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|Z3S Problem overview

Data integration:
= Combine data from various sources/applications
"  Merge into a single database

=  Requires a unified view over the data = cleaning

Challenges:
»  Handling the various incoming schemata
" Dealing with the missing data values
= Entity Resolution
— combine the various descriptions or references
for the same real world objects
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Reasons for Various Descriptions
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t Reasons for Various Descriptions
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m Text variations
" Local knowledge:

e Each source uses different formats
e.g., person from publication vs. person from email

* Lack of global coordination for identifier assignment
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Reasons for Various Descriptions
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= Text variations @
" Local knowledge txpe o2 B0 | | \dype .
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Jacqueline Lee Bouvier

Alternate Names: Jackie Bouvier Jackie Kennedy Mrs. John F. Kennedy @ Jackie
Onassis  Jacqueline Kennedy Onassis | Jacqueline Onassis
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¢ Reasons for Various Descriptions

= Text variations
" | ocal knowledge

" Evolving nature of data
" New functionality:

 Web page extraction
e.g., Calais, Cogito

* Import data collections from various applications
e.g., Wikipedia data used in Freebase

 Mashups for easy and fast integration from various source

e.g., yahoo pipes
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|Z3S Required Process

Entity Resolution typical methodology:
" Indentify data describing the same real-world objects
" Decide how to merge the data

" Update the data collection

Solutions following various directions

We present them through four categories:
1. Atomic similarity methods

2. Similarity methods for sets

3. Facilitating inner-relationships

4. Methods in uncertain data
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% Alternative names for Entity Resolution
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Motivation: Entity Resolution
Atomic similarity methods
Similarity methods for sets
Facilitating inner-relationships
Methods in uncertain data
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Conclusions
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t Atomic String Similarity

Examples of targeting cases:

= Publication authors: “John D. Smith” vs. “J. D. Smith”

" Journal names: “Transactions on Knowledge and Data Engineering”

vs. “Trans. Knowl. Data Eng.”

Edit Distance:

= Number of operations to convert from 15t to 2"9 string

" Operations in Levenstein distance

— delete, insert, and update a character with cost 1

e k| a ™
........... /////// | cost 2
(/ -

O Data Cleaning for Data Integration 10



Atomic String Similarity

Gap Distance:

" Overcome limitation of edit distance with shortened strings

" Considers two extra operations
- open gap, and extend gap (with small cost)

anow“Iéedge a“nd d a|t| a
:: ..... |\\\ //
\ YT
Kinow || .\ S, da t a
2 2 ®
S T
2, p2

cost=1+0+ 8e
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|Z3§ Atomic String Similarity
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Jaro similarity

" Small string, e.g., first and last names

. 1 C C C-T
JaroSim( s1, s2) = 3 ( st + 2 +- )

C -2 common characters in S1 and S2
T =2 transpositions/2  transposition is a k in which s1]k] = s2[k]
Example: “DEIS”vs. “DESI”

14 4 4-1

C=4,T=2/2,JaroSim= — (—+—+ ) =0.9167
34 4 4

Jaro-Winkler similarity

" Extension that gives higher weight to matching prefix
" Increasing it’s applicability to names
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|Z3§ Atomic String Similarity

Soundex:

" Coverts each word into a phonetic encoding by assigning the same
code to the string parts that sound the same

" Similarity between the corresponding phonetic encodings

Remarks:

= Surveys:

4

= Existing APl with these methods:
o SecondString:

o SimMetrics:
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% Similarity methods for sets

Database community:

" Each record is an entity Name Email Journal

Transactions on Knowledge and
Data Engineering

u As|mple example: €1 John D.Smith smith@uni.edu

e2 Smith, J. smith@uni.edu |EEE Trans. Knowl. Data Eng.

