
From Web Data to Entities and Back

Zoltán Miklós1, Nicolas Bonvin 1, Paolo Bouquet2, Michele Catasta1, Daniele
Cordioli3, Peter Fankhauser4, Julien Gaugaz4, Ekaterini Ioannou4, Hristo

Koshutanski5, Antonio Maña5, Claudia Niederée4, Themis Palpanas1, Heiko
Stoermer1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL) {name.surname}@epfl.ch
2 DISI, University of Trento {stoermer, bouquet, themis}@disi.unitn.it

3 ExpertSystem s.p.a, Modena, Italy dcordioli@expertsystem.it
4 L3S Research Center, Leibniz Universität Hannover {surname}@L3S.de

5 Universidad de Málaga {hristo, amg}@lcc.uma.es

Abstract. We present the Entity Name System (ENS), an enabling
infrastructure, which can host descriptions of named entities and provide
unique identifiers, on large-scale. In this way, it opens new perspectives to
realize entity-oriented, rather than keyword-oriented, Web information
systems. We describe the architecture and the functionality of the ENS,
along with tools, which all contribute to realize the Web of entities.
Keywords: entity, Web, unique identifier

1 Introduction

The information need of Web users is often related to their understanding and
interpretation of real-world entities and their relationships. For example, some-
one might be interested in information about Paris, the picturesque capital of
France. This mental interpretation of humans is very challenging to capture,
thus information systems need a simplified representation.

The information on the Web is present mainly in the form of unstructured
or semi-structured documents, thus it is very natural to model the Web data
as a list of keywords, organized in documents, which might have links to each
other. This simplified model was extremely successful, the Web search engines
built around this model are used by millions of users every day.

This simple model however has a number of limitations, including the prob-
lem that the keywords are ambiguous. For example, if the keyword “Paris” ap-
pears on a page, it is not immediately clear, if this refers to the capital of France,
to a city Paris in Texas, US or to the first name of Paris Hilton. This ambiguity
is very problematic for human users, but it can cause more problems, if one in-
tends to process the page automatically. There are numerous efforts to address
this ambiguity problem, notably the Semantic Web community has proposed a
number of solutions.

In this paper we present an information system, accompanied by a number
of extendable tools, which enables to realize the “Web of entities”. As opposed
to the keyword-based model, in the Web of entities the keywords pointing to



named entities, such as persons, geographic locations, etc., are annotated with
a reference to an entity description. These entity descriptions contain important
information about the entities and also have a unique identifier (OKKAM ID).
The basic idea of the Entity Name System (ENS), is to provide a free, open
service to the users of the (Semantic) Web, such that they can annotate the
Web content with references to entities.

We describe the design and architecture of the ENS. The main functionality
of the ENS is to process entity search requests and return a unique identifier
(OKKAM ID) of the entity. In this way one can annotate the page or the key-
word with this unique identifier, so later this unique ID can be used to avoid
ambiguities. We designed the ENS in a way such that it can work on web-scale
and provide well within second response time even in the presence of a large
number of users. The services of the ENS are openly available via Web Services,
thus enabling Web application developers to adopt an entity-oriented, rather
than keyword-oriented model. We already integrated this support into a num-
ber of popular tools, such as gmail, blogging, MS Word, etc. We populated the
repository with an initial set of entities (with data related to LOD1), but the
goal is to further continuously populate the entity descriptions, with the help of
the tools, or through manual entity creation: similar to wikipedia, anyone can
enter new entity descriptions to ENS. As entity descriptions might naturally
evolve over time, ENS has support to accommodate these activities.

The rest of the paper is organized as follows. Section 2 discusses entity-
oriented information systems, Section 3 explains the architecture and the func-
tionality of the ENS. Section 4 presents a set of tools, which both use the services
of the ENS and contribute to populate the entity repository. Section 5 evalu-
ates how the ENS and the tools contribute towards realizing a Web of entities.
Section 6 provides related work and finally Section 7 concludes the paper.

2 Entity-oriented information systems

The ENS was developed in the course of the OKKAM 2 project. The overall goal
of the project is to enable the Web of entities, a global digital space for publishing
and managing information about real-world entities, where each entity is linked
to a unique identifier, named OKKAM id. The ENS plays a central role achieving
this goal: the ENS can store a large number of entity descriptions, it assigns the
unique OKKAM identifers to the descriptions (entity profiles). Furthermore, the
ENS provides an entity search service, which returns the unique identifier of the
requested entity.

