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Abstract—In the context of Entity Resolution (ER) in highly heterogeneous,
noisy, user-generated entity collections, practically all block building meth-
ods employ redundancy in order to achieve high effectiveness. This practice,
however, results in a high number of pairwise comparisons, with a negative
impact on efficiency. Existing block processing strategies aim at discarding
unnecessary comparisons at no cost in effectiveness.

In this paper, we systemize blocking methods for Clean-Clean ER (an
inherently quadratic task) over highly heterogeneous information spaces
(HHIS) through a novel framework that consists of two orthogonal layers: the
effectiveness layer encompasses methods for building overlapping blocks
with small likelihood of missed matches; the efficiency layer comprises
a rich variety of techniques that significantly restrict the required number
of pairwise comparisons, having a controllable impact on the number of
detected duplicates. We map to our framework all relevant existing methods
for creating and processing blocks in the context of HHIS, and additionally
propose two novel techniques: Attribute Clustering Blocking and Compar-
ison Scheduling. We evaluate the performance of each layer and method
on two large-scale, real-world data sets and validate the excellent balance
between efficiency and effectiveness that they achieve.
Index Terms—Information Integration, Entity Resolution, Blocking Methods

1 Introduction
The amount of global, digital information has exhibited an
annual increase of 30% in the last few years [16], due to
the distributed production of information in businesses and
organizations, the increased ability and interest for automatic
extraction of information from raw data, and the contribu-
tions of valuable information from individual users worldwide
through Web 2.0 tools. The combined effect of these factors
gives rise to highly heterogeneous information spaces (HHIS),
manifested in Dataspaces [17] and the Web of Data [4].

The main characteristics of HHIS are the following. (i) non-
structured data: HHIS principally comprise semi-structured
data, loosely bound to a rich diversity of schemata, even when
describing the same entity types. (ii) high levels of noise: they
suffer from incomplete information, as their user-generated
part involves missing or inconsistent data, with extraction
errors. (iii) large scale: users contributing to HHIS are rather
prolific, conveying an exponential growth in the content of
Web 2.0 platforms, e.g., Wikipedia [1].

To leverage the investment in creating and collecting the
massive volume of HHIS, the Linked Data vision was recently
proposed [4], advocating the combination of related resources
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in a unified way. A core part of this large-scale integration
process is Entity Resolution (ER), which is the process of
automatically identifying sets of profiles that pertain to the
same real-world entities.

In the context of HHIS, ER comes in two different forms: as
Dirty ER, where the input comprises a single entity collection,
and as Clean-Clean ER, which is the process of detecting pairs
of matching entities among two large, heterogeneous, individ-
ually clean (i.e., duplicate-free), but overlapping collections of
entities [5], [11], [21]. As an example for the former, consider
the task of identifying duplicate Web pages in the index of
a search engine; in the latter case falls the task of merging
individual collections of consumer products, which stem from
different online stores and, thus, have slightly varying descrip-
tions and proprietary identifiers. Among these two versions of
ER, Clean-Clean ER constitutes a more specific problem that
is principally solved through specialized techniques relying on
the cleanness of the input data collections. On the other hand,
Dirty ER is a more generic task that shares many challenges
with Clean-Clean ER. For this reason, we exclusively focus
on Clean-Clean ER in the following and highlight, where
necessary, the techniques that are generic enough to handle
Dirty ER, as well.

Clean-Clean ER constitutes an inherently quadratic task
(every entity of a collection has to be compared to all entities
of another collection). In order to scale to large volumes
of data approximate techniques are employed. These signif-
icantly enhance efficiency (i.e., reduce the required number
of pairwise comparisons), by trading –to a limited extent–
effectiveness (i.e., the percentage of detected duplicates). The
most prominent among these techniques is data blocking,
which clusters similar entities into blocks and performs com-
parisons only among entities in the same block. There is a
plethora of techniques in this field, but the vast majority of
them assumes that the schema of the input data, as well
as its qualitative features, are known in advance [5]. This
requirement is essential in order to select the most reliable and
distinctive attributes for assigning entities to blocks according
to their values [5].

However, we note that traditional blocking techniques are
incompatible with the inherent characteristics of HHIS men-
tioned above, rendering most of these methods inapplicable
to our problem. To illustrate the peculiarities of HHIS, con-
sider the entity collections E1 and E2 that are presented in
Figure 1 (a). Judging from the similar values they share,
we deduce that the entities p1 and p2 of E1 are matching
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Fig. 1. (a) Two entity collections, and (b) the generated blocks.

with p3 and p4 of E2, respectively. However, every canonical
attribute name has a different form in each profile; the name
of a person, for instance, appears as “FullName” in p1, as
“name” in p2 and as “given name” in p3. This situation
is further aggravated by tag-style values, such as the name
of p4, which is not associated with any attribute name at
all. Traditional blocking methods cannot form any block in
the context of so high levels of heterogeneity and are only
applicable on top of a schema matching method. Although this
task seems straightforward in our example, it is impractical in
real-world HHIS; Google Base1 alone encompasses 100, 000
distinct schemata that correspond to 10, 000 entity types [23].

In these settings, block building methods typically rely
on redundancy to achieve high effectiveness: each entity is
placed in multiple blocks, which significantly restricts the
likelihood of missed matches. As an example, consider the
Token Blocking approach [29], shown in Figure 1 (b); each
created block corresponds to a single token and contains all
entities with that token, regardless of the associated attribute
name. Redundancy, however, comes at the cost of lower
efficiency, since it produces overlapping blocks with a high
number of unnecessary comparisons. In our example, we
observe that the blocks “Gray”, “programmer” and “91456”
contain four repeated comparisons between the pairs p1-p3 and
p2-p4. Block “91456” also involves two unnecessary compar-
isons between the non-matching pairs p1-p4 and p2-p3. Such
comparisons can be discarded without missing any duplicates,
thus enhancing efficiency at no cost in effectiveness. This is
actually the purpose of numerous block processing techniques.

Several blocking methods have been proposed for Clean-
Clean ER over HHIS. Some of them are competitive (i.e.,
serve identical needs), while others are complementary, as their
combination leads to better performance. However, there is no
systematic study on how these methods relate to each other.

In this paper, we propose a novel framework that organizes
existing blocking methods, and covers the gap mentioned
above. The framework comprises two orthogonal layers, each
targeting a different performance requirement. The Effective-
ness Layer encompasses methods that create robust blocks in
the context of HHIS, aiming at placing duplicate entities in at
least one common block (this directly translates to effective-
ness, since entities in the same block will be compared to each
other; therefore, the duplicate entities will be discovered). The
main technique of this layer is Token Blocking, which requires
no background knowledge of the input data, disregarding
completely any schema information. In this study, we also

1. http://www.google.com/base

propose an Attribute Clustering Blocking, which creates blocks
of higher performance by partitioning attribute names with
similar values into non-overlapping clusters.

The Efficiency Layer aims at processing blocks efficiently,
discarding the repeated and unnecessary comparisons they
contain. To describe their functionality in an unambiguous
way, we introduce a novel, two-dimensional taxonomy that
categorizes efficiency techniques according to the type of
comparisons they target, and the granularity of their func-
tionality (i.e., whether they operate on the coarse level of
blocks or on the finer level of individual comparisons). We
also propose a novel technique, called Comparison Scheduling,
which specifies the processing order of individual comparisons
so as to increase the number of superfluous comparisons that
are discarded at no cost in effectiveness.

The goal of our framework is to facilitate practitioners in
their effort to combine complementary blocking methods into
highly performing ER solutions that can be easily tailored to
the particular settings and requirements of each application (cf.
Section 4.1). It also facilitates and guides the development of
new methods that specialize in specific types of comparisons
in order to yield higher efficiency enhancements. Of particular
utility in this effort is the metric space we present in Sec-
tion 3.2, which estimates the performance of blocking methods
a-priori. Our framework is general in that it accommodates the
existing methods for creating and processing blocks for Clean-
Clean ER over HHIS, and can incorporate new methods as
well. To this effect, we have publicly released its implemen-
tation, as well as the data of our experimental study2. Even
though our framework focuses on a particular subtask of ER,
most of the ideas it conveys could also be applied to other
versions of the ER problem.

Our main contributions are:
• We define a framework for blocking-based Clean-Clean

ER over HHIS that consists of two orthogonal layers. It is
generic and flexible in order to accommodate a variety of
methods that in combination form comprehensive, highly
performing ER approaches.

• We explain the incorporation of new blocking methods in
our framework. For this, we introduce Attribute Clustering
Blocking, a novel approach to block building that achieves
equally high effectiveness with Token Blocking, but at a
significantly lower redundancy and higher efficiency. We
also introduce Comparison Scheduling, a novel approach
to block processing that enhances efficiency at no cost
in effectiveness by specifying the processing order of all
individual comparisons so that duplicates are detected first.

• We report evaluation results on two large-scale, real-world
data sets that total comprise over three million entities.

2 RelatedWork
ER constitutes a traditional problem in Computer Science [9],
[11], [12], [22], [27], and numerous methods have been
proposed over the years for tackling it, ranging from string
similarity metrics [6] to methods relying on entity relation-
ships [10]. Blocking is one of the established techniques for
scaling ER to large data collections, and existing blocking

2. http://sourceforge.net/projects/erframework



3

methods can be distinguished in three broad categories: block
building, block processing, and hybrid ones. Block building
methods aim at producing a set of blocks that offers a good
balance between the number of detected duplicates and the
number of required comparisons. In the context of Homoge-
neous Information Spaces, these methods typically consider
the frequency distribution of the values of attribute names, as
well as their quality (i.e., presence of noise or missing values),
in order to derive the most suitable Blocking Key(s) [5].
Given a collection of entities, a blocking key is extracted
from every profile and blocks are formed on the similarity,
or equality of the resulting keys. For example, the Suffix
Array approach [7] considers suffixes of certain lengths of
the blocking keys, placing in each block entities that share the
corresponding suffix. The StringMap method [20] maps the
key of each record to a multi-dimensional Euclidean space, and
employs suitable data structures for efficiently identifying pairs
of similar records. Bigrams blocking [2] and its generalization,
q-grams3 blocking [15], create clusters of records sharing at
least one bi- or q-gram of their keys. Canopy clustering [25]
employs a computationally cheap string similarity metric for
building high-dimensional, overlapping blocks.

