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Abstract

The recently proposed idea pfobabilistic wavelet synopséms enabled their use as a tool for re-
ducing large amounts of data down to compa&atelet synopsdhat can be used to obtain fast, accurate
approximate answers to user queries, while at the same time providing guarantees on the accuracy of
individual answers. Relatively little attention, however, has been paid to the problem of using wavelet
synopses as an approximate query answering tool over complex tabular data sets containing multiple
measures, such as those typically found in real-life OLAP applications. In this paper we first demon-
strate that for such multi-measure data sets the problem of constructing optimal probabilistic wavelet
synopses becomes significantly more complex. We then propose both an exact algorithmic formula-
tion for probabilistic multi-measure wavelet thresholding based on the idBartifl-Order Dynamic
Programming (PODP)and then also introducefast, greedy approximation algorithimased on the
idea of marginal error gains. Our empirical study with both synthetic and real-life data sets validates
our approach, demonstrating that (1) our algorithms easily outperform naive approaches based on op-
timizing individual measures independently, and (2) our greedy thresholding scheme always provides
near-optimal and, at the same time, very fast and scalable solutions to the probabilistic wavelet synopsis

construction problem.

1 Introduction

Approximate query processing over compact, precomputed data synopses has attracted a lot of interest re-
cently as a viable solution for dealing with complex queries over massive amounts of data in interactive
decision-support and data-exploration environments. For several of these application scenarios, exact an-

swers are not required, and users may in fact prefer fast, approximate answers to their queries. Examples



include the initial, exploratory drill-down queries in ad-hoc data mining systems, where the goal is to quickly
identify the “interesting” regions of the underlying database; or, aggregation queries in decision-support sys-
tems where the full precision of the exact answer is not needed and the first few digits of precision suffice
(e.g., the leading digits of a total in the millions or the nearest percentile of a percentage) [2, 3, 7, 12].
Background and Earlier Results. Haar waveletsare a mathematical tool for the hierarchical decomposi-

tion of functions with several successful applications in signal and image processing [13, 18]. A number of
recent studies has also demonstrated the effectiveness of the Haar wavelet decomposition as a data-reduction
tool for database problems, including selectivity estimation [14] and approximate query processing over
massive relational tables [3, 8, 19] and data streams [10, 15]. Briefly, the key idea is to apply the decom-
position process over an input data set along with a thresholding procedure in order to obtain a compact
data synopsis comprising of a selected small setl@a&r wavelet coefficients Several research stud-

ies [3, 8, 9, 14, 17, 19] have demonstrated that fast and accurate approximate query processing engines can
be designed to operate solely over such precomputed compaetet synopses

The Haar wavelet decomposition was originally designed with the objective of minimizing the overall
root-mean-squared error (i.e., the-norm average errorin the data approximation. However, the recent
work of [8, 9] onprobabilistic wavelet synopsedso demonstrates their use for optimizing other error met-
rics, including thenaximum relative erroin the approximate reconstruction of individual data values, which
is arguably the most important metric for approximate query answers and, furthermore, enables meaningful,
non-trivial error guaranteedor reconstructed values. While the use of the traditional Haar wavelet de-
composition gives the user no knowledge on whether a particular answer is highly-accurate or off by many
orders of magnitude, the use of probabilistic wavelet synopses provides the user with an interval where the
exact answer is guaranteed to lie into.

Despite the surge of interest in wavelet-based data reduction and approximation in database systems, rel-
atively little attention has been paid to the application of wavelet techniques to complex tabular datthsets
multiple measure@multiple numeric entries for each table cell). Such massive, multi-measure tables arise
naturally in several application domains, including OLAP environments and time-series analysis/correlation
systems. As an example, a corporate sales database may tabulate, for each available product, (1) the number
of items sold, (2) revenue and profit numbers for the product, and (3) costs associated with the product,
such as shipping and storage costs. Similarly, a network-traffic monitoring system takes readings on each

time-tick from a number of distinct elements, such as routers and switches, in the underlying network and



typically several measures of interest need to be monitored (e.g., input/output traffic numbers for each router
or switch interface) even for a fixed network element [1]. Both of these types of applications may be char-
acterized not only by the potentially very large domain sizes for some dimensions (e.g. several thousands of
time ticks or different products sold), but also by the huge amounts of collected data.

The work in [5] recently introduced the idea®ftended wavelet coefficieris a flexible, space-efficient
storage format for extending conventional wavelet-based summaries to the context of multi-measure data
sets. However, the synopsis-construction techniques of [5] can only be used to minimize (for a given space
budget) theweighted sum of the overall,-norm errors for each measureStill, given the pitfalls and
shortcomings of.,-error-optimized wavelet synopses for building effective approximate query processing
engines [8, 9], there is a clear need for more sophisticated wavelet-based summarization techniques for
multi-measure data that can be specifically optimized for different error metrics (such as the relative error

metric).

Our Contributions. In this paper, we propose the first known algorithms for constructing effective proba-
bilistic wavelet synopses over multi-measure data sets. Our proposed techniques can accommodate a number
of different error metrics, including the relative error metric, thus enabling meaniagful guarantees on

the accuracy of the approximation for individual measure valkesthermore, by operating on all measures
simultaneously, our techniques judicially allocate the available space to all measures based on the difficulty
of accurately approximating each one, and exploit storage dependencies among coefficient values to achieve
improved storage utilization and, therefore, improved accuracy in data reconstruction than prior techniques

that operate on each measure individually. Our contributions are summarized as follows.

e Probabilistic Wavelets over Multiple Measures: Formulation and Exact PODP Solution. We for-

mally define the problem of constructing probabilistic wavelet synopses over multi-measure data sets using
the space-efficient “extended wavelet coefficient” format of [5]. We demonstrate that utilizing this more in-
volved storage format for coefficients forces non-trivial dependencies between thresholding decisions made
across different measures, thus significantly increasing the complexity of probabilistic coefficient threshold-
ing. More specifically, these dependencies cause theknagiple of optimalitybased on &otal ordering

of partial solutions [4], that is required by the earlier single-measure DP solutions, to be violated, rendering
these techniques inapplicable in the multi-measure setting. Thus, we propose a novel probabilistic threshold-

ing scheme for multi-measure data sets based on the idea of an exact Partial-Order DP (PODP) formulation.



