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Abstract. Part-whole relations are ubiquitous in our world, yet they do not get ”first-
class” treatment in the data managements systems most commonly used today. One as-
pect of part-whole relations that is particularly important is that of attribute transitivity.
Some attributes of a whole are also attributes of its parts, and vice versa. We propose
an extension to a generic entity-centric data model to support part-whole relations and
attribute transitivity and provide more meaningful results to certain types of queries as
a result. We describe how this model can be implemented using an RDF repository and
three approaches to infer the implicit information necessary for query answering that ad-
heres to the semantics of the model. The first approach is a naive implementation and
the other two use indexing to improve performance. We evaluate several aspects of our
implementations in a series of experimental results that show that the two approaches
that use indexing are far superior to the naive approach and exhibit some advantages and
disadvantages when compared to each other.

1 Introduction
Part-whole relations exist virtually everywhere and their modelling plays an important role in
many application domains [6]. Despite this, they do not get ”first-class” treatment in the data
managements systems most commonly used today.

Part-whole relations have a number of properties and can be subdivided into different, more
specific, kinds of relations. The conceptual modeling of part-whole relations and their different
types and properties is a big challenge in itself and has been studied previously. The work in
[1] provides a good summary of the difficulties and nuances involved. We believe that from all
properties of part-whole relations the one that is most universal and deserves built-in support
in a general-purpose data management system is that of attribute transitivity. It is very common
to find that if some entity x is part of other entity y, some attributes of x are also attributes of
y and vice versa. For example, if Bob is an employee that works for the R&D department of
company X, he also works for company X. Similarly, the person who owns a car usually also
owns the car’s engine. Query answering should take this transitivity into account: given that
the contents of a database include “Bob works for R&D” and “R&D is part of company X”,
the answer to the question “who works for company X?” should include Bob, even though this
fact is not explicitly stated in the data.

This transitivity does not always hold, though. The hand of a violinist is definitely a part
of his or her, but it would make little sense to say that this hand plays for an orchestra given
that the violinist does. Therefore, it is desired to have the ability to specify which attributes are
transitive with respect to part-whole relations and which are not.



In schema-centric systems, such as relational databases, this kind of functionality can be
achieved by using the schema to establish specific types of entities and attributes and define
which types of entities are part of other types of entities and which type of attributes should be
transitive. For example, a table department may be declared to be part-of the table company
by having a column part-of containing a foreign key to company. If a third table employee is
associated to department with the relationship works-for, the question “who works for com-
pany X?” can be answered with a predefined query that takes the semantics of the schema into
account. The main limitation of this approach is that all the semantics have to be known a priori
and defined in the schema, which imposes a rigid structure to which all data must conform. In
many cases, the data is not structured enough for the design of such a schema to be practical,
yet considering attribute transitivity when answering queries is still useful.

Entity-centric systems, which deal with unstructured or semi-structured data and do not
rely on a schema, offer even less support for part-whole relations. Entities can have any number
of arbitrary attributes, the values of which are other entities or atomic values such as strings
and numbers. In such scenario the part-of relation is just like any other attribute.

In this paper we propose a new type of database that allows attributes to be transitive with
respect to part-whole relations and takes this transitivity into account in query answering, all
while preserving the flexibility and suitability for schema-less semi-structured data character-
istic of entity-centric systems. We introduce a new data model to account for part-of relations
and attribute transitivity, implement this model using existing database technology, suggest in-
dexing techniques to speed-up query answering, and explore many aspects of the performance
of our implementation in a series of experiments.

The paper is organized as follows. Section 2 provides a motivating example that illustrates
why considering attribute transitivity with respect to part-whole relations is useful for answer-
ing queries. Section 3 describes the generic data model and our extension for supporting part-
whole relations and attribute transitivity. We describe our implementation of this extended data
model in Section 4, discussing three different approaches. We provide an experimental evalu-
ation of our implementation in Section 5, concluding in Section 7.

2 Motivating Example
Consider a system incorporating a repository that stores data related to non-governmental or-
ganizations (NGOs). NGOs typically represent and organize information in a very diverse
way. This constitutes a challenge that the system needs to deal and especially when executing
queries over the repository.