Merge-purge

" |dea: same entities will share information
" Create a key for each record (e.g., email)
" Sort records according to key

" Compare only a limited set of records in each iteration
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Using transformations

1. Analyze data to generate transformations

" Unary transform:

Zagat’s Name

¢ Similarity methods for sets
1L3S; Y

Dept of Health

o Equality, Stemming, Soundex,

Art's Dell

Art’s Delicatessen

Abbreviation (e.g., 3rd or third)
" N-ary transformations: @)t
Equahty

o Initial, Prefix, Suffix, Substring

Acronym, Abbreviation, Drop

2. Calculate transformation weights

3. Apply on candidate mappings

Prefix

Equality

Data Cleaning for Data Integration
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¢ Similarity methods for sets

Group Linkage
" Considers groups of relational records
o not individual relational records

" Groups match when:

1. High similarity between data of individual records

2. Large fraction of matching records, i.e., no. 1

Some additional methods
9

Surveys for methods in this category
9

4 4
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qi Similarity methods for sets
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Remarks:

= Methods do not consider semantics of data

" Currently used as a first step of Entity Resolution

1987
1l B Henry Y. H Chuam:_v@g Chen?4 Fixed Size Systolic Array for Arbitrarily Large Eigenvalue Problems. ICPP 1987: 550-556

71 Sourav o. Bhowmick, Wolfoang Neidl: Mirror site maintenance based on evolution associations of web di
1297-1298

61 EE(Ting Chen Bourav 5.

Efficient Hough Transform Algonthm on SIMD Hypercube. ICPADS 1994: 236-241

Bhowmick,

nyan L COWES: Clustering Web Users Based on Historical Web Sessions. DASFAA 2006: 541-556

69 EE Yunjun Gao, Li,xencai Chery, Ling Che;, Xianta Jiang, Chun Chen: Efficient & -Nearest-Nejght

N—

- Object Trajectories.\mkmput. Sci Technol. 22(2): 232-244 (2007)

45 |EE Qiankun Zhao <§mg Cheé?

Sourav 5. Bhowmick, Sanjay Kumar Madna: XML structural delta mining: Issues and challenges. L
’ 39(3): 627-651 (2006)

67 |[EE | Yunpun Gao, Chun Li, Gencai Chenéing Chen, Xianta Jiang, Chun Chen: BFPANN: An Efficient k-Nearest-Neighbor Search Algo
’ Historical Moving Object Trajectories. ADVIS 2006: 70-79
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)t Facilitating inner-relationships

General idea

" Heterogeneous data
o Lack of schema information
o Variations in entity descriptions
o Incomplete or missing values

" Improve effectiveness by considering data semantics

= Example = Reference Reconciliation

O Data Cleaning for Data Integration 20
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@g Facilitating inner-relationships

Reference Reconciliation |[DHMO5]
1. Build a dependency graph

-

:
L=

. Reconciled
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@g Facilitating inner-relationships

Reference Reconciliation |[DHMO5]
1. Build a dependency graph

2. Exploit information and relationships

=‘ _
l
A

:
L=

. Reconciled
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@g Facilitating inner-relationships

Reference Reconciliation |[DHMO5]
1. Build a dependency graph

2. Exploit information and relationships

=‘ _
hl
A

:
ﬁ-—=

. Reconciled
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: '% Facilitating inner-relationships

Reference Reconciliation |[DHMO5]
1. Build a dependency graph

2. Exploit information and relationships

A

“

. Reconciled
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Reference Reconciliation

1. Build a dependency graph
2. Exploit information and relationships

3. Propagate information =2 enrich relationships

(“Michael Stonebraker”, “stonebraker@”) (“Michael Stonebraker”, “mike”)

i

Data Cleaning for Data Integration
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Analysis of entity-relationship graph

Publication table (to be cleaned)
John Black’,

. able (clean)
(A1, ‘Dave White’,

P4+—Databases |

N VWhite,
) MIT

, John Black’, ‘MIT")

, 'Joe Brown’, unknown)
, 'Liz Pink’, unknown)

(P3, Title3 . ..

(P4, ‘Title5 . . .,
(P5, ‘Title6 . .
(P6, Title7 . .

