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Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica

abstract
Declarative Networking is a programming methodology 
that enables developers to concisely specify network proto-
cols and services, which are directly compiled to a dataflow 
framework that executes the specifications. This paper pro-
vides an introduction to basic issues in declarative network-
ing, including language design, optimization, and dataflow 
execution. We present the intuition behind declarative pro-
gramming of networks, including roots in Datalog, exten-
sions for networked environments, and the semantics of 
long-running queries over network state. We focus on a 
sublanguage we call Network Datalog (NDlog), including 
execution strategies that provide crisp eventual consistency 
semantics with significant flexibility in execution. We also 
describe a more general language called Overlog, which 
makes some compromises between expressive richness and 
semantic guarantees. We provide an overview of declara-
tive network protocols, with a focus on routing protocols 
and overlay networks. Finally, we highlight related work in 
declarative networking, and new declarative approaches to 
related problems.

1. intRoDuction
Over the past decade there has been intense interest in the 
design of new network protocols. This has been driven from 
below by an increasing diversity in network architectures 
(including wireless networks, satellite communications, 
and delay-tolerant rural networks) and from above by a 
quickly growing suite of networked applications (peer-to-
peer  systems, sensor networks, content distribution, etc.)

Network protocol design and implementation is a chal-
lenging process. This is not only because of the distrib-
uted nature and large scale of typical networks, but also 
because of the need to balance the extensibility and flex-
ibility of these protocols on one hand, and their robustness 
and efficiency on the other hand. One needs to look no 
further than the Internet for an illustration of these hard 
trade-offs. Today’s Internet routing protocols, while argu-
ably robust and efficient, make it hard to accommodate 
the needs of new applications such as improved resilience 
and higher throughput. Upgrading even a single router is 
hard. Getting a distributed routing protocol implemented 
correctly is even harder. Moreover, in order to change or 
upgrade a deployed routing protocol today, one must get 
access to each router to modify its software. This process 
is made even more tedious and error-prone by the use of 
conventional programming languages.

In this paper, we introduce declarative networking, an 
application of database query language and processing tech-
niques to the domain of networking. Declarative networking 
is based on the observation that network protocols deal at 

their core with computing and maintaining distributed state 
(e.g., routes, sessions, performance statistics) according to 
basic information locally available at each node (e.g., neigh-
bor tables, link measurements, local clocks) while enforcing 
constraints such as local routing policies. Recursive query 
languages studied in the deductive database literature27 
are a natural fit for expressing the relationship between 
base data, derived data, and the associated constraints. As 
we demonstrate, simple extensions to these languages and 
their implementations enable the natural expression and 
efficient execution of network protocols.

In a series of papers with colleagues, we have described 
how we implemented and deployed this concept in the P2 
declarative networking system.24 Our high-level goal has 
been to provide software environments that can accelerate 
the process of specifying, implementing, experimenting 
with and evolving designs for network architectures.

As we describe in more detail below, declarative net-
working can reduce program sizes by orders of magnitude 
relative to traditional approaches, in some cases resulting in 
programs that are line-for-line translations of pseudocode 
in networking research papers. Declarative approaches also 
open up opportunities for automatic protocol optimization 
and hybridization, program checking, and debugging.

2. LanGuaGe
In this section, we present an overview of the Network Datalog 
(NDlog) language for declarative networking. The NDlog 
language is based on extensions to traditional Datalog, a 
well-known recursive query language designed for query-
ing graph-structured data in a centralized database. NDlog’s 
integration of networking and logic is unique from the per-
spectives of both domains. As a network protocol language, it 
is notable for the absence of any communication primitives 
like “send” or “receive”; instead, communication is implicit 
in a simple high-level specification of data partitioning. In 
comparison to traditional logic languages, it is enhanced 
to capture typical network realities including distribution, 
link-layer constraints on communication (and hence deduc-
tion), and soft-state8 semantics.

We step through an example to illustrate the standard 
execution model for Datalog, and demonstrate its close 
connections to routing protocols, recursive network graph 
computations, and distributed state management. We then 
describe the Overlog21 extensions to the NDlog language that 
support soft-state data and events.

A previous version of this paper was published in Pro-
ceedings of ACM SIGMOD’s International Conference of 
 Management of Data (2006).

Doi:10.1145/1592761.1592785
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The program has four rules (which for conve-
nience we label sp1–sp4), and takes as input a base 
(extensional) relation link(src, Dest, Cost). Rules 
sp1–sp2 are used to derive “paths” in the graph, rep-
resented as tuples in the derived (intensional) relation 
path(src, Dest, path, Cost). The src and Dest fields 
represent the source and  destination endpoints of the 
path, and path is the actual path from src to Dest. The 
 number and types of fields in relations are inferred from 
their  (consistent) use in the program’s rules.

Since network protocols are typically computations over 
distributed network state, one of the important require-
ments of NDlog is the ability to support rules that express 
distributed computations. NDlog builds upon traditional 
Datalog by providing control over the storage location of 
tuples explicitly in the syntax via location specifiers. Each 
location specifier is a field within a predicate that dictates 
the partitioning of the table. To illustrate, in the above pro-
gram, each predicate has an “@” symbol prepended to a 
single field denoting the location specifier. Each tuple gen-
erated is stored at the address determined by its location 
specifier. For example, each path and link tuple is stored 
at the address held in its first field @src.