Block processing methods focus on techniques that examine
a set of blocks in such a way that effectiveness, or efficiency
(or both of them) is enhanced. A typical example in this
category is the iterative blocking approach, which relies on
the repetitive examination of individual blocks. It is based
on the principle that more duplicates can be detected and
more pairwise comparisons can be saved through the iterative
distribution of identified matches to the subsequently (re-
)processed blocks. It was originally introduced in [33] and was
extended in [21] so that it can accommodate LSH techniques.
Another line of research in this area is presented in [30], which
proposes a series of techniques for processing overlapping
blocks such that no comparison is executed twice.

Hybrid blocking methods deal with the creation and process-
ing of blocks in an integrated way. For example, the Sorted
Neighborhood approach [18] creates blocking keys that are
suitable for ordering them in such a way that similar entities
are placed in neighboring positions. In another line of research,
HARRA [21] introduces a hybrid, LSH-based technique for
building blocks and processing them iteratively.

A common drawback of all these methods is that their
performance depends on the fine-tuning of many application-
and data-specific parameters [5], [7]. To avoid this, tuning
methods based on machine learning algorithms have been
proposed in the literature [3], [26]. Another common charac-
teristic of most blocking methods is that they are crafted for
Homogeneous Information spaces. As a result, they are able
to extract blocking keys of high quality on the condition that
schema information about the input data and the properties of
its individual attributes are available. However, this assumption
is impractical in the context of large-scale HHIS, for which
attribute-agnostic blocking methods are needed.
3 Data Model
Our framework operates over collections of entities that de-
scribe real-world objects. We follow a recently introduced

3. A q-gram of a textual value v is a sub-string of length q.

model [17], [19] that is schema-independent and flexible
enough to support a wide spectrum of entity representation
formats. It is also capable of representing multi-valued at-
tributes as well as entity relationships, thus accommodating
any Web and data space application [23]. We assume infinite
sets of attribute names N , values V, and identifiers I.
Definition 1. An entity collection Ei is a tuple 〈Ni,Vi,Ii,Pi〉,
where Ni⊆N is the set of attribute names appearing in it,
Vi⊆(V∪ I) is the set of values used in it, Ii⊆I is the set of
global identifiers contained in it, and Pi⊆Ii×℘(Ni×Vi) is the
set of entity profiles that it comprises. An entity profile pi is a
tuple 〈i, Api〉, where Api is the corresponding set of name-value
pairs 〈n, v〉, with n∈N and v∈(V∪I).

Among two individually clean entity collections, E1 and E2,
two entity profiles, p∈E1 and q∈ E2, are said to be matching if
they refer to the same real-world entity. They are collectively
called duplicates and their relationship is denoted with p≡q.

Given two duplicate-free, but overlapping entity collections,
E1 and E2, Clean-Clean ER needs to detect the matching entity
profiles they contain as effectively (i.e., with high recall) and
efficiently (i.e., with few entity comparisons) as possible. This
is a problem of quadratic time complexity, as the naive solution
compares each entity from the one collection with all entities
from the other. To ensure scalability, approximate techniques
skip some comparisons, sacrificing effectiveness to a limited
and controllable extent. In the following, we consider the most
prominent of these techniques, namely data blocking.

3.1 Blocking-based Entity Resolution
The goal of blocking is to make ER scalable by grouping
similar entities into blocks (i.e., clusters) such that it suffices
to execute comparisons only between entities of the same
block. Blocks are created according to a blocking scheme that
consists of two parts: first, a transformation function ft that
derives the appropriate representation for blocking from every
entity profile, and second, a set of constraint functions Fc that
encapsulate the conditions for placing entities into blocks. For
each block bi, there is a function f i

c ∈ Fc that decides for every
entity profile whether it is going to be placed in bi or not.
Definition 2. Given two entity collections, E1 and E2,
a blocking scheme s comprises a transformation function
ft:E1∪E2 7→T and a set of constraint functions Fc:T 7→{true,
false}, where T represents the space of all possible blocking
representations for the given entity profiles.

Applying the blocking scheme s on the entity collections E1
and E2 yields a set of bilateral blocks B, which is called block
collection. Each bilateral block bi∈B is the maximal subset of
E1×E2 that is defined by the transformation function ft and
the constraint function f i

c of s. Depending on the origin of
its entities, it is internally separated into two non-empty inner
blocks, bi,1 and bi,2, where bi, j={ p | p∈E j, f i

c( ft(p))=true}.
Given the absence of duplicates in the individual entity col-

lections, it suffices to compare only entities between different
inner-blocks. In the remaining text, every comparison in a
bilateral block bk between the entities pi and p j is denoted by
ci, j and requires that pi∈ bk,1 and p j∈bk,2. The total number
of comparisons entailed in bi is called individual cardinality
and is equal to ||bi||=|bi,1|· |bi,2|, where |bi, j| denotes the number
of entities contained in the inner block bi, j. The total number
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of comparisons contained in B is called aggregate cardinality
and is symbolized by ||B||, i.e.,

∑
bi∈B
||bi||.

Example 1. Consider the entity collections in Figure 1 (a).
The used transformation function ft represents each entity
as the set of tokens contained in its attribute values. The
constraint function f 91456

c places an entity in block b91456
only if token “91456” is contained in the result given by ft.
Similarly, the participation to the rest of the blocks is defined
by the constraint functions f Antony

c , f Gray
c , f Green

c , f programmer
c .

Consider now block b91456 of Figure 1 (b). It can be separated
into two inner-blocks, i.e., b91456={b91456,1, b91456,2}, where
b91456,1={p1, p2} and b91456,2={p3,p4}.

The performance of a blocking scheme depends on two
competing aspects of the blocks it produces: their efficiency
and their effectiveness. The former expresses the number
of pairwise comparisons a block collection entails and is
directly related to the aggregate cardinality of the resulting
B. Effectiveness depends on the cardinality of the set DB
of the detected pairs of matching entities (i.e., the pairs of
matching entities that are compared in at least one block of
B). There is a clear trade-off between these two measures: the
more comparisons are executed within B (i.e., higher ||B||), the
higher its effectiveness gets (i.e., higher |DB|), but the lower
its efficiency is, and vice versa. Thus, a blocking scheme is
considered successful if it achieves a good balance between
efficiency and effectiveness. This balance is commonly mea-
sured through the following metrics [3], [7], [26], [29]:

Pair Completeness (PC) expresses how many of the matching
pairs of entities have at least one block in common (otherwise
they cannot be detected). It is defined as PC = |DB|/|DE1∩E2 | ·

100%, where |DE1∩E2 | denotes the number of entities shared by
E1 and E2 according to the golden standard. PC takes values in
the interval [0%, 100%], with higher values indicating higher
effectiveness of the blocking scheme.

Reduction Ratio (RR) measures the reduction in the number
of pairwise comparisons contained in a block collection B
with respect to a baseline block collection B′. It is defined as
RR(B,B′) = (1 - ||B||/||B′||)·100%, thus taking values in the
interval [0%, 100%] (for ||B|| ≤ ||B′||). Higher values denote
higher efficiency of the blocking scheme.

This work focuses on blocking methods for overlapping, but
individually clean entity collections, defined as follows:

Problem Statement (Blocking-based Clean-Clean ER). Given
two duplicate-free, but overlapping entity collections, E1 and
E2, along with a baseline block collection B′ of high PC value,
cluster the entities of E1 and E2 into blocks and process them
such that both RR(B,B′) and PC are maximized.

High RR values mean that the ER process can be efficiently
applied to large data sets, while high PC values satisfy the
application requirements (i.e., the acceptable level of effective-
ness over HHIS). Note that the requirement for maximizing
PC and RR simultaneously necessitates that the efficiency
enhancements stem from the careful removal of unnecessary
comparisons between irrelevant entities, rather than from a
blind process. In the following, we address this optimization
problem through a set of best effort strategies.

��

��

�

�

������	
��


	��
�
�
�����

��
�
�

������������������

��
�
�

21

212

EE

EE

�

��

Fig. 2. The BC-CC metric space, illustrating the mapping of the
two main categories of blocking methods (black dots) in comparison
with the ideal one (grey dot).

3.2 Metric Space for Clean-Clean ER Blocking Methods

The PC and RR of a given block collection B can only be
measured through an a-posteriori examination of its blocks;
that is, through the execution of all pairwise comparisons in
B. However, estimating their actual values a-priori is crucial
for certain tasks, such as the functionality of block processing
methods. To cover this need, we now introduce a metric space
that provides a close approximation of PC and RR without
examining analytically the given block collection B; instead,
it simply inspects the external characteristics of its elements
(i.e., size and individual cardinality per block).

The Blocking Cardinality-Comparison Cardinality (BC-CC)
metric space constitutes a two-dimensional coordinate system
that is illustrated in Figure 2. Its horizontal axis corresponds to
Blocking Cardinality (BC) and its vertical one to Comparison
Cardinality (CC). BC quantifies the redundancy of a block
collection as the average number of block assignments4 per
entity. CC is orthogonal to it, deriving the efficiency of a
block collection through the distribution of comparisons per
block (i.e., the average number of block assignments per
comparison). As was experimentally verified in [32], BC is
positively correlated with PC (i.e., higher BC values lead to
higher effectiveness), while CC is directly related to RR (i.e.,
higher CC values convey higher efficiency).

The value of BC depends not only on the blocking scheme
at hand, but also on the data collection(s) it applies to; the
same blocking scheme can yield different levels of redundancy,
when applied to different entity collections. Thus, given a
block collection B derived from E1 and E2, we distinguish
two different versions of BC: the Blocking Cardinality of the
individual entity collections (BCind) and the Blocking Cardi-
nality of their conjunction (BCov)5. Their formal definitions
are respectively the following:
Definition 3. Given a block collection B, the individual
Blocking Cardinality of E j is defined as the average number
of inner blocks bi, j ∈ B an entity p ∈ E j is placed in:

BCind(E j) =

∑
p∈E j
|bi ∈ B : p ∈ bi, j|

|E j|
=

∑
bi∈B
|bi, j|

|E j|
,

where j ∈ {1, 2} and |E j| denotes the size of the entity collection
E j (i.e., number of entities it contains).

Definition 4. Given a block collection B, its overall Blocking
Cardinality is defined as the average number of blocks bi ∈ B

an entity p ∈ (E1 ∪ E2) is placed in:

BCov =

∑
p∈(E1∪E2) |bi ∈ B : p ∈ bi|

|E1| + |E2|
=

∑
bi∈B
|bi|

|E1| + |E2|
,

4. A block assignment is the association between a block and an entity.
5. Note that the horizontal axis of the BC-CC metric space corresponds to

the overall Blocking Cardinality BCov of B.
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where |E1| + |E2| denotes the total size of the given entity
collections E1 and E2, and |bi| is the size of block bi.