Figure 1 shows a small fragment of a repository that includes data related to the Earth
Charter, one of the many NGOs affiliated with the United Nations. In the figure, each box rep-
resents an entity and each arrow represents an entity attribute. For example, the arrow labeled
as “affiliated-with” denotes the affiliation of the entity Earth Charter with the United Nations.
The arrows labeled as “part-of” denote that the Earth Charter is divided into the areas of
business, education, and religion.

Consider now a user that wants to retrieve the publications of Earth Charter. Based on
the information explicitly included in the repository, the answer to would only include EC in
action. The publications How a Consensus on Global Values Can Add Value and Principles
for Engaging Business in the ECI would not be included in the result set, since these are not
directly associated with the entity Earth Charter. Of course, we could modify the model and



Fig. 1. A small fragment of the repository data. Fig. 2. An example of attribute transitivity.

associate the publications directly with the entity Earth Charter instead of EC-Business, but
then a query asking for the publications of EC-Business would return no results. In addition,
associating these publications with both entities would be cumbersome for the user of the
repository, as she would have to figure out what is the hierarchy of areas and subareas of the
Earth Charter before adding information about a publication.

Receiving inadequate query answers might frequently occur if we only use the information
explicitly declared in the repository. Some additional examples with this issue appear when
we try to retrieve the organizations that support the Earth Charter or the current projects of
EC-Education.

To solve this problem, the repository should be able to reason about the implicit informa-
tion implied by the part-of relations and be able to fully answer questions such as the ones
discussed in the previous paragraphs. To do this in a sensible manner, we suggest incorporat-
ing additional knowledge for each attribute, and more specifically the transitivity of attributes
with the part-of relations. We assume that the user of the repository does know this when in-
serting a new attribute. Note that this does not require the users to know what are the part-of
relations themselves. For example, the user adding Principles for Engaging Business in the
ECI as publication-of the entity EC-Business would know that this attribute has transitivity
from part to whole. Thus, this publication should also be considered to be also a publication-of
the entities that EC-Business is part of, i.e., the Earth Charter entity.

3 Data Model
3.1 Basic Database
We consider a generic data model that is centered around entities and attributes. An entity
represents any object in the world, such as a person, a car or a school. No restrictions are
imposed on the structure or characteristics of entities. An attribute describes some aspect of
an entity and is composed of a name and a value. We assume the existence of an infinite set of
entities E , names N , and atomic values V . The latter contains values such as integers, strings,
etc.

Definition 1. Let pair 〈n, v〉 denote an attribute with n∈N being the attribute name and
v∈E∪V the attribute value. A database is a tuple 〈E, G〉 where E⊆E is a finite set providing



the entities (i.e., {e}). G is a finite set that provides the attributes of each entity as well as the
relationships between entities, i.e., G⊆N×{E∪V}.

Our definition can be used to represent structured data while also having the benefits of
dataspaces [3] where data can be only partially structured.

It is easy to see that when all entities have at least one attribute, they will also be referred
to in the G set. We can actually include a triple of the form 〈e,−,−〉 in G for each entity e
that does not have an attribute, and then consider this G as the compact representation of the
database. Given this compact representation, we can also retrieve the attributes of an entity eα
using the following function: Attr(eα) = {〈n, v〉 | 〈eα, n, v〉∈G}.

A query is described by a rule consisting of a head and a body. Both head and body are
composed of a conjunction of atoms. The head can have only entity atoms of the form e (n1:v1,
n2:v2, . . ., nk:vk), where e, ni, and vj are variables or constants. Variables appearing at the
beginning of an atom (outside the parenthesis), i.e., e, correspond to entity variables and can
only be bound to elements of E . Variables on the left side of each colon, e.g., n1 and n2, stand
for attribute names and can only be bound to elements of N . Variables on the right side of
each colon, e.g., v1 and v2, stand for attribute values and can be bound to either elements of E
(entities) or elements of V (atomic values). In addition to entity atoms, the body of a query can
also have atomic atoms, which are boolean conditions involving variables and constant values,
e.g, x<10 or x=y.

Note that the variables appearing anywhere in the query are shared across all atoms from
both the head and the body. Nesting is possible by using atoms as attribute values.

Given a binding of the variables e, ni, and vi to eb, nbi , and vbi respectively, for every i from
1 to k, the entity atom e (n1:v1, n2:v2, . . ., nk:vk) is said to be true if there is an entity eb in
the database that has attributes 〈nbi , vbi 〉, ∀ i ∈ [1,k]. If all the atoms in the body of a query are
true, the atoms in the head of the query are also considered to be true, in which case a set of
entities and attributes as described in the head of the query is returned.