In a nutshell, our PODP solution generalizes earlier single-measure DP schemes [8, 9] to data 9dts with
measures by using alf -component vector objectiand an)/ -component less-thgpartial order to prune

sub-problem solutions that cannot possibly be part of an optimal solution.

e Fast, Greedy Approximate Probabilistic-Thresholding Algorithm. Given the very high space and time
complexities of our PODP algorithm, we also introduce a novel, greedy approximation algorithm (termed
GreedyRel) for probabilistic coefficient thresholding over multi-measure data. Briefly, GraedyRel
heuristic exploits therror-tree structurg14] for Haar wavelet coefficients in greedily allocating the avail-

able synopsis space based on the idemaifginal error gains More specifically, at each ste@reedyRel
identifies, for each error subtree, the subset of wavelet coefficients that are expected to give thedargest
space reduction in the error metriand allocates space to the best such subset overall (i.e., in the entire tree).
The time and space complexities of aireedyRel algorithm are only linear in the number of measures in-
volved and the data-set size, and, in fact, are also significantly lower than those of the earlier-proposed DP
algorithms for the single-measure case [8, 9]. We must note that the complexities of the algorithms in [8, 9]
are, even for the single-measure case, at least quadratic to the domain size, thus yielGirgdyRel al-

gorithm as the only viable solution, even for the single-measure case, for constructing accurate probabilistic

wavelet synopses over large data sets.

e Experimental Results Verifying the Effectiveness of our ApproachWe present results from an exten-

sive experimental study of our proposed techniques with both synthetic and real-life data sets. Our results
clearly validate our approach, demonstrating that (1) our algorithms easily outperform naive approaches
based on optimizing individual measures independently, typically producing errors that are up to a factor of

7 smaller than prior techniques; and (2) our greedy thresholding scheme always provides near-optimal and,

at the same time, very fast and scalable solutions to the probabilistic wavelet synopsis construction problem.

2 Preliminaries

In this section we provide a brief overview of some techniques and algorithms, developed in prior work,
that are utilized as helpful tools by our thresholding algorithms. Wavelets are a useful mathematical tool
for hierarchically decomposing functions in ways that are both efficient and theoretically sound. Broadly
speaking, the wavelet decomposition of a function consists of a coarse overall approximation along with

detail coefficients that influence the function at various scales [18].



The Haar Wavelet Transform. Wavelets are a useful mathematical tool for hierarchically decomposing
functions in ways that are both efficient and theoretically sound. Broadly speaking, the wavelet decompo-
sition of a function consists of a coarse overall approximation along with detail coefficients that influence
the function at various scales [18]. Suppose we are given the one-dimensional dataAveatdaining the

N = 8 data valuesA = [2,2,0,2,3,5,4,4]. The Haar wavelet transform &f can be computed as follows.

We first average the values together pairwise to get a new “lower-resolution” representation of the data with
the following average valudg, 1, 4, 4]. In other words, the average of the first two values (thal &nd2)

is 2, that of the next two values (that and2) is 1, and so on. Obviously, some information has been lost

in this averaging process. To be able to restore the original values of the data array, we stodetsdme
coefficientsthat capture the missing information. In Haar wavelets, these detail coefficients are simply the
differences of the (second of the) averaged values from the computed pairwise average. Thus, in our simple
example, for the first pair of averaged values, the detail coefficighsisce2 — 2 = 0, for the second we

again need to store1l sincel — 2 = —1. Note that no information has been lost in this process — it is
fairly simple to reconstruct the eight values of the original data array from the lower-resolution array con-
taining the four averages and the four detail coefficients. Recursively applying the above pairwise averaging

and differencing process on the lower-resolution array containing the averages, we get the following full

decomposition:
Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5,4,4] —
2 [2, 1,4, 4] [0,-1,-1,0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

Thewavelet transfornfalso known as thavavelet decompositidrof A is the single coefficient repre-
senting the overall average of the data values followed by the detail coefficients in the order of increasing
resolution. Thus, the one-dimensional Haar wavelet transforiefgiven byW, = [11/4, —5/4,1/2, 0,

0, —1, —1, 0]. Each entry iniW is called awavelet coefficientThe main advantage of usiri§, instead

of the original data vectoA is that for vectors containing similar values most of the detail coefficients tend

to have very small values. Thus, eliminating such small coefficients from the wavelet transform (i.e., treat-
ing them as zeros) introduces only small errors when reconstructing the original data, resulting in a very

effective form of lossy data compression [18]. Furthermore, the Haar wavelet decomposition can also be



Symbol Description
i€{0,...,N—1},5€{1,..., M}, jindex/subscript is dropped fd/ = 1
N Number of data-array cells
D Data-array dimensionality
M Number of data-set measures
B Space budget for synopsis
A Wy Input data and wavelet transform arrays
d;j Data value for” cell and;j** measure of data array
dij Reconstructed data value fif cell andj** measure
Cij Haar coefficient at coordinatefor the j* measure
Yij Retention probability (i.e., fractional storage) for Haar coefficignt
Cii Random variable for Haar coefficiety;
EC; Extended wavelet coefficient at coordinate
Norm(i, j) | Normalization term for Haar coefficien;
q Integer quantization parameter
NSE(cZ,»j) Normalized standard error for reconstructé;j
Var(c;j,y:5) | Variance ofC;; for a given space;;
path (u) All non-zero proper ancestors afin the error tree

Table 1: Notation.

extended tanulti-dimensionabdata arrays through natural generalizations of the one-dimensional decom-
position process described above. Multi-dimensional Haar wavelets have been used in a wide variety of
applications, including approximate query answering over complex decision-support data sets [3, 19].
Error Tree and Conventional Wavelet SynopsesA helpful tool for exploring the properties of the Haar
wavelet decomposition is theror tree structure [14]. The error tree is a hierarchical structure built based
on the wavelet transform process. Figure 1 depicts the error tree for our example datadvdedoh inter-
nal nodec; (: = 0,...,7) is associated with a wavelet coefficient value, and eachde@f= 0,...,7) is
associated with a value in the original data array; in both cases, the index/cooidieatates the positions
in the data array or error tree. For examplg,corresponds to the overall averageAf The resolution
levels! for the coefficients (corresponding to levels in the tree) are also depicted. We use the terms “node”
and “coefficient” interchangeably in what follows. Table 1 summarizes some of the key notational conven-
tions used in this paper; additional notation is introduced when necessary. Detailed symbol definitions are
provided at the appropriate locations in the text.

Given a nodeu in an error tre€l’, let path (u) denote the set of all proper ancestorsuah T (i.e.,
the nodes on the path fromto the root ofT", including the root but not) with non-zero coefficients. A
key property of the Haar wavelet decomposition is that the reconstruction of any data ydepends only

on the values of coefficients quath (d;); more specifically, we havé; = 3. cpath (4,) 9ij - ¢;» Where
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d;; = +1if d; is in the left child subtree of; or j = 0, andd;; = —1 otherwise. For example, in Figure 1,
dys =co—c1 + cg = 3 — (—2)+ (1) = 3. Thesupport regiorfor a coefficientc; is defined as the set
of (contiguous) data values thatis used to reconstruct; the support region for a coefficieig uniquely
identified by its coordinaté

Given a limited amount of storage for buildingvavelet synopsisf the input data arrayl, a threshold-
ing procedure retains a certain numiier N of the coefficients as a highly-compressed approximate rep-
resentation of the original data (the remaining coefficients are implicitly S8t t6onventional coefficient
thresholding is a deterministic process that seeks to minimize the overall root-mean-squared, esnar
norm) of the data approximation [18] by retaining thelargest wavelet coefficients absolute normalized

value[18]. L. coefficient thresholding has also been the method of choice for the bulk of existing work on

Haar-wavelets applications in the data-reduction and approximate query processing domains [3, 14, 15, 19].