This infrastructure intends to open the possibility to develop entity-oriented
applications, by reusing the unique identifier one can avoid a number of ambiguity-
related problems. We envision a continuous feedback between entity use and con-
tent creation. The OKKAM empowered tools (Section 4) shall recognize named
entities in plain text documents and obtain the corresponding unique identifiers.
1 Linked Open Data, http://linkeddata.org/
2 http://www.okkam.org



This process is often called OKKAMization. On the one hand, the ID can be
reused, but on the other hand, the user can provide feedback, enter or update en-
tity descriptions into the ENS. In this way, the entity population of the ENS will
be continuously improved and enlarged, for the profit of the whole community.

3 The Entity Name System

In this section we give an overview of the functions of the ENS and its main com-
ponents. In particular, Section 3.1 describes the main components of the system,
Section 3.2 discusses the data population (currently available in the ENS) and
its representation, Section 3.3 gives details about the storage infrastructure, Sec-
tion 3.4 provides an overview of the entity search functionality, while the entity
lifecycle management is discussed in Section 3.5. Finally, Section 3.6 discusses
the security infrastructure of the ENS.

3.1 Overall system architecture

The ENS consists of the following four main components:

1. Entity Store. This component is responsible for the low-level tasks of stor-
ing and managing entity data, as well as relevant metadata which are neces-
sary for finding existing identifiers. It follows the usual create-read-update-
delete pattern (CRUD) [16] of serialized entity data accessed via a primary
key.

2. Index. Search operations for an identifier via an entity profile in the ENS
are accelerated using index structures.

3. ENS Core. This component is implementing the services that are exposed
by the ENS, namely, entity creation and update, matching, as well as pro-
cesses relevant to the entity lifecycle management.

4. Offline Processing. This component handles tasks which shall be per-
formed offline rather than request processing time, including statistics com-
putations, data quality related jobs, etc.

The ENS Core itself consists of several parts that we describe in the following.
The Storage API abstracts from the complexities of accessing the Entity Store
and Index components mentioned above. In particular, the underlying strategies
for addressing the individual, load-balanced clusters and retrieving all relevant
data are hidden from upper layers. The Matching component is responsible
for ensuring a high top-k precision of entity identifier search results. It has two
main tasks: (i) parsing, analyzing and – if necessary rewriting or expanding –
the search request coming from a client, and (ii) applying specific ranking mech-
anisms with the aim to establish the best match between the search request and
the candidate entities. The Lifecycle Manager takes care of the entity creation-
and update-related tasks, and the important aspects of data quality and data
lifecycle management. The Access Manager ensures that the requirements of
access control and privacy are fulfilled. It performs, among other things, query



and result set filtering to avoid undesired use of the system. All services that the
ENS offers as its public API are exposed through the Web Services compo-
nent, which constitutes the uppermost layer of the ENS component stack. The
ENS also equipped with an end-user frontend for identifier search and entity
creation, which is available at http://api.okkam.org/search/.

3.2 Data

Entity Representation and Request language In the ENS, an entity is
identified by an entity identifier, oid, assigned by the system. This ID is often
referred as OKKAM ID. Along with this identifier, we store a set of alternative
ids, Aid -s, that other systems have assigned to the same entity, which can also
be used to access the entity or produce same-as statements for the LOD commu-
nity (see Sect. 4.2). The preferred id, prid, is one of the above identifiers that we
use when displaying the entity3. The descriptive part of the entity profile con-
tains a set of attribute name value pairs that describe the entity. Some of these
descriptive attribute-value pairs might contain external references, such as for
example links to Web documents describing the entities. Finally, we also store
a set of metadata for each entity, that include usage statistics, and provenance
and access control metadata. All the above information is individually indexed
to allow fast access to it, and then stored as a single XML file on disk.

Our goal in ENS is to keep the entity representation simple and at the same
time as general as possible, without imposing a fixed schema of entity types
or attributes [24]. In order to reach a compromise between the generality of the
description and the precision in the functionality of the system, we use an internal
classification of all entities in six broad, top-level categories, namely, person,
organization, location, event, artifact, and other. For each one of these entity
types, we have identified a set of default attributes that are most commonly
used to describe them [2]. These default attributes are suggested to users during
entity creation, but they are of course optional. Nevertheless, we expect that
most of the created entities will use (at least some of) the default attributes (for
example, give a name for a person), which in turn will have positive influence
on the performance of the system.