Example 1. Consider a user that want to detect an entity with the attribute publication-of
having as value some entity, which in turn has the attribute affiliated-with with yet
some other entity as value. She thus poses the following query:

Q 1 $pub(related-to:$org) :- $pub(publication-of: $ngo),$ngo(affiliated-with: $org)
Executing Q 1 over the data of Figure 1 return the entity EC in action having the attribute
related-to with the entity UN as value.

3.2 Extension to Part-of Databases
We now extend the data model for the basic database (introduced in the previous paragraphs)
to a model that accounts for the transitivity of attributes with respect to part-of relations.

The set T = { up, down, both, none } defines the four possible types of attribute transi-
tivity. The elements up and down represent transitivity from part to whole, and whole to part,
respectively. The element both denotes that both of the previous types of transitivity apply, and
element none indicates that there is no transitivity. Additionally, the special name partOf is
removed from the set of valid attribute names N and is reserved for part-of relations.



Fig. 3. Part-of database for Figure 1 data. Fig. 4. DAG example.

et eu ed

none false false
up true false

down false true
both true true

Fig. 5. Correspondence
for transitivity.

Definition 2. A part-of database is a tuple 〈E, G, P 〉. E is the entity set, i.e., E⊆E . P is a
set of entity pairs, i.e., P⊆E×E, with each pair 〈ei, ej〉 denoting ei is partOf ej . G provides
relationships of an entity with its attributes or other entities, including also the transitivity
type, i.e., G⊆E×N×{E∪V}×T ×T . Each element in G is 〈e, n, v, et, vt, 〉 with e∈E being
the entity, n∈N the attribute name, v∈E∪V the attribute value, and et,vt∈T the transitivity
for the entity that has the attribute and the attribute value v, respectively.

Each element of G states that an entity e has an attribute with name n and value v and
that this attribute is transitive with respect to the part-of relations defined in P as specified
by et and vt. Only one combination of n, v, et, and ev is allowed per attribute (i.e. the same
attribute cannot be declared twice with conflicting types of transitivity). In addition, using the
information of P , i.e., partOf relationships between entities, we form a graph and we assume
that there are no cycles in this graph.

As with the original model (Section 3.1), under the assumption that every entity in a part-of
database has at least one attribute, the set E is no longer needed to represent the database and
a more compact representation consisting of the quintuples in G and the pairs in P is possible.
We denote this representation with tuple 〈G, P 〉.

Figure 2 provides a graphical representation of the semantics of attribute transitivity. The
entity e3 is part of e2, which in turn is part of e1. Entities e4, e5, and e6 have a similar config-
uration. The entity e2 has an attribute a with e5 as value. If et=up or et=both for attribute a, it
is inferred that e1 also has an attribute with name a and value e5 by virtue of transitivity, even
if such attribute is not explicitly declared in G. Similarly, if et=down or et=both for attribute a
then e3 has an attribute with name a and value e5. The cases for the different values of vt are
analogous.

Consider again our example with the NGOs repository. The data about Earth Charter can
be represented using the part-of database shown in Figure 3. All attributes have now values for
et and vt. Part-of relations are no longer normal attributes but a special kind of relationship be-
tween entities. For instance, the attribute publication-of of the entity Principles for Engaging
Business in the ECI has et=none and vt=up. This means that this attribute has no transitivity
on the entity’s side, and transitivity of type up on the value’s side. Since the value of this at-
tribute is EC-Business, which is part of Earth Charter, an attribute publication-of is implicitly
established for the entity Principles for Engaging Business in the ECI having Earth Charter
as value.



The query language for part-of databases has the same elements and structure as the one
defined in the previous section. The difference lies in the semantics of queries. Each atom in
the body of a query can now be satisfied with the entities and attributes in the inferred closure
of 〈G, P 〉, defined as 〈G∪G′,P 〉, where G′ is the set of all triples 〈e, n, v〉 that can be inferred
from the transitive attributes in G and the part-of relations in P by applying the inference rules
described previously.

Example 2. Consider now searching for all entities that have an attribute publication-of
with Earth Charter as value in the inferred closure of 〈G, P 〉.