Probabilistic Wavelet SynopsesUnfortunately, wavelet synopses optimized for overallerror using the
above-described process may not always be the best choice for approximate query processing systems. As
recently observed in [8, 9], such conventional wavelet synopses suffer from several important problems,
including the introduction of severe bias in the data reconstruction and wide variance in the quality of the
data approximation, as well as the lack of non-trivial guarantees for individual approximate answers. To
address these shortcomings, their work introdymebabilistic wavelet synopsea novel approach for
constructing data summaries from wavelet-transform arrays. In a nutshell, their key idea is to apply a
probabilistic thresholding process basedrandomized roundingl6], that randomly rounds coefficients
either up to a largerounding value or down to zero, so that the value of each coefficient is coorect
expectationMore formally, each non-zero wavelet coefficients associated with eounding value\; and
a correspondingetention probabilityy; = i— such tha) < y; < 1, and the value of coefficiert in the
synopsis becomes a random variablec {0, \; }, where,

o A;  with probability y;

L 0 with probability 1 — ;.

In other words, a probabilistic wavelet synopsis essentially “rounds” each non-zero wavelet coefficient
independentlyo either); or zero by flipping a biased coin with success probabiljityNote that the above

rounding process ignbiased that is, the expected value of each rounded coefficien{G§|E= \; - y;+



do dl d2 d3 d4 ds doé d7

Figure 1: Error tree for example arrayy,
0-(1—y)=¢,ie., the actual coefficient value, while its variance is

Var(i,y;) = Var(C;) = (i — ¢;) - ¢; = L%, c; (1)
Yi

and the expected size of the synopsis is simg|gyBopsig = ZHC#O yi = Zﬂcﬁéo i— Thus, since each
data value can be reconstructed as a simple linear combination of wavelet coefficients, and by linearity
of expectation, it is easy to see that probabilistic wavelet synopses guarantee unbiased approximations of
individual data values as well as range-aggregate query answers [8].

The work in [8, 9] proposes several different algorithms for building probabilistic wavelet synopses.
The key, of course, is to select the coefficient rounding va{ues such that some desired error metric for
the data approximation is minimized while not exceeding a prescribed spacdslifoitthe synopsis (i.e.,
E[|synopsi§ < B). Their winning strategies are based on formulating appropBgtexmic-Programming
(DP) recurrences over the Haar error-tree that explicitly minimize either (a) the maximum normalized stan-
dard error MinRelVar), or (b) the maximum normalized biaslihRelBias), for each reconstructed value in
the data domain. As explained in [8, 9], the rationale for these probabilistic error metrics is that they are
directly related to thenaximum relative errofwith an appropriatsanity bounds, whose role is to ensure
that relative-error numbers are not unduly dominated by small data values [11, 19]) in the approximation
of individual data values based on the synopsis; that is, botiMthieelvVar and MinRelBias schemes try

|di —ds|

m}, whered; denotes the data value reconstructed

to (probabilistically) control the quantityax;{
based on the wavelet synopsis. Note, of course, cfhaiﬂ again arandom variable defined as thet1
summation of all (independent) coefficient random variablegatim (d;). Bounding the maximum relative

error in the approximation also allows for meaningéualor guaranteeso be provided on reconstructed data



values.
To accomplish this, the DP algorithms in [8, 9] seek to minimize the maximum Normalized Standard

Error (NSE) in the data reconstruction, defined as

A~

g Var(d;)
NSE(d;) = -
e (di) m?xmax{\di|,s}

where Vatd;) = >, epath (d;) Var(j, y;). The algorithms in [9] also naturally extend to multi-dimensional
data and wavelets, with a running time®@{N.2”qB(qlog(qB) + D2P)) (N, being the number of nodes
with at least one non-zero coefficient valug, being the maximum domain size arel being the num-
ber of dimensions), an overall space requiremenD(N.2”qB) and an in-memory working-set size of
O(2PqBlog N). Note that for synopsis spacB= O(N,) the above running time and space complexities

are at least quadratic to the number of tuples.

Extended Wavelet CoefficientsThe wavelet coefficients can be stored as tuples With 1 fields, where
D is the dimensionality of the data array. Each of these tuples contain® tteordinates of the stored
wavelet coefficient (one per dimension), which are used to determine the coefficient’s support region, and
the stored coefficient value. In multi-measure data sets, storage dependencies among different coefficient
values may arise. This occurs because two or more coefficient values for different measures may correspond
to the same coefficient coordinates, which results in duplicating the storage of these coordinates. This
storage duplication increases with the number of the data set’s dimensions due to the increased size of the
coefficient coordinates.

To alleviate these shortcomings, the work in [5] introduces the notion examded wavelet coefficient
For a data set comprisinty measures, an extended wavelet coefficient is a flexible, space-efficient storage
format that can be used to stary subsetf up to M coefficient values for each combination of coefficient
coordinates. Briefly, this is achieved through the use lmtrmaapof size M, which helps determine exactly
the subset of coefficient values that has been stored; thust,htb'ﬂmap bit is set iff the coefficient for the
it measure has been stordd< i < M). More formally, each extended wavelet coefficient is defined as
a triplet(C, 5, V') consisting of: (1) The coordinat&s of the coefficient; (2) A bitma of size M, where
the i*" bit denotes the existence or absence of a coefficient value fat'tmeasure; and, (3) The set of
stored coefficient valuelg. We refer to the (coordinates, bitmap) pair for an extended wavelet coefficient as

the coefficient'sheader



3 Probabilistic Wavelets for Multiple Measures

3.1 Problem Formulation and Overview

The work in [5] clearly demonstrated that exploiting storage dependencies among coefficient values can lead
to better storage utilization (store more useful coefficient values for the same space bound) and, therefore,
improved accuracy to queries. However, the algorithms in [5] can only be applied towards minimizing the
overall Ly error of the approximation, and not for minimizing other error metrics, such as the maximum
relative error, which is arguably the most important for providing approximate query answers. On the other
hand, while the work in [8, 9] utilized the notion of probabilistic wavelet synopses to propose algorithms
that minimize the maximum relative error of the approximation, none of these algorithms can exploit storage
dependencies between coefficient values to construct effqutdlzabilistic wavelet synopsder multi-
measure data sets.

In our work we utilize the notion of the extended wavelet coefficients and the probabilistic wavelet
synopses as helpful tools to develop novel algorithms that seek to minimize the maximum relative error of
the approximation in multi-measure data sets. To simplify the exposition, we focus our discussion primarily

on the one-dimensional case and present the extensions to multi-dimensional wavelets in the Appendix.

Expected Size of Extended CoefficientsThe sharing of the common header space (i.e., coordinates
bitmap) among coefficient values introduces non-trivial dependencies in the thresholding process across
coefficients for different measures. To be more precise, consider a data sét/withasures, and let;

denote the Haar coefficient value corresponding tojthemeasure at coordinate and lety;; denote the
retention probability for;; in the synopsis. Also, leEC’; be the extended wavelet coefficient at coordinate

1, and letH denote the space required by an extended-coefficient header. (In our discussion, the unit of
space is set equal to the space required to store a single coefficient value (e.qg., size of a float), and all space
requirements are expressed in terms of this unit.) The expected space requirement of the extended coefficient

EC; can be computed as:

E[|EC;|] = Z yij + H x (
Jleij 70

- Yij)) (2

H,:]:

The first summand in the above formula captures the expected space for all (non-zero) individual coefficient

values at coordinate The second summand captures the expected header overhead. To see this, note that
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if at least one coefficient value is stored, then a header spadenadist also be allotted. And, of course, the
probability of storing> 1 coefficient values is just one minus the probability that none of the coefficients is
stored.