Rule sp1 produces path tuples directly from exist-
ing link tuples, and rule sp2 recursively produces path 
tuples of increasing cost by matching (joining) the desti-
nation fields of existing links to the source fields of previ-
ously computed paths. The matching is expressed using 
the repeated nxt variable in link(src,nxt,Cost1) and 
path(nxt,Dest,path2,Cost2) of rule sp2. Intuitively, 
rule sp2 says that “if there is a link from node src to node 
nxt, and there is a path from node nxt to node Dest along 
a path path2, then there is a path path from node src to 
node Dest where path is computed by prepending src 
to path2.” The matching of the common nxt variable in 
link and path corresponds to a join operation used in 
 relational databases.

Given the path relation, rule sp3 derives the relation 
spCost(src,Dest,Cost) by computing the minimum 
cost Cost for each source and destination for all input 
paths. Rule sp4 takes as input spCost and path tuples 
and then finds shortestpath(src,Dest,path,Cost)  
tuples that contain the shortest path path from src to 
Dest with cost Cost. Last, as denoted by the Query label, 
the shortestpath table is the output of interest.

2.3. shortest path execution example
We step through an execution of the shortest-path NDlog 
program above to illustrate derivation and communica-
tion of tuples as the program is computed. We make use 
of the example network in Figure 1. Our discussion is nec-
essarily informal since we have not yet presented our dis-
tributed implementation strategies; in the next section, 
we show in greater detail the steps required to generate 
the execution plan. Here, we focus on a high-level under-
standing of the data movement in the network during 
query processing.

For ease of exposition, we will describe communication 
in synchronized iterations, where at each iteration, each 

2.1. introduction to Datalog
We first provide a short review of Datalog, following the con-
ventions in Ramakrishnan and Ullman’s survey.27 A Datalog 
program consists of a set of declarative rules and an optional 
query. Since these programs are commonly called “recursive 
queries” in the database literature, we use the term “query” 
and “program” interchangeably when we refer to a Datalog 
program.

A Datalog rule has the form p :- q1, q2, …, qn, which can be 
read informally as “q1 and q2 and … and qn implies p.” p is the 
head of the rule, and q1, q2, …, qn is a list of literals that consti-
tutes the body of the rule. Literals are either predicates over 
fields (variables and constants), or functions (formally, func-
tion symbols) applied to fields. The rules can refer to each 
other in a cyclic fashion to express recursion. The order in 
which the rules are presented in a program is semantically 
immaterial. The commas separating the predicates in a rule 
are logical conjuncts (AND); the order in which predicates 
appear in a rule body also has no semantic significance, 
though most implementations (including ours) employ a 
left-to-right execution strategy. Predicates in the rule body 
are matched (or joined) based on their common variables to 
produce the output in the rule head. The query (denoted by a 
reserved rule label Query) specifies the output of interest.

The predicates in the body and head of traditional 
Datalog rules are relations, and we refer to them inter-
changeably as predicates or relations. In our work, every 
relation has a primary key, which is a set of fields that 
uniquely identifies each tuple within the relation. In the 
absence of other information, the primary key is the full set 
of fields in the relation.

By convention, the names of predicates, function symbols, 
and constants begin with a lowercase letter, while variable 
names begin with an uppercase letter. Most implementations 
of Datalog enhance it with a limited set of side-effect-free 
function calls including standard infix arithmetic and various 
simple string and list manipulations (which start with “f_” in 
our syntax). Aggregate constructs are represented as aggrega-
tion functions with field variables within angle brackets (áñ).

2.2. nDLog by example
We introduce NDlog using an example program shown below 
that implements the path-vector protocol, which computes 
in a distributed fashion, for every node, the shortest paths 
to all other nodes in a network. The path-vector protocol 
is used as the base routing protocol for exchanging routes 
among Internet Service Providers.

sp1  path(@src,Dest,path,Cost) :- link(@src,Dest,Cost),  

path=f_init(src,Dest).

sp2  path(@src,Dest,path,Cost) :- link(@src,nxt,Cost1), 

path(@nxt,Dest,path2,Cost2), Cost=Cost1+Cost2, 

path=f_concatpath(src,path2).

sp3  spCost(@src,Dest,min<Cost>) :- path(@src,Dest,path,Cost).

sp4  shortestpath(@src,Dest,path,Cost) :-  

spCost(@src, Dest,Cost), path(@src,Dest,path,Cost).

Query shortestpath(@src,Dest,path,Cost).
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along the physical links. In order to send a message in a low-
level network, there needs to be a link between the sender 
and receiver. This is not a natural construct in Datalog. 
Hence, to model physical networking components where 
full connectivity is not available, NDlog provides restrictions 
ensuring that rule execution results in communication only 
among nodes that are physically connected with a bidirec-
tional link. This is syntactically achieved with the use of the 
special link predicate in the form of link-restricted rules. 
A link-restricted rule is either a local rule (having the same 
location specifier variable in each predicate), or a rule with 
the following properties:

1. There is exactly one link predicate in the body.
2.  All other predicates (including the head predicate) 

have their location specifier set to either the first 
(source) or second (destination) field of the link 
predicate.

