Analytics over Probabilistic Unmerged Duplicates

Ekaterini Ioannou and Minos Garofalakis

Technical University of Crete, Chania, Greece
{ioannou,minos}@softnet.tuc.gr

Abstract. This paper introduces probabilistic databases with unmerged dupli-
cates (DB™), i.e., databases containing probabilistic information about instances
found to describe the same real-world objects. We discuss the need for efficiently
querying such databases and for supporting practical query scenarios that require
analytical or summarized information. We also sketch possible methodologies
and techniques that would allow performing efficient processing of queries over
such probabilistic databases, and especially without the need to materialize the
(potentially, huge) collection of all possible deduplication worlds.

1 Introduction

Entity Deduplication is the task of processing a data set in order to create entities by
merging the data set instances that describe the same real-world objects. Traditional
deduplication techniques [4] are based on an a-priori merging of instances: they first de-
tect the possible matches between instances, and then, given a threshold, decide which
instances to merge into entities. The entities resulting from the merges are then used
for replacing the coreference instances in the original data set. Query processing is per-
formed over the updated data set.

To handle the new resolution challenges, the recently introduced approaches (e.g.,
[1], [6], and [9]) moved towards databases that maintain and incorporate unmerged du-
plicates. These approaches perform only the first part of the resolution process, which is
the identification of the possible matches between the instances. This is the deduplica-
tion information, and it corresponds to a set of possible linkages between instances. In
some approaches each linkage is accompanied with a probability that reflects the belief
of the deduplication technique that the specific two instances describe the same real-
world object. The resulting information is not used for performing entity merges (using
a given threshold), but is stored alongside the original data. The complete deduplication
is performed during query processing, and thus answers reflect the different real-world
situations that are encoded in the deduplication information. In case the deduplication
information is probabilistic, as for instance in [1] and [6], then the probabilities are used
for computing the overall probability of each query answer.

Although answering queries over unmerged duplicates is important, it is still just
a first step towards a complete solution to the problem. The typical situation is that
the unmerged duplicates are part of a large database that of course contains other ta-
bles. Consequently, users would require retrieving information related to all data in the
database, duplicated or not. However, this would require generating and considering all
the possible worlds, which is typically huge [2] and will overwhelm the user instead

U. Straccia and A. Cali (Eds.): SUM 2014, LNAT 8720, pp. 203-208, 2014.

4 ot 1 ANt A

204 E. Toannou and M. Garofalakis

Buyer
id name surname loc. gender year

Deduplication Order
id inst_1 inst2 pr|id buyer items amount

ri Marion Smith GR female 2009 (/.,, rn 0934 n 1 100
r, Marion Smith DE female 2010 |/, n rs 0536 n 2 300
ry Mary Smith DE female 2011 35 4 250

ty 13 2 250

Fig. 1. A fragment of a probabilistic database with unmerged duplicates

of providing useful information. In addition, users might not care about the exact enti-
ties but rather on obtaining insights through analytical and summarizing queries, as for
example performed in the online analytical processing.

In this paper, we introduce DB“: a database containing probabilistic information
about instances found to describe the same real-world objects. DB“/ adopts the most
expressive form of deduplication information (i.e., probabilistic linkages between in-
stances — also accounting for transitivity), and significantly extends its scope by
considering the deduplication information as part of a database with other tables provid-
ing entity-related data. In the following sections, we first introduce analytical queries
for retrieving information of the entities in DB* (Section 2), and then sketch possible
methodologies and techniques for efficiently processing queries over such a probabilis-
tic database with unmerged duplicates (Section 3).

2 Modeling Data and Queries

A probabilistic database with unmerged duplicates DB*! contains deterministic rela-
tional tables Ty, ..., T, as well as tables with duplicates Ry, ..., Ry, i.e., some instances
of R; describe the same real-world objects. The deduplication information for table R; is
given in table L;. More specifically, L; contains probabilistic linkages over the instances
in R;: I, ,,€L; means that instances r, and rz from R; describe the same real-world
object with probability p'.

