

Data Cleaning for Data Integration

Advanced School on Data Exchange, Integration, and Streams (DEIS)

Ekaterini Ioannou

Tuesday, 9th of Nov. 2010, Schloss Dagstuhl

Data integration:

- Combine data from various sources/applications
- Merge into a single database
- lacktriangle Requires a unified view over the data ightarrow cleaning

Challenges:

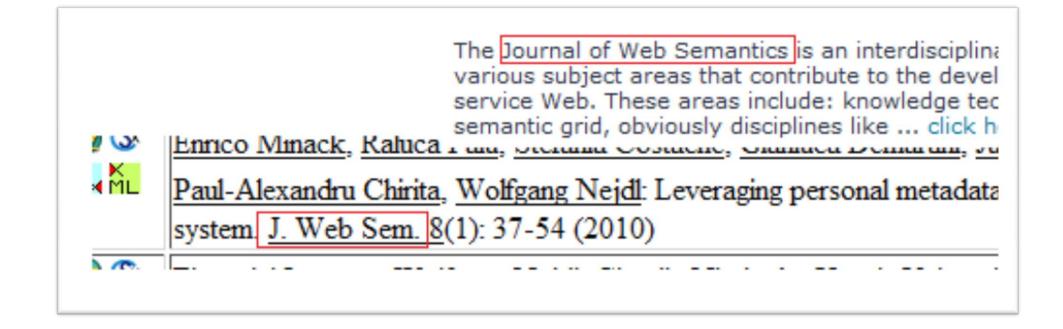
- Handling the various incoming schemata
- Dealing with the missing data values
- Entity Resolution
 - → combine the various descriptions or references for the same real world objects

Text variations:

- Misspellings
- Acronyms
- Transformations
- Abbreviations
- etc.

Welcome to ICDE 2011

The IEEE International Conference on Data Engineering results and advanced data-intensive applications and dis The mission of the conference is to share research soluti identify new issues and directions for future research and



- Text variations
- Local knowledge:
 - Each source uses different formats
 e.g., person from publication vs. person from email
 - Lack of global coordination for identifier assignment

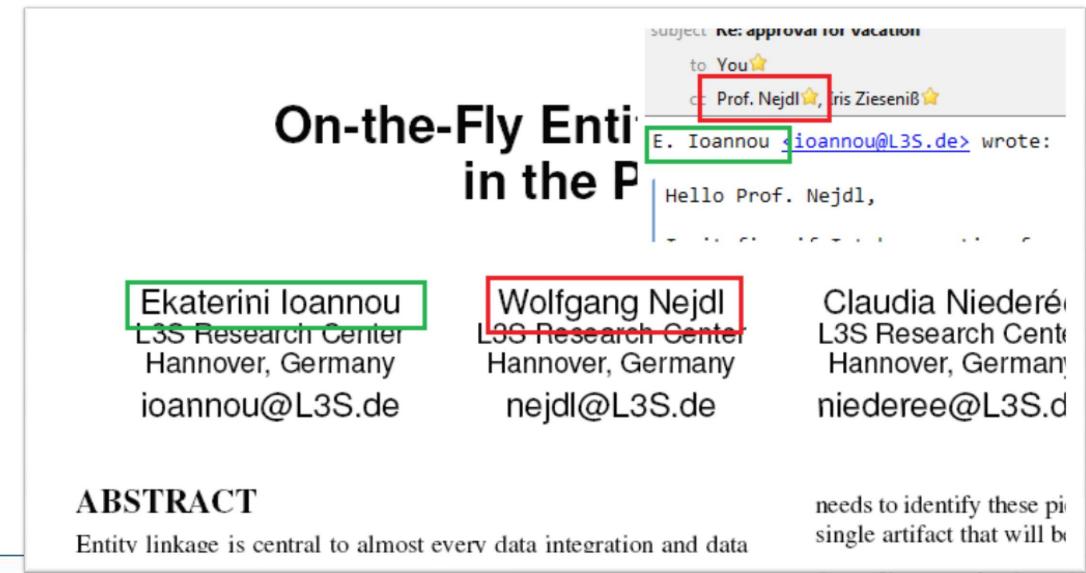
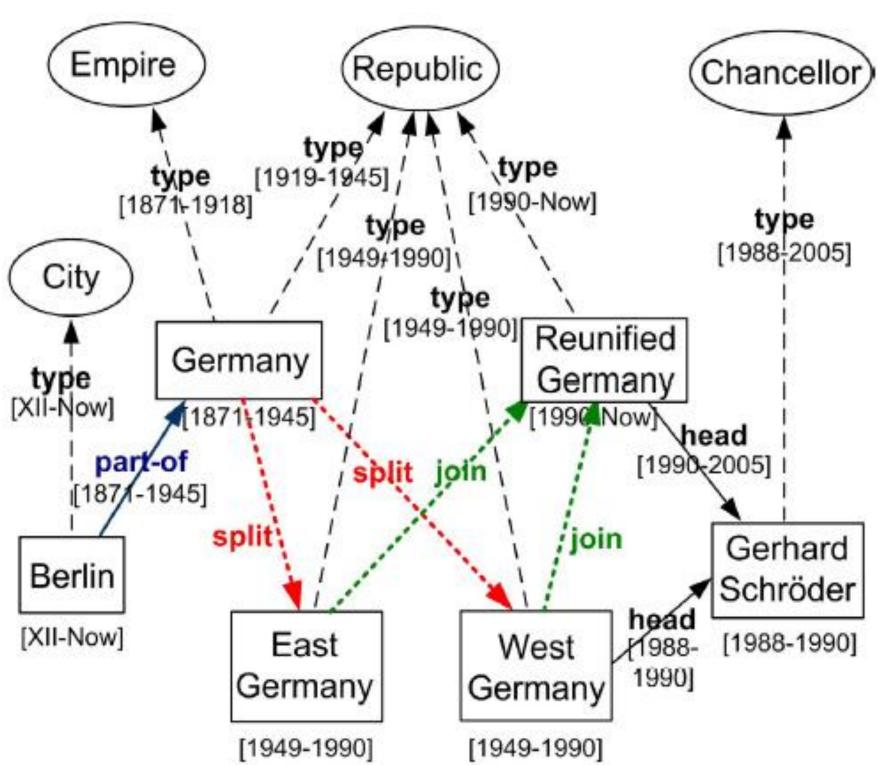


figure from [RVMB09]