We adopted a simple syntax for the entity ID request language: a request may
contain a (list of) keywords and a (list of) attribute value pairs. For example,
“Paris” or “first name=Paris”. For a more precise description of the syntax
we refer to http://community.okkam.org/index.php/Documentation/APIs/
entity-id-request-language.html.

Entity Population We populated the repository of the ENS in two different
ways. We imported openly available datasets (using their structured representa-
tions available online), such as Wikipedia (ca.700 000 entities) and Geonames4

3 The only guaranteed, unique identifier is still the oid, which is always used internally
in the ENS.

4 http://www.geonames.org/



(ca. 6.5 million entities) to have an initial rich population5. We also added fur-
ther entities manually, through the administrative interface of the ENS, so the
current size of the entity population (as of February 2010) of the ENS is ca. 8
million.

3.3 Storage

The storage layer provides efficient means to store entity profiles and serves
as an underlying infrastructure for the ENS. The storage layer also provides
services for other components of the ENS, for example to realize entity search.
The ENS adopts a two phase entity search approach. As a response to a (possibly
reformulated) user query the storage layer first obtains a list of top-k candidates,
which is then further processed in the search component (see Section 3.4). Thus,
the primary goal of the storage layer to answer these queries with a very high
recall, i.e. whenever a matching entity profile exists in the repository, it should
be returned with a high probability.

The storage layer consists of two main building blocks: a key-value store and
an inverted index [20]. The inverted index is used for query processing, to find
the relevant documents (i.e. entity profiles), while the key-value store contains
the entity profiles themselves. This organization of components is similar to the
architecture of Web search engines [8]. The ENS shares many requirements with
search engines, for example storing a large collection of files, having a high avail-
ability, fault tolerance, being able to process queries well below a second, even in
the case of high query load, etc. To address these requirements we employed the
same or similar techniques which are -to best of our knowledge- used to build
Web search engines [8]. These techniques include the distribution of both the
index and the data over several machines, replication of both the data and the
inverted index and document partitioning.

There are however important differences to Search engines. The request lan-
guage supported in the ENS allows to specify attributes to keywords (see Sec-
tion 3.2). For example, the user might issue a query “city:Paris country:France”,
not just a simple keyword oriented query “Paris France”. In order to support
these queries, we apply a specific index structure. As opposed to the inverted
indexes used by the Web search engines, our posting lists also contain the at-
tribute information in addition to the document identifer, where the keyword
occurs, for each element in the posting list. The other main difference is the
ranking: we developed a ranking scheme specifically tailored for entity profiles.

The implementation of our storage relies on Hadoop 6, while we have chosen
Apache Solr7 to realize the large and distributed retrieval indexes.

5 Overlaps between the datasets were eliminated by limiting the wikipedia import to
entities of type person and organization.

6 http://hadoop.apache.org/
7 http://lucene.apache.org/solr/



3.4 Entity Search

A core functionality of the ENS is effective entity search: given a description of
an entity, identify and return the corresponding entity already from the ENS’s
repository and then return the respective OKKAM identifier. Internally this
translates into the matching of the requested entity with the entity descriptions
available in the repository of the ENS.

At first sight, the entity search task has a strong similarity with entity linkage
techniques [14], also known as data matching [4, 9], deduplication [27], resolution
[3], merge-purge [13], entity identification [21], and reference reconciliation [10].
Entity Linkage is the process that decides whether two descriptions refer to
the same real world entity (see [12] for an overview). Actually, state-of-the-art
methods from this area have also been reused and adapted in implementing
entity search.

However, there are some major additional challenges, since —in contrast
to the ENS— entity linkage typically relies on a well-defined schemata. In the
ENS, the need for such an agreement on a joint schema or ontology has been
deliberately omitted, since it is generally accepted that such an agreement is not
viable in a large, heterogeneous, and evolving environments that involve various
user communities. Instead, our entity search assumes a flexible data model, also
envisioned for dataspaces [11] (see also Section 3.2).