To process queries over DB we must be able to support joins between the tables
with unmerged duplicates and the deterministic tables. For example, answering queries
over the DB“/ fragment shown in Figure 1 requires considering the join between ta-
ble Buyer with Order. Since table Buyer contains duplicates, we must first derive the
possible entities using the deduplication information provided in table Deduplication.
Each linkage from the Deduplication table can be either accepted or rejected, e.g., we
can accept /,, ,, with probability 0.55 or reject it with probability (1-0.55). Rejecting the
linkage means that the database has two entities, one for each of the instances. Accept-
ing the linkage implies a new entity, with identifier e, 3, that replaces both r; and r3.
Creating a single entity given these two instances maybe performed using different se-
mantics. For example, if we assume that we keep the instance with the highest value on
the year attribute, the tuple for the merge between instances r and r3 is (e 3, “Mary”,
“Smith”, “DE”, “female”, “2011”).

For creating the possible entities of a table with unmerged duplicates R; we need to
consider the acceptance and rejection of each linkage of L;. Deciding which linkages
from L; (e.g., table Deduplication from Figure 1) to accept or reject leads to a huge

Analytics over Probabilistic Unmerged Duplicates 205

Table 1. The possible deduplication worlds with the entities created when requesting the join
between Order with Buyer and summation over the Order’s “amount” for each entity

| Lin | Prob. | Entities (with ion over Order’s amount)
L[T, &1, | 0.5225] (e123. ... 2009, DE, 900)
bl Ly, & =l | 0.4275| {12, ..., 2010, DE, 650), (es, ..., 2011, DE, 250)
L[=l & Ly, | 0.0275] (e13, ..., 2011, DE, 800), {¢2, ..., 2010, DE, 550)
L||=lyy y & =lpy 1| 0.0225] (e, ..., 2009, GR, 100), (e, ..., 2010, DE, 550),

{es, ..., 2011, DE, 250)

(exponentially-large) number of situations, termed possible deduplication worlds. Gen-
erating all these situations is infeasible. In addition, the huge volume of results that
would arise when processing queries over all possible worlds would make it impossible
for users to derive any meaningful information.

‘We suggest to address these issues by applying analytical operators and qualifiers
over the possible deduplication worlds. In particularly, we introduce the following two
levels of aggregation:

— First Aggregation Level: performs aggregation within each possible deduplication
world and uses conventional SQL aggregate semantics over the merged entities.
For example, consider again the data from Figure 1. Accepting both linkages of
table Buyer leads to entity e; 53, which would join with tuples #;, >, t3 and ¢4 from
table Order. The summation over the Order’s “amount” is thus 900. Table 1 shows
the four deduplication worlds created when requesting the join between Order and
Buyer with summation over the Order’s “amount” for each entity. Note that we also
need to identify and ignore the deduplication worlds in which the entities created
by the accepted linkages are not satisfied by the rejected linkages. For example, the
deduplication world with entity ey, is invalid if it was created by accepting the
linkages /o3 and /,,,, and rejecting linkage g,

Second Aggregation Level: performs aggregation across all possible deduplication
worlds and over all the records created by the first level and based on one (or more)
query attributes of interest. The goal is to further reduce the number of information
that is created by the first aggregation level, which would help users to reach vital
business decisions easier and faster.

As an example, consider again the data from Figure 1 and that a manager wants to
retrieve the range of possible total Order amounts per location. The manager poses the
following query:

SELECT Buyer.location, range(entity_amount), prob
FROM Order entity-join Buyer based on Deduplication

using sum(Order.amount) as entity_amount
WHERE GROUP BY Buyer.location

Although not directly expressed in the query, the ENTITY-J0IN implies aggregation of
the records corresponding to each entity in the possible worlds by assuming an implicit
group-by operator over the entities (i.e., first aggregation level). Evaluating the (explicit)
GROUP BY clause over the resulting records gives two locations: “GR” and “DE” (i.e.,

206 E. Toannou and M. Garofalakis

second aggregation level). Consider now all entities in the possible worlds, i.e., 7,4 of
Table 1. The amount summation for location “GR” is 100, and for location “DE” it is
between 250 and 900, and thus the range is [250-900]. The probability for each location
is the summation of the possible worlds in which they participate. The location-range
pairs along with their probabilities that compose the answer set are {(“GR”, [100-100],
0.0225), (“DE”, [250-900], 1)}.