This syntactic constraint precisely captures the require-
ment that we be able to operate directly on a network whose 
link connectivity is not a full mesh. Further, as we demon-
strate in Section 3, link-restriction also guarantees that all 
programs with only link-restricted rules can be rewritten 
into a canonical form where every rule body can be evaluated 
on a single node, with communication to a head predicate 
along links. The following is an example of a link-restricted 
rule:

p(@Dest,...) :-  link(@src,Dest...),p1(@src,...), 
p2(@src,...),..., pn(@src,...).

The rule body of this example is executed at @src and the 
resulting p tuples are sent to @Dest, preserving the commu-
nication constraints along links. Note that the body predi-
cates of this example all have the same location specifier:  
@src, the source of the link. In contrast, rule sp2 of the 
shortest path program is link-restricted but has some rela-
tions whose location specifier is the source, and others 
whose location specifier is the destination; this needs to be 
rewritten to be executable in the network, a topic we return 
to in Section 3.2.

In a fully connected network environment, an NDlog 
parser can be configured to bypass the requirement for link-
restricted rules.
soft-state storage Model: Many network protocols use the 
soft-state approach to maintain distributed state. In the soft-
state storage model, stored data have an associated lifetime 
or time-to-live (TTL). A soft-state datum needs to be periodi-
cally refreshed; if more time than a TTL passes without a 
datum being refreshed, that datum is deleted. Soft state is 
often favored in networking implementations because in a 
very simple manner it provides well-defined eventual consis-
tency semantics. Intuitively, periodic refreshes to network 
state ensure that the eventual values are obtained even if 
there are transient errors such as reordered messages, node 
disconnection, or link failures. However, when persistent 
failures occur, no coordination is required to register the 

network node generates paths of increasing hop count, and 
then propagates these paths to neighbor nodes along links. 
We show only the derived paths communicated along the 
solid lines. In actual query execution, derived tuples can be 
sent along the bidirectional network links (dashed links).

In the first iteration, all nodes initialize their local 
path tables to 1-hop paths using rule sp1. In the second 
iteration, using rule sp2, each node takes the input paths 
generated in the previous iteration, and computes 2-hop 
paths, which are then propagated to its neighbors. For 
example, path(@a,d,[a,b,d],6) is generated at node 
b using path(@b,d,[b,d],1) from the first iteration, 
and propagated to node a. In fact, many network protocols 
propagate only the nextHop and avoid sending the entire 
path vector.

As paths are computed, the shortest one is incre-
mentally updated. For example, node a computes the 
cost of the shortest path from a to b as 5 with rule sp3, 
and then finds the corresponding shortest path [a,b] 
with rule sp4. In the next iteration, node a receives 
path(@a,b,[a,c,b],2) from node c, which has lower 
cost compared to the previous shortest cost of 5, and hence 
shortestpath(@a,b,[a,c,b],2) replaces the previ-
ous tuple (the first two fields of source and destination are 
the primary key of this relation).

Interestingly, while NDlog is a language to describe net-
works, there are no explicit communication primitives. 
All communication is implicitly generated during rule 
execution as a result of data placement specifications. For 
example, in rule sp2, the path and link predicates have 
different location specifiers, and in order to execute the rule 
body of sp2 based on their matching fields, link and path 
tuples have to be shipped in the network. It is the movement 
of these tuples that generates the messages for the resulting 
network protocol.

2.4. Language extensions
We describe two extensions to the NDlog language: link-
restricted rules that limit the expressiveness of the language 
in order to capture physical network constraints, and a soft-
state storage model commonly used in networking protocols.
Link-restricted rules: In the above path vector protocol, the 
evaluation of a rule must depend only on communication 
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figure 1. nodes in the network are running the shortest-path pro-
gram. We only show newly derived tuples at each iteration.
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some debate about the desired semantics, focusing on 
attempts to provide an intuitive declarative representation 
while enabling familiar event-handler design patterns used 
by protocol developers.

3. execution PLan GeneRation
Our runtime execution of NDlog programs differs from 
the traditional implementation patterns for both network 
protocols and database queries. Network protocol imple-
mentations often center around local state machines that 
emit messages, triggering state transitions at other state 
machines. By contrast, the runtime systems we have built 
for NDlog and Overlog are distributed dataflow execution 
engines, similar in spirit to those developed for parallel 
database systems, and echoed in recent parallel map-reduce 
implementations. However, the recursion in Datalog intro-
duces cycles into these dataflows. The combination of recur-
sive flows and the asynchronous communication inherent 
in wide-area systems presents new challenges that we had 
to overcome.

In this section, we describe the steps required to automat-
ically generate a distributed dataflow execution plan from an 
NDlog program. We first focus on generating an  execution 
plan in a centralized implementation, before extending the 
techniques to the network scenario.