BCind and BCov are defined in the intervals [0, 2 · |E1|]
and [0, 2·|E1 |·|E2 |

|E1 |+|E2 |
], respectively, since their maximum, reasonable

values correspond to the naive method of associating every
entity of E1 with all entities of E2 in blocks of minimum size
(i.e., ∀bi ∈ B : |bi,1| = 1 ∧ |bi,2| = 1). Values lower than 1
indicate blocking methods that fail to place each entity in at
least one block; this is possible, for example, with blocking
techniques that rely on a single attribute name and ignore
entity profiles that do not possess it. A value equal to 1 denotes
a technique that is close to a partitioning blocking method
(i.e., one that associates each entity with a single block, thus
producing a set of non-overlapping blocks). Values over 1
indicate redundancy-bearing blocking methods, with higher
values corresponding to higher redundancy.

CC estimates the efficiency of a block collection through
the number of block assignments that account for each com-
parison; the higher this number is, the more efficient is the
given block collection. The rationale behind this approach is
that a large set of individually small blocks is substantially
more efficient than a set of few, but extremely large blocks
that has the same number of block assignments. CC relies,
therefore, on the distribution of comparisons per block and
depends on both the blocking scheme at hand and the input
entity collection(s); that is, the same blocking scheme results
in different comparison distributions, when applied to different
entity collections. Formally, CC is defined as follows:
Definition 5. Given a block collection B, its Comparison
Cardinality (CC) is defined as the ratio between the sum of
block sizes and the aggregate cardinality B and is given by
CC =

∑
bi∈B
|bi| / ||B||.

CC takes values in the interval [0, 2], with higher values
corresponding to fewer comparisons per block assignment,
and, thus, higher efficiency (i.e., smaller blocks, on average).
Its maximum value CCmax = 2 corresponds to the ideal case
of placing each pair of matching entities in a single block that
contains no other entity: CC =

2·DB
DB

= 26. On the other hand,
a blocking method that places all given entity profiles in a
single block corresponds to CC =

|E1 |+|E2 |

|E1 |·|E2 |
� CCmax. Thus, the

closer CC is to CCmax, the more efficient the corresponding
blocking method is.

Note that the combination of BC and CC effectively cap-
tures the trade-off between the orthogonal measures of PC and
RR: the more redundancy a blocking method entails, the higher
its BC gets and, thus, its effectiveness (i.e., PC); the resulting
blocks, however, involve a proportionally higher number of
pairwise comparisons, downgrading its CC and, thus, its
efficiency (i.e., RR). This means that the BC-CC metric space
is suitable for a-priori estimation of the balance between PC
and RR. The Block Purging method (Section 5.2.1) offers an
illustrative example of how to exploit this functionality.

The BC-CC metric space can be used for comparing a-priori
the performance of blocking schemes, as well. As a reference,

6. CCmax also corresponds to any other blocking method that exclusively
considers blocks of minimum size: CC =

2·|B|
|B|

, where ∀bi ∈ B : |bi,1 | =

1 ∧ |bi,2 | = 1. In this case, though, BCov takes its maximum value, as well,
thus placing the corresponding blocking method to the farthest point from the
ideal one (i.e., (1,2)).
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Fig. 3. Outline of our two-layer framework for Clean-Clean ER.

we employ the point (1,2) in Figure 2, which is called Ideal
Point. It corresponds to the mapping of the optimal blocking
method, which builds a block of minimum size for each pair of
matching entities (i.e., it involves no unnecessary comparison).
The closer a blocking method is mapped to (1,2), the better
its performance is [32].

To illustrate this functionality, consider the blocks in Fig-
ure 1 (b); their PC is equal to 100%, while their RR is 0%
with respect to the Cartesian product of E1 and E2. Their poor
efficiency is reflected on their BC-CC mapping — the point
(3, 1.5) — which lies 2.06 away from the Ideal Point. Imagine
now a block processing method that discards all comparisons
in the blocks “Gray”, “programmer” and “91456”. It has no
impact on effectiveness (i.e., PC remains 100%), but it reduces
the executed comparisons to 2 (i.e., RR = 50%). This efficiency
enhancement is clearly depicted at the new BC-CC mapping,
which now coincides with the Ideal Point.

On the whole, two are the main advantages of employing the
BC-CC metric space: first, it a-priori approximates the actual
performance of a block collection with high accuracy, thus
providing insights on how to improve its processing. Second,
it allows for a-priori selecting among a collection of blocking
methods the most appropriate one for the application at hand.
Both functionalities involve a negligible computational cost,
as the corresponding metrics are computed in linear time —
O(|B|) — through a single pass over the given blocks.

4 Blocking Framework for Entity Resolution
Our framework for blocking-based Clean-Clean ER over HHIS
is depicted in Figure 3. It consists of two orthogonal, but
complementary layers: the Effectiveness Layer that groups
entity profiles into blocks in order to achieve high PC, and
the Efficiency Layer that aims at achieving high RR.

The Effectiveness Layer encompasses a set of blocking
schemes that build blocks of high robustness in the context
of HHIS. Their input consists of the two duplicate-free entity
collections that are to be resolved, E1 and E2, while their
output comprises the block collection B that results after
applying one of the available blocking schemes on E1 and E2.
To achieve high PC over HHIS, the block building methods
of this layer typically have the following two characteristics:
First, attribute-agnostic functionality, disregarding any a-priori
knowledge about the schemata of the input entity profiles so
as to ensure their applicability to HHIS. Second, redundancy-
bearing functionality, placing each entity in multiple blocks;
this guarantees the high BCov that is required for reducing the
likelihood of missed matches (i.e., high PC), but produces a set
of overlapping blocks that involves unnecessary comparisons.
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Fig. 4. Illustration of the effect of the efficiency techniques on the
BC-CC mapping of a blocking method.

The Efficiency Layer takes as input the set of blocks B that
is derived from the Effectiveness Layer. Its output comprises
the detected pairs of duplicates DB, along with their cost
in terms of the number of executed comparisons; in the
following, we denote this measure by |C|, where C is the set
of all executed comparisons ci, j. The goal of this layer is to
enhance efficiency (i.e., RR) by reducing the cardinality of C
at a controllable impact on PC. This can be accomplished by
removing entire blocks or individual comparisons, a practice
that moves the BC-CC mapping of a blocking method closer
to the Ideal Point; as depicted in Figure 4, its BCov value
decreases towards the x=1 axis, since its numerator decreases,
while its denominator remains stable. On the other hand, its
CC value increases, since its denominator decreases faster than
its numerator.

To ensure high performance, the Efficiency Layer encom-
passes a set of techniques that target specific types of pairwise
comparisons. Given a bilateral block bk∈ B, every pairwise
comparison ci, j it entails belongs to one of the following types:

1) Matching comparison, if pi ≡ p j.
2) Repeated comparison, if pi and p j have already been

compared in a previously examined block.
3) Superfluous comparison, if pi or p j or both of them have

been matched to some other entity profile and cannot be
duplicates (i.e., Clean-Clean ER).

4) Non-matching comparison, if ci, j is neither repeated nor
superfluous and pi.p j.

Based on this taxonomy, the goal of the Efficiency Layer
is threefold: (1) to eliminate the repeated comparisons, (2) to
discard all the superfluous comparisons, and (3) to restrict the
execution of non-matching comparisons.

The first two targets can be achieved without any effect
on the matching comparisons and, thus, PC. This does not
apply, though, to the third target: there is no safe way to
determine whether two entities are duplicates or not, without
actually comparing their profiles. Therefore, methods that
target non-matching comparisons are inherently approximate
and partially discard matching comparisons, as well, incurring
lower PC.

In this context, the block processing methods of the Effi-
ciency Layer can be categorized according to the comparison
type they target as follows:

1) Repeat methods, which aim at discarding repeated com-
parisons without affecting PC,

2) Superfluity methods, which try to skip superfluous com-
parisons without any impact on PC,

3) Non-match methods, which target non-matching com-
parisons at a limited and controllable cost in PC, and

4) Scheduling methods, which enhance efficiency in a in-
direct way, specifying the processing order that boosts
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Fig. 5. Taxonomy of efficiency methods according to the type of
comparisons they target and the granularity of their functionality.

the effect of superfluity and non-match methods.

A complete Clean-Clean ER approach should encompass
techniques of all these types in order to ensure high efficiency
enhancements. Combined with a block building method, such
a collection of complementary efficiency methods is called ER
workflow. Its composition typically depends on two factors: (i)
the resources that are available for handling the time and space
requirements of the selected efficiency methods, and (ii) the
performance requirements of the underlying application with
respect to both PC and RR.

To facilitate the compilation of blocking methods into highly
performing workflows, we introduce an additional categoriza-
tion of block processing methods according to the granularity
of their functionality:

1) Block-refinement methods, which operate at the coarse
level of individual blocks, and

2) Comparison-refinement methods, which operate at the
finer level of individual comparisons.

The granularity of functionality constitutes a decisive pa-
rameter for both factors affecting the composition of ER
workflows. Block-refinement methods exhibit limited accuracy
when discarding comparisons, but they consume minimal
resources, as they typically involve low time and space com-
plexity. Thus, they offer the best choice for applications with
limited resources, where entity comparisons can be executed
in short time (e.g., due to entity profiles of small size). On
the other hand, comparison-refinement techniques are more
precise in the identification of unnecessary comparisons, but
their higher accuracy comes at the cost of higher time and
space complexity. They are suitable, therefore, for applications
with time-consuming entity comparisons (e.g., due to large
profiles), which can afford high complexity block processing.

On the whole, the comparisons’ type and the granularity of
functionality define a two-dimensional taxonomy of efficiency
methods that facilitates the combination of blocking methods
into comprehensive ER workflows. Its outline is illustrated in
Figure 5, along with a complete list of the techniques that are
analyzed in Section 5.2.

We stress that all efficiency methods of our framework share
the same interface: they receive as input a block collection
and return as output an improved one that involves fewer
blocks, or fewer comparisons, or has its elements appropriately
ordered7. In this way, an ER workflow can be simply created
by specifying the methods that are included in it; regardless of
its composition, its methods are applied consecutively, in the
order they are added, so that the output of the one constitutes

7. The only method that does not comply with this interface is Duplicate
Propagation, which in practice operates as a data structure (see Section 5.2.2).
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Fig. 6. Steps for creating a complete blocking-based ER approach.

the input of the other. We elaborate on the creation of such
workflows in the following section.

