
Probabilistic Wavelet Synopses for Multiple Measures

Antonios Deligiannakis

University of Maryland

adeli@cs.umd.edu

Minos Garofalakis

Bell Laboratories

minos@research.bell-labs.com

Nick Roussopoulos

University of Maryland

nick@cs.umd.edu

December 9, 2004

Abstract

The recently proposed idea ofprobabilistic wavelet synopseshas enabled their use as a tool for re-

ducing large amounts of data down to compactwavelet synopsesthat can be used to obtain fast, accurate

approximate answers to user queries, while at the same time providing guarantees on the accuracy of

individual answers. Relatively little attention, however, has been paid to the problem of using wavelet

synopses as an approximate query answering tool over complex tabular data sets containing multiple

measures, such as those typically found in real-life OLAP applications. In this paper we first demon-

strate that for such multi-measure data sets the problem of constructing optimal probabilistic wavelet

synopses becomes significantly more complex. We then propose both an exact algorithmic formula-

tion for probabilistic multi-measure wavelet thresholding based on the idea ofPartial-Order Dynamic

Programming (PODP), and then also introduce afast, greedy approximation algorithmbased on the

idea of marginal error gains. Our empirical study with both synthetic and real-life data sets validates

our approach, demonstrating that (1) our algorithms easily outperform naive approaches based on op-

timizing individual measures independently, and (2) our greedy thresholding scheme always provides

near-optimal and, at the same time, very fast and scalable solutions to the probabilistic wavelet synopsis

construction problem.

1 Introduction

Approximate query processing over compact, precomputed data synopses has attracted a lot of interest re-

cently as a viable solution for dealing with complex queries over massive amounts of data in interactive

decision-support and data-exploration environments. For several of these application scenarios, exact an-

swers are not required, and users may in fact prefer fast, approximate answers to their queries. Examples

1

include the initial, exploratory drill-down queries in ad-hoc data mining systems, where the goal is to quickly

identify the “interesting” regions of the underlying database; or, aggregation queries in decision-support sys-

tems where the full precision of the exact answer is not needed and the first few digits of precision suffice

(e.g., the leading digits of a total in the millions or the nearest percentile of a percentage) [2, 3, 7, 12].

Background and Earlier Results. Haar waveletsare a mathematical tool for the hierarchical decomposi-

tion of functions with several successful applications in signal and image processing [13, 18]. A number of

recent studies has also demonstrated the effectiveness of the Haar wavelet decomposition as a data-reduction

tool for database problems, including selectivity estimation [14] and approximate query processing over

massive relational tables [3, 8, 19] and data streams [10, 15]. Briefly, the key idea is to apply the decom-

position process over an input data set along with a thresholding procedure in order to obtain a compact

data synopsis comprising of a selected small set ofHaar wavelet coefficients. Several research stud-

ies [3, 8, 9, 14, 17, 19] have demonstrated that fast and accurate approximate query processing engines can

be designed to operate solely over such precomputed compactwavelet synopses.

The Haar wavelet decomposition was originally designed with the objective of minimizing the overall

root-mean-squared error (i.e., theL2-norm average error) in the data approximation. However, the recent

work of [8, 9] onprobabilistic wavelet synopsesalso demonstrates their use for optimizing other error met-

rics, including themaximum relative errorin the approximate reconstruction of individual data values, which

is arguably the most important metric for approximate query answers and, furthermore, enables meaningful,

non-trivial error guaranteesfor reconstructed values. While the use of the traditional Haar wavelet de-

composition gives the user no knowledge on whether a particular answer is highly-accurate or off by many

orders of magnitude, the use of probabilistic wavelet synopses provides the user with an interval where the

exact answer is guaranteed to lie into.

Despite the surge of interest in wavelet-based data reduction and approximation in database systems, rel-

atively little attention has been paid to the application of wavelet techniques to complex tabular data setswith

multiple measures(multiple numeric entries for each table cell). Such massive, multi-measure tables arise

naturally in several application domains, including OLAP environments and time-series analysis/correlation

systems. As an example, a corporate sales database may tabulate, for each available product, (1) the number

of items sold, (2) revenue and profit numbers for the product, and (3) costs associated with the product,

such as shipping and storage costs. Similarly, a network-traffic monitoring system takes readings on each

time-tick from a number of distinct elements, such as routers and switches, in the underlying network and

2

typically several measures of interest need to be monitored (e.g., input/output traffic numbers for each router

or switch interface) even for a fixed network element [1]. Both of these types of applications may be char-

acterized not only by the potentially very large domain sizes for some dimensions (e.g. several thousands of

time ticks or different products sold), but also by the huge amounts of collected data.

The work in [5] recently introduced the idea ofextended wavelet coefficientsas a flexible, space-efficient

storage format for extending conventional wavelet-based summaries to the context of multi-measure data

sets. However, the synopsis-construction techniques of [5] can only be used to minimize (for a given space

budget) theweighted sum of the overallL2-norm errors for each measure. Still, given the pitfalls and

shortcomings ofL2-error-optimized wavelet synopses for building effective approximate query processing

engines [8, 9], there is a clear need for more sophisticated wavelet-based summarization techniques for

multi-measure data that can be specifically optimized for different error metrics (such as the relative error

metric).

Our Contributions. In this paper, we propose the first known algorithms for constructing effective proba-

bilistic wavelet synopses over multi-measure data sets. Our proposed techniques can accommodate a number

of different error metrics, including the relative error metric, thus enabling meaningfulerror guarantees on

the accuracy of the approximation for individual measure values. Furthermore, by operating on all measures

simultaneously, our techniques judicially allocate the available space to all measures based on the difficulty

of accurately approximating each one, and exploit storage dependencies among coefficient values to achieve

improved storage utilization and, therefore, improved accuracy in data reconstruction than prior techniques

that operate on each measure individually. Our contributions are summarized as follows.

• Probabilistic Wavelets over Multiple Measures: Formulation and Exact PODP Solution. We for-

mally define the problem of constructing probabilistic wavelet synopses over multi-measure data sets using

the space-efficient “extended wavelet coefficient” format of [5]. We demonstrate that utilizing this more in-

volved storage format for coefficients forces non-trivial dependencies between thresholding decisions made

across different measures, thus significantly increasing the complexity of probabilistic coefficient threshold-

ing. More specifically, these dependencies cause the keyprinciple of optimalitybased on atotal ordering

of partial solutions [4], that is required by the earlier single-measure DP solutions, to be violated, rendering

these techniques inapplicable in the multi-measure setting. Thus, we propose a novel probabilistic threshold-

ing scheme for multi-measure data sets based on the idea of an exact Partial-Order DP (PODP) formulation.

3

In a nutshell, our PODP solution generalizes earlier single-measure DP schemes [8, 9] to data sets withM

measures by using anM -component vector objectiveand anM -component less-thanpartial order to prune

sub-problem solutions that cannot possibly be part of an optimal solution.

• Fast, Greedy Approximate Probabilistic-Thresholding Algorithm. Given the very high space and time

complexities of our PODP algorithm, we also introduce a novel, greedy approximation algorithm (termed

GreedyRel) for probabilistic coefficient thresholding over multi-measure data. Briefly, ourGreedyRel

heuristic exploits theerror-tree structure[14] for Haar wavelet coefficients in greedily allocating the avail-

able synopsis space based on the idea ofmarginal error gains. More specifically, at each step,GreedyRel

identifies, for each error subtree, the subset of wavelet coefficients that are expected to give the largestper-

space reduction in the error metric, and allocates space to the best such subset overall (i.e., in the entire tree).

The time and space complexities of ourGreedyRel algorithm are only linear in the number of measures in-

volved and the data-set size, and, in fact, are also significantly lower than those of the earlier-proposed DP

algorithms for the single-measure case [8, 9]. We must note that the complexities of the algorithms in [8, 9]

are, even for the single-measure case, at least quadratic to the domain size, thus yielding ourGreedyRel al-

gorithm as the only viable solution, even for the single-measure case, for constructing accurate probabilistic

wavelet synopses over large data sets.

• Experimental Results Verifying the Effectiveness of our Approach.We present results from an exten-

sive experimental study of our proposed techniques with both synthetic and real-life data sets. Our results

clearly validate our approach, demonstrating that (1) our algorithms easily outperform naive approaches

based on optimizing individual measures independently, typically producing errors that are up to a factor of

7 smaller than prior techniques; and (2) our greedy thresholding scheme always provides near-optimal and,

at the same time, very fast and scalable solutions to the probabilistic wavelet synopsis construction problem.

2 Preliminaries

In this section we provide a brief overview of some techniques and algorithms, developed in prior work,

that are utilized as helpful tools by our thresholding algorithms. Wavelets are a useful mathematical tool

for hierarchically decomposing functions in ways that are both efficient and theoretically sound. Broadly

speaking, the wavelet decomposition of a function consists of a coarse overall approximation along with

detail coefficients that influence the function at various scales [18].