Entity search will accept entity requests from a wide variety of agents, includ-
ing humans as well as applications. The employed very loose schema commit-
ment and constraints within the repository, along with the variety of requesters,
imposes a set of additional challenges on the described search task:

A. Over-Specification. The agent requesting an entity is not expected
to have knowledge about the repository’s data. Thus, the agent will use the
information available to him, for example, extracted from text, for describing
the searched entity. As a result, the information of the requested entity might
have more or other knowledge about the entity than the ENS repository. Due
to this, the interpretation of ENS requests deviate from the traditional query
processing, which expects to only receive information that their systems contain.
Entity search of ENS is forced to always consider that a given entity might
contain information which the repository does not have.

B. Under-Specification. An opposite situation with over-specification is
when the information of the requested entity is not sufficient to do a full dis-
ambiguation. This missing information can be collected in different ways, for
example user interaction, analysis of repository entities (statistics), or analysis
of previously requested entities.

C. Schema Heterogeneity. Omitting the commitment to an agreement
on a common schema will leads to schema heterogeneity, which we have to deal
with when processing the entity requests.

As explained in Section 3.3, the search process in the ENS is divided into
two main phases. First a set of candidates is selected, then they are ranked with
the help of additional domain knowledge an heuristics. Below, we explain this
second phase, which relies on a Generic Matching Module (explained in the next



paragraphs). This module is extensible, one can implement additional modules
for specific types of entity profiles.

The input to the Generic Matching Module is a request in our simple
request language see Section 3.2. A request consists of segments, which may
either be attribute value pairs or unqualified values. The requests intend to find
an entity profile, that we interpret such that that each segment of a request
should match the sought entity, much like usual done in Information Retrieval.
It takes into account fuzzy matches between attribute names and values, and
also partial mismatches, which may arise due to over-specification.

Given a request and a candidate entity, the Generic Matching Module com-
putes a final matching score resulting from the aggregation of several features of
two kinds: attribute level features and entity level features. The attribute level
features are attribute label similarity, attribute value similarity and an attribute
boosting factor. These three features are aggregated into attribute similarity. For
each request segment, the entity attribute with the maximum attribute similar-
ity is chosen, and the individual segment similarities are aggregated to obtain
the first entity level feature: the entity similarity. The second kind of entity level
feature is the entity popularity, which further differentiates matching entities es-
pecially for under-specified queries. Finally, in order to deal with geographical
entities, two special entity level features are dedicated to them: the location type
and location population. This gives four entity level scores which are aggregated
to the final score for each candidate matching entity.

At all levels, feature scores are aggregated by a weighted log-based tempered
geometric mean. Given the scores to aggregate S = {s1, . . . , st} and their re-
spective weights W = {w1, . . . , wt}, the aggregated score is

εGM(S, W ) = exp
∑t

i=1 wi log(si + ε)∑t
j=1 wi

− ε

This is a weighted version of the ε-adjusted geometric mean proposed by Robert-
son et al. in [26]. According to [25] the geometric mean is less affected by outlying
values than the arithmetic mean, and since it is based on multiplication, there is
no requirement that the scores are on the same scale. The ε-adjustment avoids a
null score forcing the aggregation to zero, and computing in the log space helps
avoiding underflows.

The label and value similarities are standard string similarity metrics8 from
the SimMetrics library9. The attribute boosting factor is a combination of two
values: attribute selectivity and attribute popularity. We determined these fac-
tors through statistics on the data and query longs and through extensive ex-
perimentation.

8 Respectively Needleman-Wunch and a combination of Levensthein and Monge-Elkan
9 http://www.dcs.shef.ac.uk/~sam/stringmetrics.html



3.5 Entity lifecycle management

Lifecycle management of entities in the ENS includes aspects of entity represen-
tation, data quality, repository evolution, and online monitoring of the use of
the repository, which we are going to illustrate in the following.

Data Quality: The aim of data quality at entity creation time is to ensure that
the new entities satisfy a minimal set of quality requirements. This assessment
also takes place when a new entity profile is created or when an existing entity
is being modified.

The data quality assessment process at creation time that is currently in
place within ENS, consists of the following three types of checks.

1. Attribute value quality, where we want to ensure that the values entered for
the various attributes in the entity description are correct and valid (when
possible). For example, we check that the provided attribute value is not
empty or overly long, and that date and time attributes adhere to some
known format.

2. Intra-entity description quality, where we check the quality of the entity
description as a whole. For example we check whether attributes appear
with the same name and different value (that would lead to a warning), etc.

3. Inter-entity description quality, where we check that changes in the reposi-
tory will not degrade the overall quality performance of the system. In par-
ticular, we make sure that modifications do not introduce duplicate entity
profiles, which would degrade the quality of search results. The duplicate
detection relies on the matching techniques, discussed in Section 3.4.