- Text variations
- Local knowledge
- Evolving nature of data:
 - Entity alternative names appearing in time
 - Updates in entity data



Jacqueline Lee Bouvier

Alternate Names: Jackie Bouvier | Jackie Kennedy | Mrs. John F. Kennedy | Jackie Onassis | Jacqueline Kennedy Onassis | Jacqueline Onassis

- Text variations
- Local knowledge
- Evolving nature of data
- New functionality:
 - Web page extraction
 e.g., Calais, Cogito
 - Import data collections from various applications e.g., Wikipedia data used in Freebase
 - Mashups for easy and fast integration from various source e.g., yahoo pipes

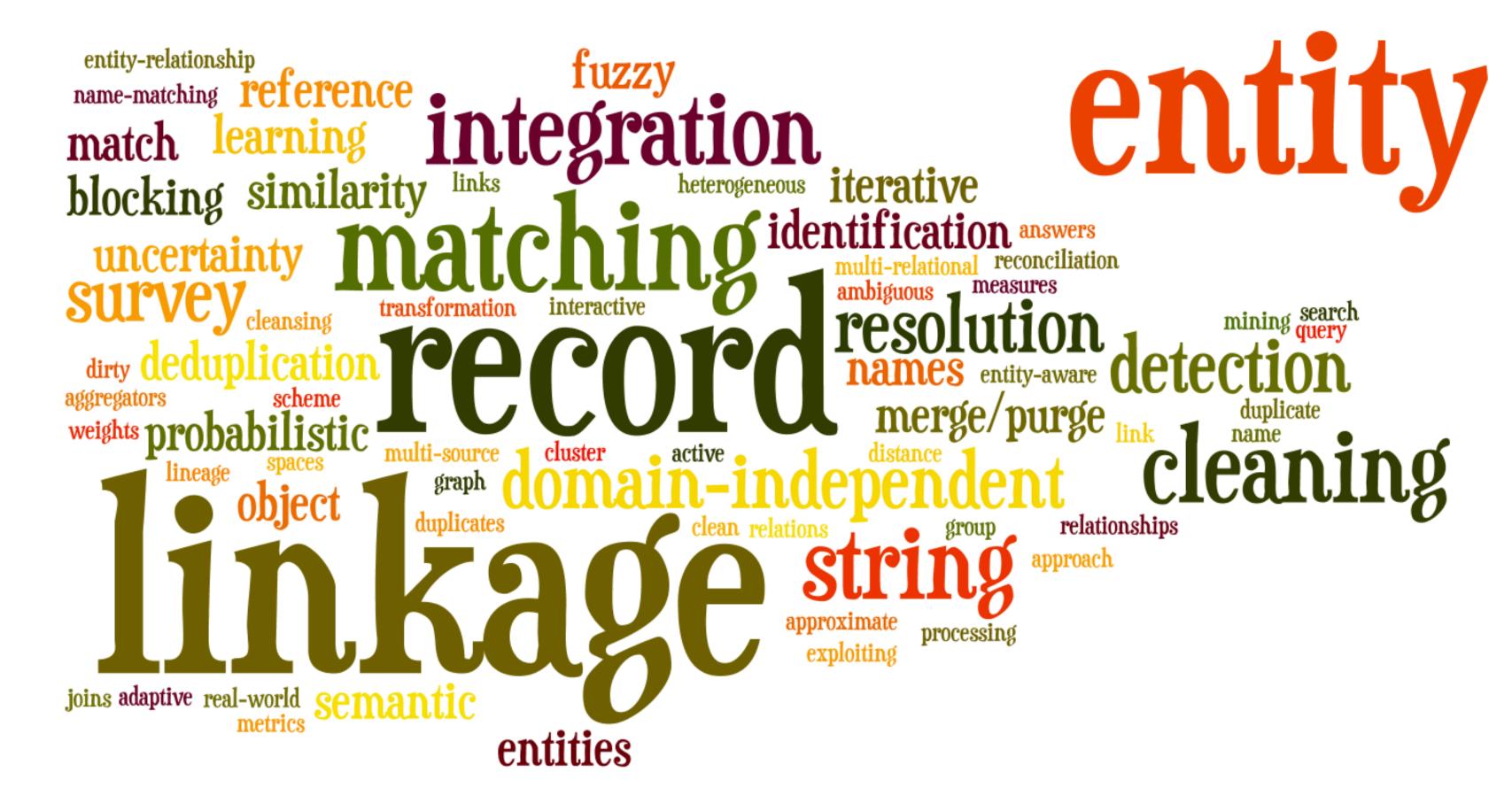
Entity Resolution typical methodology:

- Indentify data describing the same real-world objects
- Decide how to merge the data
- Update the data collection

Solutions following various directions We present them through four categories:

- 1. Atomic similarity methods
- 2. Similarity methods for sets
- 3. Facilitating inner-relationships
- 4. Methods in uncertain data

Alternative names for Entity Resolution



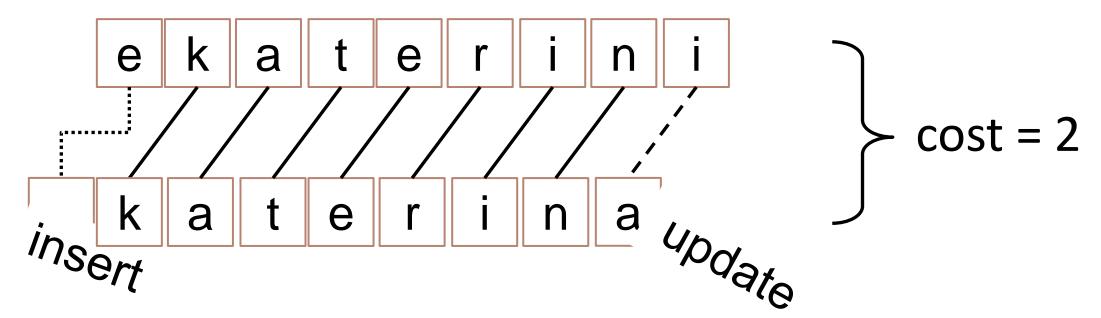
- 1. Motivation: Entity Resolution
- 2. Atomic similarity methods
- 3. Similarity methods for sets
- 4. Facilitating inner-relationships
- 5. Methods in uncertain data
- 6. Conclusions

Examples of targeting cases:

- Publication authors: "John D. Smith" vs. "J. D. Smith"
- Journal names: "Transactions on Knowledge and Data Engineering"
 vs. "Trans. Knowl. Data Eng."