4

The Haar Wavelet Transform. Wavelets are a useful mathematical tool for hierarchically decomposing

functions in ways that are both efficient and theoretically sound. Broadly speaking, the wavelet decompo-

sition of a function consists of a coarse overall approximation along with detail coefficients that influence

the function at various scales [18]. Suppose we are given the one-dimensional data vectorA containing the

N = 8 data valuesA = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar wavelet transform ofA can be computed as follows.

We first average the values together pairwise to get a new “lower-resolution” representation of the data with

the following average values[2, 1, 4, 4]. In other words, the average of the first two values (that is,2 and2)

is 2, that of the next two values (that is,0 and2) is 1, and so on. Obviously, some information has been lost

in this averaging process. To be able to restore the original values of the data array, we store somedetail

coefficients, that capture the missing information. In Haar wavelets, these detail coefficients are simply the

differences of the (second of the) averaged values from the computed pairwise average. Thus, in our simple

example, for the first pair of averaged values, the detail coefficient is0 since2 − 2 = 0, for the second we

again need to store−1 since1 − 2 = −1. Note that no information has been lost in this process – it is

fairly simple to reconstruct the eight values of the original data array from the lower-resolution array con-

taining the four averages and the four detail coefficients. Recursively applying the above pairwise averaging

and differencing process on the lower-resolution array containing the averages, we get the following full

decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

Thewavelet transform(also known as thewavelet decomposition) of A is the single coefficient repre-

senting the overall average of the data values followed by the detail coefficients in the order of increasing

resolution. Thus, the one-dimensional Haar wavelet transform ofA is given byWA = [11/4, −5/4, 1/2, 0,

0, −1, −1, 0]. Each entry inWA is called awavelet coefficient. The main advantage of usingWA instead

of the original data vectorA is that for vectors containing similar values most of the detail coefficients tend

to have very small values. Thus, eliminating such small coefficients from the wavelet transform (i.e., treat-

ing them as zeros) introduces only small errors when reconstructing the original data, resulting in a very

effective form of lossy data compression [18]. Furthermore, the Haar wavelet decomposition can also be

5

Symbol Description
i ∈ {0, . . . , N − 1}, j ∈ {1, . . . ,M}, j index/subscript is dropped forM = 1

N Number of data-array cells
D Data-array dimensionality
M Number of data-set measures
B Space budget for synopsis
A, WA Input data and wavelet transform arrays
dij Data value forith cell andjth measure of data array
d̂ij Reconstructed data value forith cell andjth measure
cij Haar coefficient at coordinatei for thejth measure
yij Retention probability (i.e., fractional storage) for Haar coefficientcij

Cij Random variable for Haar coefficientcij

ECi Extended wavelet coefficient at coordinatei

Norm(i, j) Normalization term for Haar coefficientcij

q Integer quantization parameter
NSE(d̂ij) Normalized standard error for reconstructedd̂ij

Var(cij , yij) Variance ofCij for a given spaceyij

path (u) All non-zero proper ancestors ofu in the error tree

Table 1: Notation.

extended tomulti-dimensionaldata arrays through natural generalizations of the one-dimensional decom-

position process described above. Multi-dimensional Haar wavelets have been used in a wide variety of

applications, including approximate query answering over complex decision-support data sets [3, 19].

Error Tree and Conventional Wavelet Synopses.A helpful tool for exploring the properties of the Haar

wavelet decomposition is theerror treestructure [14]. The error tree is a hierarchical structure built based

on the wavelet transform process. Figure 1 depicts the error tree for our example data vectorA. Each inter-

nal nodeci (i = 0, . . . , 7) is associated with a wavelet coefficient value, and each leafdi (i = 0, . . . , 7) is

associated with a value in the original data array; in both cases, the index/coordinatei denotes the positions

in the data array or error tree. For example,c0 corresponds to the overall average ofA. The resolution

levelsl for the coefficients (corresponding to levels in the tree) are also depicted. We use the terms “node”

and “coefficient” interchangeably in what follows. Table 1 summarizes some of the key notational conven-

tions used in this paper; additional notation is introduced when necessary. Detailed symbol definitions are

provided at the appropriate locations in the text.

Given a nodeu in an error treeT , let path (u) denote the set of all proper ancestors ofu in T (i.e.,

the nodes on the path fromu to the root ofT , including the root but notu) with non-zero coefficients. A

key property of the Haar wavelet decomposition is that the reconstruction of any data valuedi depends only

on the values of coefficients onpath (di); more specifically, we havedi =
∑

cj∈path (di)
δij · cj , where

6

δij = +1 if di is in the left child subtree ofcj or j = 0, andδij = −1 otherwise. For example, in Figure 1,

d4 = c0 − c1 + c6 = 11
4 − (−5

4)+ (−1) = 3. Thesupport regionfor a coefficientci is defined as the set

of (contiguous) data values thatci is used to reconstruct; the support region for a coefficientci is uniquely

identified by its coordinatei.

Given a limited amount of storage for building awavelet synopsisof the input data arrayA, a threshold-

ing procedure retains a certain numberB � N of the coefficients as a highly-compressed approximate rep-

resentation of the original data (the remaining coefficients are implicitly set to0). Conventional coefficient

thresholding is a deterministic process that seeks to minimize the overall root-mean-squared error (L2 error

norm) of the data approximation [18] by retaining theB largest wavelet coefficients inabsolute normalized

value[18]. L2 coefficient thresholding has also been the method of choice for the bulk of existing work on

Haar-wavelets applications in the data-reduction and approximate query processing domains [3, 14, 15, 19].

Probabilistic Wavelet Synopses.Unfortunately, wavelet synopses optimized for overallL2 error using the

above-described process may not always be the best choice for approximate query processing systems. As

recently observed in [8, 9], such conventional wavelet synopses suffer from several important problems,

including the introduction of severe bias in the data reconstruction and wide variance in the quality of the

data approximation, as well as the lack of non-trivial guarantees for individual approximate answers. To

address these shortcomings, their work introducesprobabilistic wavelet synopses, a novel approach for

constructing data summaries from wavelet-transform arrays. In a nutshell, their key idea is to apply a

probabilistic thresholding process based onrandomized rounding[16], that randomly rounds coefficients

either up to a largerrounding value or down to zero, so that the value of each coefficient is correcton

expectation. More formally, each non-zero wavelet coefficientci is associated with arounding valueλi and

a correspondingretention probabilityyi = ci
λi

such that0 < yi ≤ 1, and the value of coefficientci in the

synopsis becomes a random variableCi ∈ {0, λi}, where,

Ci =

 λi with probability yi

0 with probability 1− yi.

In other words, a probabilistic wavelet synopsis essentially “rounds” each non-zero wavelet coefficientci

independentlyto eitherλi or zero by flipping a biased coin with success probabilityyi. Note that the above

rounding process isunbiased; that is, the expected value of each rounded coefficient is E[Ci] = λi · yi+

7

l = 1

l = 2

l = 3

l = 0

1/2

d5

0−1c6 c7−1c50
c4

c2 0c3

d6

−5/4

11/4c0

c1

2 2 0 2 3 5 4 4
d7d4d1d0 d2 d3

+

−

+

Figure 1: Error tree for example arrayA.
0 · (1− yi) = ci, i.e., the actual coefficient value, while its variance is

Var(i, yi) = Var(Ci) = (λi − ci) · ci =
1− yi

yi
· c2

i (1)

and the expected size of the synopsis is simply E[|synopsis|] =
∑

i|ci 6=0 yi =
∑

i|ci 6=0
ci
λi

. Thus, since each

data value can be reconstructed as a simple linear combination of wavelet coefficients, and by linearity

of expectation, it is easy to see that probabilistic wavelet synopses guarantee unbiased approximations of

individual data values as well as range-aggregate query answers [8].

The work in [8, 9] proposes several different algorithms for building probabilistic wavelet synopses.

The key, of course, is to select the coefficient rounding values{λi} such that some desired error metric for

the data approximation is minimized while not exceeding a prescribed space limitB for the synopsis (i.e.,

E[|synopsis|] ≤ B). Their winning strategies are based on formulating appropriateDynamic-Programming

(DP) recurrences over the Haar error-tree that explicitly minimize either (a) the maximum normalized stan-

dard error (MinRelVar), or (b) the maximum normalized bias (MinRelBias), for each reconstructed value in

the data domain. As explained in [8, 9], the rationale for these probabilistic error metrics is that they are

directly related to themaximum relative error(with an appropriatesanity boundS, whose role is to ensure

that relative-error numbers are not unduly dominated by small data values [11, 19]) in the approximation

of individual data values based on the synopsis; that is, both theMinRelVar andMinRelBias schemes try

to (probabilistically) control the quantitymaxi{ |d̂i−di|
max{|di|,S}}, whered̂i denotes the data value reconstructed

based on the wavelet synopsis. Note, of course, thatd̂i is again arandom variable, defined as the±1

summation of all (independent) coefficient random variables onpath (di). Bounding the maximum relative

error in the approximation also allows for meaningfulerror guaranteesto be provided on reconstructed data

8

values.