Evolution of Identifiers: Even though the identifier of an entity should never
change, in some special circumstances this may happen. For example, if we realize
that two different entity profiles refer to the same real world entity, or when
the same entity profile is already being used to refer to two distinct real world
entities. In these cases, we would like to take corrective action, by performing a
merge and a split, respectively.

The ENS supports the merge and split operations as follows. In the case of
a merge operation, we select one of the existing identifiers (i.e., the one that
according to the system statistics belongs to the most popular entity of the two)
to be the identifier of the merged entity. The other identifier will still exist, so
that users can refer to it, but only the selected identifier will be returned as
a result. When splitting an entity representation into two new ones, we have
no option but creating two new identifiers, since the old identifier has been
used to refer to a non-existing (wrong) entity. In both cases, the system keeps
the history of changes in order to be able to undo these operations. We also
provide a service that makes the information about these changes available for
users (and/or machines) to read, however in the current version the merge/split
operations can be performed only manually.

Monitoring of Repository Usage: The way that users access the system and
interact with it may provide useful insight on what actions to take in order to



improve the performance of the ENS. Therefore, we monitor the data streams
relevant to the usage patterns of the system. We have extended and adapted
algorithms that can operate in an online fashion, and are flexible enough to
allow effective and efficient data analysis of the incoming data streams [28, 19].
By monitoring and analyzing the way users interact with the ENS we can further
improve the ENS services.

3.6 Security and trust

To provide services for a large number of users, the ENS has a specific set of
security requirements. These include access control requirements (fine grained
policies, easy policy specification, automated access control enforcement), legal
and privacy requirements (to be able to control in a confidential way, who can
modify entity profiles) and usability requirements.

Our security architecture is based on advanced use of certificate technologies.
Figure 1 shows a high-level view of the main elements of the security infrastruc-
ture and their interactions. Trust in ENS community is based on certificate au-
thorities that qualify the ENS, third party service providers and users by means
of identity and attribute certificates, compliant with X.509 [29] standard. The
infrastructure adopts several widely-used security technologies such as https10,
Web Services security standards11, and secure e-mail12.

Fig. 1. ENS Security Architecture

All communications between a user and the ENS are realized through security
proxies located at both at the ENS and the user sides. We have chosen a proxy-
based solution to decouple all security management and technological aspects
from application-level development. The proxy component allows transparent
security management, so that also thin ENS-empowered tools (e.g., MS Word
plug-in, see Section 4) can achieve a high level of secure communications. The

10 Secure HTTP communications based on SSL/TLS standards.
11 WS-Security, WS-SecureConversation etc. at http://www.oasis-open.org/specs
12 OpenPGP-compliant e-mail security http://tools.ietf.org/html/rfc4880



proxy implements latest WS security standards13 and advanced authorization
process based on certificate-based automated trust negotiation model [17].

4 Tools

This section discusses tools, which benefit from the services of the ENS. OKKAM
Empowered Tools are extensions of existing tools that both use the services of
ENS, to enrich the processed plain text with entities and at the same time
enable content creation: if an entity description does not exist in the ENS, the
user might decide to create it. In this way, while they benefit from ENS, the ENS
and the whole community benefits from the new content. This mutual feedback
mechanism is intentional and shall foster the adoption of the ENS.

In the course of the OKKAM EU project, a whole suite of such tools is
developed. These tools include an extension to ontology editors Protege and
NeON [18], plugins for Microsoft office products (MS word, outlook), plugins for
popular browsers (Firefox). In the following we demonstrate the use of OKKAM-
plugins for popular Web tools.

4.1 For Web Users

Fig. 2. Semantic annotation of entities via
the Okkam4Blogger extension.

Fig. 3. The Okkam4Gmail extension for
annotating named entities in emails.