Equation (2) clearly demonstrates that the sharing of header space amongst the individual coefficient
valuesc;; for different measures creates a fairly complex dependency of the overall extended-coefficient
space requirement on the individual retention probabiligiesGiven a space budgét for the wavelet syn-
opsis, exploiting header-space sharing and this storage dependency across different measures is crucial for
achieving effective storage utilization in the final synopsis. Essentially, this implies that our probabilistic-
thresholding strategies for allocating synopsis space cannot operate on each measure individually; instead,
space allocation must explicitly account for the storage dependencies across groups of coefficient values
(corresponding to different measures). This requirement significantly complicates the design of probabilistic-

thresholding algorithms for extended wavelet coefficients.

Problem Statement and Approach. Our goal is to minimize the maximum relative reconstruction error
for each individual data value; this would also allow us to provide meaningfatanteesn the accuracy

of each reconstructed value. More formally, we aim to produce estirﬂbjteﬁ the data valued;;, for

each coordinaté and measure index such that'CZU — dij| < e-max{|d;;|,S;}, for given per-measure
sanity boundss; > 0, where the error bound > 0 is minimized subject to the given space budget for the
synopsis. Since probabilistic thresholding implies tf);lis again arandom variable, and using an argument
based on the Chebyshev bound [8], it is easy to seenrdinizing the overalNSE across all measure@®r
equivalently, the maximurisg?) guarantees a maximum relative error bound that is satigfigdhigh-
probability. Thus, we can define our probabilistic-thresholding problem for extended wavelet coefficients

as follows.

11



[Maximum NSE Minimization for Extended Coefficients] Find the retention probabilities;
for coefficientsc;; thatminimizethe maximunmnse for each reconstructed data value across alll

measures; that is,

o Var(d;;)
Minimize max _ 3)
max{|d;;|, S;}
1€{0,...,N—1}
je{1,....M}

subject to the constraints< y;; < 1 for all non-zeraz;; and B|synopsi§ =), E[|EC;|] < B,

where the expected sizé|EC;|] of each extended coefficient is given by Equation (2). 1

We focus on the above maximuNsE minimization problem for multi-measure data in the remain-
der of this paper. Our algorithms exploit both the error-tree structure of the Haar decomposition and the
above-described storage dependencies (Equation (2)) for extended coefficients in order to intelligently as-
sign retention probabilitiegy;; } to non-zero coefficients within the overall space-budget constfainks
in [8, 9], our schemes also rely quantizingthe space allotments to integer multiplesi@f, whereq > 1
is an integer input parameter; that is, we modify the constfaiaty;; < 1toy;; € {%, %, ..., 1} inthe

above problem formulation.

3.2 An Exact Algorithmic Formulation: Partial-Order Dynamic Programming

Consider an input data set witf measures. Our partial-order dynamic programming (PODP) algorithm
processes the nodes in the error tree bottom-up and calculates for each aodeeach space budget

0 < B; < B to be allocated to the extended wavelet coefficient values in the node’s entire subtree, a
collection of incomparable solutions. Each such solufyiy B;] is anM -component vectasf NSE? values
corresponding to all/ measures for the data values in the subtree rooted atir@oattassuming a total space

of B; allotted to extended coefficients in that subtree. The goal of the PODP algorithm is, of course, to min-

imize the maximum component of the veci®jroot , BJ; that is, minimizemaxy—1,__ a{R[root , B]x}.

A key complication in our optimization problem is that, for a given synopsis space budget,ithese
per-measurelSE values are not independent and cannot optimized individually; this is, again, due to the
intricate storage dependencies that arise between the approximation at different measures because of the

shared header space (Equation (2)). As already discussed in Section 3.1, it is crucial that our thresholding
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algorithms are able to exploit these dependencies to ensure effective synopsis-space utilization. This essen-
tially implies that our thresholding schemes have to treat tié¢ssomponentSE vectorsas a unitduring
the optimization process.

Let dnin,, ; denote the minimum absolute data value in the subtree of 2oead let Nornt2i, j) =
max{dfmnw, S?} denote a normalization term of theth measure for node’sleft subtree, with the cor-
responding normalization term of the right tree defined similarly. We can prove thattheomponent of
RJi, B] produced by the optimal assignment of retention probabilities to the coefficient values in the subtree
of nodei is determined by the minimum absolute data value of measurdhe subtree. This enables us
to simplify the minimization problem of Equation 3 by utilizing at each node the normalization terms of
its subtrees. The-th component ofk[i, B] at node: for a given retention probability;; of the ¢;; coeffi-
cient value and solutionB|[2i, by;] and R[2i + 1, be;1+1] from the node’s left and right subtrees, can thus be
calculated as:

Var(i,y;;)
Norm(2:,5)

Norm(2i+1,5)

+ R[24, bag][4]
max

+ R[2i + 1, b3i+1][J]

To ensure optimality, the bottom-up computation of the DP recurrence can not afford to maintain just
the locally-optimal partial solution for each subtree. In other words, merely tabulatinB[th&] vector
with the minimum max. component for each internal tree node and each possible space allotment is not
sufficient — more information needs to be maintained and explored during the bottom-up computation. As a
simple example, consider the scenario depicted in Figure 2 for theldase2. (Slightly abusing notation,
we useR|[2i, B — y] andR'[2i, B — y] to denote two possiblese? vectors for spac# — y at node2i.) To
simplify the example, assume that the right child of nodéso gives rise to the exact same solution vectors
R[] and R'[]. In this figure we also depict the normalized varia rrr(rqé;;) of the coefficient values of
nodei when total spacg = ;1 + yi2 has been allocated to them and for the data values in the left subtree
of node:. It is easy to see that, in this example, even thoRgBi, B — y] is locally-suboptimal at node:
(since its maximal component is larger than the on&[j, it gives a superior overall solution ¢f + 2,
3+ 0.5] = [3, 3.5] at nodei when combined witli’s local variance vector.

In our PODP algorithm, unlike most DP solutions, the conventipnialciple of optimalitybased on a
total ordering of partial solution$4] is no longer applicable. Thus, locally-suboptinddl, B]’s (i.e., with

large maximum componemsEe?s) cannot be safely pruned since they may, in fact, be part of an optimal
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Var(,y) _

Norm(2i) [2,0.5]

R’ gives a better solutioi
Jfor space B at node i !

R[2i, B-y] =[2.5, 2]
R’[2i, B-y] =1, 3]

Figure 2: Example for partial-order pruning.

solution higher up in the tree. However, there does exist a safe pruning criterion baspdrtinlardering
of the R[i, B] vectors defined through th&-component less-thaoperator=<,,, which is defined over

M-component vectors, v as follows:

u=<pyv ifandonlyif wu; <wv,Vie{l,...,M}.