.Wa

Joe Brown’)
., "Joe Brown’, ‘Liz Pink’)
., ‘Liz Pink’, ‘D. White’)

rey (D. Whlt@/
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Facilitating inner-relationships
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Analysis of entity-relationship graph ,

1. Dataset modeled as a graph

(DA

Publication table (to be cleaned)

/?Aumm_ha.big_(cl\ean)
7A1, ‘Dave White', ‘Intsl A~

‘ | tP4+—Databases . . .’, ‘John Black’, ite’)
(A2, 'Don White’, ‘CMU (P2, ‘Multimedia . . ., ‘Sue Grey’(D. Whitey
(A3, , MIT) (P3, ‘Title3 . . .’, ‘Dave White’)
(A4, "John Black’, ‘MIT") (P4, ‘Title5 . . ., ‘Don White’, ‘Joe Brown’)
(A3, “Joe Brown’, unknown) (P5, ‘Title6 . . .", ‘Joe Brown’, ‘Liz Pink’)
(AB, ‘Liz Pink’, unknown) (PG, ‘Title7 . .. , ‘Liz Pink’, ‘D. White")
W, =7 — W3 =7
‘PZF j———l ————— (Dave Whlte}——g————t 4P6\
\\\@ P3 Intel a S
\\VD 72
Susan Grey) \\\\.3 cviol S (_Liz Pink )
MIT “(Don White )’ P5
N
O C‘]Ohn BIaCk) Pl P4 (Joe BI‘OWI’])a Cleaning for Data Integration 27
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Facilitating inner-relationships

1. Dataset modeled as a graph

Analysis of entity-relationship graph ,

2. Data more strongly connected when sharing relationships

L (A2, ‘Don White’, ‘CMU:

/?Aumal_ha.big_(cl\ean)
7A1, ‘Dave White', ‘Intsl A~

(DA

Publication table (to be cleaned)

(A3, C MIT?)
(A4, ‘John Black’, ‘MIT")
(A5, ‘Joe Brown’, unknown)
(AB, ‘Liz Pink’, unknown)

\h
(P2
(P3,
(P4,
(PS5,
(P6,

‘Patabases . .. ’, ‘John Black’, ° ite’)
, ‘Multimedia . . .’, ‘Sue Grey (D. Whitey
Title3 . . .’, ‘Dave White’)

Title5 . . .’, ‘Don White’, ‘Joe Brown’)
‘Title6 . . ., ‘Joe Brown’, ‘Liz Pink’)

Title7 . . ., 'Liz Pink’, ‘D. White’)

\

\
N\
&

Susan Grey)

MIT

O (John Black —

\\ N
\
\

D cviol S (_Liz Pink )

P3

Intel /

AN

“(Don White )’ P5

P1

\

P4 —(Joe BI‘OWI’\)a Cleaning for Data Integration
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Analysis of entity-relationship graph
1. Dataset modeled as a graph

2. Data more strongly connected when sharing relationships
3. Measure the connection strengths (details in paper)

/?Aumm_ha.big_(cl\ean) Publication table (to be cleaned)
(A1, ‘Dave White’, ‘Intel’>‘J tP4—Databases . . .’, ‘John Black’,

| | , ite”)
(A2, ‘Don White', ‘CMU (P2, ‘Multimedia . . ., ‘Sue Grey' (D. White’) ./

(A3, , MIT) (P3, ‘Title3 . . .’, ‘Dave White’)
(A4, "John Black’, ‘MIT") (P4, ‘Title5 . . ., ‘Don White’, ‘Joe Brown’)
(AS, "Joe Brown’, unknown) (P5, ‘Title6 . . .", ‘Joe Brown’, ‘Liz Pink’)
(AB, ‘Liz Pink’, unknown) (PG, ‘Title7 . .. , ‘Liz Pink’, ‘D. White")
Wiy =7 : W3 = ?
‘PZF j———l ————— (Dave Whlte}——s————t 4P6\
\\\@ P3 Intel a S
\\VD 72
Susan Grey) \\\\.3 cviol S (_Liz Pink )
MIT “(Don White )’ P5
\

O CJOhn BIaCk) Pl P4 (Joe BI‘OWI’\)a Cleaning for Data Integration
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)t Facilitating inner-relationships

Some additional methods:

" Relationship-based clustering ,
o Common references for a match increase our belief
o For this we need to identify common references

o lterative process: common matches - identifying additional matches

" |Incremental & adaptive

4

o Targets data that are constantly changing and evolving

o Bayesian network to model entities, relationships, and evidences
(possible linkages)

o Enables flexible update of the network

Surveys for methods in this category
2 :
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Methods in uncertain data

General idea:

" Keep conflicting relations, e.g.,
o Lack of resolution rules to correctly resolve and merge relations

o No merging, but maintain results in the database
o Relation are alternative representations of the same real world object

" Entity representation with probability — indicates...

o Reliability of the source
o Output of the matching process
o Etc.