3.1. centralized plan generation
In generating the centralized plan, we utilize the well-
known semi-naïve fixpoint3 Datalog evaluation mechanism 
that ensures no redundant evaluations. As a quick review, 
in semi-naïve (SN) evaluation, input tuples computed in the 
previous iteration of a recursive rule execution are used as 
input in the current iteration to compute new tuples. Any 
new tuples that are generated for the first time in the cur-
rent iteration, and only these new tuples, are then used as 
input to the next iteration. This is repeated until a fixpoint is 
achieved (i.e., no new tuples are produced).

The SN rewritten rule for rule sp2 is shown below:

sp2-1 Dpathnew (@Src,@Dest,Path,Cost) :-
 link(@Src,Nxt,Cost1),
 Dpathold(@Nxt,Dest,Path2,Cost2),
 Cost=Cost1+Cost2,
 Path=f_concatPath(Src,Path2).

Figure 2 shows the dataflow realization for a centralized 
implementation of rule sp2-1 using the conventions of P2.24 

failure: any data provided by failed nodes are organically 
“forgotten” in the absence of refreshes.

We introduced soft-state into the Overlog 21 declara-
tive networking language, an extension of NDlog. One 
additional feature of Overlog is the availability of a mate-
rialized keyword at the beginning of each program 
to specify the TTL of predicates. For example, the defini-
tion materialized(link, {1,2}, 10) specifies that the 
link table has its primary key set to the first and second 
fields (denoted by {1,2}), and each link tuple has a life-
time of 10 seconds. If the TTL is set to infinity, the predicate 
will be treated as hard state, i.e., a traditional relation that 
does not involve timeout-based deletion.

The Overlog soft-state storage semantics are as follows. 
When a tuple is derived, if there exists another tuple with 
the same primary key but differences on other fields, an 
update occurs, in which the new tuple replaces the previ-
ous one. On the other hand, if the two tuples are identical, 
a refresh occurs, in which the existing tuple is extended by 
its TTL.

If a given predicate has no associated materialize dec-
laration, it is treated as an event predicate: a soft-state predi-
cate with TTL = 0. Event predicates are transient tables, which 
are used as input to rules but not stored. They are primarily 
used to “trigger” rules periodically or in response to network 
events. For example, utilizing Overlog’s built-in periodic 
event predicate, the following rule enables node X to generate 
a ping event every 10 seconds to its neighbor Y denoted in the  
link(@X, Y) predicate:

ping(@Y, X) :-  periodic(@X, 10), link(@X, Y).

Subtleties arise in the semantics of rules that mix event, 
soft-state and hard-state predicates across the head and 
body. One issue involves the expiry of soft-state and event 
tuples, as compared to deletion of hard-state tuples. In a 
traditional hard-state model, deletions from a rule’s body 
relations require revisions to the derived head relation to 
maintain consistency of the rule. This is treated by research 
on materialized view maintenance.13 In a pure soft-state 
model, the head and body predicates can be left inconsis-
tent with each other for a time, until head predicates expire 
due to the lack of refreshes from body predicates. Mixtures 
of the two models become more subtle. We provided one 
treatment of this issue,19 which has subsequently been 
revised with a slightly different interpretation.9 There is still  

figure 2. Rule strand for a centralized implementation of rule sp2-1 in P2. output paths that are generated from the strand are “wrapped 
back” as input into the same strand.

sp2-1 Join
pathnew.Nxt=link.Nxt

Project
pathnew

Bufferpath
pathold pathold

link
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since the tuples that must be joined are situated at different 
nodes in the network. A rule localization rewrite step ensures 
that all tuples to be joined are at the same node. This allows 
a rule body to be locally computable.

Consider the rule sp2 from the shortest-path program, 
where the link and path predicates have different loca-
tion specifiers. These two predicates are joined by a com-
mon @nxt address field. Figure 3 shows the corresponding 
logical query plan depicting the distributed join. The 
clouds represent an “exchange”-like operator11 that for-
wards tuples from one network node to another; clouds are 
labeled with the link attribute that determines the tuple’s 
recipient. The first cloud (link.nxt) sends link tuples to 
the neighbor nodes indicated by their destination address 
fields, in order to join with matching path tuples stored by 
their source address fields. The second cloud (path.src) 
transmits for further processing new path tuples com-
puted from the join, setting the recipient according to the 
source address field.

Based on the above distributed join, rule sp2 can be 
rewritten into the following two rules. Note that all predi-
cates in the body of sp2a have the same location specifiers; 
the same is true of sp2b.

sp2a  linkD(@nxt,src,Cost) :- link(@src,nxt,Cost).

sp2b  path(@src,Dest,nxt,path,Cost) :- linkD(@nxt,src,Cost1),

 path(@nxt,Dest,path2,Cost2),Cost=Cost1+Cost2, 

 path = f_concatpath(src,path2).

The rewrite is achievable because the link and path 
predicates, although at different locations, share a common 
join address field. The details of the rewrite algorithm and 
associated proofs are described in a longer article.20

Returning to our example, after rule localization we per-
form the SN rewrite, and then generate the rule strands shown 
in Figure 4. Unlike the centralized strand in Figure 2, there 
are now three rule strands. The extra two strands (sp2a@src 
and sp2b-2@nxt) are used as follows. Rule strand sp2a@

The P2 system uses an execution model inspired by data-
base query engines and the Click modular router,14 which 
consists of elements that are connected together to imple-
ment a variety of network and flow control components. In 
addition, P2 elements include database operators (such as 
joins, aggregation, selections, and projects) that are directly 
generated from the rules.