Q 2 $pub(publication-of: Earth Charter) :- $pub(publication-of: Earth Charter)
If applied to the data of Figure 3, this query returns entities: (i) EC in action, (ii)
How a Consensus on Global Values Can Add Value, and (iii) Principles
for Engaging Business in the ECI. Each of these three entities has an attribute
publication-of with Earth Charter as value.

4 Our Solutions
We implemented the part-of database using Sesame4, which is an open source framework for
storing and querying RDF data. We chose RDF because it is a well established specification of
a data model that is similar to the one we use. Sesame offers one of the most robust and mature
implementations of an RDF repository available as open source.

4.1 Naive Approach
Our first implementation follows a lazy inference approach. All information is stored in a
standard RDF repository and nothing is inferred at the time of insertion. When the database is
queried, it analyzes the body of the query for patterns, inserts RDF statements corresponding
to the inferred closure of those patterns, translates the query into SPARQL, executes it, and
removes the inferred statements.

Update operations are uninteresting since they are direct mappings to the corresponding
operations of the RDF repository. The only exception is that whenever a part-of relation is
added, a check is made to ensure the addition does not introduce a cycle in the part-of graph
Gp. Supposing that the function addPartOfRelation(e1, e2) is invoked, the part-of graph is
traversed to ensure that there is no path from e2 to e1, in which case the operation fails.

Query answering involves several steps. The query is parsed and every entity atom is bro-
ken into one or more minimal atoms of the form e(n:v). The atoms in the body of the query
are classified according to which elements are constants and which are variables. If we denote
variables with “?”, the eight possible patterns are: e(n:v), e(n:?), e(?:v), e(?:?), ?(n:v), ?(n:?),
?(?:v) and ?(?:?). If the pattern ?(?:?) is found, the inferred closure of the entire database is
computed, otherwise, only the implicit statements involving the constants in the query patterns
are inferred.

The inferred closure of a pattern can be a subset of that of other pattern. In this case the
former is considered redundant and only the latter is computed. For example, a query may
contain the pattern e1(?:v1), which requires the inference of all the implicit statements that
have e1 as entity and v1 as attribute value. If the same query also contains the pattern e1(?:?),

4 http://www.openrdf.org/



all the implicit statements that have e1 as entity have to be inferred, which are a superset of
those with e1 as entity and v1 as attribute value.

Figure 2 is helpful in visualizing how the inferred closure of a pattern can be obtained. To
see the case for pattern e(n:?), suppose a part-of database contains entities e1, e2, e3, e4, e5 and
e6, with the part of relations shown in the figure, and that e2’s attribute with name a and value
e5 has full transitivity (et=both and vt=both). The dashed lines represent the inferred closure
of the database. First, every entity e′ that is directly or indirectly a part of e (i.e. there is a path
from e′ to e in Gp) has to be checked for ownership of an attribute α with name n that has
et=up or et=both. If such attribute exists, the statement 〈e, n, valueOf(α)〉 is added to the
inferred closure. In the example, doing this for the pattern e1(a:?) would result in 〈e1, a, e5〉
being added to the inferred closure. Next, every entity e′′ that e is directly or indirectly part of
(i.e. there is a path from e to e′′ in Gp) has to be checked for ownership of an attribute β with
name n that has et=down or et=both. If such attribute exists, the statement 〈e, n, valueOf(β)〉
is added to the inferred closure. In the example, the statement 〈e3, a, e5〉 would be added to
the closure if this were done for pattern e3(a:?). Finally, every entity v that is the value of an
attribute γ of e that has name n and vt6= none has to be checked for being directly or indirectly
part of some entity v′ (if vt=up or vt=both), and/or an entity v′′ being directly or indirectly part
of v (if vt=down or vt=both). If such entities exist, the statements 〈e, n, v′〉 and/or 〈e, n, v′′〉
are added to the closure. In the example, the statements 〈e2, a, e4〉 and 〈e2, a, e6〉 would be
added to the closure after doing this for pattern e2(a:?).

The case for pattern ?(n:v) can be seen as a mirror of that for e(n:?). The same steps are
performed but the roles of e and v are interchanged. Other patterns require different steps but
the underlying logic is the same and is not fully detailed for the sake of brevity.

Once the inferred closure of all the atoms in the body of a query is added to the repository,
the equivalent SPARQL query is executed using Sesame’s query engine. After the results of
the query are available, all the inferred statements that were added are removed leaving the
database in the same state as before executing the query.