To accomplish this, the DP algorithms in [8, 9] seek to minimize the maximum Normalized Standard

Error (NSE) in the data reconstruction, defined as

max
i

NSE(d̂i) = max
i

√
Var(d̂i)

max{|di|, S}
,

where Var(d̂i) =
∑

cj∈path (di)
Var(j, yj). The algorithms in [9] also naturally extend to multi-dimensional

data and wavelets, with a running time ofO(Nz2DqB(q log(qB)+D2D)) (Nz being the number of nodes

with at least one non-zero coefficient value,N being the maximum domain size andD being the num-

ber of dimensions), an overall space requirement ofO(Nz2DqB) and an in-memory working-set size of

O(2DqB log N). Note that for synopsis spacesB = O(Nz) the above running time and space complexities

are at least quadratic to the number of tuples.

Extended Wavelet Coefficients.The wavelet coefficients can be stored as tuples withD + 1 fields, where

D is the dimensionality of the data array. Each of these tuples contains theD coordinates of the stored

wavelet coefficient (one per dimension), which are used to determine the coefficient’s support region, and

the stored coefficient value. In multi-measure data sets, storage dependencies among different coefficient

values may arise. This occurs because two or more coefficient values for different measures may correspond

to the same coefficient coordinates, which results in duplicating the storage of these coordinates. This

storage duplication increases with the number of the data set’s dimensions due to the increased size of the

coefficient coordinates.

To alleviate these shortcomings, the work in [5] introduces the notion of anextended wavelet coefficient.

For a data set comprisingM measures, an extended wavelet coefficient is a flexible, space-efficient storage

format that can be used to storeany subsetof up toM coefficient values for each combination of coefficient

coordinates. Briefly, this is achieved through the use of abitmapof sizeM , which helps determine exactly

the subset of coefficient values that has been stored; thus, theith bitmap bit is set iff the coefficient for the

ith measure has been stored (1 ≤ i ≤ M). More formally, each extended wavelet coefficient is defined as

a triplet〈C, β, V 〉 consisting of: (1) The coordinatesC of the coefficient; (2) A bitmapβ of sizeM , where

the ith bit denotes the existence or absence of a coefficient value for theith measure; and, (3) The set of

stored coefficient valuesV . We refer to the (coordinates, bitmap) pair for an extended wavelet coefficient as

the coefficient’sheader.

9

3 Probabilistic Wavelets for Multiple Measures

3.1 Problem Formulation and Overview

The work in [5] clearly demonstrated that exploiting storage dependencies among coefficient values can lead

to better storage utilization (store more useful coefficient values for the same space bound) and, therefore,

improved accuracy to queries. However, the algorithms in [5] can only be applied towards minimizing the

overall L2 error of the approximation, and not for minimizing other error metrics, such as the maximum

relative error, which is arguably the most important for providing approximate query answers. On the other

hand, while the work in [8, 9] utilized the notion of probabilistic wavelet synopses to propose algorithms

that minimize the maximum relative error of the approximation, none of these algorithms can exploit storage

dependencies between coefficient values to construct effectiveprobabilistic wavelet synopsesfor multi-

measure data sets.

In our work we utilize the notion of the extended wavelet coefficients and the probabilistic wavelet

synopses as helpful tools to develop novel algorithms that seek to minimize the maximum relative error of

the approximation in multi-measure data sets. To simplify the exposition, we focus our discussion primarily

on the one-dimensional case and present the extensions to multi-dimensional wavelets in the Appendix.

Expected Size of Extended Coefficients.The sharing of the common header space (i.e., coordinates+

bitmap) among coefficient values introduces non-trivial dependencies in the thresholding process across

coefficients for different measures. To be more precise, consider a data set withM measures, and letcij

denote the Haar coefficient value corresponding to thejth measure at coordinatei, and letyij denote the

retention probability forcij in the synopsis. Also, letECi be the extended wavelet coefficient at coordinate

i, and letH denote the space required by an extended-coefficient header. (In our discussion, the unit of

space is set equal to the space required to store a single coefficient value (e.g., size of a float), and all space

requirements are expressed in terms of this unit.) The expected space requirement of the extended coefficient

ECi can be computed as:

E[|ECi|] =
∑

j|cij 6=0

yij + H × (1−
M∏

j=1

(1− yij)). (2)

The first summand in the above formula captures the expected space for all (non-zero) individual coefficient

values at coordinatei. The second summand captures the expected header overhead. To see this, note that

10

if at least one coefficient value is stored, then a header space ofH must also be allotted. And, of course, the

probability of storing≥ 1 coefficient values is just one minus the probability that none of the coefficients is

stored.

Equation (2) clearly demonstrates that the sharing of header space amongst the individual coefficient

valuescij for different measures creates a fairly complex dependency of the overall extended-coefficient

space requirement on the individual retention probabilitiesyij . Given a space budgetB for the wavelet syn-

opsis, exploiting header-space sharing and this storage dependency across different measures is crucial for

achieving effective storage utilization in the final synopsis. Essentially, this implies that our probabilistic-

thresholding strategies for allocating synopsis space cannot operate on each measure individually; instead,

space allocation must explicitly account for the storage dependencies across groups of coefficient values

(corresponding to different measures). This requirement significantly complicates the design of probabilistic-

thresholding algorithms for extended wavelet coefficients.

Problem Statement and Approach. Our goal is to minimize the maximum relative reconstruction error

for each individual data value; this would also allow us to provide meaningfulguaranteeson the accuracy

of each reconstructed value. More formally, we aim to produce estimatesd̂ij of the data valuesdij , for

each coordinatei and measure indexj, such that|d̂ij − dij | ≤ ε · max{|dij |, Sj}, for given per-measure

sanity boundsSj > 0, where the error boundε > 0 is minimized subject to the given space budget for the

synopsis. Since probabilistic thresholding implies thatd̂ij is again a random variable, and using an argument

based on the Chebyshev bound [8], it is easy to see thatminimizing the overallNSE across all measures(or

equivalently, the maximumNSE2) guarantees a maximum relative error bound that is satisfiedwith high-

probability. Thus, we can define our probabilistic-thresholding problem for extended wavelet coefficients

as follows.

11

[Maximum NSE Minimization for Extended Coefficients] Find the retention probabilitiesyij

for coefficientscij thatminimizethe maximumNSE for each reconstructed data value across all

measures; that is,

Minimize max

i∈{0,...,N−1}

j∈{1,...,M}

√
Var(d̂ij)

max{|dij |, Sj}
(3)

subject to the constraints0 < yij ≤ 1 for all non-zerocij and E[|synopsis|] =
∑

i E[|ECi|] ≤ B,

where the expected size E[|ECi|] of each extended coefficient is given by Equation (2).

We focus on the above maximumNSE minimization problem for multi-measure data in the remain-

der of this paper. Our algorithms exploit both the error-tree structure of the Haar decomposition and the

above-described storage dependencies (Equation (2)) for extended coefficients in order to intelligently as-

sign retention probabilities{yij} to non-zero coefficients within the overall space-budget constraintB. As

in [8, 9], our schemes also rely onquantizingthe space allotments to integer multiples of1/q, whereq > 1

is an integer input parameter; that is, we modify the constraint0 < yij ≤ 1 to yij ∈ { 1
q , 2

q , . . . , 1} in the

above problem formulation.

3.2 An Exact Algorithmic Formulation: Partial-Order Dynamic Programming

Consider an input data set withM measures. Our partial-order dynamic programming (PODP) algorithm

processes the nodes in the error tree bottom-up and calculates for each nodei and each space budget

0 ≤ Bi ≤ B to be allocated to the extended wavelet coefficient values in the node’s entire subtree, a

collection of incomparable solutions. Each such solutionR[i, Bi] is anM -component vectorof NSE2 values

corresponding to allM measures for the data values in the subtree rooted at nodei and assuming a total space

of Bi allotted to extended coefficients in that subtree. The goal of the PODP algorithm is, of course, to min-

imize the maximum component of the vectorR[root , B]; that is, minimizemaxk=1,...,M{R[root , B]k}.

A key complication in our optimization problem is that, for a given synopsis space budget, theseM

per-measureNSE values are not independent and cannot optimized individually; this is, again, due to the

intricate storage dependencies that arise between the approximation at different measures because of the

shared header space (Equation (2)). As already discussed in Section 3.1, it is crucial that our thresholding

12

algorithms are able to exploit these dependencies to ensure effective synopsis-space utilization. This essen-

tially implies that our thresholding schemes have to treat theseM -componentNSE vectorsas a unitduring

the optimization process.