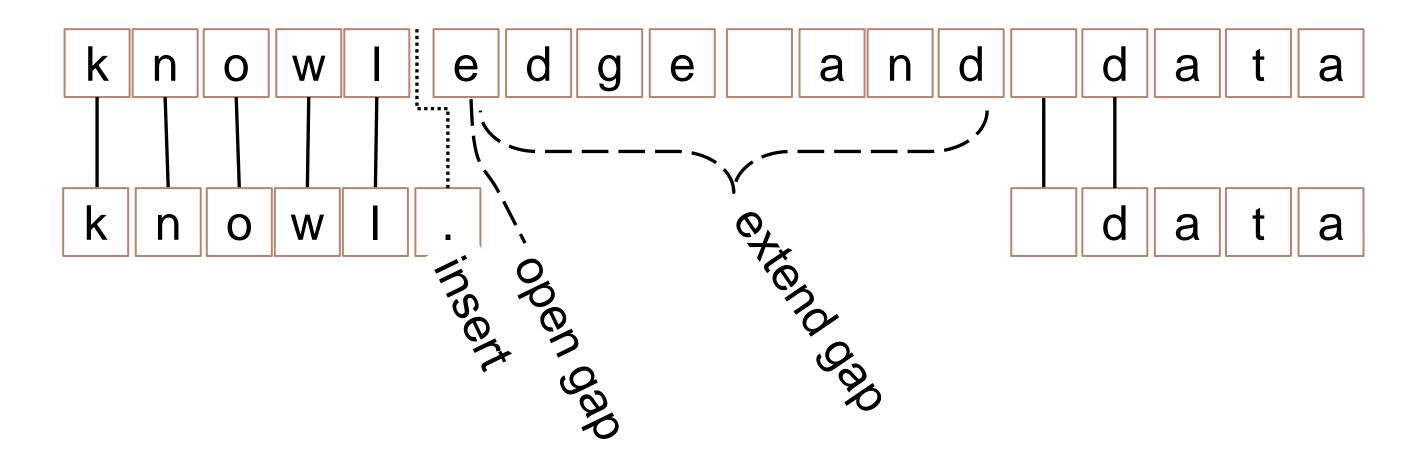
Edit Distance:

- Number of operations to convert from 1st to 2nd string
- Operations in Levenstein distance [Lev66]
 - → delete, insert, and update a character with cost 1



Gap Distance:

- Overcome limitation of edit distance with shortened strings
- Considers two extra operations [Nav01]
 - → open gap, and extend gap (with small cost)



cost = 1 + o + 8e

Jaro similarity [Jar89]:

■ Small string, e.g., first and last names

JaroSim(s₁, s₂) =
$$\frac{1}{3} \left(\frac{C}{|s_1|} + \frac{C}{|s_2|} + \frac{C-T}{C} \right)$$

C

common characters in S1 and S2

T \rightarrow transpositions/2 transposition is a k in which $s_1[k] != s_2[k]$

Example: "DEIS"vs. "DESI"

C=4, T=2/2, JaroSim=
$$\frac{1}{3} \left(\frac{4}{4} + \frac{4}{4} + \frac{4-1}{4} \right) = 0.9167$$

Jaro-Winkler similarity [Win99]:

- Extension that gives higher weight to matching prefix
- Increasing it's applicability to names

Soundex:

- Coverts each word into a phonetic encoding by assigning the same code to the string parts that sound the same
- Similarity between the corresponding phonetic encodings

Remarks:

- Surveys: [CRF03], [Win06]
- Existing API with these methods:
 - SecondString: http://secondstring.sourceforge.net/
 - SimMetrics: http://www.dcs.shef.ac.uk/~sam/simmetrics.html

- 1. Motivation: Entity Resolution
- 2. Atomic similarity methods
- 3. Similarity methods for sets
- 4. Facilitating inner-relationships
- 5. Methods in uncertain data
- 6. Conclusions

Database community:

- Each record is an entity
- A simple example:

<u>Name</u>	<u>Email</u>	<u>Journal</u>
John D. Smith	smith@uni.edu	Transactions on Knowledge and Data Engineering
Smith, J.	smith@uni.edu	IEEE Trans. Knowl. Data Eng.

Merge-purge [HS95],[HS98]:

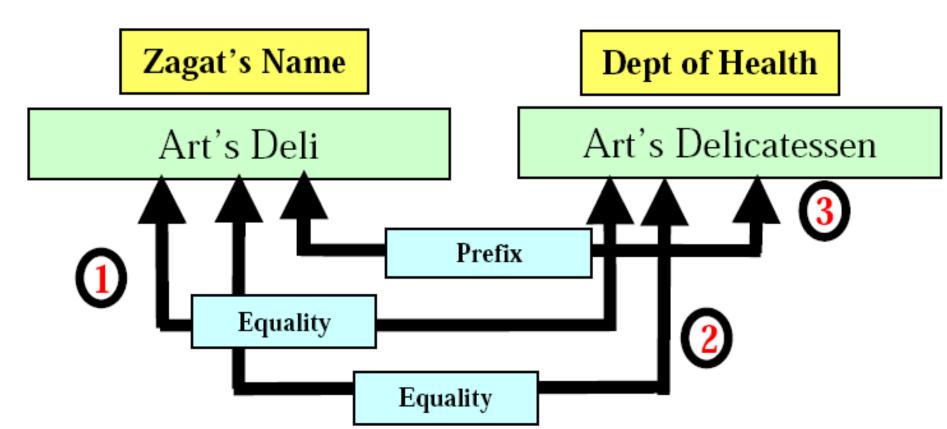
- Idea: same entities will share information
- Create a key for each record (e.g., email)
- Sort records according to key
- Compare only a limited set of records in each iteration

e1

e2

Using transformations [TKM02]:

- 1. Analyze data to generate transformations
- Unary transform:
 - Equality, Stemming, Soundex,
 Abbreviation (e.g., 3rd or third)
- N-ary transformations:
 - Initial, Prefix, Suffix, Substring
 Acronym, Abbreviation, Drop