4.2 Total Materialization
We now present another approach that follows an eager inference approach. Each time a state-
ment or part-of relation is added, its inferred closure is computed. Similarly, when a statement
or part-of relation is removed, the affected inferred statements are removed. The query execu-
tion is left entirely to Sesame’s query engine, thus our main concern in this implementation is
the speed of update operations.

Part-of Relations Index. Whenever a transitive attribute is inserted, the part-of graph has to
be traversed to find all the relevant entities for the inferred closure. In the same way, deleting
a transitive attribute requires a traversal of the part-of graph to find those inferred statements
that should be removed. To speed-up this process, we propose an index dedicated to part-of
relations.

The set of all part-of relations can be seen as a directed acyclic graph (DAG). We repre-
sent this graph with a double adjacency list that contains both the direct and indirect part-of
relations. For example, the DAG in Figure 4 is represented as follows:

1 {2,3} {4,5,6,7,8,9,10} {} {}
2 {4,5} {6,9,10} {1} {}



3 {5,6,7} {8,10} {1} {}
4 {9} {} {2} {1}
5 {10} {6} {2,3} {1}
6 {} {} {3,10}{1,2,5}
7 {8} {} {3} {1}
8 {} {} {7} {1,3}
9 {} {} {4} {1,2}
10{6} {} {5} {1,2,3}

There is an entry for every vertex in the DAG. The first column contains the list of vertices
each vertex is connected to. The second column contains the list of vertices each vertex is
indirectly connected to through other vertices. Columns three and four contain what the first
and second columns would, if the direction of all edges were reversed. The idea is that a
single look-up of this index is all that is needed for the insertion or deletion of any transitive
statement. Depending on the type of transitivity, the lookup may include all columns or only
some of them.

This index can be implemented with a key-value store. We used Ehcache5, a system de-
veloped in Java meant primarily for caching the contents of some other larger and slower
datastore, but it can also be used as a persistence solution to store very large datasets on disk
without depending on any external database. The reason to prefer Ehcache over something
such as Berkeley DB is that it performs object caching -Java objects are only serialized and
deserialized when written to or read from disk-; Berkeley DB and other similar systems must
serialize and deserialize Java objects every time they are inserted or retrieved, even if no access
to disk is made. We found that object caching has a big influence on performance even if the
amount of objects kept in memory is a relatively small part of all the stored data.

Transitive Attributes Index. The index for part-of relations is useful when inserting and
deleting transitive statements, but the insertion and removal of part-of relations can benefit in
turn from fast access to transitive attributes. This is because the inferred closure of transitive
attributes already existing in the database can be affected by the addition or removal of a part-
of relation. Given that transitive statements are stored as reified triples in RDF, their retrieval
is not very efficient. Moreover, it is usually the case that only some of the transitive attributes
are relevant for a given operation (e.g., only those with the transitivity type up and involving
certain entity). It is therefore desired to have a fast way of retrieving transitive attributes with
different characteristics.

To index transitive attributes, we propose to use an alternative representation of transitivity.
Instead of having the two variables et and vt with four possible values each, we store four
binary variables: eu, ed, vu and vd. Table 5 shows the correspondence of the two representations
for et, eu and ed. The correspondence between vt, vu, and vd is analogous.

Using this representation, the index consists of four tables, one for each of the binary
variables eu, ed, vu and vd. To avoid having to modify the inner workings of the Sesame
repository, we also added a fifth table containing all transitive attributes; this is the table that
is indexed by the other four. Figures 7-10 show how the example contents of Figure 6 are
indexed. Naturally, in the real implementation the index tables contain pointers to entries in
the main table rather than the entire triples as shown here.

5 http://ehcache.org/



e1, n1, v1 eu=true, ed=true, vu=false, vd=false
e1, n2, v2 eu=true, ed=false, vu=false, vd=false
e1, n3, v3 eu=false, ed=true, vu=false, vd=false
e2, n4, v4 eu=false, ed=false, vu=true, vd=true
e2, n5, v5 eu=false, ed=false, vu=true, vd=false
e2, n6, v6 eu=false, ed=false, vu=false, vd=true

Fig. 6. Table with transitive attributes.

e1 e1, n1, v1
e1 e1, n2, v2

Fig. 7. Index for eu.

e1 e1, n1, v1
e1 e1, n3, v3

Fig. 8. Index for ed.

v4 e2, n4, v4
v5 e2, n5, v5

Fig. 9. Index for vu.

v4 e2, n4, v4
v6 e2, n6, v6

Fig. 10. Index for vd.