We will briefly explain how the SN evaluation is achieved 
in P2. Each SN rule is implemented as a rule strand. Each 
strand consists of a number of relational operators for selec-
tions, projections, joins, and aggregations. The example 
strand receives new delta_path_old tuples generated 
in the previous iteration to generate new paths (delta_
path_new), which are then inserted into the path table 
(with duplicate elimination) for further processing in the 
next iteration.

In Algorithm 1, we show the pseudocode for a centralized 
implementation of multiple SN rule strands where each rule 
has the form:

Dpj
new :- p1

old ,..., pk
old
-1, Dpk

old, pk+1,..., pn, b1, b2,..., bm.

p1, …, pn are recursive predicates and b1, …, bm are base predi-
cates. Dpk

old refers to pk tuples generated for the first time in 
the previous iteration. pk

old refers to all pk tuples generated 
before the previous iteration. These rules are logically equiv-
alent to rules of the form:

Dpj
new :- p1

 ,..., pk-1, Dpk
old, pk+1,..., pn, b1, b2,..., bm.

The earlier rules have the advantage of avoiding redundant 
inferences within each iteration.

algorithm 1 Semi-naïve (SN) Evaluation in P2
while $Bk.size > 0

"Bk where Bk.size > 0, Dpk
old ¬ Bk. flush()

execute all rule strands
foreach recursive predicate pj

pj
old ¬ pj

old È Dpj
old

Bj ¬ Dpj
new - pj

old

pj ¬ pj
old È Bj

Dpj
new ¬ f

In the algorithm, Bk denotes the buffer for pk tuples gen-
erated in the previous iteration (Dpk

old). Initially, pk, pk
old, Dpk

old, 
and Dpk

new are empty. As a base case, we execute all the rules 
to generate the initial pk tuples, which are inserted into the 
corresponding Bk buffers. Each subsequent iteration of the 
while loop consists of flushing all existing Dpk

old tuples from Bk 
and executing all rule strands to generate Dpj

new tuples, which 
are used to update pj

old, Bj , and pj accordingly. Note that only  
new pj tuples generated in the current iteration are inserted 
into Bj for use in the next iteration. Fixpoint is reached when 
all buffers are empty.

3.2. Distributed plan generation
In the distributed implementation of the path-vector pro-
gram, nonlocal rules whose body predicates have differ-
ent location specifiers cannot be executed at a single node, 

figure 3. Logical query plan for rule sp2.

(link.Src,path. Dest, f_concatPath(link.Src,
path.Path2), link.Cost1 + path.Cost2) as 

path(Src,Dest,Path,Cost) 

path(Nxt,Dst,Path2,Cost2)

link.Nxt=path.Nxt
path.Src

link(Src,Nxt,Cost1)

link.Nxt

project
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Algorithm 2 shows the pseudocode for PSN. Each tuple, 
denoted t, has a superscript (old/new, i) where i is its corre-
sponding iteration number in SN evaluation. Each process-
ing step in PSN consists of dequeuing a tuple tk

old,i from Qk 
and then using it as input into all corresponding rule strands. 
Each resulting tj

new,i+1 tuple is pipelined, stored in its  respective 
pj table (if a copy is not already there), and enqueued into Qj for 
further processing. Note that in a distributed imple mentation. 
Qj can be a queue on another node, and the node that receives 
the new tuple can immediately process the tuple after the 
enqueue into Qj. For example, the dataflow in Figure 4 is based 
on a distributed implementation of PSN, where incoming 
path and linkD tuples received via the network are stored 
locally, and enqueued for processing in the corresponding 
rule strands.

To fully pipeline evaluation, we have also removed the dis-
tinctions between pj

old and pj in the rules. Instead, a timestamp 
(or monotonically increasing sequence number) is added to 
each tuple at arrival, and the join operator matches each tuple 
only with tuples that have the same or older timestamp. This 
allows processing of tuples immediately upon arrival, and is 
natural for network message handling. This represents an 
alternative “book-keeping” strategy to the rewriting used in SN 
to ensure no repeated inferences. Note that the timestamp only 
needs to be assigned locally, since all the rules are localized.

We have proven elsewhere20 that PSN generates the same 
results as SN and does not repeat any inferences, as long as 
the NDlog program is monotonic and messages between two 
network nodes are delivered in FIFO order.

3.4. incremental maintenance
In practice, most network protocols are executed over a long 
period of time, and the protocol incrementally updates and 
repairs routing tables as the underlying network changes 
(link failures, node departures, etc.). To better map into 
practical networking scenarios, one key distinction that 
differentiates the execution of NDlog from earlier work in 
Datalog is our support for continuous rule execution and 
result materialization, where all tuples derived from NDlog 
rules are materialized and incrementally updated as the 
underlying network changes. As in network protocols, 
such incremental maintenance is required both for timely 
updates and for avoiding the overhead of recomputing all 
routing tables “from scratch” whenever there are changes 

src sends all existing links to the destination address field 
as linkD tuples. Rule strand sp2b-2@nxt takes the new 
linkD tuples it received via the network and performs a join 
operation with the local path table to generate new paths.