The manager also wants to retrieve the two most likely aggregate amounts spent by
buyers in 2010, along with their respective probabilities. This is basically an iceberg
query as it allows users to find the high-probability deduplication scenarios satisfying
specific selection predicates. The query posed by the manager is now the following:

SELECT top-2 entity_amount, prob

FROM Order entity-join Buyer based on Deduplication
using sum(Order.amount) as entity_amount

WHERE Buyer.year=2010

The entities satisfying the wreRE conditions are e; from possible worlds 73 and I,
ey from [,. The probability of each entity is the summation of the probabilities of
the worlds in which it participates, i.e., 0.05 for e, and 0.4275 for e; ». By default, the
entities are ordered by probability, thus, the answer for this query is {(650, 0.4275),
(550, 0.05)}.

Our vision is to provide complex aggregation and iceberg queries that will allow
users to efficiently retrieve statistical information about the possible deduplicated enti-
ties. As shown in the above examples, a vital operator is a novel ENTITY-JOIN, which will
allow expressing joins between a table with unmerged duplicates R; and deterministic
database table T';. Entities are created using summation, count, minimum, or maximum
aggregation over the T; tuples. The exTITY-JOIN can be used for query analytics using
either aggregation operators (e.g., range, mean and variance!') or iceberg operators
(e.g., top-k). Instead of top-k, we could also consider simply specifying a lower bound
on the probability of the returned aggregate values.

Users might also be interested in retrieving results with more details, probably after
executing aggregation queries, which basically implies reversing parts of the performed
summarization. This can be performed with a “drill down” qualifier, similar to the
corresponding qualifier of online analytical processing.

Providing efficient operators for constructing entities given a set of instances is also
useful for query processing over DB“. The majority of the existing deduplication ap-
proaches either do not deal with this issue or simply return the most recent instance or
the union of all instances. To provide such operators, we could for example consider
the [11] approach from information extraction, which constructs entities by detecting a
canonical value for each attribute given the corresponding values from all the instances.

3 Possible Mechanisms for Efficient Query Processing

For providing analytics over DB/, we need to introduce new mechanisms and tech-
niques that exploit processing of aggregation and iceberg queries without the need to

! Mean can be used for retrieving the average value over the ranges of all possible merges and
variance for indicating the typical discrepancy of the expected value.

Analytics over Probabilistic Unmerged Duplicates 207

materialize the possible worlds. Other important aspects that we must consider, include
the efficient computation of probabilities over the resulting answers, and the linkage
transitivity requirement that, among other things, implies the need for reasoning at
query time.

Aggregation Queries. This type of queries has been so far studied only by very few
approaches. For example, processing aggregation queries is the main goal of [5]. It is
achieved by the structural decompositions of expressions into sub-expressions that are
independent and mutually exclusive. DB“ needs to support a more expressive form of
aggregation, which captures two aggregation levels.

Another existing approach that targets aggregate operators is [9]. However, there ex-
ist crucial differences with the aggregate operators required for DB*, One difference is
that the model followed in [9] assumes that the algorithm is provided with fixed clusters
of instances, which allows focusing on basic query-time aggregation. In sharp contrast
to [9], DB follows a more generic deduplication model that requires dealing also with
linkages between instances as well as linkage transitivity. In addition, DB* also con-
siders probabilistic linkages, in order to capture the relevant entity-linkage uncertainty.
Another difference is that DB“/ supports a more expressive query syntax in comparison
to [9], which includes two aggregation levels and additional aggregation functions.

Processing aggregation queries over DB“ could be efficiently achieved by limiting
the number of possible worlds to be materialized or by partially materializing possible
worlds. For instance, for minimum and maximum aggregates we do not need to use
all the records but rather only one record from 7; for each instance from R;. As an
example, consider again the data of Order from Figure 1. When processing a query with
a maximum aggregate, we can safely ignore all tuples related to a specific r; except the
one with the highest amount, i.e., for r, we keep only tuple 1, since this provides the
highest amount among all tuples related to 7.