4.1 Using Blocking Framework to Build ER Workflows

As mentioned above, a core characteristic of our framework
is its flexibility in combining blocking methods into highly
performing ER workflows. The choice of the methods com-
prising them is only limited by the available resources and
the performance requirements of the underlying application. In
this section, we introduce a general procedure for composing
ER workflows that can cover a variety of performance and
resource requirements. It consists of five steps, outlined in
Figure 6, which are all optional — with the exception of the
first one (i.e., the creation of blocks)8.We elaborate on each
step in the following.

The first step selects the most suitable block building
method for the application at hand. Given that all methods of
the Effectiveness Layer are competitive to each other, serving
exactly the same need, it suffices to include only one of those
depicted in the left-most column of Figure 6.

The second step is to include the two core efficiency
methods: Block Purging (cf. Section 5.2.1) and Duplicate
Propagation (cf. Section 5.2.2). They are indispensable for an
ER workflow, since they consume minimal resources, while
yielding significant improvements in efficiency at a negligible
cost in PC.

The third step opts for a scheduling method, which de-
termines the processing order of blocks or comparisons that
boosts the performance of Duplicate Propagation and Block
Pruning (where applicable). Three are the valid options:
Block Scheduling (cf. Section 5.2.1), Comparison Scheduling
(cf. Section 5.2.2) and the Merge-Purge algorithm, on the
condition that it is applicable to HHIS. Block Scheduling
is better integrated with block-refinement efficiency tech-
niques, whereas Comparison Scheduling exclusively operates
in conjunction with comparison-refinement ones. Thus, the
scheduling method constitutes a critical part of an ER work-
flow, determining its overall granularity of functionality and,
consequently, its complexity and performance.

The fourth step incorporates the technique that eliminates
all repeated comparisons, i.e., Comparison Propagation (cf.
Section 5.2.2). Due to its high space complexity, it should
be skipped in the case of ER workflows that can only afford

8. Note that the same procedure can be applied to Dirty ER, as well, by
excluding the third step (i.e., Scheduling methods) and Duplicate Propagation
from the second step. All other blocking techniques merely need to adapt
their internal functionality to unilateral blocks (i.e., blocks where all entities
are comparable to each other).

minimal space requirements (i.e., workflows that exclusively
involve block-refinement methods).

The last step determines the technique that — in addition to
Block Purging — deals with non-matching comparisons. The
options can be restricted, though, by the method selected in the
third step; workflows involving Block Scheduling can choose
between Block Pruning and Comparison Pruning, whereas
those involving Comparison Scheduling can only opt for
the Comparison Pruning. Note that in the latter case, it is
good practice to add Comparison Propagation, as well, since
it shares exactly the same space and time complexity with
Comparison Pruning.

As stressed in the previous section, the actual execution or-
der of the methods comprising an ER workflow coincides with
the order they are added to it. This rule applies to the procedure
of Figure 6 with one exception: Comparison Scheduling is
added at the third step, but is the last to be executed in the
workflows that involve it. Duplicate Propagation constitutes a
special case, since it is integrated into the entity comparison
process, thus being executed together with the last method of
each workflow.

4.2 Existing Methods in Blocking Framework

Any block building technique can be incorporated into the Ef-
fectiveness Layer, regardless of its internal functionality (e.g.,
whether it is signature-based or not), on the sole condition
that it shares the same interface; that is, it should receive
as input two clean, but overlapping entity collections and
should return as output a set of bilateral blocks. Note, however,
that the intricacies of HHIS are usually tackled through
an attribute-agnostic functionality that employs redundancy.
Given that the Suffix Array [7], the StringMap [20] and the
q-grams [15] blocking methods already involve a redundancy-
bearing functionality, they only need to be adapted such that
they operate in an attribute-agnostic manner; that is, instead
of deriving the Blocking Key(s) from the values of selected
attributes, they should apply on all values of entity profiles.
The same applies to Canopy Clustering [25]; a string similarity
metric that considers the entity profiles in their entirety turns
it suitable for our framework.

On the other hand, block processing methods can be readily
integrated into the Efficiency Layer. The core method for
eliminating redundant comparisons (i.e., Comparison Propa-
gation [30]) has already been added, and so does part of the
iterative processing method of [33] (i.e., Duplicate Propaga-
tion).

Hybrid blocking methods can be added, as well, after
dividing their functionality in two separate processes that can
be mapped to the respective layers: the creation of blocks and
their processing. For instance, the LSH-based, block building
technique of the HARRA framework [21] could be integrated
into the Effectiveness Layer, whereas its iterative processing
fits in the Efficiency one. Similarly, decoupling the schema-
specific functionality from the block building technique of the
Merge-Purge algorithm [18] turns it suitable for the Effective-
ness Layer, while its ordering technique can be mapped to the
Efficiency Layer (see Figure 6).

Equally important is the extensibility of our framework.
Novel methods can be seamlessly plugged into it on the sole
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condition that they implement the same interface and serve the
same goal as the corresponding layer. Methods fulfilling this
requirement can be integrated into an ER workflow without
any further modifications. To facilitate the development of
such new methods, Sections 5.1 and 5.2 analyze the func-
tionality of existing techniques and explain how the BC-CC
metric space can be used to guide this process.
5 Approach
5.1 Effectiveness Layer
This layer currently encompasses two block building tech-
niques: Token Blocking (cf. Section 5.1.1), the only exist-
ing blocking method that is applicable in the settings we
are considering, and Attribute Clustering Blocking (cf. Sec-
tion 5.1.2), which is a novel blocking technique that improves
on Token Blocking. They both entail an attribute-agnostic and
redundancy-bearing functionality, being mapped to the right
of the x = 1 axis on the BC-CC metric space.
5.1.1 Token Blocking
Token Blocking [29] is based on the following idea: every
distinct token ti creates a separate block bi that contains all
entities having ti in the values of their profile — regardless of
the associated attribute names. The only condition is that ti is
shared by both input sets of attribute values, so that the result-
ing inner blocks are non-empty: ti ∈ (tokens(V1)∩ tokens(V2)),
where tokens(V j) represents the set of all tokens contained in
the values V j of the entity profiles in collection E j. In this
way, blocks are built independently of the attribute names
associated with a token (attribute-agnostic functionality), and
each entity is associated with multiple blocks (redundancy-
bearing functionality).

More formally, the transformation function ft
of this scheme converts an entity profile into
the set of tokens comprising its attribute values:
ft(p) =

{
ti : ∃ni, vi : 〈ni, vi〉 ∈ Ap ∧ ti ∈ tokens(vi)

}
, where

tokens(vi) is a function that returns the set of tokens
comprising the value vi. Its set of constraint functions Fc
contains a function f i

c for every token ti that is shared by both
input entity collections (i.e., ti ∈ (tokens(V1)∩tokens(V2)));
f i
c defines a block bi ∈ B that contains all entities of E1 and
E2 having ti in at least one of their values. Thus, every f i

c
encapsulates the following condition for placing an entity p
in block bi: f i

c( ft(p)) = (ti ∩ ft(p)) , ∅, where p ∈ (E1 ∪ E2).
On the average case, the time complexity of this method
is O(BCov · (|E1| + |E2|)), while its space complexity is
O( ¯|bi| · (tokens(V1)∩ tokens(V2))), where ¯|bi| is the mean block
size.

This approach has two major performance advantages: first,
it can be efficiently implemented with the help of inverted
indices, even in the case of large entity collections. Second,
it is robust to noise and heterogeneity, because the likelihood
of two matching entities sharing no block at all is very low.
Indeed, this can only be the case when two matching entities
have no token in common, a very unlikely situation for profiles
describing the same real-world entity.
5.1.2 Attribute Clustering Blocking
We now describe Attribute Clustering, a novel blocking
scheme that we introduce in this study, which exploits pat-
terns in the values of attribute names in order to produce

Algorithm 1: Attribute Clustering Blocking.
Input: Attribute name sets: N1, N2, Attribute values: V1, V2
Output: Set of attribute names clusters: K

1 links ← {}; kglue ← {};

2 foreach ni,1 ∈ N1 do
3 n j,2 ← getMostS imilarAttribute(ni,1,N2,V2);
4 if 0 < sim(ni,1.getValues(), n j,2.getValues()) then
5 links.add(newLink(ni,1, n j,2));

6 foreach ni,2 ∈ N2 do ... ; // same as with N1

7 links′ ← computeTransitiveClosure(links);
8 K ← getConnectedComponents(links′);
9 foreach ki ∈ K do

10 if |ki| = 1 then K.remove(ki); kglue.add(ki);

11 K.add(kglue);
12 return K;

blocks that offer a better balance between PC and RR. At
its core lies the idea of partitioning attribute names into
non-overlapping clusters, according to the similarity of their
values. The resulting groups, denoted by K, are called attribute
clusters and are treated independently of each other: given a
cluster k ∈ K, every token ti of its values creates a block
containing all entities having ti assigned to an attribute name
belonging to k. As a result, the partitioning of attribute names
into clusters leads to the partitioning of tokens into clusters,
as well. Compared to Token Blocking, the resulting block
collection B is larger in size (i.e., contains more blocks), but
of lower aggregate cardinality (i.e., contains smaller blocks
on average) — assuming that they are both applied to the
same input entity collections. Therefore, Attribute Clustering
is expected to involve higher CC values than Token Blocking,
while maintaining similar values of BC. This means that its
BC-CC mapping lies closer to the Ideal Point, offering a PC-
RR balance of higher efficiency.

To understand the difference of this approach from the
previous one, consider a token ti that is associated with n
attribute names, which belong to k attribute clusters. Token
Blocking creates a single block for ti, with all entities that have
it in their values; that is, regardless of the associated attribute
names. On the other hand, Attribute Clustering Blocking
creates k distinct blocks — one for each attribute cluster; each
block contains all entities having at least one attribute name
that is associated with ti and belongs to the corresponding
cluster. Given that the number of associated entities remains
the same in both cases, the blocks of Attribute Clustering are
expected to be more and individually smaller, thus having a
higher CC value than Token Blocking. In fact, the higher k is,
the higher is the resulting value of CC.