3.3. Relaxing semi-naïve evaluation
In our distributed implementation, the execution of rule 
strands can depend on tuples arriving via the network, and 
can also result in new tuples being sent over the network. 
Traditional SN evaluation completely evaluates all rules on 
a given set of facts, i.e., completes the iteration, before con-
sidering any new facts. In a distributed execution environ-
ment where messages can be delayed or lost, the completion 
of an iteration in the traditional sense can only be detected 
by a  consensus computation across multiple nodes, which 
is expensive; further, the requirement that many nodes com-
plete the iteration together (a “barrier synchronization” in par-
allel computing terminology) limits parallelism  significantly 
by restricting the rate of progress to that of the slowest node.

We address this by making the notion of iteration local 
to a node. New facts might be generated through local rule 
execution, or might be received from another node while a 
local iteration is in progress. We proposed and proved cor-
rect a variation of SN iteration called pipelined semi-naïve 
(PSN) to handle this situation.20 PSN extends SN to work in 
an asynchronous distributed setting. PSN relaxes SN evalua-
tion to the extreme of processing each tuple as it is received. 
This provides opportunities for additional optimizations on 
a per-tuple basis. New tuples that are generated from the SN 
rules, as well as tuples received from other nodes, are used 
immediately to compute new tuples without waiting for the 
current (local) iteration to complete.

algorithm 2 Pipelined Semi-naïve (PSN) Evaluation
while $ Qk.size > 0

tk
old,i ¬ Qk.dequeueTuple()

foreach rule strand execution
 Dpj

new,i+1 : —
 p1,...,pk-1, tk

old,i, pk+1,..., pn, b1, b2,..., bm

 foreach tj
new,i+1 Î Dpj

new,i+1

 if tj
new,i+1 Ï pj

 then pj ¬ pj È tj
new,i+1

 Qj.enqueueTuple (tj
new,i+1)

figure 4. Rule strands for the distributed version of sp2 after localization in P2.
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function symbols) has polynomial time and space com-
plexities in the size of the input. This property provides a 
natural bound on the resource consumption. However, 
many extensions of Datalog (including NDlog) augment the 
core language in various ways, invalidating its polynomial 
complexity.

Fortunately, static analysis tests have been developed to 
check for the termination of an augmented Datalog query 
on a given input.15 In a nutshell, these tests identify recur-
sive definitions in the query rules, and check whether these 
definitions terminate. Examples of recursive definitions 
that terminate are ones that evaluate monotonically increas-
ing (decreasing) predicates whose values are upper (lower) 
bounded. Moreover, the declarative framework is amenable 
to other verification techniques, including theorem prov-
ing,32 model checking,25 and runtime verification.28

NDlog can express a variety of well-known routing proto-
cols (e.g., distance vector, path vector, dynamic source rout-
ing, link state, multicast) in a compact and clean fashion, 
typically in a handful of lines of program code. Moreover, 
higher-level routing concepts (e.g., QoS constraints) can be 
achieved via simple modifications to these queries. Finally, 
writing the queries in NDlog illustrates surprising relation-
ships between protocols. For example, we have shown that 
distance vector and dynamic source routing protocols differ 
only in a simple, traditional query optimization decision: 
the order in which a query’s predicates are evaluated.

To limit query computation to the relevant portion of the 
network, we use a query rewrite technique, called magic sets 
rewriting.4 Rather than reviewing the Magic Sets optimiza-
tion here, we illustrate its use in an example. Consider the 
situation where instead of computing all-pairs shortest 
paths, we are only in computing the shortest paths from a 
selected group of source nodes (magicsrc) to selected des-
tination nodes (magicDst). By modifying rules sp1–sp4 
from the path-vector program, the following computes only 
paths limited to sources/destinations in the magicsrc/
magicDst tables, respectively.

sp1-sd  pathDst(@Dest,src,path,Cost) :- magicsrc(@src), 

link(@src,Dest,Cost), path=f_init(src,Dst).

sp2-sd  pathDst(@Dst,src,path,Cost) :-  

pathDst(@nxt,src,path1,Cost1), link(@nxt,Dest,Cost2), 

Cost=Cost1+Cost2, path=f_concatpath(path1,Dest).

sp3-sd  spCost(@Dest,src,min<Cost>) :- magicDst(@Dest), 

pathDst(@Dest,src,path,Cost).

sp4-sd  shortestpath(@Dest,src,path,Cost) :-  

spCost(@Dest,src,Cost), pathDst(@Dest,src,path,Cost).

Query shortestpath(@src,Dest,path,Cost).

Our evaluation results21 based on running declarative 
routing protocols on the PlanetLab26 global testbed and 
in a local cluster show that when all nodes issue the same 
query, the query execution has similar scalability properties 
as the traditional distance vector and path-vector protocols. 
For  example, the convergence latency for the path-vector 
program is proportional to the network diameter, and con-
verges in the same time as the path-vector protocol. Second, 

to the underlying network. In the presence of insertions and 
deletions to base tuples, our original incremental view main-
tenance implementation utilizes the count algorithm13 that 
ensures only tuples that are no longer derivable are deleted. 
This has subsequently been improved18 via the use of a com-
pact form of data provenance encoded using binary decision 
diagrams shipped with each derived tuple.