For a given coordinateéand space allotmer, we say that a partial solutioR'[i, B] is coveredby another
partial solutionR[:, B] if and only if R[i, B] <as R'[i, B] — it is easy to see that, in this cad¥]i, B] can
be safely pruned from the set of partial solutions for the3) combination since, intuitivelyR[i, B] can
always be used in its place to give an overall solution of at least as good quality.

In our proposedPartial-Order Dynamic Programming (PODP)solution to the maximunNsE min-
imization problem for extended coefficients our partial, bottom-up computed soluifn®] are M-
component vectors of per-measwse? values for coefficient subtrees, and such partial solutions are only
pruned based on the,, partial order. Thus, for each coordinate-space combinaiiaB), our PODP al-
gorithm essentially tabulatescollectionR[i, B] of incomparable solutions, that represent the “boundary

points” of </,

R[i, B|={R]i,b] : forany otherR'[i, B] € R][i, B],

R[i,b] 2y R[i,B] and R'[i,b] £y R[i, B]}.

Of course, for each allotment of spageto the coefficient subtree rooted at nag@ur PODP algorithm

1Ganguly et al. [6] also discuss PODP in a completely different context, namely designing a System-R-style algorithm for
optimizing join orders in parallel database systems.

14



needs to iterate over all partial solutions compute®imn, B] in order to compute the full set of (incom-
parable) partial solutions for nod& parent in the tree. Similarly, at leaves or intermediate root nodes,

we consider all possible space allotmefis;} to each individual measure and estimate the overall space
requirements of the extended coefficient using Equation (2). Finally, we note that using an integer parameter
g > 1 to quantize possible space allotments introduces some minor complications with respect to the shared
header space (e.g., some small space fragmentation) that our algorithm handles.

The main drawback of our PODP-based solution is the dramatic increase in time and space complexity
compared to the single-measure case. PODP relies on a much stricter, partial-order criterion for pruning
suboptimal solutions which implies that the sets of incomparable partial soldpn®] that need to be
stored and explored during the bottom-up computation can become very large. For instance, in the simple
case of a leaf coefficient, it is easy to see that the number of options to consider can be ashigh s
compared to onlyO(q) in the single-measure case; furthermore, this number of possibilities can grow

extremely fast (in the worst casexponentially as partial solutions are combined up the error tree.

3.3 A Fast, Greedy Approximation Algorithm

Given the very high running-time and space complexities of our PODP-based solution (described above),
we seek to devise an effective approximation algorithm to our maximsmminimization problem for
extended coefficients. In this section, we propose a very efficient, greedy heuristic algorithm (termed
GreedyRel) for this optimization problem. BrieflyGreedyRel tries to exploit some of the properties of
dynamic-programming solutions, but allocates the synopsis space to extended coefficients greedily based on
the idea ofmarginal error gains The key idea here is to try, at each step, to allocate additional space to a
subset of extended wavelet coefficientdhe error tree that result in thargest reductiorin the target error
metric (i.e., maximunNsE?) per unit of space used

Our GreedyRel algorithm relies on three basic operations: (1) Estimating the maximum per-measure
NSE? values at any node of the error tree; (2) Estimating the best marginal error gain for any subtree by
identifying the subset of coefficients in the subtree that are expected to give the largest per-space reduction
in the maximumnse?; and, (3) Allocating additional synopsis space to the best overall subset of extended
coefficients (in the entire error tree). We describe these three operations in detail in the remainder of this

section using the notation introduced in the previous sections. Alsd;;ldenote the error subtree (for the
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j*" measure) rooted at;.

Estimating Maximum NSE? at Error-Tree Nodes. In order to determine the potential reduction in the
maximum squarediSE due to extra spacesreedyRel first needs to obtain an estimate for the current
maximumnNsE? at any error-tree nodeGreedyRel computes arstimated maximumse? G[i, j] over any

data value for thg** measure in thé&;; subtree, using the recurrence:

Val’(cij,yij) ..
a2 - (3124, j
e Normiz). [20-7] i< N
) | = Cij Yij - .
Gli.jl Normei+1.j) T G[2i+1,5]
0 if 2 > N.

The estimated maximumse? value is the maximum of two costs calculated for the node’s two child
subtrees, where each cost sums the estimated maxinsEof the subtree and the node’s variance divided
by the subtree normalization term. While one can easily show, as mentioned in Section 3.2, that in the
optimal solution the maximumse? in a subtree will occur for the smallest data value (the proof is based
on similar arguments to the single-measure case [9]), the above recurrence is only meant to provide an
easy-to-compute estimafer a node’s maximunnse? (under a given space allotment) tireedyRel can

use.

Estimating the Best Marginal Error Gain for Subtrees. Given an error subtreg;; (for the j*» measure),

our GreedyRel algorithm computes a subseitSet[i, j] of coefficient values irff;; which, when allotted
additional space, are estimated to provide ldrgest per-space reductioof the maximum squaredse

over all data values in th&;; subtree. (Remember that our algorithms allocate the retention probabilities in
multiples of1/q, whereq > 1.) Let G[i, j] be the current estimated maximunsg? for 7;; (as described
above), and le€pot[i, j] denote thepotentialestimated maximumise? for T;; assuming that the retention
probabilities of all coefficient values iotSet[:, j] are increased by a (minimal) additional amount 6d.

Also, letpotSpaceli, j| denote the increase in the overall synopsis size, i.e., the cumulative increase in the
space for the correspondimytendedoefficients, when allocating the extra space to the coefficient values
in potSet[i, j]. We now describe how oureedyRel algorithm computepotSpace(i, j], and how the best
error-gain subsefsotSet[i, j| are estimated through the underlying error-tree structure.

Consider a coefficient valug,; € potSet|i, j|. Based on Equation (2), it is easy to see that an increase
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of dy; in the retention probability of;; results in an increase in the expected-space requirengnelz|]

of the corresponding extended coefficiéf@';. (and, thus, the overall expected synopsis size) of:

8; (E[|EC]], 0yrj) = dyj - (1+ H x [ (1 = yip))- 4)
p#J
The total extra spacgotSpace]i, j] for all coefficient values ipotSet|i, j] can be obtained by adding the

results of Equation (4) for each of these values (Wigh; = é):

potspaceli ] = 3 d(E[ECK], )
cx; EpotSet]i.j] q
Themarginal error gainfor potSet[i, j] is then simply estimated @gin(potSet[i, j]) = (G[i, j]—Gpot[i, 5])/
potSpace|i, j|.