The functionality of Attribute Clustering is outlined in Al-
gorithm 1. In essence, it works as follows: each attribute name
from N1 is associated with the most similar attribute name of
N2 (Lines 2-5), and vice versa (Line 6). The link between two
attribute names is stored in a data structure (Line 5) on the sole
condition that the similarity of their values exceeds zero (Line
4), a value that actually implies dissimilarity. The transitive
closure of the stored links is then computed (Line 7) to form
the basis for partitioning attribute names into clusters: each



9

���

���

���

���

���

����

����
����

����

����

����

����

����

����

����

����

���

���

���

����
����

���� ����

����
����

����

Fig. 7. The tri-gram graph for value “home phone”.

connected component of the transitive closure corresponds to
an attribute cluster (Line 8). The resulting attribute clusters
are examined for singleton clusters, which contain a single
attribute name that was associated with no other. All these
clusters are merged into a new one, called the Glue Cluster
and symbolized as kglue (Line 10). In this way, we ensure that
no attribute names, and, thus, no tokens are excluded from the
block building procedure.

The time complexity of the overall procedure is O(|N1|·|N2|),
while its space complexity is O(|N1|+ |N2|), where |N1| and |N2|

stand for the number of distinct attribute names in E1 and E2,
respectively. Note that at the core of Attribute Clustering lies
an attribute-agnostic functionality, which partitions attribute
names into clusters without considering schema information
at all; instead, it merely relies on the similarity of their values.
Similar to Token Blocking, it is based on redundancy, as well,
associating each entity with multiple blocks.

We note that Attribute Clustering is different from schema
matching techniques in three aspects. First, the latter are
inapplicable to HHIS [29]. Second, our goal differs from that
of schema matching; instead of trying to partition the input
set of attribute names into clusters of semantically equivalent
attributes, we rather aim at deriving attribute clusters that
produce blocks with a comparison distribution that has a short
tail (i.e., high CC values). Third, our algorithm associates sin-
gleton attributes with each other, a practice that is incompatible
with the goal of schema matching.

Attribute Name Representation Models. The functionality
of Attribute Clustering relies on two components: (i) the model
that uniformly represents the values of an attribute name, and
(ii) the similarity measure that captures the common patterns
between the values of two attribute names. We consider the
following established techniques for Text Classification (their
performance is reported in Section 6):
I. The term vector representation model in conjunction with
the cosine similarity metric. According to this model, the input
sets of values, V1 and V2, form a Cartesian space, where each
dimension corresponds to a distinct token contained in both of
them. Thus, each attribute name is represented by a (sparse)
vector whose i-th coordinate denotes the T F(ti) × IDF(ti)
weight of the corresponding token ti [24]. T F(ti) stands for
the Term Frequency of ti (i.e., how many times ti appears in
the values of the attribute name), while IDF(ti) is equal to
log(|N|/|N(ti)|), where N(ti) ⊆ N stands for the set of attribute
names containing ti. The similarity of two attribute names is
defined as the cosine similarity of the corresponding vectors.
II. The character n-grams representation model in conjunc-
tion with the Jaccard similarity metric. This model repre-
sents each attribute name as the set of n-grams (i.e., sub-

strings of n consecutive characters) that appear in its values.
The value of n is typically set equal to 3 (i.e., trigrams);
in this way, the value v=“home phone” is represented as
{hom, ome,me , ph, pho, hon, one}. The similarity between
two attribute names ni and n j is defined as their Jaccard
similarity:

J(ni, n j) =
|trigrams(ni) ∩ trigrams(n j)|
|trigrams(ni) ∪ trigrams(n j)|

,

where function trigrams(nk) produces the trigrams represen-
tation of the attribute name nk.
III. The n-gram graphs representation model [13] in con-
junction with their value similarity metric. This model is
richer than the character n-grams model, since it additionally
incorporates contextual information by using edges to connect
neighboring n-grams: these are n-grams that lie within a
sliding window of n characters. Similar to the above method,
n is usually set equal to 3. To illustrate their functionality, the
graph for the value v=“home phone” is shown in Figure 7.
Individual n-gram graphs are combined in a single graph
comprising the union of the nodes and edges of the original
graphs, with the edges weighted with the mean value of the
original weights [14]. To estimate the relevance of two n-gram
graphs, we employ their value similarity, a graph metric that
essentially expresses the portion of common edges sharing the
same weight.

5.2 Efficiency Layer

Similar to the Effectiveness Layer, the Efficiency layer in-
ternally consists of two parts: (i) the algorithms that define
the processing of the given block collection, and (ii) the data
structures that facilitate their functionality. A typical example
of the latter is the Entity Index, which associates each entity
with the blocks containing it (see Figure 8). On the other
hand, the algorithms’ part encompasses a wide diversity of
efficiency We now review the best performing methods in the
related literature, and introduce a novel approach, Comparison
Scheduling.
5.2.1 Block-refinement Methods
Block Purging. The notion of Block Purging was introduced
in [29] as a means of discarding non-matching comparisons
by removing oversized blocks. These are blocks that contain
an excessively high number of comparisons, although they
are highly unlikely to contain non-redundant duplicates, i.e.,
matching entities that have no other — smaller — block
in common. Thus, they decrease RR, but have a negligible
contribution to PC. The gist of Block Purging is, therefore, to
specify a conservative upper limit on the individual cardinality
of the processed blocks so that oversized ones are discarded
without any significant impact on PC. This limit is called
purging threshold.

For our framework, we adapted the method that was
employed in [32] for determining the purging threshold in
the case of Dirty ER (i.e., the resolution of a single entity
collection that contains matching profiles in itself). It relies
on the CC metric and the following observation, in partic-
ular: assuming that blocks are sorted in descending order of
individual cardinality, the value of CC increases when moving
from the top block to the ones in the lower ranking positions.
The reason is that its denominator (i.e., aggregate cardinality)
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Algorithm 2: Computing the Purging Threshold
Input: Set of blocks: B
Output: Purging threshold: maxICardinality

1 B′ ← orderByICardinality(B);
2 blockAssignments ← 0; index ← 0;
3 totalComparisons ← 0; lastICardinality ← 1; stats[] ← {};
4 foreach bi ∈ B

′ do
5 if lastICardinality < ||bi|| then
6 stats[index].iCardinality = lastICardinality;
7 stats[index].cc =

blockAssignments
totalComparisons ;

8 index++;
9 lastICardinality = ||bi||;

10 blockAssignments += |bi|; totalComparisons += ||bi||;

11 stats[index].iCardinality = lastICardinality;
12 stats[index].cc =

blockAssignments
totalComparisons ;

13 maxICardinality = lastICardinality;
14 for i← stats.size()-1 to 1 do
15 if stats[i].cc=stats[i − 1].cc then
16 maxICardinality=stats[i].iCardinality;
17 break;

18 return maxICardinality;

decreases faster than its numerator (i.e., number of block
assignments). The purging threshold is specified as the first
individual cardinality that has the same CC value with the next
(smaller) one. The reason is that discarding blocks with fewer
comparisons can only reduce PC, while having a negligible
effect — if any — on RR.

The outline of this approach is presented in Alg. 2. Line 1
orders the given block collection B in ascending order of
individual cardinality, thus making it possible to calculate the
CC for each distinct cardinality with a single pass (Lines 4-
10). Lines 11-12 ensure that the last block is also considered
in the computation of the statistics. Starting from the largest
individual cardinality, the CC values of consecutive ones are
then compared (Lines 14-17). The procedure stops as soon as
the value of CC remains stable (Lines 15-17).

Apparently, the time complexity of this algorithm is domi-
nated by the initial sorting and is equivalent to O(|B| · log|B|).
Its space complexity is dominated by the array that stores the
statistics for every individual cardinality and is equal to O(|B|).

Block Scheduling. This technique was introduced in [29]
as a means of sorting the input block collection B so that
its processing makes the most of Duplicate Propagation (cf.
Section 5.2.2). To this end, it associates each block bi with a
block utility value, u(bi), which expresses the trade-off between
the cost of processing it, cost(bi), and the corresponding
gain, gain(bi). The former corresponds to the number of
comparisons entailed in bi (i.e., cost(bi) = ||bi||), while the
latter pertains to the number of superfluous comparisons that
are spared in the subsequently examined blocks — due to
the propagation of detected duplicates. The actual value of
the block utility u(bi) for a bilateral block bi ∈ B has been
estimated through a probabilistic analysis to be equal to:

u(bi) =
gain(bi)
cost(bi)

≈
1

max(|bi,1|, |bi,2|)
.

To incorporate this measure in the processing of blocks, we

employ a ranking function r : B 7→ < that defines a partial
order on B, sorting its elements in descending order according
to the following implication: u(bi) ≤ u(b j) ⇒ r(bi) ≥ r(b j).
Therefore, its complexity is equal to O(|B| · log|B|), while its
space complexity is O(|B|).

Block Pruning. This method, coined in [29], constitutes a
coarse-grained approach to saving non-matching comparisons.
Instead of examining the entire block collection, it terminates
the ER process prematurely, at a point that ensures a good
trade-off between PC and RR.

The functionality of this method relies on the block process-
ing order defined by Block Scheduling; this ordering ensures
that blocks placed at the highest ranking positions offer high
expected gain at a low cost. In other words, blocks that are
processed earlier involve a low number of comparisons, while
entailing a high number of duplicates. In contrast, the lower
the ranking position of a block is, the fewer the duplicates it
contains and the more non-matching comparisons it involves.
Therefore, blocks placed at the low ranking positions are
unlikely to contain new, yet unidentified duplicates. This
means that there is a break-even point where the possibility of
finding additional matches is no longer worth the cost; blocks
lying after this point can be excluded from the ER process
to enhance its efficiency (i.e., RR) at a negligible cost in the
missed matches (i.e., small decrease in PC).

Block Pruning aims at approximating this point in order
to discard blocks dominated by non-matching comparisons.
It keeps track of the evolution of duplicate overhead, h,
which assesses the (average) number of comparisons that were
performed in order to detect the latest match(es). Its value
after processing the k-th block containing duplicates is defined
as: hk = |Ck−1|/|Dk |, where |Ck−1| represents the number of
comparisons performed after processing the k−1-th block with
duplicates, and |Dk | stands for the number of new matches
identified within the latest block (i.e., |Dk | ≥ 1).

As explained in [29], h takes low values (close to 1) for the
blocks placed at the top ranking positions; that is, every new
pair of duplicates they contain merely requires a small number
of comparisons. Its value increases for duplicates discovered
in blocks of lower ranking positions. As soon as it exceeds
the maximum duplicate overhead — a predefined threshold
denoted by hmax — the entire ER process is terminated;
this indicates that the cost of detecting new duplicates is
excessively high and the few remaining matches are not worth
it. Although this threshold can be adapted to the requirements
of the application at hand, a value that provides a good
estimation of the break-even point was experimentally derived
from hmax = 10log||B||/2, where ||B|| is the aggregate cardinality
of the input block collection B. The intuition behind this
formula is that the comparisons required for detecting a
match is considered too large, when it reaches half the order
of magnitude of all possible comparisons in the considered
blocks.