Okkam4Blogger is a web plugin for the free blog application Blogger14 from
Google. Before posting a new document, the user can press the ”Okkamize post”
button (see Fig.2). The extension identifies precisely and automatically entities
by means of a thorough processing and linguistic disambiguation, which includes
morphological, grammar, syntactic and semantic analysis of the text. All funda-
mental information for the disambiguation process, i.e. the whole system knowl-
edge, is represented as a concept-based semantic network. Expert System’s se-
mantic network, called Sensigrafo15, is a rich conceptual representation of the
13 Using Metro high-performance Web Services stack at https://metro.dev.java.net
14 http://www.blogger.com/
15 Sensigrafo is a trademark of Expert System S.p.A., Italy. http://www.

expertsystem.it/



language containing more than 400,000 concepts and millions of links between
these concepts. Once an entity is identified by linguistic and semantic analysis,
the plugin returns its unique identifier from the ENS and injects it in an RDFa
annotation inside the document(see bottom part of Fig. 2). If the ENS does not
contain a record about the entity, a new identifier can be generated. The use
of Okkam4Gmail, the Okkam Web plugin for Google’s webmail is depicted in
Figure 3.

4.2 For the Linked Data community

The goal of the Linked Open Data 16 community is to connect several openly
available datasets on the Web. The initiative is closely related to the Seman-
tic Web community, indeed many of the datasets are published in the form of
RDF/OWL. A link among two URLs shall be interpreted as a owl:sameAs state-
ment. Identifying such links is a very work-intensive task and typically requires
data-source specific heuristics17 .

The ENS can help the Linked Data community in particular to store and
represent the links, as the correspond to equivalent entities. The ENS implements
a functionality exposed through the method getAlternativeIDs() (accessible
via Web services), which allows someone working with Linked Data to retrieve
all the alternative identifiers known to the ENS for the same entity 18.

5 Evaluation

10 100

Concurrent Clients

50

100

150

200

250

300

350

400

R
e
q
u
e
s
ts
 p
e
r 
S
e
c
o
n
d

1 Million

10 Millions

100 Millions

Fig. 4. Average query throughput

1 3 7
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

rank

su
cc

es
s 

ra
te

 

 

human msn
human historical
extracted
resolution

Fig. 5. Okkam entity search success rates
for various query sets

In this section we report about some of our evaluation experiments, which
support that the ENS can cope with large entity profile collections, show scalable
behavior and high search quality.
16 http://linkeddata.org/
17 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/

EquivalenceMining
18 This function is inspired by what has been called “coreference service” by Glaser et

al. in [15].



5.1 Scalability and performance

For our scalability experiments we used a large dataset, which we syntactically
generated based on the US Census statistics19. The dataset consists of 100 mil-
lion entities and has a size of ca. 300GB. We queried the system using concurrent
clients. For the performance and scalability evaluation we used a synthetic query
set. Figure 4 depicts the average query throughput figures we measured with a
population of 1, 10 and 100 million entities, with 1-100 clients. For this measure-
ments we used the following configuration: 1 Index server with 8 cores (2.66GHz),
16GB RAM, 1TB disk, Solr 1.4, Tomcat 6, and 16 HBase nodes with 8 cores
(2.66GHz), 8GB RAM, 2x1TB disks, HBase 0.20.2.

5.2 Search quality

We evaluated the quality and performance of entity resolution on different kinds
of queries over a storage containing 6.5 million entities, include people, orga-
nizations, and locations. We aimed at using queries covering a wide user and
applications range. For this reason, we collected query sets from four different
sources. The first query set, named ’human msn’, contains 610 queries from the
MSN Search query Log (RFP 2006 dataset)20. These queries are quite short in
length that user provided as input in web search engines, e.g., “whitney hous-
ton”, and “Bloody Mary of England”. The next set, named ’human historical’,
are queries created from text that people included on web pages, for example to
describe members of organizations, e.g., “Patrick de Gayardon French skydiver
skysurfing pioneer”. Our third set, named ’extracted’ contains 315 queries cre-
ated from data extracted from web blogs and news articles. We used two extrac-
tion tools, the OpenCalais, and the Expert System’s21 Cogito. Examples of the
resulted queries are name=“Hillary R. Clinton”, and name=“Barack Obama”.
The last set, named “resolution”, has 1000 queries created from structured DB-
Pedia data. In contrast to the previous sets, these queries provide much informa-
tion for matching while also providing the attribute values. For all queries, we
manually or automatically retrieved the Okkam identifier. Queries are available
upon request.