To estimate theotSet[s, j] sets, and the correspondiidgyot[i, j]) (andgain()) values at each node,
GreedyRel performs a bottom-up computation over the error-tree structure. Hafaoefficientc;;, the
only possible choice igotSet[i, j] = {c;;}, which can result in a reduction in the maximwse? if ¢;; # 0
andy;; < 1 (otherwise, the variance of the coefficient is alre@idyd can be safely ignored); in this case, the
new maximunmnse? at c;j is simply Gpot[i, j] = %2 For anon-leaf coefficientc;;, GreedyRel
considers three distinct cases of formingSet|[:, j| and selects the one resulting in the largest marginal
error gain estimate: (IjotSet[i, j] = {c;;} (i.e., select only;; for additional storage); (2)otSet[i, j] =
potSet[k, j|, wherek € {2i, 2i + 1} is such that[i, j] = Gk, j]+ Var(c;j, yi;)/Norm(k, j) (i.e., select
the potSet from the child subtree whose estimated maximus®> determines the current maximunse
estimate at;;); and, (3)potSet[:, j| = potSet[2i, j]U potSet[2i + 1, j] (i.e., select the union of theotSets
from both child subtrees). Among the above three choiGessdyRel selects the one resulting in the largest
value forgain(potSet[i, j]), and records the choice made for coefficient(1, 2, or 3) in a variablech;;.3

In order to estimategain(potSet[i, j]) for each choiceGreedyRel uses the following estimates for the new

maximumnse? Gpot[i, j] atc;; (indexk is defined as in case (2) above, dnd {24, 2i + 1}— {k}):

’As in [8, 9], in our implementation, we actually cap the contribution of coefficignto the overall variance at;. This
essentially implies (see Section 2) that we only need to consider non-zero allogyjentd /2 to coefficientc; ;.

%It is easy to see that combining the root nagewith one or both of its childhotSets cannot have better marginal error gain
than the best of the three options we consider.
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Figure 3: Example foGreedyRel algorithm.
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As an example, consider the scenario depicted in Figure Biffer 2. The figure shows, for each of the
children of node;, the computed, Gpot, andpotSpace values, along with the value &f and the current
normalized variance for noddassume for simplicity that Norm(2i,j)=Norm(2i+1Y)j). The three cases of
forming potSet for each measure at nodere enumerated, the corresponding potential reductiffs ()
in the estimated maximumsEe? value for each measure are calculated, and the choice that results in the
largest per-space reduction is selected for each measure. This figure also depicts why it is important to
simultaneously increase the retention probabilities of more than one coefficient values. At anyhede
the calculated~ values through its children are the same, or differ only slightly, for some meagaseis
the case with measure 2 in our example), then any individual assignment of additional space to a coefficient
value of that measure below nodeould only result in either zero, or very small marginal gains, and would
therefore not be selected, independently of how much it would reduce the maxisehvalue through

its subtree. This happens because the estimated valulg,gf through the other subtree would remain the
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same. As the authors of [8] describe, in single-measure data sets the valukrofigh both subtrees is the
same in the optimal solution, thus implying that the above situation is expected to occur very frequently.
An important point to note is thabreedyRel does not need to store the coefficient geitSet[i, j]
at each error-tree node. These sets can be reconstructed on the fly, by traversing the error-tree structure,
examining the value of theh;; variable at each nodg;, and continuing along the appropriate subtrees of

the node, until we reach nodes with;; = 1.

Distributing the Available Synopsis Space.After completing the above-described steps, GuredyRel
algorithm has computed the estimated current and potential maxinaghvaluesG|0, j] and Gpot[0, j]

(along with the correspondinmptSet andpotSpace) at the root coefficient (hod® of the error tree, for each

data measurg. Since our overall objective is to minimize the maximum squarsedamong all measures
over the entire domairGreedyRel selects, at each step, the measjg with the maximum estimated
NSE? value at the root node (i.ejmax = arg max;{GJ0, j]}), and proceeds to allocate additional space of
potSpace|0, jmax t0 the coefficients ipotSet|0, jmay. This is done in a recursive, top-down traversal of the
error tree, starting from the root node and proceeding as follower{otes the current node index): (1) If
Chijmax = 1, S€Wijmax = Yijmax+ é (2) If chjjmax = 2, then recurse to the child subtrég, k € {27, 2i+1}
through which the maximumise? estimateGi, jmax is computed at nodg and (3) Ifch;jmay = 3, then
recurse to both child subtreds; andT5;,1; furthermore, after each of the above steps, compute the new
G, Gpot, potSpace andch values at node. These quantities need to be evaluated for all measures because,
due to the space dependencies among the coefficient values, the increase of the coefficient value for measure

Jmax may alter thech values for the other measures.

Time and Space ComplexityFor each of theV error-tree nodes;reedyRel maintains the variableS|i, j],
Ghpot[i, 7], potSpaceli, j], andch;;. Thus, the space requirements per node(at#/), resulting in a total
space complexity o (N M).

In the bottom-up initialization phase (Steps 1-8)eedyRel computes, for each error-tree node, the
values of the&[i, j], Gpotl, j], potSpaceli, j], andch;; variables (for each measujk Each of thes© (M)
calculations can be done (1) time, making the total cost of the initialization pha®@¢NM). Then,
note that each timéreedyRel allocates space to a set &f coefficients, the allocated spacexisk x 1/q
(see Equation (4)). To reach thekecoefficients GreedyRel traverses exactljk’ paths of maximum length

O(log N). For each visited node we need to compute the new valu€$ G%t, potSpace, andch, which
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Algorithm Space Running Time
GreedyRel O(N,M) O(D2P x (N, M+ BMdlogmazD))
MinRelVar |O(N,M B2Pq)| O(N,BM2"q(qlog(qB) + D27))

Table 2:GreedyRel andMinRelVar complexities.

requiresO (M) time. Finding the measurgax with the maximum estimatedse? value at the root requires
time O(log M) when using a heap structure to store just@e, j| values. Thus,GreedyRel distributes
space> K x 1/q, in time O(K M log N+ log M), making the amortized time per-space-quantufq
equal toO(M log N+ log M/K) = O(M log N). Since the total number of such quanta that we need to
distribute isBq, the overall running time complexity @reedyRel is O(NM+ BMqlog N).

Finally, theGreedyRel algorithms naturally extends to multiple dimensions with a modest increase of
D x 2P in its running time complexity. These extensions, along with the extensions of PODP to multiple
dimensions, can be found in the Appendix. Because the number of non-zero coefficient values in multi-
dimensional data sets may be significantly larger than the number of tuples, a thresholding step is needed
in this case to limit the space needed by the algorithm. This thresholding step can, of course, also be used
in the one-dimensional case to further reduce the running time and space requirementS@edyRel
algorithm. The work in [9] showed how this step can be performed without introducing any reconstruction
bias. Table 2 contains a synopsis of the running time and space complexities GfeadyRel and the
MinRelVar algorithm of [9], wherelN, denotes the number of error-tree nodes containing at least one non-

zero coefficient value angbax D denotes the maximum domain size among all dimensions.