In general, updates could occur very frequently, at a 
period that is shorter than the expected time for a typical 
query to reach a fixpoint. In that case, query results can never 
fully reflect the state of the network. We focus our analysis 
instead on a bursty model. In this weaker, but still fairly real-
istic model, updates are allowed to happen during query 
processing. However, we make the assumption that after a 
burst of updates, the network eventually quiesces (does not 
change) for a time long enough to allow all the queries in the 
system to reach a fixpoint. Unlike the continuous model, the 
bursty model is amenable to simpler analysis; our results on 
that model provide some intuition as to the behavior in the 
continuous update model as well.

We have proven20 that in the presence of reliable, in-order 
delivery of messages, link-restricted NDlog rules under the 
bursty model achieve a variant of the typical distributed 
systems notion of eventual consistency, where the eventual 
state of the quiescent system corresponds to what would be 
achieved by rerunning the queries from scratch in that state.

4. use cases
In the past 3 years, since the introduction of declarative 
networking and the release of P2, several applications have 
been developed. We describe two of the original use cases 
that motivated our work and drove several of our language 
and system designs: safe extensible routers and overlay net-
work development. We will briefly mention new applications 
in Section 5.

4.1. Declarative routing
The Internet’s core routing infrastructure, while arguably 
robust and efficient, has proven to be difficult to evolve to 
accommodate the needs of new applications. Prior research 
on this problem has included new hard-coded routing 
protocols on the one hand, and fully extensible Active 
Networks31 on the other. Declarative routing21 explores a new 
point in this design space that aims to strike a better bal-
ance between the extensibility and robustness of a routing 
infrastructure.

With declarative routing, a routing protocol is imple-
mented by writing a simple query in NDlog, which is then 
executed in a distributed fashion at the nodes that receive 
the query. Declarative routing can be viewed as a restric-
tive instantiation of Active Networks for the control plane, 
which aims to balance the concerns of expressiveness, per-
formance and security, properties which are needed for an 
extensible routing infrastructure to succeed.

Security is a key concern with any extensible system par-
ticularly when it relates to nontermination and the con-
sumption of resources. NDlog is amenable to static analysis 
due to its connections to Datalog. In terms of query execu-
tion, pure Datalog (without any negation, aggregation, or 
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We note that our Chord implementation is roughly 
two orders of magnitude less code than the original C++ 
 implementation. This is a quantitative difference that is 
 sufficiently large that it becomes qualitative: in our opinion 
(and  experience), declarative programs that are a few dozen 
lines of code are markedly easier to understand, debug, 
and extend than thousands of lines of imperative code. 
Moreover, we  demonstrate19, 21 that our declarative overlays 
achieve the expected high-level properties of their respec-
tive overlay  networks for both static and dynamic networks. 
For example, in a static network of up to 500 nodes, the mea-
sured hop-count of lookup requests in the Chord network 
conformed to the  theoretical average of 0.5 × log2N hops, 
and the latency  numbers were within the same order of mag-
nitude as  published Chord numbers.

5. concLusion
In Jim Gray’s Turing Award Lecture,12 one of his grand chal-
lenges was the development of “automatic programming” 
techniques that would be (a) 1000× easier for people to use, 
(b) directly compiled into working code, and (c) suitable for 
general purpose use. Butler Lampson reiterated the first two 
points in a subsequent invited article, but suggested that 
they might be more tractable in domain-specific settings.16

Declarative Networking has gone a long way toward 
Gray’s vision, if only in the domain of network protocol 
implementation. On multiple occasions we have seen at 
least two orders of magnitude reduction in code size, with 
the reduced linecount producing qualitative improvements. 
In the case of Chord, a multi-thousand-line C++ library was 
rewritten as a declarative program that fits on a single sheet 
of paper—a software artifact that can be studied and holisti-
cally understood by a programmer in a single sitting.

We have found that a high-level declarative language not  
only simplifies a programmer’s work, but refocuses the pro-
gramming task on appropriately high-level issues. For example, 
our work on declarative routing concluded that discussions 
of routing in wired vs. wireless networks should not result in 
different protocols, but rather in different compiler optimiza-
tions for the same simple declaration, with the potential to be 
automatically blended into new hybrid strategies as networks 
become more diverse.5, 17 This lifting of abstractions seems 
well suited to the increasing complexity of modern network-
ing, introducing software malleability by minimizing the affor-
dances for over-engineering solutions to specific settings.

Since we began our work on this topic, there has been 
increasing evidence that declarative, data-centric program-
ming has much broader applicability. Within the network-
ing domain, we have expanded in multiple directions from 
our initial work on routing, to encompass low-level network 
issues at the wireless link layer6 to higher-level logic including 
both overlay networks21 and applications like code dissemi-
nation, object tracking, and content distribution. Meanwhile, 
a variety of groups have been using declarative programming 
ideas in surprising ways in many other domains. We briefly 
highlight two of our own follow-on efforts.
secure distributed systems: Despite being developed inde-
pendently by separate communities, logic-based security 
specifications and declarative networking programs both 

the per-node communication overhead increases linearly 
with the number of nodes. This suggests that our approach 
does not introduce any fundamental overheads. Moreover, 
when there are few nodes issuing the same query, query 
optimization and work-sharing techniques can significantly 
reduce the communication overhead.