Let dmin2i,j denote the minimum absolute data value in the subtree of node2i and let Norm(2i, j) =

max{d2
min2i,j

, S2
j} denote a normalization term of thej-th measure for node’si left subtree, with the cor-

responding normalization term of the right tree defined similarly. We can prove that thej-th component of

R[i, B] produced by the optimal assignment of retention probabilities to the coefficient values in the subtree

of nodei is determined by the minimum absolute data value of measurej in the subtree. This enables us

to simplify the minimization problem of Equation 3 by utilizing at each node the normalization terms of

its subtrees. Thej-th component ofR[i, B] at nodei for a given retention probabilityyij of thecij coeffi-

cient value and solutionsR[2i, b2i] andR[2i + 1, b2i+1] from the node’s left and right subtrees, can thus be

calculated as:

max


Var(i,yij)

Norm(2i,j)
+ R[2i, b2i][j]

Var(i,yij)

Norm(2i+1,j)
+ R[2i + 1, b2i+1][j]

To ensure optimality, the bottom-up computation of the DP recurrence can not afford to maintain just

the locally-optimal partial solution for each subtree. In other words, merely tabulating theR[i, B] vector

with the minimum max. component for each internal tree node and each possible space allotment is not

sufficient – more information needs to be maintained and explored during the bottom-up computation. As a

simple example, consider the scenario depicted in Figure 2 for the caseM = 2. (Slightly abusing notation,

we useR[2i, B − y] andR′[2i, B − y] to denote two possibleNSE2 vectors for spaceB − y at node2i.) To

simplify the example, assume that the right child of nodei also gives rise to the exact same solution vectors

R[] andR′[]. In this figure we also depict the normalized varianceVar(i,yij)

Norm(2i,j)
of the coefficient values of

nodei when total spacey = yi1 + yi2 has been allocated to them and for the data values in the left subtree

of nodei. It is easy to see that, in this example, even thoughR′[2i, B − y] is locally-suboptimal at node2i

(since its maximal component is larger than the one ofR[]), it gives a superior overall solution of[1 + 2,

3 + 0.5] = [3, 3.5] at nodei when combined withi’s local variance vector.

In our PODP algorithm, unlike most DP solutions, the conventionalprinciple of optimalitybased on a

total ordering of partial solutions[4] is no longer applicable. Thus, locally-suboptimalR[i, B]’s (i.e., with

large maximum componentNSE2s) cannot be safely pruned since they may, in fact, be part of an optimal

13

i

2i+12i

R’ gives a better solution
for space B at node i !

Var(i, y) = [2, 0.5]Norm(2i)

R’[2i, B−y] = [1, 3]
R[2i, B−y] = [2.5, 2]

Figure 2: Example for partial-order pruning.

solution higher up in the tree. However, there does exist a safe pruning criterion based on apartial ordering

of the R[i, B] vectors defined through theM -component less-thanoperator�M , which is defined over

M -component vectorsu, v as follows:

u �M v if and only if ui ≤ vi,∀i ∈ {1, . . . ,M}.

For a given coordinatei and space allotmentB, we say that a partial solutionR′[i, B] is coveredby another

partial solutionR[i, B] if and only if R[i, B] �M R′[i, B] – it is easy to see that, in this case,R′[i, B] can

be safely pruned from the set of partial solutions for the(i, B) combination since, intuitively,R[i, B] can

always be used in its place to give an overall solution of at least as good quality.

In our proposedPartial-Order Dynamic Programming (PODP)1 solution to the maximumNSE min-

imization problem for extended coefficients our partial, bottom-up computed solutionsR[i, B] are M -

component vectors of per-measureNSE2 values for coefficient subtrees, and such partial solutions are only

pruned based on the�M partial order. Thus, for each coordinate-space combination(i, B), our PODP al-

gorithm essentially tabulatesa collectionR[i, B] of incomparable solutions, that represent the “boundary

points” of�M ,

R[i, B]={R[i, b] : for any otherR′[i, B] ∈ R[i, B],

R[i, b] 6�M R′[i, B] and R′[i, b] 6�M R[i, B]}.

Of course, for each allotment of spaceB to the coefficient subtree rooted at nodei, our PODP algorithm

1Ganguly et al. [6] also discuss PODP in a completely different context, namely designing a System-R-style algorithm for
optimizing join orders in parallel database systems.

14

needs to iterate over all partial solutions computed inR[i, B] in order to compute the full set of (incom-

parable) partial solutions for nodei’s parent in the tree. Similarly, at leaves or intermediate root nodes,

we consider all possible space allotments{yij} to each individual measure and estimate the overall space

requirements of the extended coefficient using Equation (2). Finally, we note that using an integer parameter

q > 1 to quantize possible space allotments introduces some minor complications with respect to the shared

header space (e.g., some small space fragmentation) that our algorithm handles.

The main drawback of our PODP-based solution is the dramatic increase in time and space complexity

compared to the single-measure case. PODP relies on a much stricter, partial-order criterion for pruning

suboptimal solutions which implies that the sets of incomparable partial solutionsR[i, B] that need to be

stored and explored during the bottom-up computation can become very large. For instance, in the simple

case of a leaf coefficient, it is easy to see that the number of options to consider can be as high asO(qM),

compared to onlyO(q) in the single-measure case; furthermore, this number of possibilities can grow

extremely fast (in the worst case,exponentially) as partial solutions are combined up the error tree.

3.3 A Fast, Greedy Approximation Algorithm

Given the very high running-time and space complexities of our PODP-based solution (described above),

we seek to devise an effective approximation algorithm to our maximumNSE minimization problem for

extended coefficients. In this section, we propose a very efficient, greedy heuristic algorithm (termed

GreedyRel) for this optimization problem. Briefly,GreedyRel tries to exploit some of the properties of

dynamic-programming solutions, but allocates the synopsis space to extended coefficients greedily based on

the idea ofmarginal error gains. The key idea here is to try, at each step, to allocate additional space to a

subset of extended wavelet coefficientsin the error tree that result in thelargest reductionin the target error

metric (i.e., maximumNSE2) per unit of space used.

Our GreedyRel algorithm relies on three basic operations: (1) Estimating the maximum per-measure

NSE2 values at any node of the error tree; (2) Estimating the best marginal error gain for any subtree by

identifying the subset of coefficients in the subtree that are expected to give the largest per-space reduction

in the maximumNSE2; and, (3) Allocating additional synopsis space to the best overall subset of extended

coefficients (in the entire error tree). We describe these three operations in detail in the remainder of this

section using the notation introduced in the previous sections. Also, letTij denote the error subtree (for the

15

jth measure) rooted atcij .

Estimating Maximum NSE2 at Error-Tree Nodes. In order to determine the potential reduction in the

maximum squaredNSE due to extra space,GreedyRel first needs to obtain an estimate for the current

maximumNSE2 at any error-tree node.GreedyRel computes anestimated maximumNSE2 G[i, j] over any

data value for thejth measure in theTij subtree, using the recurrence:

G[i, j] =


max


Var(cij ,yij)

Norm(2i,j)
+ G[2i, j]

Var(cij ,yij)

Norm(2i+1,j)
+ G[2i + 1, j]

if i < N

0 if i ≥ N.

The estimated maximumNSE2 value is the maximum of two costs calculated for the node’s two child

subtrees, where each cost sums the estimated maximumNSE2 of the subtree and the node’s variance divided

by the subtree normalization term. While one can easily show, as mentioned in Section 3.2, that in the

optimal solution the maximumNSE2 in a subtree will occur for the smallest data value (the proof is based

on similar arguments to the single-measure case [9]), the above recurrence is only meant to provide an

easy-to-compute estimatefor a node’s maximumNSE2 (under a given space allotment) thatGreedyRel can

use.

Estimating the Best Marginal Error Gain for Subtrees. Given an error subtreeTij (for thejth measure),

our GreedyRel algorithm computes a subsetpotSet[i, j] of coefficient values inTij which, when allotted

additional space, are estimated to provide thelargest per-space reductionof the maximum squaredNSE

over all data values in theTij subtree. (Remember that our algorithms allocate the retention probabilities in

multiples of1/q, whereq > 1.) Let G[i, j] be the current estimated maximumNSE2 for Tij (as described

above), and letGpot[i, j] denote thepotentialestimated maximumNSE2 for Tij assuming that the retention

probabilities of all coefficient values inpotSet[i, j] are increased by a (minimal) additional amount of1/q.

Also, let potSpace[i, j] denote the increase in the overall synopsis size, i.e., the cumulative increase in the

space for the correspondingextendedcoefficients, when allocating the extra space to the coefficient values

in potSet[i, j]. We now describe how ourGreedyRel algorithm computespotSpace[i, j], and how the best

error-gain subsetspotSet[i, j] are estimated through the underlying error-tree structure.