Iceberg Queries. In contrast to deterministic data, iceberg queries (i.e., top-k) for un-
certain data have different interpretations [10]: the top-k tuples from the possible world
with the highest probability, the set of k tuples that have the highest aggregated proba-
bility to appear together across all possible worlds [8, 10] (called “U-Topk™), and the k
tuples from any possible world as long as they have the highest probabilities [10] (called
“U-kRanks”). For DB“, this query type corresponds to retrieving the k single-item an-
swers with the highest probabilities (i.e., Topk from [8], k U-Topl from [10]). Ré et
al. [8] process U-Topk through Monte-Carlo simulation. They maintain probability in-
tervals that are then tightened by generating random possible worlds. Soliman et al. [10]
introduced a framework that navigates the space of possible worlds in order to generate
the top-k tuples. More recent top-k related approaches are [7] and [3]. The approach
in [7] shares the probability computation of detected subqueries with several query an-
swer, and further extends for the computation of bounds. The goal of [3] is similar, but
here the authors achieve the computation of bounds without materialization.

One option for processing iceberg queries over DB*, is to create an indexing struc-
ture that detects and maintains the entities with the highest probabilities. Ideally, the
indexing structure would provide efficient access to the information encoded through
the linkages (i.e., potential merges) and allow easy construction of possible worlds (or
partial possible worlds), as well as the fast retrieval of their probabilities. Thus, DB*

208 E. Toannou and M. Garofalakis

would not need to perform a full on-the-fly materialization, but rather directly retrieve
query answers, or part of them, from the indexing structure.

4 Summary

In this paper we have presented probabilistic databases with unmerged duplicates, i.e.,
databases with duplicated instances and probabilistic linkages between duplicated in-
stances. We discussed the need for efficiently supporting practical query scenarios that
do not require retrieving the huge collection of all possible deduplication worlds, but
rather analytical or summarized information. This primarily involves query analytic,
including aggregation and iceberg queries. We have also sketched possible method-
ologies and techniques that would allow the efficient processing of queries over such
probabilistic databases, and especially without the need to materialize the collection of
all possible deduplication worlds.

Acknowledgment. This work has been partially funded from the European Unions
Seventh Framework Programme under Grant Agreement 619525 (QualiMaster) and
Reference number 249217 (HeisenData).

References

[1] Andritsos, P., Fuxman, A., Miller, R.: Clean answers over dirty databases: A probabilistic
approach. In: ICDE (2006)
Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB 16(4)
(2007)
[3] Dylla, M., Miliaraki, I., Theobald, M.: Top-k query processing in probabilistic databases
with non-materialized views. In: ICDE (2013)
[4] Elmagarmid, A., Ipeirotis, P., Verykios, V.. Duplicate record detection: A survey.
TKDE 19(1) (2007)
[5] Fink, R., Han, L., Olteanu, D.: Aggregation in probabilistic databases via knowledge com-
pilation. PVLDB 5(5) (2012)
[6] Toannou, E., Nejdl, W., Niederée, C., Velegrakis, Y.: On-the-fly entity-aware query process-
ing in the presence of linkage. PVLDB 3(1) (2010)
[7] Olteanu, D., Wen, H.: Ranking query answers in probabilistic databases: Complexity and
efficient algorithms. In: ICDE (2012)
[8] Ré, C., Dalvi, N., Suciu, D.: Efficient top-k query evaluation on probabilistic data. In:
ICDE (2007)
[9] Sismanis, Y., Wang, L., Fuxman, A., Haas, P., Reinwald, B.: Resolution-aware query an-
swering for business intelligence. In: ICDE (2009)
[10] Soliman, M., Ilyas, I., Chang, K.: Top-k query processing in uncertain databases. In: ICDE
(2007)
Wick, M., Rohanimanesh, K., Schultz, K., McCallum, A.: A unified approach for schema
matching, coreference and canonicalization. In: KDD (2008)

2

[