One promising direction stems from our surprising 
observation on the synergies between query optimization 
and network routing: a wired protocol (distance-vector proto-
col) can be translated to a wireless protocol (dynamic source 
routing) by applying the standard database optimizations of 
magic sets rewrite and predicate reordering. More complex 
applications of query optimization have begun to pay divi-
dends in research, synthesizing new hybrid protocols from 
traditional building blocks.5, 17 Given the proliferation of 
new routing protocols and a diversity of new network archi-
tecture proposals, the connection between query optimiza-
tions and network routing suggests that query optimizations 
may help us inform new routing protocol designs and allow 
the hybridization of protocols within the network.

4.2. Declarative overlays
In declarative routing, we demonstrated the flexibility and 
compactness of NDlog for specifying a variety of routing pro-
tocols. In practice, most distributed systems are much more 
complex than simple routing protocols; in addition to rout-
ing, they typically also perform application-level message 
forwarding and handle the formation and maintenance of 
a network as well.

In our subsequent work on declarative overlays,21 we dem-
onstrate the use of the Overlog to implement practical appli-
cation-level overlay networks. An overlay network is a virtual 
network of nodes and logical links that is built on top of an 
existing network with the purpose of implementing a network 
service that is not available in the existing network. Examples 
of overlay networks on today’s Internet include commercial 
content distribution networks,1 peer-to-peer (P2P) applica-
tions for  file- sharing10 and telephony,29 as well as a wide range 
of experimental prototypes running on PlanetLab.

In declarative overlays, applications submit to P2 a con-
cise Overlog program that describes an overlay network, and 
the P2 system executes the program to maintain routing 
tables, perform neighbor discovery and provide forwarding 
for the overlay.

Declarative overlay programs are more complex than 
routing due to the handling of message delivery, acknowl-
edgments, failure detection, and timeouts. These programs 
also heavily utilize soft-state features in Overlog not pres-
ent in the original NDlog language. Despite the increased 
complexity, we demonstrate that our NDlog programs are 
significantly more compact compared to equivalent C++ 
implementations. For instance, the Narada7 mesh formation 
and a full-fledged implementation of the Chord distributed 
hash table30 are implemented in 16 and 48 rules, respec-
tively. In the case of the Chord DHT presented by Loo et al.,19 
there are rules for performing various aspects of Chord, 
including initial joining of the Chord network, Chord ring 
maintenance, finger table maintenance, recursive Chord 
lookups, and failure detection of neighbors.
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extend Datalog in surprisingly similar ways: by supporting the 
notion of context (location) to identify components (nodes) in 
distributed systems. The Secure Network Datalog33 language 
extends NDlog with basic security constructs for implement-
ing secure distributed systems, which are further enhanced 
with type checking and meta-programmability in the LBTrust23 
system for supporting various forms of encryption/authenti-
cation, delegation, for distributed trust management.
datacenter Programming: The BOOM2 project is explor-
ing the use of declarative languages in the setting of Cloud 
Computing. Current cloud platforms provide developers 
with sequential programming models that are a poor match 
for inherently distributed resources. To illustrate the ben-
efits of declarative programming in a cloud, we used Overlog 
as the basis for a radically simplified and enhanced reimple-
mentation of a standard cloud-based analytics stack: the 
Hadoop File System (HDFS) and MapReduce infrastructure. 
Our resulting system is API-compatible with Hadoop, with 
performance that is equivalent or better. More significantly, 
the high-level Overlog specification of key Hadoop inter-
nals enabled a small group of graduate students to quickly 
add sophisticated distributed features to the system that 
are not in Hadoop: hot standby master nodes supported 
by MultiPaxos consensus, scaleout of (quorums of) master 
nodes via data partitioning, and implementations of new 
scheduling protocols and query processing strategies.

In addition to these two bodies of work, others have suc-
cessfully adopted concepts from declarative networking, in 
the areas of mobility-based overlays, adaptively hybridized 
mobile ad-hoc networks, overlay network composition, sen-
sor networking, fault-tolerant protocols, network configura-
tion, replicated filesystems, distributed machine learning 
algorithms, and robotics. Outside the realm of networking 
and distributed systems, there has been an increasing use of 
declarative languages—many rooted in Datalog—to a wide 
range of problems including natural language processing, 
compiler analysis, security, and computer games. We main-
tain a list of related declarative languages and research proj-
ects at http://declarativity.net/related.

For the moment, these various efforts represent individual 
instances of Lampson’s domain-specific approach to Gray’s 
automatic programming challenge. In the coming years, it will 
be interesting to assess whether these solutions prove fruitful, 
and whether it is feasible to go after Gray’s challenge directly: to 
deliver an attractive general-purpose declarative programming 
environment that radically simplifies wide range of tasks. 
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