Consider a coefficient valueckj ∈ potSet[i, j]. Based on Equation (2), it is easy to see that an increase

16

of δykj in the retention probability ofckj results in an increase in the expected-space requirement E[|ECk|]

of the corresponding extended coefficientECk (and, thus, the overall expected synopsis size) of:

δj(E[|ECk|], δykj) = δykj · (1 + H ×
∏
p6=j

(1− ykp)). (4)

The total extra spacepotSpace[i, j] for all coefficient values inpotSet[i, j] can be obtained by adding the

results of Equation (4) for each of these values (withδykj = 1
q):

potSpace[i, j] =
∑

ckj∈potSet[i,j]

δj(E[|ECk|],
1
q
).

Themarginal error gainfor potSet[i, j] is then simply estimated asgain(potSet[i, j]) = (G[i, j]−Gpot[i, j])/

potSpace[i, j].

To estimate thepotSet[i, j] sets, and the correspondingGpot[i, j]) (and gain()) values at each node,

GreedyRel performs a bottom-up computation over the error-tree structure. For aleaf coefficientcij , the

only possible choice ispotSet[i, j] = {cij}, which can result in a reduction in the maximumNSE2 if cij 6= 0

andyij < 1 (otherwise, the variance of the coefficient is already0 and can be safely ignored); in this case, the

new maximumNSE2 at cij is simplyGpot[i, j] =
Var(cij ,yij+

1
q)

Norm(i,j)
.2 For anon-leafcoefficientcij , GreedyRel

considers three distinct cases of formingpotSet[i, j] and selects the one resulting in the largest marginal

error gain estimate: (1)potSet[i, j] = {cij} (i.e., select onlycij for additional storage); (2)potSet[i, j] =

potSet[k, j], wherek ∈ {2i, 2i + 1} is such thatG[i, j] = G[k, j]+ Var(cij , yij)/Norm(k, j) (i.e., select

thepotSet from the child subtree whose estimated maximumNSE2 determines the current maximumNSE2

estimate atcij); and, (3)potSet[i, j] = potSet[2i, j]∪ potSet[2i + 1, j] (i.e., select the union of thepotSets

from both child subtrees). Among the above three choices,GreedyRel selects the one resulting in the largest

value forgain(potSet[i, j]), and records the choice made for coefficientcij (1, 2, or 3) in a variablechij .3

In order to estimategain(potSet[i, j]) for each choice,GreedyRel uses the following estimates for the new

maximumNSE2 Gpot[i, j] at cij (indexk is defined as in case (2) above, andl = {2i, 2i + 1}− {k}):
2As in [8, 9], in our implementation, we actually cap the contribution of coefficientcij to the overall variance atc2

ij . This
essentially implies (see Section 2) that we only need to consider non-zero allotmentsyij > 1/2 to coefficientcij .

3It is easy to see that combining the root nodecij with one or both of its childpotSets cannot have better marginal error gain
than the best of the three options we consider.

17

iG = [18, 22]
Norm(i)
Var(i, y) = [0, 2]

Choice 1:
Choice 2:
Choice 3:

Choice = [2, 3]

Maximum value of G obtained through
right subtree for measure 1,
left subtree for measure 2

Evaluating Choices on Node i ifVar(i, y+1)
Norm(i) = [0, 0]

potSpace = [1, 2]

2i

pot

P = [18, 20], Diff = [0,2], potSpace = [0, 1]

P = [12, 16], Diff = [6,6], potSpace = [4, 2]

potSpace = [1, 1]
potSpace = [3, 1]

2i+1G = [15, 20]

G = [12, 14]pot G = [12, 10]pot

G = [18, 19]
P = [15, 21], Diff = [3,1], potSpace = [1, 1]

G = [15, 16]

Decision on Node i Based on Marginal Gains:

Figure 3: Example forGreedyRel algorithm.

Gpot[i, j] =



max


Var(cij ,yij+

1
q)

Norm(2i,j)
+ G[2i, j]

Var(cij ,yij+
1
q)

Norm(2i+1,j)
+ G[2i + 1, j]

chij = 1

max


Var(cij ,yij)

Norm(k,j)
+ Gpot[k, j]

Var(cij ,yij)

Norm(l,j)
+ G[l, j]

chij = 2

max


Var(cij ,yij)

Norm(2i,j)
+ Gpot[2i, j]

Var(cij ,yij)

Norm(2i+1,j)
+ Gpot[2i + 1, j]

chij = 3

As an example, consider the scenario depicted in Figure 3 forM = 2. The figure shows, for each of the

children of nodei, the computedG, Gpot, andpotSpace values, along with the value ofG and the current

normalized variance for nodei (assume for simplicity that Norm(2i,j)=Norm(2i+1,j)∀j). The three cases of

forming potSet for each measure at nodei are enumerated, the corresponding potential reductions (Diff)

in the estimated maximumNSE2 value for each measure are calculated, and the choice that results in the

largest per-space reduction is selected for each measure. This figure also depicts why it is important to

simultaneously increase the retention probabilities of more than one coefficient values. At any nodei where

the calculatedG values through its children are the same, or differ only slightly, for some measurej (as is

the case with measure 2 in our example), then any individual assignment of additional space to a coefficient

value of that measure below nodei would only result in either zero, or very small marginal gains, and would

therefore not be selected, independently of how much it would reduce the maximumNSE2 value through

its subtree. This happens because the estimated value ofG[i, j] through the other subtree would remain the

18

same. As the authors of [8] describe, in single-measure data sets the value ofG through both subtrees is the

same in the optimal solution, thus implying that the above situation is expected to occur very frequently.

An important point to note is thatGreedyRel does not need to store the coefficient setspotSet[i, j]

at each error-tree node. These sets can be reconstructed on the fly, by traversing the error-tree structure,

examining the value of thechij variable at each nodecij , and continuing along the appropriate subtrees of

the node, until we reach nodes withchij = 1.

Distributing the Available Synopsis Space.After completing the above-described steps, ourGreedyRel

algorithm has computed the estimated current and potential maximumNSE2 valuesG[0, j] andGpot[0, j]

(along with the correspondingpotSet andpotSpace) at the root coefficient (node0) of the error tree, for each

data measurej. Since our overall objective is to minimize the maximum squaredNSE among all measures

over the entire domain,GreedyRel selects, at each step, the measurejmax with the maximum estimated

NSE2 value at the root node (i.e.,jmax = arg maxj{G[0, j]}), and proceeds to allocate additional space of

potSpace[0, jmax] to the coefficients inpotSet[0, jmax]. This is done in a recursive, top-down traversal of the

error tree, starting from the root node and proceeding as follows (i denotes the current node index): (1) If

chijmax = 1, setyijmax := yijmax+
1
q , (2) If chijmax = 2, then recurse to the child subtreeTk, k ∈ {2i, 2i+1}

through which the maximumNSE2 estimateG[i, jmax] is computed at nodei, and (3) Ifchijmax = 3, then

recurse to both child subtreesT2i andT2i+1; furthermore, after each of the above steps, compute the new

G, Gpot, potSpace andch values at nodei. These quantities need to be evaluated for all measures because,

due to the space dependencies among the coefficient values, the increase of the coefficient value for measure

jmax may alter thech values for the other measures.

Time and Space Complexity.For each of theN error-tree nodes,GreedyRel maintains the variablesG[i, j],

Gpot[i, j], potSpace[i, j], andchij . Thus, the space requirements per node areO(M), resulting in a total

space complexity ofO(NM).

In the bottom-up initialization phase (Steps 1–6),GreedyRel computes, for each error-tree node, the

values of theG[i, j], Gpot[i, j], potSpace[i, j], andchij variables (for each measurej). Each of theseO(M)

calculations can be done inO(1) time, making the total cost of the initialization phaseO(NM). Then,

note that each timeGreedyRel allocates space to a set ofK coefficients, the allocated space is≥ K × 1/q

(see Equation (4)). To reach theseK coefficients,GreedyRel traverses exactlyK paths of maximum length

O(log N). For each visited node we need to compute the new values ofG, Gpot, potSpace, andch, which

19

Algorithm Space Running Time
GreedyRel O(NzM) O(D2D× (NzM+ BMq log maxD))
MinRelVar O(NzMB2Dq) O(NzBM2Dq(q log(qB) + D2D))

Table 2:GreedyRel andMinRelVar complexities.

requiresO(M) time. Finding the measurejmax with the maximum estimatedNSE2 value at the root requires

time O(log M) when using a heap structure to store just theG[0, j] values. Thus,GreedyRel distributes

space≥ K × 1/q, in time O(KM log N+ log M), making the amortized time per-space-quantum1/q

equal toO(M log N+ log M/K) = O(M log N). Since the total number of such quanta that we need to

distribute isBq, the overall running time complexity ofGreedyRel is O(NM+ BMq log N).