Similarly to the part-of relations index, we implemented the transitive attributes index using
a key-value store.

4.3 Smart Indexing
The previous approaches represent two extremes. The naive approach has fast update oper-
ations and the best possible space utilization given our choice of RDF repository, but much
processing is required for answering queries, making them slow. The total materialization ap-
proach, on the other hand, achieves the fastest query answering possible given our choice of
RDF repository and SPARQL query engine, but uses considerable extra space to have all the
implicit information always readily available for queries, and needs to perform maintenance
operations with every update.

We now present an approach that compromises the conflicting goals of fast query answer-
ing and fast update operations with low space requirements. Ideally, we should rewrite the
query engine itself to compute the transitive closure of query patterns progressively and avoid
the inference of statements that can be discovered to be unnecessary given the partial results
already obtained from the query. This is, however, outside of the scope of our research. Instead,
we still compute the inferred closure of all non-redundant patterns in the body of a query, as in
the naive approach, but we try to do this as efficiently as possible with the help of an index.

In order to avoid traversing the part-of graph when computing the inferred closure of query
patterns, we use the same part-of relations index used for the total materialization approach.
We also need an index for transitive attributes, but the one from the total materialization ap-
proach is not very suitable for our current task. While inserting and deleting part-of relations is
only concerned with transitive attributes involving either a specific entity or a specific attribute
value, query answering often requires both entity and attribute value, and also the attribute
name, depending on the query pattern. We could add a table for each of the query patterns,
but this would result in at least six tables, requiring much extra space and defeating part of the
purpose of not opting for the total materialization approach.

Instead, we propose to use B-trees -the basic data structure employed in Berkeley DB and
many other databases- to simulate tries and allow prefix search. This way we can use a single
index to search for relevant transitive attributes having one, two, or all three elements e, n, v
of an attribute. This allows us to provide fast response time to all the access patterns required
by query patterns using only three indexes: one sorted by env, other by vne, and the third by
pev.

Using the entity, attribute name, and attribute value as key, and the attribute transitivity as
value in a B-tree, just as Figure 6 does, we achieve prefix search functionality by providing
a custom comparator to be employed as the basis for sorting by the B-tree. A different com-
parator is used for each of the three sortings we need. For example, the index sorted by env
employs a comparator that uses v as basis for comparison of two keys only if their respective



values for e and n are equal; otherwise only e and n are considered. Likewise, the values of n
are considered only if the keys have the same values of e. When searching the B-tree having
only a prefix of the key, like en, we get the first key with the values of e and n that we specified,
if such key exists, and can iterate through contiguous entries until we encounter a key that has
a different value of some element of the prefix than what we specified. At this point we stop,
having retrieved all attributes that share the prefix we searched for.

5 Experimental Results
We tested our implementations of the part-of database using synthetic datasets composed of
entities connected to each other with part-of relations in a tree configuration. We used five
parameters: n is the number of trees in a dataset, h the height of each tree, b the number
of children per node, attrs the number of non-transitive attributes per node, and t attrs the
number of transitive attributes. Transitive attributes are transitive either from part to whole
(et = up and vt = up), or from whole to part (et = down and vt = down), with an equal
number of each.

Each experiment consist in the creation of a synthetic dataset from scratch, a warm-up
routine to ensure the database is fully initialized, and a set of measurements of different opera-
tions, each repeated several time selecting random nodes and the results averaged. In addition
to measuring the time to complete common operations, we also measured the size taken on disk
by the database and its index, if any, after ensuring that all its contents were flushed to disk.
In all graphs we provide the main variable being measured (i.e., time or space) on the vertical
axis on the left, and the number of RDF triples used by the given configuration, not including
any inferred triples, on the vertical axis on the right. This helps to observe the behavior relative
to the size of the data.

Performance. Our main interest is the performance of queries. We evaluated all combinations
of queries with the patterns e(n:?), e(?:v) and ?(n:v) using as e and n the root of the tree and a
random node at the bottom of the tree, and transitive attributes as n.