Given that Block Pruning can be integrated in block pro-
cessing, its time complexity is equal to O(|B|), where |B| is
the number of blocks remaining after Block Purging.
5.2.2 Comparison-refinement Methods
Comparison Propagation. This method, introduced in [30],
constitutes a general technique for discarding all repeated com-
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Fig. 8. The Entity Index employed by Comparison Propagation.

parisons from any set of blocks, without any impact on PC.
In essence, it propagates all executed comparisons indirectly,
avoiding the need to explicitly store them. Its functionality
relies on two pillars: the process of Block Enumeration and the
data structure of Entity Index (EI). The former is a preparatory
step that assigns to each block a unique index, indicating its
processing order. As a result, bi symbolizes the block placed in
the i-th position of the processing list. On the other hand, EI
constitutes a structure that points from entities to the blocks
containing them (see Figure 8). It is actually a hash table,
whose keys correspond to entity ids, while each value lists the
indices of the blocks that contain the corresponding entity.

A comparison ci, j is recognized as repeated if the Least
Common Block Index condition (LeCoBI for short) does not
hold. This condition ensures that the current block is the first
to contain both entities pi and p j. It returns true only if their
lowest common block index is equal to the current block’s
index. Otherwise, if the least common index is lower than the
current one, the entities have already been compared in another
block, and the comparison should be discarded as redundant.

As an example, consider the entities p1 and p3 in Figure 8.
Two blocks are in common, namely b1 and b5 and, thus, their
least common block index is 1. This means that the LeCoBI
condition is satisfied in b1, but not in b5, saving in this way
the repeated comparison of p1 and p3 in the latter case.

The examination of the LeCoBI condition is linear with
respect to the total number of blocks associated with a pair of
entities. This is achieved by iterating once and in parallel over
the two lists of block indices, after sorting them individually in
ascending order. For higher efficiency, this sorting is executed
only once, during the construction of the EI.

The time complexity for building this data structure is linear
with respect to the number of given blocks and the entities
contained in them; in the average case, it is equal to O(BCov ·

|B|)). Its space complexity, on the other hand, is linear with
respect to the size of the input entity collections, depending,
of course, on the overall level of redundancy; on average, it
is equal to O(BCov · (|E1| + |E2|)).

Duplicate Propagation. This method is inspired from the
technique introduced in [33] as a means of increasing PC
in the context of Dirty ER. It was adapted to Clean-Clean
ER in [29], which converted it into a method that reduces
the superfluous comparisons at no cost in PC. In this form, it
relies on a central data structure, called Duplicates Index (DI),
that contains at any time the profile ids of all the entities that
have already been matched to another one. Before performing
a comparison ci, j, we check whether either of the entities
pi and p j is contained in DI. If this applies to at least one
of them, Duplicate Propagation discards the comparison as
superfluous. Otherwise, if none of them is contained in DI,
the comparison is executed. Note, though, that the performance

of this technique (i.e., the portion of superfluous comparisons
that are discarded) depends on the block processing order. To
boost its effect, it is typically employed in conjunction with a
scheduling method.

Its time complexity is constant, i.e., O(c), as it merely
involves a couple of look-ups in a hash-table. Its space
complexity depends on the size of the hash table of DI. It is,
therefore, equal to cardinality of the set of duplicates contained
in the given block collection: O(|DE1∩E2 |).

Comparison Pruning. This technique was initially in-
troduced in [31], offering another method to discard non-
matching comparisons at a controllable cost in effectiveness
(i.e., PC). It can be conceived as an improved version of Block
Pruning, which, instead of considering entire blocks, operates
on the level of individual comparisons: it prunes a comparison
if the involved entities are deemed highly unlikely to be a
match. Its decision relies exclusively on the blocks associated
with the given entities and their overlap, in particular.

In more detail, the overlap of two entities pi and p j is
called Entities Similarity — symbolized by ES (pi, p j) — and
is defined as the Jaccard similarity of the list of block indices
that are associated with them. Thus, it is derived from the
following formula:

ES (pi, p j) =
|indices(pi) ∩ indices(p j)|
|indices(pi) ∪ indices(p j)|

=
|indices(pi) ∩ indices(p j)|

|indices(pi)| + |indices(p j)| − |indices(pi) ∩ indices(p j)|

where indices(pk) denotes the set of block indices associated
with the entity profile pk. This formula indicates that we only
need to estimate the number of indices that are shared by the
pi and p j in order to compute ES (pi, p j). As explained above,
this process is facilitated by EI and is linear with respect to
the total number of indices: it suffices to iterate over the two
lists of indices just once and in parallel, due to their sorting
in ascending order.

A pair of entities, pi and p j, is considered similar enough to
justify the comparison of their profiles if ES (pi, p j) exceeds
the predefined threshold that represents the minimum allowed
similarity value, denoted by ES min. The actual value of its
threshold depends on the redundancy of the individual entity
collection(s) and is derived from the following formula:

ES min =
a · min(BCind(E1), BCind(E2))

BCind(E1) + BCind(E2) − a · min(BCind(E1), BCind(E2))
(1)

where a takes values in the interval (0, 1]. Intuitively, this
threshold demands that two entities are analytically compared
if their common blocks amount to a · 100% of the minimum
individual Blocking Cardinality (i.e., the average number of
blocks an entity of the collection with the lowest level of
redundancy is placed in). As demonstrated in [31], the per-
formance of Comparison Pruning is robust to the fluctuation
of a, with higher values corresponding to stricter similarity
conditions, and vice versa.

Given that Comparison Pruning relies on the same data
structures and operations as Comparison Propagation, it shares
the same space and time complexity with it.

Comparison Scheduling. We now introduce a novel tech-
nique that aims at reducing the superfluous comparisons in
order to increase RR at no cost in PC. Similar to Block
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Scheduling, it achieves its goal indirectly, by boosting the
effect of Duplicate Propagation. However, it is more effective
than Block Scheduling, due to the finer granularity of its
functionality: instead of handling entire blocks, it considers
individual comparisons, ordering them in such a way that those
involving real matches are executed first. Thus, more super-
fluous comparisons are saved in the subsequently processed
blocks.

To this end, it first gathers the set of valid comparisons,
which is denoted by Cv and encompasses all pairwise com-
parisons of B that remain after filtering the initial set of
blocks with a combination of the aforementioned efficiency
methods (typically, Comparison Propagation and Comparison
Pruning). Then, it associates each pairwise comparison ci, j
with a comparison utility value, u(ci, j), which — similar to the
block utility value — is defined as u(ci, j) = gain(ci, j)/cost(ci, j);
the denominator corresponds to the cost of executing ci, j
which is unary for all comparisons (i.e., cost(ci, j) = 1). Thus,
u(ci, j) = gain(ci, j), where gain(ci, j) represents the likelihood
that the entities to be compared, pi and p j, are matching.
Several approaches are possible for estimating gain(ci, j); in
this work, we consider a best effort scoring mechanism that is
derived from the following measures:
(1) The Entities Similarity ES (pi, p j), which is the same
measure employed by Comparison Pruning, i.e., the portion
of common blocks between entities pi and p j. The higher its
value is, the more likely are pi and p j to be matching. Hence,
u(ci, j) is proportional to ES (pi, p j).
(2) The Inverse Comparison Frequency (ICF) of each en-
tity. Following the same rationale as the Inverse Document
Frequency of Information Retrieval, this metric is based on
the idea that the more valid comparisons are associated with
a specific entity, the less likely it is to be matching with
one of the associated entities. In other words, the lower the
number of valid comparisons entailing an entity is, the higher
is the likelihood that it is matching with one of the associated
entities. The ICF(pi) for an entity pi is computed by dividing
the size of Cv by that of its subset Cv(pi), which contains only
comparisons involving entity pi (i.e., Cv(pi) = {ci,k ∈ Cv}).
More formally: ICF(pi) = log |Cv|/|Cv(pi)|. The more com-
parisons entail pi, the higher is the value of the denominator
and the lower is the value of ICF(pi). Thus, the utility of
comparison ci, j is proportional to both ICF(pi) and ICF(p j).
On the whole, the utility of a comparison ci, j is equal to9:
u(ci, j) = ES (pi, p j) · ICF(pi) · ICF(p j).

To incorporate Comparison Scheduling in the ER process,
we employ a ranking function r : Cv 7→ < that defines a partial
order on Cv, sorting its elements in descending order according
to the following implication: u(ci, j) ≤ u(ck,l)⇒ r(ci, j) ≥ r(ck,l).
Therefore, its time complexity is equal to O(|Cv|·log|Cv|), while
its space complexity is O(|Cv|).
6 Experimental Evaluation
The goal of our evaluation is threefold. First, to identify
the best performing method of the Effectiveness Layer, by
comparing Token Blocking with Attribute Clustering Blocking

9. Note that, in our experimental evaluation, we considered linear combi-
nations of the three measures comprising comparisons utility, but they did not
result in higher performance.

Dmovies Dinfoboxes
DBPedia IMDB DBPedia1 DBPedia2

Entities 27,615 23,182 1.19·106 2.16·106

Name-Value Pairs 1.86·105 8.16·105 1.75·107 3.67·107

Avg. Profile Size 6.74 35.20 14.66 16.94
Attribute Names 7 5 30,757 52,554
Common Attr. 1 27,253
Duplicates 22,405 892,586
Comparisons 6.40·108 2.58·1012

TABLE 1
Technical characteristics of the data sets used in the experiments.

(AC Blocking in the rest of the paper) and a baseline clustering
method (Section 6.1). Second, to examine the behavior of
the Block Purging algorithm in the context of Clean-Clean
ER, by applying it on top of all block building approaches
(Section 6.2). Third, to compare the performance of three
different efficiency workflows: two that were tested in the
literature on top of Token Blocking and a new one that relies
on Comparison Scheduling and operates exclusively on the
level of comparisons. Our goal is to investigate the benefits of
operating at the finest level of granularity, that of individual
comparisons (Section 6.3).

Measures. To evaluate the behavior of our approaches,
we employ two kinds of measures: the performance and
the technical ones. The former comprise the PC and RR
of a blocking method, which capture its effectiveness and
efficiency, respectively (cf. Section 3.1). The technical metrics
encompass more practical measures that highlight internal
aspects of a blocking method and affect its space and time
complexity; these are: the total number of blocks it produces,
the average number of comparisons per block, its BCov and
CC values, as well as used disk space.