Finally, theGreedyRel algorithms naturally extends to multiple dimensions with a modest increase of

D × 2D in its running time complexity. These extensions, along with the extensions of PODP to multiple

dimensions, can be found in the Appendix. Because the number of non-zero coefficient values in multi-

dimensional data sets may be significantly larger than the number of tuples, a thresholding step is needed

in this case to limit the space needed by the algorithm. This thresholding step can, of course, also be used

in the one-dimensional case to further reduce the running time and space requirements of ourGreedyRel

algorithm. The work in [9] showed how this step can be performed without introducing any reconstruction

bias. Table 2 contains a synopsis of the running time and space complexities of ourGreedyRel and the

MinRelVar algorithm of [9], whereNz denotes the number of error-tree nodes containing at least one non-

zero coefficient value andmaxD denotes the maximum domain size among all dimensions.

4 Experimental Study

In this section, we present an extensive experimental study of our proposed algorithms for constructing

probabilistic synopses over data sets with multiple measures. The objective of this study is to evaluate

both the scalability and the obtained accuracy of our proposedGreedyRel algorithm for a large variety of

both real-life and synthetic data sets containing multiple measures. The main findings of our study for the

GreedyRel algorithm include:

• Highly Scalable Solution. Our GreedyRel algorithm provides a fast and highly-scalable solution for

constructing probabilistic synopses over large multi-measure data sets. Unlike earlier schemes (and PODP),

GreedyRel scales linearly with the domain size, making it the only viable solution for large real-life data

20

sets

•Near Optimal Results.GreedyRel consistently provides near-optimal solutions when compared to PODP,

demonstrating that it constitutes an efficient technique for constructing accurate probabilistic synopses over

large multi-measure data sets.

• Improved Accuracy to Individual Reconstructed Answers.Compared to earlier approaches that oper-

ate on each measure individually, ourGreedyRel algorithm significantly reduces the maximum relative error

of the approximation, thus being able to offer significantly tighter error guarantees. These improvements are

typically by a factor of2, but in many cases we also observe up to 7 times smaller maximum relative errors.

Techniques and Parameter Settings.Our experimental study compares ourGreedyRel and PODP algo-

rithms for constructing probabilistic data synopses over multi-measure data sets, along with a technique,

which we will term asIndDP that partitions the available space equally over the measures and then oper-

ates on each measure individually by utilizing the dynamic programmingMinRelVar algorithm proposed by

Garofalakis and Gibbons in [8]. To provide a more fair comparison to theIndDP algorithm, the majority

of our experiments includes data sets where all the measured quantities exhibit similar characteristics, thus

yielding the uniform partitioning of the synopsis space over all the measures as the appropriate space alloca-

tion technique. We note here that we also experimented with theGreedyL2algorithm proposed in [5], which

is designed to minimize the average sum squared error in multi-measure data sets. However, theGreedyL2

algorithm consistently exhibited significantly larger errors than our algorithms and is therefore omitted from

our experimental results. The only parameter in our algorithms is the quantization parameterq, which is

assigned a value of 10 for theGreedyRel and IndDP algorithms, and a smaller value of4 for the PODP

algorithm to reduce its running time. Moreover, the sanity bound of each measure is set to the5%-quantile

value of the measure’s data values.

Data Sets.We experiment with several one-dimensional synthetic multi-measure data sets. A Zipfian data

generator is used to produce zipfian distributions of various skews (from a low skew of 0.5 to a high skew of

1.5), with the sum of values for each measure set at 200,000. Each zipfian distribution is assigned one of 3

possible shapes: (1) “NoPerm” is the typical zipfian distribution, where smaller domain values are assigned

higher values for the measured quantities; (2) “Normal” resembles a bell-shaped normal distribution, with

higher (lower) values at the center (endpoints) of the domain; and (3) “PipeOrgan” assigns higher (lower)

data values to the endpoints (middle) of the domain. In all cases, the centers of the M distributions are shifted

21

and placed in random points of the domain. We also consider several different combinations of used zipfian

distributions. In the “AllNoPerm” combination, allM of the zipfian distributions have the “NoPerm” shape.

Similarly, in the “AllNormal” combination, allM of the zipfian distributions have the “Normal” shape.

Finally, in the “Mixed” combination, 1/3 of theM distributions have the “NoPerm” shape, 1/3 have the

“Normal” shape, and the remaining had the “PipeOrgan” shape. The results presented in this section are

indicative of the multiple possible combinations of our parameters.

In our experimental study we also use real-life data sets. TheWeather data set contains meteorological

measurements obtained by a station at the university of Washington (data found athttp://www-k12.-

atmos.washington.edu/k12/grayskies). This is a one-dimensional data set for which we extract

the following 6 measured quantities: wind speed, wind peak, solar irradiance, relative humidity, air temper-

ature and dewpoint temperature. ThePhone data set includes the total number of long distance calls per

minute originating from 6 states (CA, GA, NJ, NY, TX, WA).

Approximation Error Metric. In all cases, we focus on the maximum relative error of the approximation,

since it can provide guaranteed error-bounds for the reconstruction of any individual data value, and is the

error metric that our algorithms try to minimize.

Comparing PODP and GreedyRel. We now evaluate the accuracy and running time of theGreedyRel

algorithm in comparison to the PODP algorithm. In Figures 4, 5 and 6 we plot the running time and the

maximum and average relative errors, correspondingly, for the two algorithms and for the Weather data set

when we vary the synopsis space from 10 to 50 units of space (recall that the unit of space is the size of

each data value, i.e., sizeof(float)). In this experiment we only use from the Weather data the three most

difficult to approximate measures. The domain size of the data set is set to 128. Note that in all our plots

depicting the running time of algorithms, the Y axis is logarithmic. Clearly, the running time of the PODP

algorithm does not scale well with the size of the data synopsis, even for such a small data set. For example,

for a synopsis size of 50 space units, the PODP algorithm requires more than 2 hours to complete, while

the GreedyRel algorithm required just a few milliseconds. However, as Figures 5 and 6 demonstrate, the

GreedyRel algorithm provides near-optimal solutions in all cases.

In Figure 7 we present the corresponding running times for both algorithms, as the domain size is

increased from 64 to 512. From the weather data set we again extract just three measures, and set the

synopsis space to always be 5% of the size of the input. Again, the running time performance of PODP

is disappointing. For a domain size of 512, its running time exceeds 14 hours. Finally, as Figure 8

22

10 20 30 40 50
Synopsis Space (multiples of unit space)

0.01563

0.125

1

8

64

512

4096

R
un

ni
ng

 T
im

e
(s

ec
)

PODP
GreedyRel

Weather Data, 3 Measures

10 20 30 40 50
Synopsis Space (multiples of unit space)

0.25

0.5

0.75

1

1.25

1.5

1.75

M
ax

im
um

 R
el

at
iv

e
E

rr
or

PODP
GreedyRel

Weather Data, 3 Measures

Figure 4: Running Time vs Space Figure 5: Maximum Relative Error

10 20 30 40 50
Synopsis Space (multiples of unit space)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

PODP
GreedyRel

Weather Data, 3 Measures

64 128 256 512
Domain Size

0.01

0.1

1

10

100

1000

10000
R

un
ni

ng
 T

im
e

(s
ec

) PODP
GreedyRel

Weather Data, 3 Measures, Space = 5% of Input

Figure 6: Average Relative Error Figure 7: Running Time vs Domain

demonstrates, the running time of PODP increases exponentially with the number of the data set measures.

Note that for data sets with 4 or more measures, the PODP does not terminate within one day. It is easy to

see that the PODP algorithm cannot be used but for toy-like data sets. On the other hand, theGreedyRel

algorithm provides near-optimal solutions in all tested cases, while exhibiting small running times.

Running Time Comparison of GreedyRel and IndDP. We now compareGreedyRel and IndDP in terms

of their running time. In Figure 9 we plot the running times of theIndDP andGreedyRel algorithms for

the Weather data set (all 6 measures were included) as the domain size is increased from 128 to 524288.

The synopsis size is always set to 5% of the input data. TheIndDP algorithm is considerably slower than

the GreedyRel algorithm (3 orders of magnitude slower for domain size 131,072), with their difference

increasing rapidly with the increase of the domain size. Note that while theGreedyRel algorithm scales

linearly with the increase in the domain size (doubling the domain size doubles the running time), theIndDP

23

1 2 3 4 5 6
Measures

0.01

0.1

1

10

100

1000
R

un
ni

ng
 T

im
e

(s
ec

)

PODP
GreedyRel

Weather Data, Domain Size = 128, Space = 5% of Input

256 1024 4096 16384 65536 262144
Domain Size

0.1

1

10

100

1000

R
un

ni
ng

 T
im

e
(s

ec
)

IndDP
GreedyRel

Weather Data, 6 Measures, Space = 5% of Input

Figure 8: Running Time vs Measures Figure 9: Running Time vs Domain Size

algorithm grows much faster every time the domain size is doubled. This is of course consistent with the

running time complexity of theIndDP algorithm (see Section 2), since when the domain size is doubled,

the synopsis space is doubled as well. Moreover, the large memory requirements (O(NBq)) of the IndDP

algorithm prevented it from terminating for domain sizes larger than 131,072 (the main memory of our

machine was 512MB). Thus, the linear scalability of theGreedyRel algorithm to the domain size, in terms

of both its running time and its memory requirements, constitutes it as the only viable technique (except

for small data sets) for providing tight error guarantees, not only on multi-measure data sets, but also on

single-measure data sets, since both theGreedyRel and IndDP algorithms scale in a similar way for such

data sets. Moreover, as we will demonstrate in this section, theGreedyRel algorithm, which utilizes the

extended wavelet coefficients to store the selected coefficient values, also outperforms theIndDP algorithm

in terms of the obtained accuracy of the data synopsis. The improved accuracy is attributed to the improved

storage utilization achieved by the use of extended wavelet coefficients, and the ability of ourGreedyRel

algorithm to exploit the underlying storage dependencies.