Figure 5 shows the success rate at different ranks, which measures the per-
formance of Okkam for returning the requested entity in the rank position, i.e.,
as the first answer, third, and seventh. Except for resolution queries, we observe
that the success rate stabilizes relatively quickly around rank 3 at values above
90%. Resolution queries show lower success rates, even though 80% at rank 7 is
acceptable. The difference between resolution and extracted queries is that reso-
lution queries tend to be over-specified, and a wider range of attribute label are
used than in extracted queries. It is interesting to note that for those structured
queries over-specification performs worse than under-specification, whereas for
human keyword queries the inverse is true. This might indicate a problem with
19 http://www.census.gov/genealogy/names/
20 http://research.microsoft.com/en-us/um/people/nickcr/WSCD09/
21 http://www.expertsystem.net



the attribute label similarity. Schema matching techniques will be investigated
to correct this. The average time for processing queries is bellow 0.5 seconds,
which means that Okkam can process up to 1̃20 queries per minute.

6 Related work

This paper presents the overall ENS and demonstrates through experiments,
that the system can cope with large entity profile collections and high number
of users. Thus, together with the OKKAM-empowered tools it can contribute
to realize entity oriented information systems. The conceptual model for reusing
OKKAM identifiers on the Web is discussed in [5]. The paper [7] presents and
early prototype of the ENS, the system and the corresponding ecosystem we are
presenting in this paper has significantly improved since these early versions.
The paper [6] focuses business-oriented use cases, scenarios and application pro-
totypes that might benefit from the use of the ENS.

OpenCalais [22] is a popular plugin for Web browsers. Using the plugin, the
identified named entities are highlighted on the Web page. The entities have an
identifier, however this might be not globally unique. The entity descriptions (if
they exist) are kept private and the Web users are not allowed to enter or edit
their own entities. On the contrary, the ENS provides unique identifiers and also
one can edit the entity profiles, under some access restrictions.

The zemanta [30] plugin, which is available for popular email and blog soft-
ware, empowers their users to automatically associate the text they are writing
with resources on the web, such as pictures, wikipedia links, etc. As far as we
know, they do not use globally unique identifiers.

Bautin et al. [1] propose an entity search engine. They construct concordance
documents for each entity consisting all sentences, which contain references to the
entity from their large text corpus. They do not provide tools or the possibility
of editing entity profiles (concordance documents) and also they do not use
globally unique identifiers. On the other hand they try to discover and depict
the relations among entities, which the ENS does not support in this version.

OpenID [23] uses unique identifiers, but for a very different goal: they try to
realize that users can identify themselves at different services with the same id
and password.

7 Conclusion and future work

We implemented an enabling infrastructure, the Entity Name System, which
opens the possibility to realize the web of entities. Our scalability and search
quality experiments suggest that the ENS is able to serve a larger user com-
munity. The ENS is accompanied by a number of tools, which both exploit the
services of the ENS, thus improving application experiences for users through
disambiguation, and offer the possibility of content creation. In this way the
whole user community can benefit from the individual contributions, and shall
result a continuous entity population growth.



The ENS is currently used in several pilot projects including the semantic in-
formation mashup Sig.ma 22 and at the Italian new agency ANSA23. The unique
identifiers provided by ENS are also utilized in a private setting to manage pub-
lication records at Elsevier24 and to manage a large software product portfolio at
SAP25. The ENS is also used to link physical entities to electronic ones, through
QR codes, in the city of Manor, Texas, US.

Acknowledgements

This work is partially supported by the by the FP7 EU Large-scale Integrating
Project OKKAM – Enabling a Web of Entities (contract no. ICT-215032).
More details are available here: http://www.okkam.org.

References

1. M. Bautin and S. Skiena. Concordance-Based Entity-Oriented Search. Web Intel-
ligence and Agent Systems, 7(4):303–320, December 2007.

2. B. Bazzanella, J. A. Chaudhry, T. Palpanas, and H. Stoermer. Towards a general
entity representation model. In SWAP, 2008.

3. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and
J. Widom. Swoosh: a generic approach to entity resolution. The VLDB Jour-
nal, 18(1):255–276, January 2009.

4. M. Bilenko, R. J. Mooney, W. W. Cohen, P. Ravikumar, and S. E. Fienberg.
Adaptive name matching in information integration. IEEE Intelligent Systems,
18(5), September 2003.

5. P. Bouquet, T. Palpanas, H. Stoermer, and M. Vignolo. A Conceptual Model for a
Web-Scale Entity Name System. In The Semantic Web, Fourth Asian Conference,
(ASWC’09), volume 5926 of LNCS, pages 46–60. Springer, 2009.