Our first experiment focused on testing the behavior of trees with n=1, h=1, attrs=0
t attrs=2, and large numbers of children per node b. The results are shown in Figure 11.
In the following experiment we tested the opposite extreme: trees with b=1 (not really trees)
and high values of h, the other parameters remaining unchanged. Figure 12 shows the results.
As one may expect, the performance achieved with total materialization is much better than
the other two approaches. The time taken for processing queries by the naive implementation
seems to be directly proportional to the number of RDF statements. Smart indexing performs
noticeable better and seems to be more resilient to wide and shallow trees than it is to long
chains.

To try a more realistic scenario, we also tested trees that have more balanced ratios of
h to b. Figure 13 shows the case where b=2 for various values of h. Figure 14 shows the
inverse case with h fixed to 4 and various values of b. The results are very similar to the
previous ones. Height has a slightly greater impact on performance than number of children,
but performance is best correlated with the number of RDF triples, which in these experiments
is directly proportional to the number of nodes in the tree.

Next, in experiment 5, we explored the effect of adding transitive attributes with other
parameters fixed at n = 1, h = 4, b = 5 and attrs = 0. Figure 15 shows the results. It
is clear that, at least with tree configurations, the number of transitive attributes has a much
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Fig. 11. Performance with shallow
trees.
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Fig. 12. Perf. with long relation
chains.
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Fig. 13. Effects of increasing tree
height.
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Fig. 14. Effect of increasing node
children.
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Fig. 15. Transitive attribute # vs.
performance.
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Fig. 16. Tree # vs. performance.

smaller effect on performance than the number of part-of relations. This time even the naive
implementation has a performance degradation less than proportional to the number of RDF
triples.

Finally, experiment 6 consisted in maintaining the tree structure and number of attributes
fixed at h = 4, b = 5, attrs = 50 and t attrs = 6 and observing the effect of increasing
the size of the database by adding trees. The results are shown in figure Figure 16. In this
experiment smart indexing had less of an advantage over the naive implementation. In both
cases the time for answering queries grows less than proportionally to the number of RDF
triples.

Overall, the result of all experiments are similar. Smart indexing has a big advantage over
the naive implementation, but does not come anywhere even close to the levels of performance
achieved by total materialization.

Database Size. Figure 17 shows the results of experiment 6 for database size. Evidently, the
total materialization approach gets the worst results, but considering that it uses both an index
and additional space in the RDF repository to store inferred statements, it is surprising that the
amount of space it uses grows only slightly more than proportionally to the number of RDF
triples. Obviously the naive approach is the best in terms of database size. Smart indexing is
right in the middle.

In a typical RDF repository there are many more distinct object, predicates and objects
than the URI prefixes they use. Therefore, storing the identifiers separately from URI prefixes
can improve space utilization. This is most likely already done in Sesame’s RDF repository
and it is a simple way to improve the space efficiency of our indexing.

Update Operations. Update operations where tested by inserting a part-of relation between
the root of a tree and a newly created entity and between a leaf node of a tree and other newly
created entity. New transitive attributes were also inserted for the same nodes. The average
time for those insertions was measured, after which the operations were undone with the cor-
responding deletions, the average time of which was also measured. Figures 18 and 19 show
the results of doing this in experiment 6.
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Fig. 17. Tree # vs. db size.
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Fig. 18. Tree # vs. insertion.
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Fig. 19. Tree # vs. deletion.

Maintaining the indexes imposes a noticeable overhead, but in a typical scenario in which
queries are much more common than updates, it is well worth it.

6 Related Work
Part-whole relations have been studied from a conceptual modelling perspective [5, 4, 7]. The
different cases that have been considered there are covered by our model. Modelling of part-
whole relations has been studied in object oriented databases [1, 6, 2]. The main difference
with our work is that they focus specifically on object oriented systems and their modelling
of part-whole relations takes place at the schema level, as a mechanism to among other things
improve the enforcement of the semantics defined in the schema. The model we consider does
not require a schema and is more suited for semi-structured data. A similar line of work studied
the information that can be inhereted across the different relations proposed for their episte-
mological layer of knowledge.

7 Conclusions
We proposed a new model to express part-of relations and the transitivity of attributes from
whole to part and part to whole. Queries in this model take into account part-of relations and
attribute transitivity to return more meaningful results, without any extra effort from the user.
We implemented this model using an RDF repository and suggested two different approaches
to index part-of relations and transitive attributes to improve query performance. Our experi-
mental evaluation of these techniques indicates total materialization is unmatched in terms of
query performance, but the performance of inferring implicit information in a lazy fashion can
be improved significantly with an index with modest space requirements.
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