Accuracy Comparison of GreedyRel and IndDP in Synthetic Data Sets. For our synthetic data sets,

we use a domain size of 256, and present the obtained accuracy in terms of the maximum error of the

approximation for theGreedyRel and IndDP algorithms and six representative combinations of synthetic

data sets. These six combinations arise from considering zipfian distributions with skew 0.6 and 1, along

with all the other possible combinations of the used zipfian distributions (“AllNoPerm”, “AllNormal” and

“Mixed”). The synthetic data sets in this section contain 6 measures/distributions.

We first consider the six possible combinations arising from distributions having skew equal to 1. In

Figures 10, 11 and 12 we plot the maximum relative errors for theGreedyRel and IndDP algorithms, as

24

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8

1 1

2 2

3 3

4 4
5 5
6 6
7 7
8 8

10 10

20 20

30 30

40 40
M

ax
im

um
 R

el
at

iv
e

E
rr

or

IndDP
GreedyRel

6 Zipfian Distributions of Different Shapes, Skew = 1, Domain Size = 256

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.2 0.2

0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.8 0.8

1 1

2 2

3 3
4 4
5 5
6 6
8 8

10 10

20 20

30 30
40 40
50 50
60 60
70 70

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

6 Zipfian Distributions, Skew = 1, "NoPerm" Shaped, Domain Size = 256

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

6 Zipfian Distributions, Zipf = 1, "Normal" Shaped, Domain Size = 256

Figure 10: Skew 1, “Mixed” Figure 11: Skew 1, “AllNoPerm” Figure 12: Skew 1, “AllNormal”

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9

1

2

3

4
5
6
7
8
9

10

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

6 Zipfian Distributions of Different Shapes, Skew = 0.6, Domain Size = 256

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.1 0.1

0.2 0.2

0.3 0.3
0.4 0.4
0.5 0.5
0.6 0.6
0.7 0.7
0.8 0.8

1 1

2 2

3 3
4 4
5 5
6 6
7 7
8 8

10 10

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

6 Zipfian Distributions, Skew = 0.6, "NoPerm" Shaped, Domain Size = 256

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

6 Zipfian Distributions, Skew = 0.6, "Normal" Shaped, Domain Size = 256

Figure 13: Skew 0.6, “Mixed” Figure 14: Skew 0.6, “AllNoPerm” Figure 15: Skew 0.6, “AllNormal”

the synopsis space is varied from 2% to 10% of the input data size, and for the “Mixed”,“AllNoPerm” and

“AllNormal” (in the specific order) selection of zipfian distribution shapes. Note that the Y axis for the

“AllNoPerm” and “Mixed” cases is logarithmic, due to the large maximum errors observed in this case,

mainly by theIndDP algorithm. Intuitively, this occurs because the shifting of some distribution centers in

this case results in the largest values of the data set being adjacent to the smallest values, thus requiring sev-

eral coefficient values to capture this large difference of the values. As we can see, theGreedyRel algorithm

produces more accurate results than theIndDP algorithm, with the differences being more significant in the

“AllNoPerm” and “Mixed” cases (recall that the Y axis is logarithmic in these 2 cases). Even though none

of the techniques produces tight error bounds for such a large data skew value and for small data synopses,

the improvements achieved by theGreedyRel algorithm are very significant in each combination of used

zipfian distributions. For each combination,GreedyRel produces, correspondingly, up to 6.1, 5.7 and 3.5

times smaller maximum relative errors thanIndDP.

Similar results are also observed for the six combinations of synthetic data sets, arising from setting

the skew of the distributions to 0.6. In Figures 13, 14 and 15 we show the corresponding results for the

“Mixed”, “AllNoPerm” and “AllNormal” combinations of used data distributions (note the logarithmic Y

25

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.5

1

1.5

2

2.5

3

3.5

4
M

ax
im

um
 R

el
at

iv
e

E
rr

or
IndDP
GreedyRel

Weather Data Set, 6 Measures, Domain Size = 2048

2 3 4 5 6 7 8 9 10
Synopsis Space (%)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
ax

im
um

 R
el

at
iv

e
E

rr
or

IndDP
GreedyRel

Phone Data Set, 6 Measures, Domain Size = 1024

Figure 16: Weather Data Set Figure 17: Phone Data Set

axis in the “AllNoPerm” and “Mixed” cases). The maximum relative errors in this case are significantly

smaller for all methods. However, theGreedyRel algorithm is still able to provide substantial more tight

error bounds, up to 6.9, 2.7 and 2.3 times smaller thanIndDP.

Accuracy Comparison of GreedyRel and IndDP in Real Data Sets. In Figures 16 and 17 we plot the

maximum relative errors, respectively, for the Weather and Phone data sets, as we vary the size of the

synopsis, and for domain sizes of 2048 and 1024, respectively. As we can see, the benefits of theGreedyRel

algorithm continue to be significant in all cases. In the Weather data set, theGreedyRel algorithm provided

up to 3.5 times tighter error bounds than theIndDP algorithm (and commonly at least a 2-fold improvement),

while in the Phone data the corresponding error bounds were up to 1.75 times tighter.

5 Conclusions

We have proposed novel, effective techniques for building probabilistic wavelet synopses over multi-measure

data sets. Our techniques seek to minimize, given a storage constraint, the maximum relative error of re-

constructing any data value among all measures. We have demonstrated the difficulty of the problem com-

pared to the single-measure case, and have proposed a partial-order dynamic programming (PODP) solution.

Given the extremely high time and space complexities of PODP, we have also introduced a very fast and

scalable approximate algorithm, which greedily allocates synopsis space based on the idea of marginal error

gains. Our experimental evaluation has demonstrated that ourGreedyRel algorithm exhibits near-optimal

solutions, while at the same time outperforming prior techniques based on optimizing each measure indepen-

dently. Perhaps more importantly,GreedyRel constitutes the only viable solution, even in the single-measure

26

case, for constructing accurate probabilistic wavelet synopses over large data sets.

References

[1] “NetFlow Services and Applications”. Cisco Systems White Paper (http://www.cisco.com/),

1999.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. “Join Synopses for Approximate Query

Answering”. InACM SIGMOD 1999.

[3] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. “Approximate Query Processing Using

Wavelets”. InVLDB 2000.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.“Introduction to Algorithms”. MIT

Press, 1990.

[5] A. Deligiannakis and N. Roussopoulos. “Extended Wavelets for Multiple Measures”. InACM SIGMOD

2003.

[6] S. Ganguly, W. Hasan, and R. Krishnamurthy. “Query Optimization for Parallel Execution”. InACM

SIGMOD 1992.

[7] M. Garofalakis and P. B. Gibbons. “Approximate Query Processing: Taming the Terabytes”. Tutorial

in VLDB 2001.

[8] M. Garofalakis and P. B. Gibbons. “Wavelet Synopses with Error Guarantees”. InACM SIGMOD 2002.

[9] M. Garofalakis and P. B. Gibbons. “Probabilistic Wavelet Synopses”.ACM Transactions on Database

Systems, 29(1), March 2004.

[10] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. “Surfing Wavelets on Streams: One-

pass Summaries for Approximate Aggregate Queries”. InVLDB 2001.

[11] P. J. Haas and A. N. Swami. “Sequential Sampling Procedures for Query Size Estimation”. InACM

SIGMOD 1992.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. “Online Aggregation”. InACM SIGMOD 1997.

27

[13] B. Jawerth and W. Sweldens. “An Overview of Wavelet Based Multiresolution Analyses”.SIAM

Review, 36(3):377–412, 1994.

[14] Y. Matias, J. S. Vitter, and M. Wang. “Wavelet-Based Histograms for Selectivity Estimation”. InACM

SIGMOD 1998.

[15] Y. Matias, J. Scott Vitter, and M. Wang. “Dynamic Maintenance of Wavelet-Based Histograms”. In

VLDB 2000.

[16] R. Motwani and P. Raghavan.“Randomized Algorithms”. Cambridge University Press, 1995.

[17] R. R. Schmidt and C. Shahabi. “ProPolyne: A Fast Wavelet-Based Algorithm for Progressive Evalua-

tion of Polynomial Range-Sum Queries”. InEDBT 2002.