Note that we do not consider the performance of entity
matching in terms of Precision and Recall. Entity matching
is crucial for Entity Resolution per se, but is orthogonal
to the task of Blocking for Entity Resolution, which is the
focus of our work. We follow the best practice in the related
literature [3], [26], [29], [31], examining blocking methods
independently of the profile matching techniques, by assuming
the existence of an oracle that correctly decides whether
two entity profiles are duplicates or not. Note that a highly
performing blocking method with respect to PC and RR
guarantees that the quality of a complete ER solution will
be as good as the employed matching algorithm.

Datasets. In the course of our experimental study, we used
two real-world, large-scale, heterogeneous data sets, which
are presented in Table 2. They were also used in previous
works [28], [29], [31], thus allowing for a direct comparison
with prior results. The Dmovies data set comprises a collection
of movies from IMDB10 and DBPedia11, which have been
interlinked through the “imdbid” attribute in the profiles of
DBPedia movies. Din f oboxes is the largest data set, comprising
more than 3 million entities that stem from two different
versions of the DBPedia Infobox Data Set12. They have been
collected by extracting all name-value pairs from the infoboxes
of the articles in Wikipedia’s English version. Theoretically,
it may seem straightforward to resolve two versions of the

10. http://www.imdb.com
11. http://dbpedia.org
12. http://wiki.dbpedia.org/Datasets
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Dmovies (minutes) Dinfoboxes (hours)

EM Term Vector 1.49 116
Trigrams 1.70 >200

AC Term Vector 0.06 17
Trigrams 0.09 66

TABLE 2
Execution time for the attribute clustering algorithms.

same data set, but in practice it constitutes a quite challenging
task; the older version (DBPedia1) dates from October 2007,
whereas the latest one (DBPedia2) is a snapshot of October
2009. In the intervening two years, Wikipedia Infoboxes have
evolved to such an extent that a mere 23.67% of all name-value
pairs and 48.62% of the attribute names is common among
both versions. To build the ground-truth, we considered as
matching those entities that had exactly the same URL.

Baseline Methods. As explained in Section 1, schema
matching methods are not applicable to HHIS. Moreover, pre-
vious studies have demonstrated that schema-based methods
exhibit high efficiency (i.e., very few entities per block), but
suffer from remarkably poor PC in the context of HHIS (more
than half of the matching entities do not share any common
block) [29]. In this paper, we do not repeat the comparison
experiments with such blocking methods. Instead, we use as
baseline for our experiments the Token Blocking approach,
which was verified to outperform schema-based techniques
when applied to HHIS [29].

To evaluate the performance of our Attribute Clustering
algorithm, we compare it with an established clustering tech-
nique that can offer the same functionality. In principle, any
clustering algorithm is applicable, on the sole condition that
it involves an unconstrained functionality (i.e., it does not re-
quire as input the number of returned clusters). For this reason,
we have selected as our baseline method a variation of the
Expectation Maximization (EM) algorithm [8], which specifies
the number of clusters through an unsupervised procedure
that relies on cross-validation13. EM can be combined with
the term vector and the character n-grams model, and these
combinations are denoted by Term Vector EM and Trigrams
EM, respectively, in the following. However, it is incompatible
with the n-gram graphs, since this representation model is only
suitable for pairwise comparisons (i.e., it does not produce
features in a vector format).

Experimental Setup. All approaches and experiments were
fully implemented in Java, version 1.6. For the implementa-
tion of the blocking functionality (i.e., inverted indices), we
used the open source library of Lucene14, version 2.9. The
functionality of the n-gram graphs was provided by the open
source library of JInsect15. For the implementation of the
unconstrained EM clustering algorithm, we employed the open
source library of Weka16, version 3.6. All experiments were
performed on a desktop machine with Intel i7, 16GB of RAM
memory, running Linux (kernel version 2.6.38).
6.1 Block Building
We start the evaluation by comparing Token Blocking with
the three variations of AC Blocking: (i) the combination of

13. For more details, see
http://weka.sourceforge.net/doc/weka/clusterers/EM.html.

14. http://lucene.apache.org/
15. http://sourceforge.net/projects/jinsect
16. http://www.cs.waikato.ac.nz/ml/weka/

the term vector model with the cosine similarity, symbolized
by Term Vector AC, (ii) the combination of character trigrams
with Jaccard similarity, denoted by Trigrams AC, and (iii) the
combination of trigram graphs with the value similarity metric,
which is represented as Trigram Graphs AC. We also compare
it with Term Vector EM and Trigrams EM.

Before analyzing the performance of the blocks they create,
it is worth probing into the applicability of all clustering
algorithms with respect to their time complexity. We actually
recorded the execution time of EM and AC blocking across
both data sets and in combination with the term vector and the
trigrams representation models. The outcomes are presented in
Table 2. We can notice that AC is substantially faster than
EM, requiring around 1/20 and 1/6 of its running time in
the case of Dmovies and Din f oboxes, respectively. In fact, EM in
conjunction with trigrams was not able to process Din f oboxes
within a time frame of 200 hours. Thus, we consider this
particular combination to be inapplicable to large-scale HHIS
and do not report its performance in Tables 4 and 6. In the
following, we examine the performance of the blocks created
by the other EM-based methods in order to find out whether
their quality is worth the high computational cost.

Table 3 presents the performance of all methods on the
Dmovies data set. We can see that all variations of the clustering
algorithms produce a limited number of attribute clusters, since
Dmovies contains only 11 distinct attributes (see Table 2). As
a result, there are minor differences in the behavior of the
blocking methods (e.g., they all occupy the same disk space).
Nevertheless, we can identify the following pattern: the higher
the number of clusters is, the more blocks are produced and the
less comparisons they entail, on average. This results in higher
efficiency and moves the BC-CC mapping of the blocking
methods closer to the Ideal Point: their BCov decreases,
while their CC increases. This effect has a direct impact on
their actual performance, reducing PC by less than 2% and
decreasing comparisons to a considerable extent. The only
exception to this pattern is Trigrams EM, which involves the
least number of comparisons, but fails to place in a common
block almost 1 out of 4 pairs of duplicates. Thus, it constitutes
the only clustering approach with inferior performance to
Token Blocking. All others offer a better balance between PC
and RR, with Trigram Graphs AC exhibiting the best trade-off.

Table 4 offers stronger evidence for the differences in the
performance of the individual blocking methods. The reason
is that the high number of attribute names of Din f oboxes allows
for higher variation in the attribute clusters. It is noteworthy,
though, that the performance pattern of Dmovies applies in this
data set, as well: the higher the number of attribute clusters
is, the higher is the resulting number of blocks and the less
comparisons they entail, on average. This effect leads to a sub-
stantially higher CC values (even by an order of magnitude)
and, thus, higher RR values, while PC remains practically
stable. Unlike Dmovies, however, the increase in the number of
attribute clusters results in substantial increase in the values
of BCov and the space occupied on the disk, due to the
significantly higher number of blocks. It is also worth noting
that all variations of AC Blocking provide a better trade-
off between PC and RR than Token Blocking, while Term
Vector EM exhibits the worst performance: it involves more
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Technical Metrics Performance Metrics
Attr. Clusters Blocks Av. Comp. BCov CC Disk Space Comparisons RR Duplicates PC

Token Blocking 1 40,825 7.46·103 34.30 0.57·10−2 28MB 3.05·108 - 22,387 99.92%
Term Vector EM 4 33,777 8.32·103 32.85 0.59·10−2 52MB 2.81·108 7.82% 21,944 97.94%
Trigrams EM 2 18,707 2.49·103 10.86 1.18·10−2 52MB 0.47·108 84.73% 17,150 76.55%
Term Vector AC 3 43,270 6.69·103 33.16 0.58·10−2 52MB 2.90·108 4.94% 22,360 99.80%
Trigrams AC 3 43,271 6.71·103 34.08 0.59·10−2 52MB 2.91·108 4.67% 22,365 99.82%
Trigram Graphs AC 4 44,158 4.83·103 32.96 0.78·10−3 52MB 2.13·108 30.06% 22,304 99.55%

TABLE 3
Statistics and performance of the blocking building methods on Dmovies. RR values were computed based on Token Blocking.

Technical Metrics Performance Metrics
Attr. Clusters Blocks Av. Comp. BCov CC Disk Space Comparisons RR Duplicates PC

Token Blocking 1 1.21·106 5.10·106 29.51 0.16·10−4 2.1GB 6.18·1012 - 892,560 99.997%
Term Vector EM 2 1.35·106 4.74·106 31.86 0.17·10−4 4.9GB 6.38·1012 - 892,546 99.995%
Term Vector AC 3,717 1.22·106 5.05·106 29.42 0.16·10−4 4.4GB 6.18·1012 0.01% 892,560 99.997%
Trigrams AC 24,927 4.48·106 0.23·106 41.76 1.34·10−4 5.0GB 1.05·1012 83.04% 892,425 99.982%
Trigram Graphs AC 26,762 4.80·106 0.21·106 43.22 1.41·10−4 5.0GB 1.03·1012 83.39% 892,516 99.992%

TABLE 4
Statistics and performance of the blocking building methods on Din f oboxes. RR values were computed based on Token Blocking.

Technical Metrics Performance Metrics
Purged Blocks Av. Comparisons BCov CC Comparisons RR Duplicates PC

Token Blocking 42 2.73·103 30.23 1.38·10−2 1.11·108 63.50% 22,384 99.91%
Term Vector EM 38 3.25·103 29.09 1.34·10−2 1.10·108 60.93% 21,879 97.65%
Trigrams EM 35 0.48·103 8.11 4.61·10−2 0.09·108 80.93% 16,939 75.60%
Term Vector AC 76 1.86·103 27.72 1.75·10−2 0.81·108 72.22% 22,356 99.78%
Trigrams AC 74 1.88·103 28.65 1.79·10−2 0.81·108 72.01% 22,361 99.80%
Trigram Graphs AC 52 1.66·103 29.12 2.02·10−2 0.73·108 65.73% 22,301 99.54%

TABLE 5
Block Purging on Dmovies. RR values were computed based on the original performance of each method in Table 3.