- 2. Calculate transformation weights
- 3. Apply on candidate mappings

Group Linkage [OKLS07]:

- Considers groups of relational records
 - not individual relational records
- Groups match when:
 - 1. High similarity between data of individual records
 - 2. Large fraction of matching records, i.e., no. 1

Some additional methods

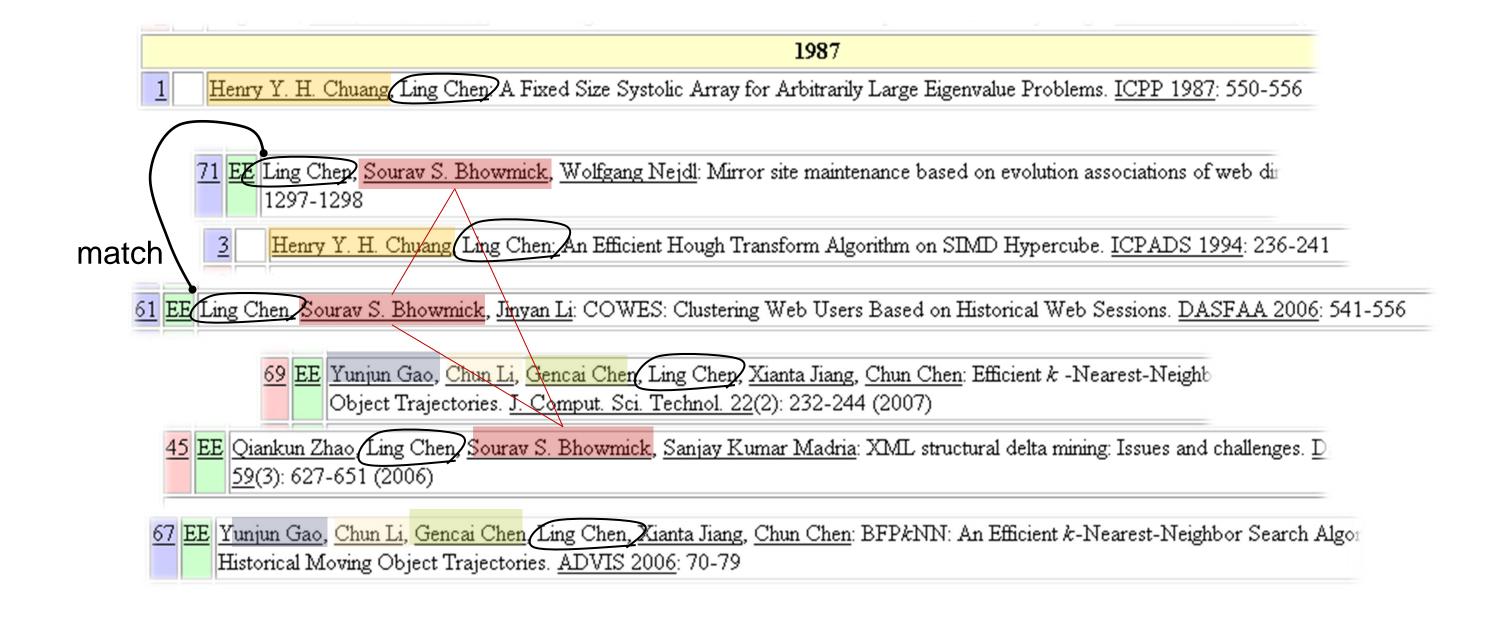
→ [DLLH03]

Surveys for methods in this category

→ [DH05], [EIV07], [OS99]

Remarks:

- Methods do not consider semantics of data
- Currently used as a first step of Entity Resolution



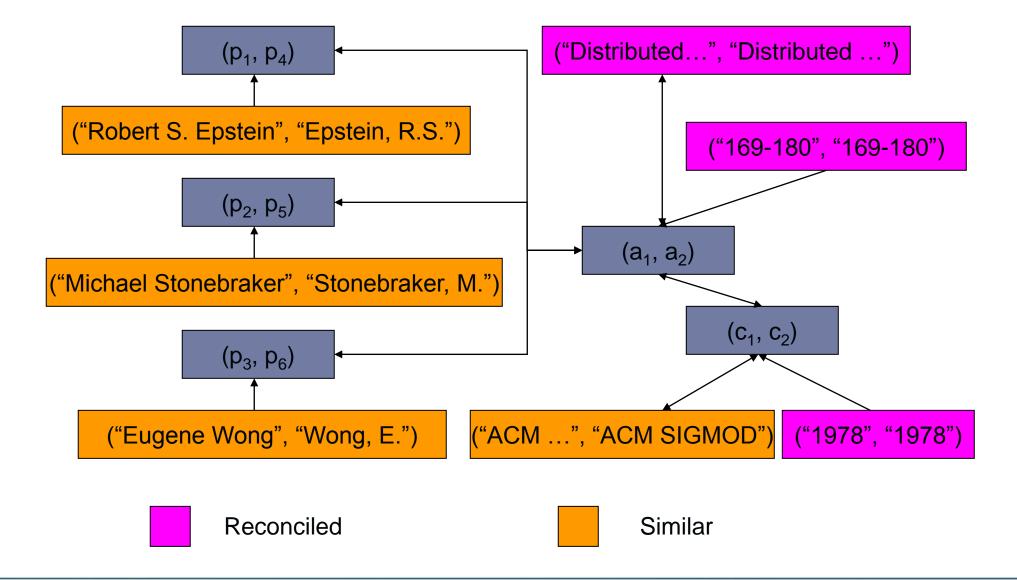
- 1. Motivation: Entity Resolution
- 2. Atomic similarity methods
- 3. Similarity methods for sets
- 4. Facilitating inner-relationships
- 5. Methods in uncertain data
- 6. Conclusions