6. P. Bouquet, H. Stoermer, W. Barczynski, and S. Bocconi. Cases on Semantic
Interoperability for Information Systems Integration : Practices and Applications,
chapter Entity-centric Semantic Interoperability, pages 1–21. IGI Global, 2009.

7. P. Bouquet, H. Stoermer, and B. Bazzanella. An Entity Name System (ENS)
for the Semantic Web. In The Semantic Web: Research and Applications, 5th
European Semantic Web Conference (ESWC), volume 5021 of LNCS, pages 258–
272. Springer, 2008.

8. J. Dean. Challenges in building large-scale information retrieval systems (invited
talk). In Proceedings of the Second ACM International Conference on Web Search
and Data Mining (WSDM), 2009.

9. A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching for information integration:
A profiler-based approach. In Proceedings of IJCAI-03 Workshop on Information
Integration on the Web (IIWeb-03), pages 53–58, 2003.

10. X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex infor-
mation spaces. In SIGMOD, pages 85–96, 2005.

11. X. Dong and A. Y. Halevy. Indexing dataspaces. In SIGMOD, pages 43–54, 2007.

22 http://sig.ma
23 http://ansa.it
24 http://www.elsevier.com
25 http://www.sap.com



12. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record Detection:
A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16,
2007.

13. M. A. Hernández and S. J. Stolfo. Real-world Data is Dirty: Data Cleansing and
The Merge/Purge Problem. Data Min. Knowl. Discov., 2(1):9–37, 1998.

14. E. Ioannou, C. Niedere, and W. Nejdl. Probabilistic entity linkage for heteroge-
neous information spaces. In Proceedings of the 20th international conference on
Advanced Information Systems Engineering (CAiSE), volume 5074 of LNCS, pages
556–570. Springer, 2008.

15. A. Jaffri, H. Glaser, and I. Millard. URI Identity Management for Semantic Web
Data Integration and Linkage. In IFIP WG 2.12 and WG 12.4 International
Workshop on Semantic Web and Web Semantics (SWWS), volume 4806 of LNCS,
pages 1125–1134. Springer, 2007.

16. H. Kilov. Business Specifications: The Key to Successful Software Engineering.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998.

17. H. Koshutanski and F. Massacci. A negotiation scheme for access rights establish-
ment in autonomic communication. Journal of Network and System Management,
15(1), March 2007.

18. X. Liu, H. Stoermer, P. Bouquet, and S. Wang. Supporting the Reuse of Global
Unique Identifiers for Individuals in OWL/RDF Knowledge Bases (demo paper).
In Proceedings of the 6th European Semantic Web Conference on The Semantic
Web: Research and Applications (ESWC), volume 5554 of LNCS, pages 868–872.
Springer, 2009.

19. N. Manerikar and T. Palpanas. Frequent Items in Streaming Data An Experimental
Evaluation of the State-of-the-Art. Data Knowl. Eng., 68(4):415–430, April 2009.

20. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

21. A. Morris, Y. Velegrakis, and P. Bouquet. Entity Identification on the Semantic
Web. In Proceedings of the 5th Workshop on Semantic Web Applications and
Perspectives (SWAP2008), 2008.

22. OpenCalais. http://www.opencalais.com/.
23. OpenID. http://openid.net/.
24. T. Palpanas, J. A. Chaudhry, P. Andritsos, and Y. Velegrakis. Entity Data Man-

agement in OKKAM. In Proceedings of the 2008 19th International Conference on
Database and Expert Systems Application (DEXA), pages 729–733. IEEE, 2008.

25. S. D. Ravana and A. Moffat. Score aggregation techniques in retrieval experimen-
tation. In ADC, pages 59–67, 2009.

26. S. Robertson. On gmap: and other transformations. In CIKM ’06: Proceedings
of the 15th ACM international conference on Information and knowledge manage-
ment, pages 78–83, New York, NY, USA, 2006. ACM.

27. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.
In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pages 269–278, 2002.

28. F. I. Tantono, N. Manerikar, and T. Palpanas. Efficiently Discovering Recent
Frequent Items in Data Streams. In Proceedings of the 20th international confer-
ence on Scientific and Statistical Database Management (SSDBM), volume 5069
of LNCS, pages 222–239. Springer, 2008.

29. X.509. The directory: Public-key and attribute certificate frameworks, 2005. ITU-T
Recommendation X.509:2005 | ISO/IEC 9594-8:2005.

30. Zemanta. http://www.zemanta.com/.