4 Experimental Study

In this section, we present an extensive experimental study of our proposed algorithms for constructing
probabilistic synopses over data sets with multiple measures. The objective of this study is to evaluate
both the scalability and the obtained accuracy of our prop@eddyRel algorithm for a large variety of

both real-life and synthetic data sets containing multiple measures. The main findings of our study for the

GreedyRel algorithm include:

e Highly Scalable Solution. Our GreedyRel algorithm provides a fast and highly-scalable solution for
constructing probabilistic synopses over large multi-measure data sets. Unlike earlier schemes (and PODP),

GreedyRel scales linearly with the domain size, making it the only viable solution for large real-life data

20



sets

¢ Near Optimal Results. GreedyRel consistently provides near-optimal solutions when compared to PODP,
demonstrating that it constitutes an efficient technique for constructing accurate probabilistic synopses over
large multi-measure data sets.

e Improved Accuracy to Individual Reconstructed Answers.Compared to earlier approaches that oper-

ate on each measure individually, @gneedyRel algorithm significantly reduces the maximum relative error

of the approximation, thus being able to offer significantly tighter error guarantees. These improvements are
typically by a factor of2, but in many cases we also observe up to 7 times smaller maximum relative errors.
Technigues and Parameter SettingsOur experimental study compares d@hreedyRel and PODP algo-

rithms for constructing probabilistic data synopses over multi-measure data sets, along with a technique,
which we will term asindDP that partitions the available space equally over the measures and then oper-
ates on each measure individually by utilizing the dynamic programmingelVar algorithm proposed by
Garofalakis and Gibbons in [8]. To provide a more fair comparison tarttieP algorithm, the majority

of our experiments includes data sets where all the measured quantities exhibit similar characteristics, thus
yielding the uniform partitioning of the synopsis space over all the measures as the appropriate space alloca-
tion technique. We note here that we also experimented witGtaedyL Zalgorithm proposed in [5], which

is designed to minimize the average sum squared error in multi-measure data sets. How&reedye2
algorithm consistently exhibited significantly larger errors than our algorithms and is therefore omitted from
our experimental results. The only parameter in our algorithms is the quantization pargmetech is
assigned a value of 10 for thereedyRel and IndDP algorithms, and a smaller value ¢ffor the PODP
algorithm to reduce its running time. Moreover, the sanity bound of each measure is sei%o-tluantile

value of the measure’s data values.

Data Sets.We experiment with several one-dimensional synthetic multi-measure data sets. A Zipfian data
generator is used to produce zipfian distributions of various skews (from a low skew of 0.5 to a high skew of
1.5), with the sum of values for each measure set at 200,000. Each zipfian distribution is assigned one of 3
possible shapes: (1) “NoPerm” is the typical zipfian distribution, where smaller domain values are assigned
higher values for the measured quantities; (2) “Normal” resembles a bell-shaped normal distribution, with
higher (lower) values at the center (endpoints) of the domain; and (3) “PipeOrgan” assigns higher (lower)

data values to the endpoints (middle) of the domain. In all cases, the centers of the M distributions are shifted
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and placed in random points of the domain. We also consider several different combinations of used zipfian
distributions. In the "AlINoPerm” combination, all of the zipfian distributions have the “NoPerm” shape.
Similarly, in the “AlINormal” combination, allM of the zipfian distributions have the “Normal” shape.
Finally, in the “Mixed” combination, 1/3 of thé/ distributions have the “NoPerm” shape, 1/3 have the
“Normal” shape, and the remaining had the “PipeOrgan” shape. The results presented in this section are
indicative of the multiple possible combinations of our parameters.

In our experimental study we also use real-life data sets Wéather data set contains meteorological
measurements obtained by a station at the university of Washington (data fduttyt /Atvww-k12.-
atmos.washington.edu/k12/grayskies ). Thisis a one-dimensional data set for which we extract
the following 6 measured quantities: wind speed, wind peak, solar irradiance, relative humidity, air temper-
ature and dewpoint temperature. TiRlone data set includes the total number of long distance calls per
minute originating from 6 states (CA, GA, NJ, NY, TX, WA).

Approximation Error Metric. In all cases, we focus on the maximum relative error of the approximation,
since it can provide guaranteed error-bounds for the reconstruction of any individual data value, and is the
error metric that our algorithms try to minimize.

Comparing PODP and GreedyRel. We now evaluate the accuracy and running time of GineedyRel
algorithm in comparison to the PODP algorithm. In Figures 4, 5 and 6 we plot the running time and the
maximum and average relative errors, correspondingly, for the two algorithms and for the Weather data set
when we vary the synopsis space from 10 to 50 units of space (recall that the unit of space is the size of
each data value, i.e., sizeof(float)). In this experiment we only use from the Weather data the three most
difficult to approximate measures. The domain size of the data set is set to 128. Note that in all our plots
depicting the running time of algorithms, the Y axis is logarithmic. Clearly, the running time of the PODP
algorithm does not scale well with the size of the data synopsis, even for such a small data set. For example,
for a synopsis size of 50 space units, the PODP algorithm requires more than 2 hours to complete, while
the GreedyRel algorithm required just a few milliseconds. However, as Figures 5 and 6 demonstrate, the
GreedyRel algorithm provides near-optimal solutions in all cases.

In Figure 7 we present the corresponding running times for both algorithms, as the domain size is
increased from 64 to 512. From the weather data set we again extract just three measures, and set the
synopsis space to always be 5% of the size of the input. Again, the running time performance of PODP

is disappointing. For a domain size of 512, its running time exceeds 14 hours.  Finally, as Figure 8
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demonstrates, the running time of PODP increases exponentially with the number of the data set measures.
Note that for data sets with 4 or more measures, the PODP does not terminate within one day. It is easy to
see that the PODP algorithm cannot be used but for toy-like data sets. On the other ha@detlyRel
algorithm provides near-optimal solutions in all tested cases, while exhibiting small running times.

Running Time Comparison of GreedyRel and IndDP. We now comparéreedyRel andIndDP in terms

of their running time. In Figure 9 we plot the running times of théDP and GreedyRel algorithms for

the Weather data set (all 6 measures were included) as the domain size is increased from 128 to 524288.
The synopsis size is always set to 5% of the input data. Iid#i@P algorithm is considerably slower than

the GreedyRel algorithm (3 orders of magnitude slower for domain size 131,072), with their difference
increasing rapidly with the increase of the domain size. Note that whil&teedyRel algorithm scales

linearly with the increase in the domain size (doubling the domain size doubles the running tinheDthe
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algorithm grows much faster every time the domain size is doubled. This is of course consistent with the
running time complexity of théndDP algorithm (see Section 2), since when the domain size is doubled,
the synopsis space is doubled as well. Moreover, the large memory requireMent8¢)) of the IndDP
algorithm prevented it from terminating for domain sizes larger than 131,072 (the main memory of our
machine was 512MB). Thus, the linear scalability of GreedyRel algorithm to the domain size, in terms
of both its running time and its memory requirements, constitutes it as the only viable technique (except
for small data sets) for providing tight error guarantees, not only on multi-measure data sets, but also on
single-measure data sets, since bothGneedyRel andIndDP algorithms scale in a similar way for such
data sets. Moreover, as we will demonstrate in this sectionGthedyRel algorithm, which utilizes the
extended wavelet coefficients to store the selected coefficient values, also outperformd®Ehalgorithm
in terms of the obtained accuracy of the data synopsis. The improved accuracy is attributed to the improved
storage utilization achieved by the use of extended wavelet coefficients, and the ability@fedyRel
algorithm to exploit the underlying storage dependencies.
Accuracy Comparison of GreedyRel and IndDP in Synthetic Data Sets. For our synthetic data sets,
we use a domain size of 256, and present the obtained accuracy in terms of the maximum error of the
approximation for theGreedyRel andIndDP algorithms and six representative combinations of synthetic
data sets. These six combinations arise from considering zipfian distributions with skew 0.6 and 1, along
with all the other possible combinations of the used zipfian distributions (“AllNoPerm”, “AllNormal” and
“Mixed”). The synthetic data sets in this section contain 6 measures/distributions.