[18] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin.“Wavelets for Computer Graphics – Theory and

Applications”. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[19] J. S. Vitter and M. Wang. “Approximate Computation of Multi- dimensional Aggregates of Sparse

Data Using Wavelets”. InACM SIGMOD 1999.

28

Appendix

Pseudocode forGreedyRel Algorithm

A pseudocode description of ourGreedyRel algorithm is depicted in Figure 18. The algorithm is straight-

forward, based on the discussion of Section 3.3. Note that in the later steps of the algorithm, the available

synopsis space may become smaller thanpotSpace[i, jmax]; in this case, rather than recursing on both child

subtrees of a node (whenchijmax = 2), GreedyRel first recurses on the child causing the maximum estimated

squaredNSE, and then recurses on the other child with any remaining space (Steps 12–16 oftraverse).

Extensions to Multi-Dimensional Wavelets

We now discuss the key ideas for extending our techniques to multi-dimensional data. For a detailed discus-

sion of multi-dimensional wavelets we refer the reader to the analysis presented in [9]. For aD-dimensional

data set, the error-tree structure becomes significantly more complex. Each node in the error tree (besides

the root node) corresponds to asetof (at most)2D − 1 wavelet coefficients with the same support region,

but different signed contributions for each region quadrant. Furthermore, each error-tree nodei (besides

the root) may have up to2D children, corresponding to the quadrants of the common support region for all

coefficients ini.

Extending PODP. Our PODP algorithm for multi-dimensional data sets generalizes the corresponding

multi-dimensionalMinRelVar strategy in [9], in a way analogous to the one-dimensional case. In a nut-

shell, PODP needs to consider, at each internal node of the error tree, the optimal allocation of space to

the≤ 2D − 1 wavelet coefficients of the node and its≤ 2D child subtrees. The extension of PODP to

multi-dimensional data sets is therefore a fairly simple adaptation of the multi-dimensionalMinRelVar al-

gorithm. However, as discussed in Section 3.2, PODP needs to maintain, for each nodei and each possible

space allotmentB, acollectionR[i, B] of incomparable solutions. This requirement, once again, makes the

time/space requirements of PODP significantly higher than those ofMinRelVar.

Extending GreedyRel. The first modification involved in extending ourGreedyRel algorithm to multi-

dimensional data sets has to do with the computation ofG[i, j], which now involves examining the estimated

NSE2 values over≤ 2D child subtrees and maintaining the maximum such estimate. LetS(i) denote the set

of the≤ 2D − 1 coefficients of nodei, and leti1, . . . , ip be the indexes ofi’s child nodes in the error tree.

29

Then,

G[i, j] =



max


∑

ck∈S(i)

Var(ckj ,ykj)

Norm(i1,j)
+ G[i1, j]

. . .∑
ck∈S(i)

Var(ckj ,yij)

Norm(ip,j)
+ G[ip, j]

i < N

0 i ≥ N

The only other necessary modification involves the estimation of marginal error gains at each node. In

Section 3.3, we consider a total of three possible choices for formingpotSet[i, j] for each (node, measure)

combination. Now, each node has up to2D child subtrees, resulting in a total of2D + 1 possible choices of

forming potSet[i, j]. The first choice is to increase the retention probability for measurej of one of the≤

2D − 1 coefficients in nodei. In this case, we simply include inpotSet[i, j] the coefficient in nodei that is

expected to exhibit the largest marginal gain for measurej. For each of the remaining2D possible choices

of formingpotSet[i, j], thek-th choice (1 ≤ k ≤ 2D) considers the marginal gain of increasing the retention

probabilities in the child subtrees through which thek maximumNSE2 values occur, as estimated in the

right-hand side of the above equation forG[i, j]. At each node, the computation ofGpot[i, j], potSpace[i, j],

and chij incurs a worst-case time cost ofO(D × 2D) due to the possible ways of formingpotSet[i, j],

and the required sorting operation of2D quantities. LetN denote the total number of cells in the multi-

dimensional data array andmaxD denote the maximum domain size of any dimension. Then, the running

time complexity ofGreedyRel becomesO(D × 2D× (NM+ BMq log maxD)). Note, of course, that in

most real-life scenarios using wavelet-based data reduction, the number of dimensions is typically a small

constant (e.g.,4–6) and, most importantly, that the number of tuples can be exponential (O(ND)) to the

maximum domain sizeN .

Improving the complexity of GreedyRel. In the wavelet decomposition process of a multi-dimensional

data set, the number of non-zero coefficients produced may be significantly larger than the numberNz of

non-zero data values. In [9] the authors proposed an adaptive coefficient thresholding procedure that retains

at mostNz wavelet coefficientswithout introducing any reconstruction bias. Using this procedure, the

authors in [9] demonstrated how theMinRelVar algorithm can be modified so that its running time and space

complexities have a dependency onNz, and not onN (i.e., the total number of cells in the multi-dimensional

data array). It would thus be desirable if theGreedyRel algorithm could be modified in a similar way, in

30

order to decrease its running time and space requirements.

Let Nz denote the number of error tree nodes that contain non-zero coefficient values, possibly after the

afore-mentioned thresholding process. We will first illustrate that for any node in the error tree containing

zero coefficient values, and which has at most one node in its subtree that does contain non-zero coefficient

values, no computation is needed. Equivalently, our algorithm will need to computeG, Gpot values in only:

(i) nodes containing non-zero coefficient values; or (b) nodes that contain zero coefficient values, but which

are the least common ancestor of at least two non-zero tree nodes beneath it in the error tree.

Let k be a node that is the only node in its subtree with non-zero coefficient values. Obviously we do

not need to consider theG, Gpot values in the descendant nodes ofk, since they will be zero. An important

observation is that for any ancestor ofk that contains just a single non-zero error tree beneath it (which

is certainly the subtree of nodek), no computation is necessary, since theG, Gpot values ofk can always

be used instead. The only additional computation is needed in any noden with zero-coefficients that has at

least two non-zero error tree nodes beneath it in the error tree (in different subtrees). In this case, theG, Gpot

values of noden needs to be calculated, using as input theG, Gpot values of its non-zero descendant tree

nodes. It is easy to demonstrate that at mostNz − 1 such nodes may exist. Thus, theGreedyRel algorithm

will need to calculate theG, Gpot values in at mostO(2Nz − 1)=O(Nz) nodes, thus yielding running time

and space complexities ofO(D × 2D× (NzM+ BMq log maxD)) andO(NzM), respectively. We here

need to note that in order to implement our algorithm as described here, we need to sort theNz coefficients

based on their postorder numbering in the error tree. This requires an additionalO(Nz log Nz) time for the

sorting process. However, this running time is offen significantly smaller than the benefits of having running

time and space dependencies based onNz, rather than onN .

31

procedure GreedyRel(WA, B, q, S)
Input: N ×M arrayWA of Haar wavelet coefficients; space constraintB; quantization parameterq > 1;

vector of per-measure sanity boundsS.
Output: Array y of retention probabilitiesyij for all N ×M coefficients.
begin
1. for i := N − 1 downto 0 do // traverse error tree bottom-up
2. for j := 1 to M do
3. yij = 0
4. ComputeG[i, j], Gpot[i, j], potSpace[i, j], andchij

5. endfor
6. endfor
7. spaceLeft =B
8. while (spaceLeft> 0) do
9. jmax := arg maxj{G[0, j]}
10. occupiedSpace :=traverse(0, jmax, q, y, spaceLeft)
11. spaceLeft := spaceLeft - occupiedSpace
12. if (occupiedSpace =0) then return (y) //not enough space
13. endwhile
14. return (y)
end

procedure traverse(i, j, q, y, spaceLeft)
Input: Indexi of error-tree node; measurej chosen for space allocation; quantization parameterq;

arrayy of current retention probabilities; maximum synopsis space to allocate (spaceLeft).
Output: Space allocated to theTij subtree at this step.
begin
1. allocatedSpace :=0
2. if (chij = 1) then
3. neededSpace :=δj(E[|ECi|], 1/q) // see Equation (4)
4. if (neededSpace≤ spaceLeft)then
5. yij := yij + 1/q
6. allocatedSpace := neededSpace
7. endif
8. else if(chij = 2) then
9. Find indexk of child subtree through whichG[i, j] occurs
10. allocatedSpace :=traverse(k, j, q, y, spaceLeft)
11. else
12. Find indexk of child subtree through whichG[i, j] occurs
13. Letl be the index of the other subtree
14. allocatedSpace :=traverse(k, j, q, y, spaceLeft)
15. if (spaceLeft> allocatedSpace)then
16. allocatedSpace +=traverse(l, j, q, y, spaceLeft-allocatedSpace)
17. endif
18. Recompute the node’sG, Gpot, potSpace, andch values
19. return (allocatedSpace)
end

Figure 18:GreedyRel Algorithm Pseudocode.

32

