, Space-efficient online computation of quantile
summaries, in Proceedings of ACM SIGMOD Conference, pp. 58-66.

Hillston, J., Kloul, L., 2001, Performance investigation of an on-line auction system,
Concurrency and Computation: Practice and Experience, 13:23-41.

Indyk, P., 2000, Stable Distributions, Pseudorandom generators, embeddings, and data
stream computation, in Proceedings of IEEE FOCS Conference, p. 189.

Johnson, T., Cranor, C., Spatscheck, O., Shkapenyuk, V., 2003, Gigascope: A stream
database for network applications, in Proc. ACM SIGMOD Conference, pp. 647–651.

Kang, J., Naughton, J. F., Viglas, S. D., 2003, Evaluating window joins over unbounded
streams, in Proceedings of ICDE.

Manku, G. S., Motwani, R., 2002, Approximate frequency counts over data streams, in
Proceedings of VLDB Conference, pp. 346-357.

Rajasekar, A., Vernon, F., Hansen, T., Linquist, K., Orcutt, J., 2004, Virtual object ring
buffer: A framework for real-time data grid, in Proceedings of HDPC Conference.

Reiss, F., Hellerstein, J. M., 2004, Data triage: An adaptive architecture for load shedding
in TelegraphCQ, Intel Research Berkeley Report IRB-TR-04-004.

Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M., Stonebraker, M., 2003, Load
shedding in a data stream manager, in Proceedings of VLDB Conference, pp. 309–320.

Tucker, P. A., Maier, D., 2003, Dealing with disorder, in MPDS Workshop.
Tucker, P. A., Maier, D., Fegaras, L., T. Sheard, 2003, Exploiting punctuation semantics in

continuous data streams, IEEE TKDE, 15(3):555–568.
Vitter, J. S., 1985, Random sampling with a reservoir, ACM Trans. on Math. Softw.,

11(1):37-57.
Wilschut, A. N., Apers, P. M. G., 1991, Dataflow query execution in a parallel main-

memory environment, in Proceedings of PDIS Conference, pp. 68-77.