Technical Metrics Performance Metrics
Purged Blocks Av. Comparisons BCov CC Comparisons RR Duplicates PC

Token Blocking 396 4.70·104 16.24 0.96·10−3 5.68·1010 99.08% 891,767 99.91%
Term Vector EM 564 3.23·104 17.24 1.32·10−3 4.34·1010 99.32% 891,709 99.90%
Term Vector AC 396 4.65·104 16.24 0.96·10−3 5.68·1010 99.08% 891,767 99.91%
Trigrams AC 1,064 0.68·104 27.50 3.02·10−3 3.06·1010 97.08% 892,402 99.98%
Trigram Graphs AC 1,358 0.50·104 28.12 3.90·10−3 2.42·1010 97.64% 892,463 99.99%

TABLE 6
Block Purging on Din f oboxes. RR values were computed based on the original performance of each method in Table 4.

comparisons than all other methods for practically identical
PC with them.

On the whole, we can argue that AC Blocking substantially
improves on Token Blocking, offering higher efficiency for the
same levels of effectiveness. It also outperforms EM-based
blocking methods in many aspects: it is applicable to large
entity collections, it can be combined with the n-gram graphs
representation model, and it produces blocks of higher quality.
The last aspect is probably caused by the “blind” functionality
of EM: unlike our Attribute Clustering algorithm, EM does
not guarantee that every cluster contains attribute names from
both input entity collections. Instead, it is possible that clusters
exclusively contain attributes stemming from the same source,
thus rendering their values useless for blocking. Regarding
the relative performance of the three established representation
models, the n-gram graphs clearly exhibit the best performance
across both data sets. This is because their noise-tolerant and
language-agnostic functionality turns them more suitable than
the other models for tackling the intricacies of HHIS.
6.2 Block Purging
This section examines the effect of our Block Purging al-
gorithm on all blocking methods across both data sets. Its
performance for Dmovies and for Din f oboxes is presented in
Tables 5 and 6, respectively.

We notice that BCov decreases for all methods across
both data sets, thus getting closer to the x=1 axis. On the
other hand, CC increases to a great extent, getting closer to
its maximum value (i.e., CCmax=2). All approaches move,
therefore, closer to the Ideal Point, improving their balance
between effectiveness and efficiency across both data sets:
although PC decreases by less than 1% in all cases, the overall
number of comparisons is reduced by 68% in Dmovies and by
98% (i.e., two orders of magnitude) in Din f oboxes, on average.
This behavior means that Block Purging accurately detects
the oversized blocks, performing a conservative, but valuable
cleansing.

Note that, in each data set, Block Purging removes almost
the same portion of blocks from all approaches: in Dmovies
it discards between 0.10% and 0.17% of all blocks and in
Din f oboxes around 0.03% of them. Given that it triggers similar
quantitative effects on the technical and the performance
metrics of all methods, we can conclude that they all involve
similar power-law distributions of comparisons: few blocks
are oversized, containing the largest part of the comparisons,
while their vast majority entails a handful of entities.

The outcomes of Tables 5 and 6 clearly indicate Trigrams
AC maintains the best balance between PC and RR even after
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Method Compar. RR Duplicates PC Time
Block Purging 7.30·107 - 22,301 99.54% 0.14

WF1
Block Scheduling 3.83·105 99.48% 22,301 99.54% 0.05
Block Pruning 2.67·105 99.64% 22,295 99.51% 0.05

WF2

Comp. Propagation 6.10·107 16.65% 22,301 99.54% 0.67
Block Scheduling 3.15·105 99.57% 22,301 99.54% 0.05
Comp. Pruning 9.73·104 99.88% 21,449 95.73% 0.51

WF3

Comp. Propagation 6.10·107 16.65% 22,301 99.54% 0.67
Comp. Pruning 2.42·106 96.69% 21,449 95.73% 0.51
Comp. Scheduling 8.71·104 99.88% 21,449 95.73% 0.06

(a)

Method Compar. RR Duplicates PC Time
Block Purging 2.42·1010 - 892,463 99.99% 0.05

WF1
Block Scheduling 1.55·109 93.58% 892,463 99.99% 0.16
Block Pruning 7.24·107 99.70% 879,446 98.53% 0.01

WF2

Comp. Propagation 1.24·1010 48.86% 892,463 99.99% 5.75
Block Scheduling 9.20·108 96.20% 892,463 99.99% 0.16
Comp. Pruning 4.98·107 99.79% 837,286 93.80% 4.14

WF3

Comp. Propagation 1.24·1010 48.86% 892,463 99.99% 5.75
Comp. Pruning 4.32·108 98.21% 837,286 93.80% 4.14
Comp. Scheduling 4.46·107 99.82% 837,286 93.80% 0.51

(b)TABLE 7
Perfomance of three different workflows on the Dmovies and Din f oboxes on top of Block Purging and Block Building with Trigram Graphs AC.

Baseline method for computing RR is Block Purging. The required time is measured in minutes for Dmovies and in hours for Din f oboxes.

Block Purging. It has the smaller — on average — blocks,
thus requiring by far the lowest total number of pairwise
comparisons. In addition, its PC remains well above 99% in
all cases, exhibiting the highest value across all approaches
for Din f oboxes. For this reason, we employ Trigrams AC as the
block building method that lies at the core of all efficiency
workflows we analyze in the following.
6.3 Efficiency Workflows
We now analyze the performance of three different efficiency
workflows, which share the same core workflow: they are
all based on Trigram Graphs AC for the creation of blocks
and on Block Purging and Duplicate Propagation for their
processing. They differ, though, in the other methods they
involve: the first one, WF1, adds exclusively block-refinement
methods to the core workflow, namely Block Scheduling, and
Block Pruning [29]. The second one, WF2, combines block-
refinement methods with comparison-refinement ones, namely
Block Scheduling with Comparison Propagation and Compar-
ison Pruning [31]. The third workflow, WF3, is the only one
that employs Comparison Scheduling, operating exclusively
on the level of individual comparisons; it additionally involves
Comparison Propagation and Comparison Pruning 17.

We selected these workflows for a number of reasons.
WF1 and WF2 have already been examined in [29] and [31]
respectively, over Token Blocking; given that we employ the
same data sets, our results are directly comparable with prior
work. WF3 is a novel workflow, but it is based on WF2,
modifying it so that it is compatible with Comparison Schedul-
ing. Collectively, these workflows cover all efficiency methods
presented in Section 5.2. They also differ significantly in
the complexity of their functionality: WF1 conveys minimum
space and time requirements, whereas WF3 involves the most
complex methods with respect to both aspects. WF2, on the
other hand, lies in the middle of these two extremes. Last
but not least, all workflows were formed according to the
guidelines of Section 4.1.

The performance of all workflows over Dmovies and Din f oboxes
is presented in Tables 7 (a) and 7 (b), respectively, with the
individual methods of each workflow appearing in the order
they are executed. We can notice that methods targeting the
repeated and superfluous comparisons (i.e., Block Scheduling,
Comparison Propagation, and Comparison Scheduling) have

17. In all cases, the ES min threshold for Comparison Pruning was specified
by setting a = 0.20 in Formula 1, which is a conservative value lying very
close to a = 0.25 that induces a minor reduction in PC, while boosting
RR [31]. The slightly lower value of a is justified the substantially higher
number of blocks produced by attribute clustering techniques.

no effect on PC, although they significantly enhance RR. It is
worth clarifying at this point that the performance of the two
scheduling methods is actually derived from their combination
with Duplicate Propagation; it denotes, therefore, how many
comparisons are saved just by ordering the block’s or compar-
isons’ execution and propagating the detected duplicates. This
explains why Block Scheduling appears below Comparison
Propagation in WF2.

It is interesting to compare the performance of the only
methods (apart from Block Purging) that affect PC: Block and
Comparison Pruning. This is done by contrasting the perfor-
mance of WF1 and WF2. We can identify the following pattern
across both data sets: Block Pruning has a negligible effect
on PC, reducing it by less than 1.5%, whereas Comparison
Pruning has a considerable impact on it, conveying a decrease
of 5%. Both have RR values over 99%, but Comparison
Pruning actually involves around 50% less comparisons than
Block Pruning. Thus, the former discards more comparisons
than the latter, sacrificing PC to a larger extent in favor of
higher efficiency (i.e., RR). The main advantage of Compar-
ison Pruning, though, is that it can be seamlessly combined
with Comparison Scheduling (WF3), which further reduces
comparisons by around 10%, at no cost in PC.

Regarding the execution time of the workflows, we can
notice the following patterns: WF2 and WF3 share almost the
same time requirements across both data sets, with the latter
taking slightly longer to complete its processing. On the other
hand, WF1 is around 100 times faster, due to its coarse gran-
ularity of functionality. Even in the worst case for Din f oboxes,
though, WF3 requires less than 12 hours for processing more
than 3 millions of entities. Among the individual blocking
methods, Comparison Propagation and Comparison Pruning
involve the most time-consuming processing. Compared to
them, all other techniques require at least 10 times less time.

On the whole, both data sets advocate that WF3 requires
the lowest number of comparisons per entity, followed by
WF2 and WF1. Its substantially higher efficiency, though,
comes at the cost of slightly lower effectiveness, as it detects
around 4% less duplicates than WF1. It also consumes more
resources, due to Comparison Scheduling, and involves the
highest execution time. For small data sets — with millions
of comparisons — its computational cost is affordable, and
typically WF3 constitutes the best option. However, for large-
scale applications — with billions of comparisons — the
choice depends on the performance requirements and the
available resources of the application at hand. In contrast,
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WF1 is suitable for applications that have limited access to
resources or are very strict with respect to effectiveness. Given
that it involves the fastest processing, it is also suitable for
applications with small entity profiles that can be efficiently
compared; in this case, it can compensate for higher number
of comparisons it involves in comparison to WF2 and WF3.
Finally, WF2 lies in the middle of these two extremes, offering
the same effectiveness as WF3 at slightly lower blocking
efficiency and time complexity.

7 Conclusions
We presented a generic and extensible framework for
blocking-based Clean-Clean ER over HHIS, composed of the
Effectiveness and Efficiency Layers. We elaborated on the
characteristics of each layer, showed how existing methods
map to them, proposed novel techniques in this context, and
discussed how to combine these methods into comprehensive
ER workflows. We conducted a thorough experimental evalu-
ation with 3.3 million entities, demonstrating the efficiency
of the proposed approach, which requires just 13 pairwise
comparisons per entity for a Pair Completeness of 93.80%. In
the future, we plan to extend our framework with techniques
that deal with Dirty ER as well as incremental ER, and to
explore ways of parallelizing our approach on the basis of
the MapReduce paradigm. We also intend to investigate ways
of incorporating mediated schemas in the process of attribute
clustering with the aim of yielding blocks of higher quality.
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