General idea

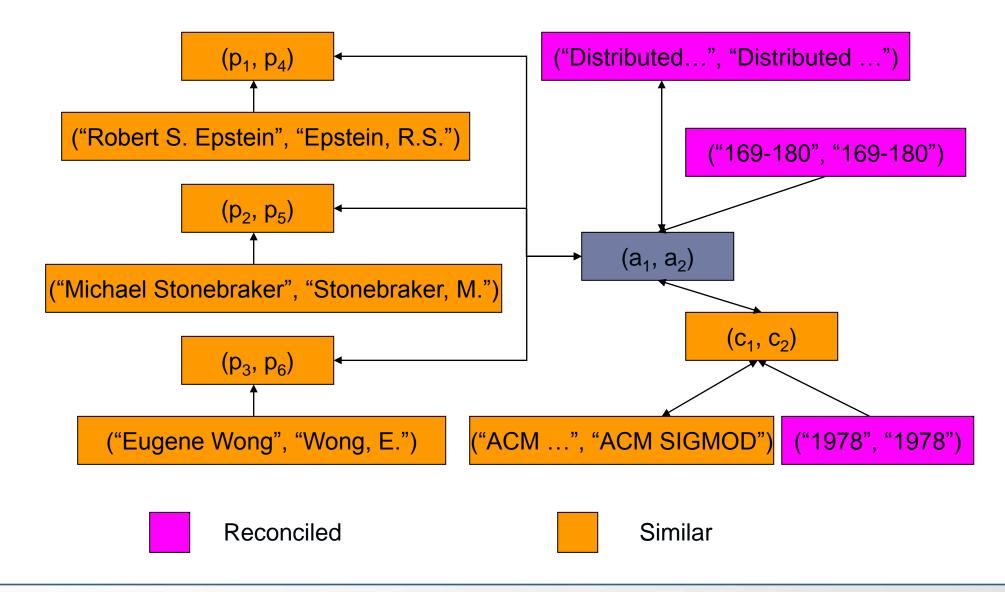
- Heterogeneous data
 - Lack of schema information
 - Variations in entity descriptions
 - Incomplete or missing values
- Improve effectiveness by considering data semantics
- Example → Reference Reconciliation

Reference Reconciliation [DHM05]

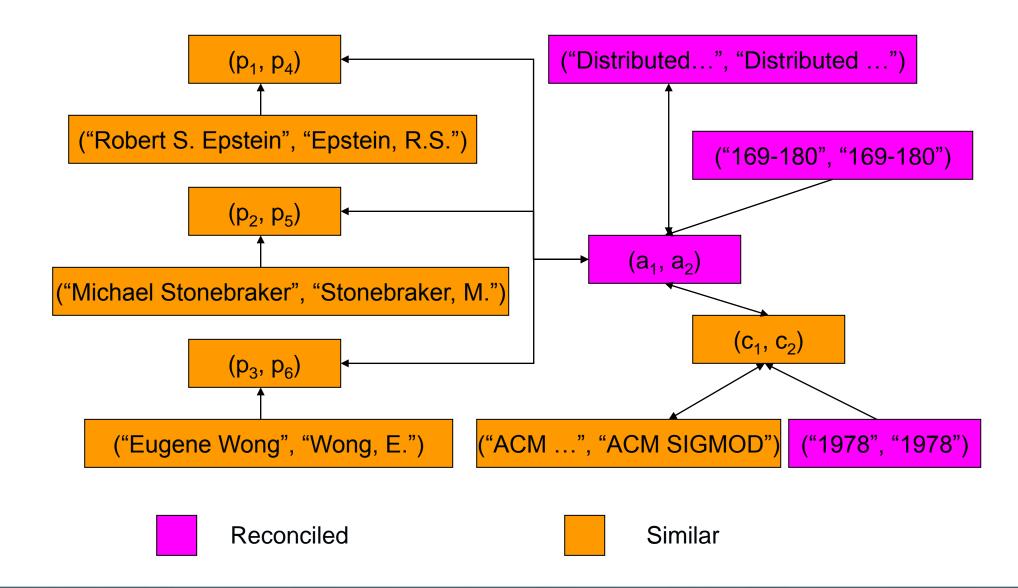
1. Build a dependency graph



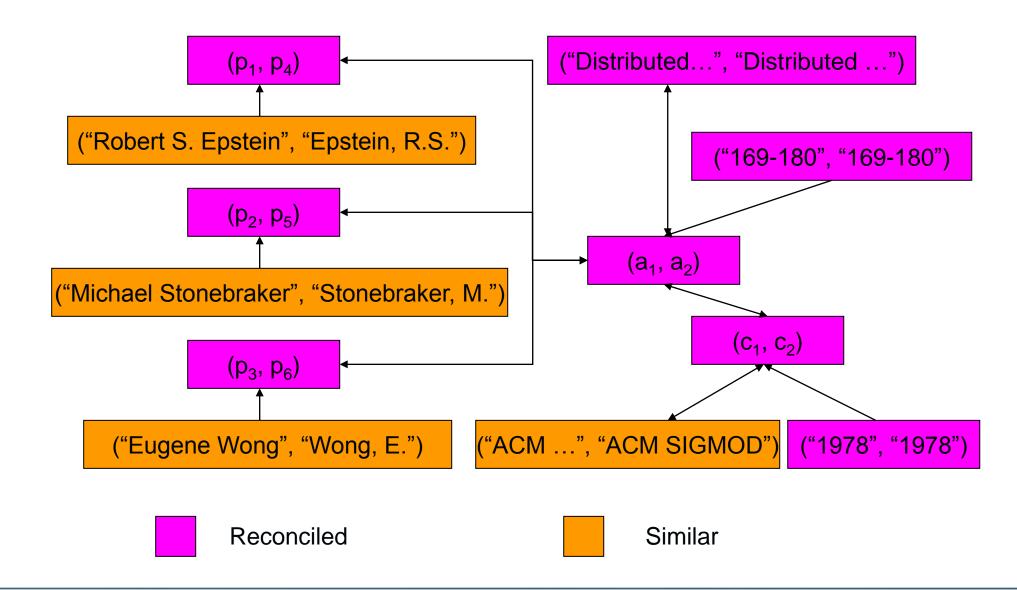
- 1. Build a dependency graph
- 2. Exploit information and relationships