4 4 /]

customer
custld | name |income | prob

s1| cl John | $120K | 0.9
so| cl John | $80K | 0.1
s3| c2 | Mary | $140K | 0.4
sq4| c2 |Marion| $40K | 0.6
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Clean answers over dirty databases
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Methods 1in uncertain data

" Dirty database represents several possible databases

" Result set for queries should include the entity resolution results

" Query rewriting mechanism with

efficient computation of probability for each answer

order
t1
to
i3

id | orderld | custFk | cldFk | quantity | prob
ol 11 ml cl 3 1
02 12 m?2 cl 2 0.5
02 13 m3 c’ D 0.5
customer | id | custld | name | balance | prob
ta | cl ml John $20K 0.7
ts | cl m?2 John $30K 0.3
te | c2 m3 Mary $27K 0.2
tr | c2 m4 Marion $5K 0.8

oo
D7
oo
2
oo
D3
D
D!
Dg?
o
D5
De
&

Data Cleaning for Data Integration
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t Methods in uncertain data

Clean answers over dirty databases

= Query rewriting

select A¢,... A, _Jselect Ay.... . An.sum(Ff1 .prob.*...* R,,.prob)
from Ri.....H, from Ri.....Rn.
where W where W

group by Ai.....A,

" Groups the result by the attributes
" For each group: sums the product of relation probabilities

" (applicable only to rewritable queries)
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Methods in uncertain data

Entity-Aware querying over prob. linkages

o Not merging the entities using threshold

o Keep probabilistic linkages alongside the original data

o Use them during query processing

Query:
o “J. K. Rowling” movies in “2002”

Assume no linkages:

O zero results

Possible answer with linkages:
o merge(ei, €2)

o merge(ei, €2, €3)

O

® |

X

® 7

- 06

ks

e

l..o-"

C title: Harry Potter and the Chamber of Secrets 0.6 A

starring.: Daniel Radchtte 0.7
starring: Emma Watson 0.4
writer: LK. Rowling 0.6
genre:  Fantasy 0.6 )
 title: Harry Potter and the Chamber of Secrets (.7 A
date: 2002 0.8
starring: Daniel Radclhitfe 0.5
starring: Emma Watson 0.9 )
title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8 1
author: J.K. Rowling 0.7 )
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(5@55@“)% Methods in uncertain data
D o I

Entity-Aware querying over prob. linkages
» Linkage prob. represent several possible l-worlds
= Attribute prob. represent several possible worlds

" Efficient query processing:

o Analyze query conditions

o ldentify the required entity merges
o Decide useful pOSSIbIe l-worlds C title: Harry Potter and the Chamber of Secrets 0.6 A
: starring.: Daniel Radclhitte 0.7
o Generate pOSSIbIe worlds ® ¢l | starring: Emma Watson 0.4
T v writer: LK. Rowling 0.6
o Compute probability B genre-  Fantasy 06
Slne — g
 title: Harry Potter and the Chamber of Secrets (.7 A
oo | date: 2002 0.8
- | starring.: Daniel Radcliffe 0.5
| starring: Emma Watson 0.9 )
(.6

genre: Fantasy 0.8

C title: Harry Potter and the Chamber of Secrets (.8 1
A

* €3 | author: 1. K. Rowling 0.7

O N
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¢ Conclusions

")
v

Discussed methods entity resolution

Four categories of methods

Not presented:
" Blocking mechanisms:

o Split data into blocks and compare inner-block data
o Improves efficiency for large-size datasets
o Examples: ,
" Active learning approaches:
o Use a subset of the data to learn matching rules
o Apply the rules to remaining data

o Examples: ,
= Similarity Joins
" Schema matching

Q Data Cleaning for Data Integration 38
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