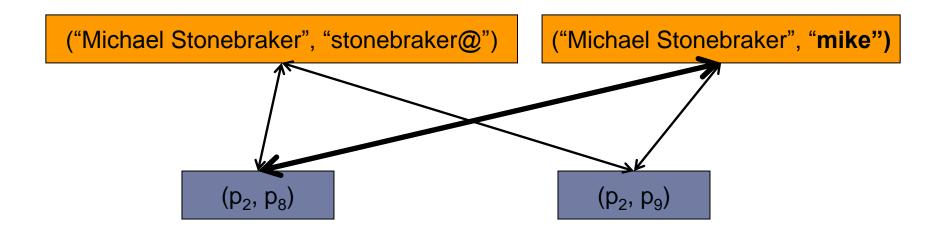
- 1. Build a dependency graph
- 2. Exploit information and relationships



- 1. Build a dependency graph
- 2. Exploit information and relationships



- 1. Build a dependency graph
- 2. Exploit information and relationships
- 3. Propagate information \rightarrow enrich relationships



Analysis of entity-relationship graph [KM06], [KMC05]:

```
Publication table (to be cleaned)

(A1, 'Dave White', 'Intel')

(A2, 'Don White', 'CMU')

(A3, 'Susan Grey', 'MIT')

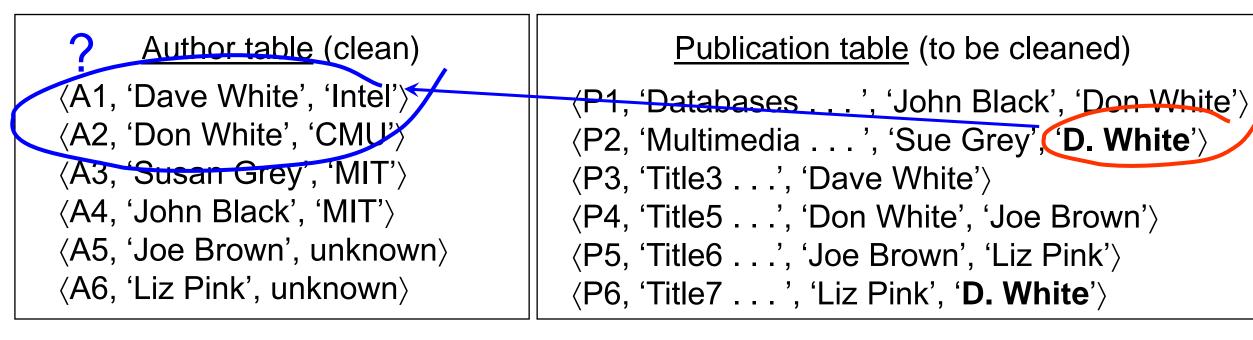
(A4, 'John Black', 'MIT')

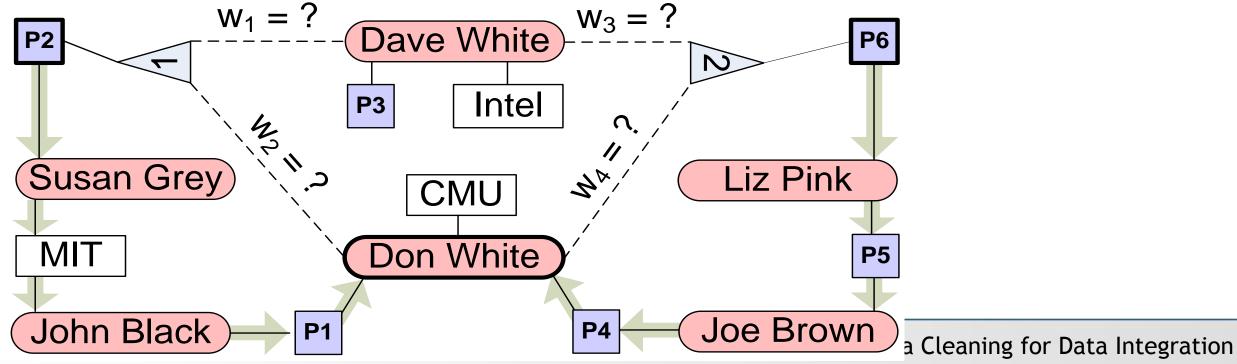
(A5, 'Joe Brown', unknown)

(A6, 'Liz Pink', unknown)
```


Analysis of entity-relationship graph [KM06], [KMC05]:

1. Dataset modeled as a graph





Analysis of entity-relationship graph [KM06], [KMC05]:

- 1. Dataset modeled as a graph
- 2. Data more strongly connected when sharing relationships

```
Publication table (to be cleaned)

A1, 'Dave White', 'Intel')

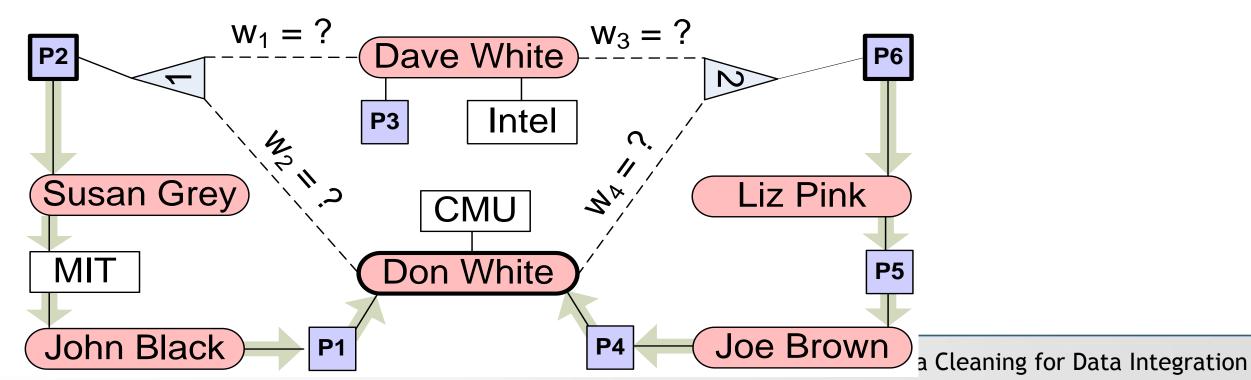
A2, 'Don White', 'CMU')

A3, 'Susan Grey', 'MIT')

A4, 'John Black', 'MIT')

A5, 'Joe Brown', unknown)

A6, 'Liz Pink', unknown)
```



Analysis of entity-relationship graph [KM06], [KMC05]:

- 1. Dataset modeled as a graph
- 2. Data more strongly connected when sharing relationships
- 3. Measure the connection strengths (details in paper)

```
? Author table (clean)

(A1, 'Dave White', 'Intel')

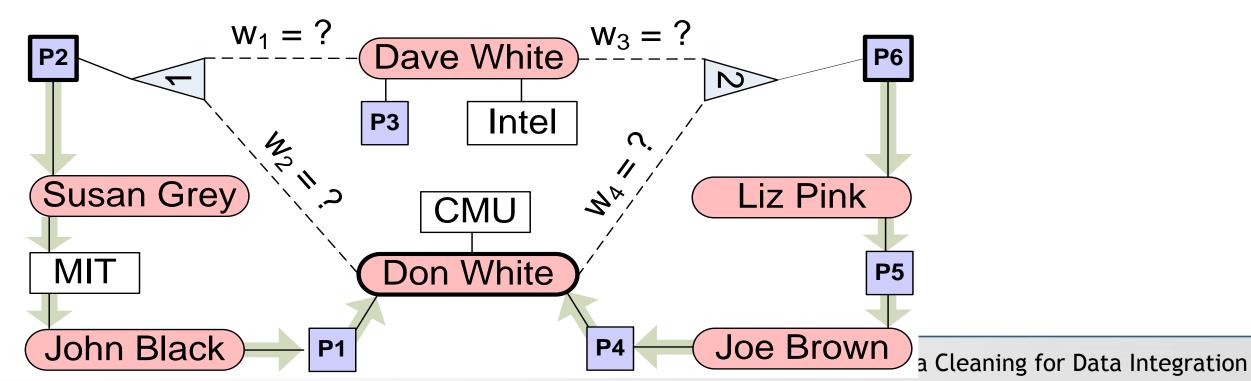
(A2, 'Don White', 'CMU')

(A3, 'Susan Grey', 'MIT')

(A4, 'John Black', 'MIT')

(A5, 'Joe Brown', unknown)

(A6, 'Liz Pink', unknown)
```



Some additional methods:

- Relationship-based clustering [BG04a], [BG04b]:
 - Common references for a match increase our belief
 - o For this we need to identify common references
 - Iterative process: common matches → identifying additional matches
- Incremental & adaptive [INN08], [MPC+10]:
 - Targets data that are constantly changing and evolving
 - Bayesian network to model entities, relationships, and evidences (possible linkages)
 - Enables flexible update of the network

Surveys for methods in this category

→ [GD05], [KSS06]

- 1. Motivation: Entity Resolution
- 2. Atomic similarity methods
- 3. Similarity methods for sets
- 4. Facilitating inner-relationships
- 5. Methods in uncertain data
- 6. Conclusions

General idea:

- Keep conflicting relations, e.g., [AFM06], [RDS07], [DS07a], [DHY07]
 - Lack of resolution rules to correctly resolve and merge relations
 - No merging, but maintain results in the database
 - Relation are alternative representations of the same real world object
- Entity representation with probability indicates...
 - Reliability of the source
 - Output of the matching process
 - o Etc.

customer

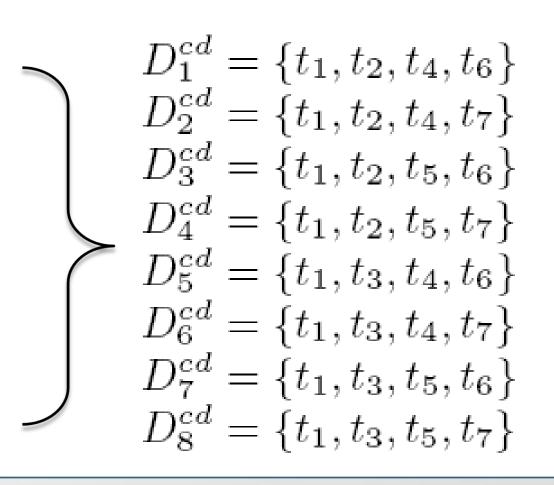
	<u>custId</u>	name	income	prob
s_1	c1	John	\$120K	0.9
s_2	c1	John	\$80K	0.1
s_3	c2	Mary	\$140K	0.4
s_4	c2	Marion	\$40K	0.6

Clean answers over dirty databases [AFM06]:

- Dirty database represents several possible databases
- Result set for queries should include the entity resolution results
- Query rewriting mechanism with efficient computation of probability for each answer

order	id	orderId	custFk	cIdFk	quantity	prob
t_1	о1	11	m1	c1	3	1
t_2	о2	12	m2	с1	2	0.5
t_3	о2	13	m3	c2	5	0.5

customer	id	custId	name	balance	prob
t_4	c1	m1	John	\$20K	0.7
t_5	c1	m2	John	\$30K	0.3
t_6	с2	m3	Mary	\$27K	0.2
t_7	с2	m4	Marion	\$5K	0.8



Clean answers over dirty databases [AFM06]:

Query rewriting

```
select A_1, \ldots, A_n \longrightarrow select A_1, \ldots, A_n, \text{sum}(R_1 .\text{prob.*} \ldots \ast R_m .\text{prob}) from R_1, \ldots, R_m where \mathcal{W} where \mathcal{W} group by A_1, \ldots, A_n
```

- Groups the result by the attributes
- For each group: sums the product of relation probabilities
- (applicable only to rewritable queries)

Entity-Aware querying over prob. linkages [INNV10]:

- Not merging the entities using threshold
- Keep probabilistic linkages alongside the original data
- Use them during query processing

Query:

o "J. K. Rowling" movies in "2002"

Assume no linkages:

o zero results

Possible answer with linkages:

- o merge(e₁, e₂)
- o merge(e₁, e₂, e₃)

(title: Harry Potter and the Chamber of Secrets	0.6
	starring: Daniel Radcliffe	0.7
• <i>e</i> ₁	starring: Emma Watson	0.4
 	writer: J.K. Rowling	0.6
	genre: Fantasy	0.6
0.9		
,		~ =
- -	title: Harry Potter and the Chamber of Secrets	0.7
• e ₂	date: 2002	0.8
- 2	starring: Daniel Radcliffe	0.5
<u>-</u>	starring: Emma Watson	0.9
· '		
0.6		
- (title: Harry Potter and the Chamber of Secrets	0.8

author: J.K. Rowling

0.8

Entity-Aware querying over prob. linkages [INNV10]:

- Linkage prob. represent several possible *l*-worlds
- Attribute prob. represent several possible worlds
- Efficient query processing:
 - Analyze query conditions
 - Identify the required entity merges
 - Decide useful possible *l*-worlds
 - Generate possible worlds
 - Compute probability

		title. Harry Folici and the Chamber of Secrets	0.0
		starring: Daniel Radcliffe	0.7
	\bullet e_1	starring: Emma Watson	0.4
		writer: J.K. Rowling	0.6
-	-	genre: Fantasy	0.6
-	0.9		
-	(title: Harry Potter and the Chamber of Secrets	0.7
	• e2	date: 2002	0.8
	<u> </u>	starring: Daniel Radcliffe	0.5
		starring: Emma Watson	0.9
	Α.	_	

title: Harry Potter and the Chamber of Secrets 0.6

• 00

title: Harry Potter and the Chamber of Secrets 0.8 genre: Fantasy 0.8 author: J.K. Rowling 0.7

• e3

- 1. Motivation: Entity Resolution
- 2. Atomic similarity methods
- 3. Similarity methods for sets
- 4. Facilitating inner-relationships
- Methods in uncertain data
- 6. Conclusions

Conclusions

Discussed methods entity resolution Four categories of methods Not presented:

- Blocking mechanisms:
 - Split data into blocks and compare inner-block data
 - Improves efficiency for large-size datasets
 - Examples: [WMK+09], [PINF11]
- Active learning approaches:
 - Use a subset of the data to learn matching rules
 - Apply the rules to remaining data
 - o Examples: [SB02], [CR01]
- Similarity Joins [GIJ+1]
- Schema matching
- •

Bibliography

[AFM06] Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean answers over dirty databases: A probabilistic approach. In ICDE, 2006. [BG04a] Indrajit Bhattacharya and Lise Getoor. Deduplication and group detection using links. In LinkKDD, 2004. Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for cleaning and integration. In DMKD, pages [BG04b] 11–18, 2004. [BMC+03] Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. Adaptive name matching in information integration. IEEE Intelligent Systems, 18(5):16-23, 2003. W. Cohen and J. Richman. Learning to match and cluster entity names. In MF/IR Workshop co-located with [CR01] SIGIR, 2001. WilliamW. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A Comparison of String Distance Metrics for [CRF03] Name-Matching Tasks. In IIWeb co-located with IJCAI, pages 73–78, 2003. [DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in the database community: A brief survey. Al Magazine, 26(1):83-94, 2005. Xin Dong, Alon Halevy, and Jayant Madhavan. Reference Reconciliation in Complex Information Spaces. In [DHM05] SIGMOD, pages 85-96, 2005. Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration with uncertainty. In VLDB, pages 687–698, [DHY07] 2007. [DLLH03] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Object matching for information integration: A profiler-based approach. In IIWeb co-located with IJCAI, pages 53-58, 2003. Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data: foundations and challenges. In PODS, [DS07a] pages 1–12, 2007. [EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, 2007. [GD05] Lise Getoor and Christopher P. Diehl. Link mining: a survey. SIGKDD Explorations, 7(2):3–12, 2005.

Bibliography (II)

- [GIJ+01] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Approximate string joins in a database (almost) for free. In VLDB, pages 491–500, 2001.
- [GM03] Ramanathan V. Guha and Rob McCool. TAP: a SemanticWeb Platform. Computer Networks, 42(5):557–577, 2003.
- [HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for large databases. In SIGMOD Conference, pages 127–138, 1995.
- [HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.
- [INN08] Ekaterini Ioannou, Claudia Niederée, and Wolfgang Nejdl. Probabilistic entity linkage for heterogeneous information spaces. In CAiSE, pages 556–570, 2008.
- [INNV10] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, and Yannis Velegrakis. On-the-fly entity-aware query processing in the presence of linkage. PVLDB, 3(1):429–438, 2010.
- [Jar89] Matthew A. Jaro. Advances in record-linkage methodology as applied to matching the 1985 census of tampa, florida. American Statistical Association, 84, 1989.
- [KM06] Dmitri V. Kalashnikov and Sharad Mehrotra. Domain-independent data cleaning via analysis of entity-relationship graph. ACM TODS, 31(2):716–767, 2006.
- [KMC05] Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploiting relationships for domain-independent data cleaning. In SIAM SDM, 2005.
- [KSS06] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity measures and algorithms. In SIGMOD Conference, pages 802–803, 2006.
- [Lev66] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady, vol. 10, no. 8, pages 707-710, 1966.
- [MPC+10] Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demartini, Julien Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, and Wolfgang Nejdl. Leveraging personal metadata for desktop search: The beagle++ system. Journal ofWeb Semantics, 8(1):37–54, 2010.

Bibliography (III)

[Nav01]	Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–88, 2001.
[OKLS07] [OS99]	Byung-Won On, Nick Koudas, Dongwon Lee, Divesh Srivastava. Group Linkage. In ICDE, pages 496-505, 2007. Aris M. Ouksel and Amit P. Sheth. Semantic interoperability in global information systems: A brief
	introduction to the research area and the special section. SIGMOD Record, 28(1):5–12, 1999.
[PD04]	Parag and P. Domingos. Multi-relational record linkage. In MRDM Workshop co-located with KDD, pages 31–48, 2004.
[PINF11]	George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter Fankhauser. Efficient entity resolution for large heterogeneous information spaces. In WSDM, 2011.
[RDS07]	Christopher Re, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation on probabilistic data. In ICDE, pages 886–895, 2007.
[RVMB09]	Flavio Rizzolo, Yannis Velegrakis, John Mylopoulos, Siarhei Bykau: Modeling Concept Evolution: A Historical Perspective. In ER, pages 331-345, 2009.
[SB02]	Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active learning. In KDD, pages 269–278, 2002.
[TKM02]	Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning domain-independent string transformation weights for high accuracy object identification. In KDD, pages 350–359, 2002.
[Win99]	William Winkler. The state of record linkage and current research problems, 1999.
[Win06]	William Winkler. Overview of Record Linkage and Current Research Directions. Bureau of the Census, 2006.
[WMK+09]	Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald, and Hector Garcia-Molina. Entity resolution with iterative blocking. In SIGMOD Conference, pages 219–232, 2009.