We first consider the six possible combinations arising from distributions having skew equal to 1. In

Figures 10, 11 and 12 we plot the maximum relative errors forGteedyRel andIndDP algorithms, as
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the synopsis space is varied from 2% to 10% of the input data size, and for the “Mixed”,"AlINoPerm” and
“AllNormal” (in the specific order) selection of zipfian distribution shapes. Note that the Y axis for the
“AlINoPerm” and “Mixed” cases is logarithmic, due to the large maximum errors observed in this case,
mainly by thelndDP algorithm. Intuitively, this occurs because the shifting of some distribution centers in
this case results in the largest values of the data set being adjacent to the smallest values, thus requiring sev-
eral coefficient values to capture this large difference of the values. As we can seesdhigRel algorithm
produces more accurate results thanithi®P algorithm, with the differences being more significant in the
“AlINoPerm” and “Mixed” cases (recall that the Y axis is logarithmic in these 2 cases). Even though none
of the techniques produces tight error bounds for such a large data skew value and for small data synopses,
the improvements achieved by tleeedyRel algorithm are very significant in each combination of used
zipfian distributions. For each combinatidBreedyRel produces, correspondingly, up to 6.1, 5.7 and 3.5
times smaller maximum relative errors thadDP.

Similar results are also observed for the six combinations of synthetic data sets, arising from setting
the skew of the distributions to 0.6. In Figures 13, 14 and 15 we show the corresponding results for the

“Mixed”, “AlINoPerm” and “AlINormal” combinations of used data distributions (note the logarithmic Y
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Figure 16: Weather Data Set
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Phone Data Set, 6 Measures, Domain Size = 1024
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Figure 17: Phone Data Set

axis in the “AlINoPerm” and “Mixed” cases). The maximum relative errors in this case are significantly
smaller for all methods. However, tl@eedyRel algorithm is still able to provide substantial more tight

error bounds, up to 6.9, 2.7 and 2.3 times smaller thdbP.

Accuracy Comparison of GreedyRel and IndDP in Real Data Sets. In Figures 16 and 17 we plot the
maximum relative errors, respectively, for the Weather and Phone data sets, as we vary the size of the
synopsis, and for domain sizes of 2048 and 1024, respectively. As we can see, the beneftsesidyiel
algorithm continue to be significant in all cases. In the Weather data s&rdhdyRel algorithm provided

up to 3.5 times tighter error bounds than théDP algorithm (and commonly at least a 2-fold improvement),

while in the Phone data the corresponding error bounds were up to 1.75 times tighter.

5 Conclusions

We have proposed novel, effective techniques for building probabilistic wavelet synopses over multi-measure
data sets. Our techniques seek to minimize, given a storage constraint, the maximum relative error of re-
constructing any data value among all measures. We have demonstrated the difficulty of the problem com-
pared to the single-measure case, and have proposed a partial-order dynamic programming (PODP) solution.
Given the extremely high time and space complexities of PODP, we have also introduced a very fast and
scalable approximate algorithm, which greedily allocates synopsis space based on the idea of marginal error
gains. Our experimental evaluation has demonstrated thad@eryRel algorithm exhibits near-optimal
solutions, while at the same time outperforming prior techniques based on optimizing each measure indepen-

dently. Perhaps more importanttyteedyRel constitutes the only viable solution, even in the single-measure
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case, for constructing accurate probabilistic wavelet synopses over large data sets.
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Appendix

Pseudocode foiGreedyRel Algorithm

A pseudocode description of oGreedyRel algorithm is depicted in Figure 18. The algorithm is straight-
forward, based on the discussion of Section 3.3. Note that in the later steps of the algorithm, the available
synopsis space may become smaller thatSpace|i, jmay; In this case, rather than recursing on both child
subtrees of a node (wheh;;,ax = 2), GreedyRel first recurses on the child causing the maximum estimated

squaredNsE, and then recurses on the other child with any remaining space (Steps 12rdv@sk).

Extensions to Multi-Dimensional Wavelets

We now discuss the key ideas for extending our techniques to multi-dimensional data. For a detailed discus-
sion of multi-dimensional wavelets we refer the reader to the analysis presented in [9] DFtingensional

data set, the error-tree structure becomes significantly more complex. Each node in the error tree (besides
the root node) corresponds tesatof (at most)2” — 1 wavelet coefficients with the same support region,

but different signed contributions for each region quadrant. Furthermore, each error-tree(hedigles

the root) may have up ®” children, corresponding to the quadrants of the common support region for all

coefficients in:.

Extending PODP. Our PODP algorithm for multi-dimensional data sets generalizes the corresponding
multi-dimensionalMinRelVar strategy in [9], in a way analogous to the one-dimensional case. In a nut-
shell, PODP needs to consider, at each internal node of the error tree, the optimal allocation of space to
the < 2P — 1 wavelet coefficients of the node and ks22 child subtrees. The extension of PODP to
multi-dimensional data sets is therefore a fairly simple adaptation of the multi-dimensiorRg|var al-

gorithm. However, as discussed in Section 3.2, PODP needs to maintain, for eachanddsach possible

space allotmenB, acollectionR[i, B] of incomparable solutions. This requirement, once again, makes the

time/space requirements of PODP significantly higher than thosin®felVar.

Extending GreedyRel. The first modification involved in extending o@reedyRel algorithm to multi-
dimensional data sets has to do with the computati@gr[af;j], which now involves examining the estimated
NSE? values over 27 child subtrees and maintaining the maximum such estimateS (i¢tdenote the set

of the< 2P — 1 coefficients of nodé, and letiy, . .. ,ip be the indexes af's child nodes in the error tree.
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Then,

Var(e; vi;) o
2enes Normj(z-l,j]) +Glix, 7]
max L. i< N
S - Var(es;,viz) S
G[%]} - ches(z‘) W&p;) + G[“ﬂ]]
0 i>N

The only other necessary modification involves the estimation of marginal error gains at each node. In
Section 3.3, we consider a total of three possible choices for forpuit&gt|[s, j| for each (node, measure)
combination. Now, each node has uptd child subtrees, resulting in a total 2P + 1 possible choices of
forming potSet[i, j]. The first choice is to increase the retention probability for meagwofeone of the<
2P — 1 coefficients in nodé. In this case, we simply include potSet[i, 5] the coefficient in nodé that is
expected to exhibit the largest marginal gain for meagufor each of the remainir’ possible choices
of forming potSet][i, j], thek-th choice { < k < 2P) considers the marginal gain of increasing the retention
probabilities in the child subtrees through which thenaximum NSE? values occur, as estimated in the
right-hand side of the above equation €fi, j|. At each node, the computation@fyt|i, j], potSpacei, j],
andch;; incurs a worst-case time cost 6f(D x 2P) due to the possible ways of forminmtSet[i, j],
and the required sorting operation ¥ quantities. LetN denote the total number of cells in the multi-
dimensional data array andax D denote the maximum domain size of any dimension. Then, the running
time complexity ofGreedyRel becomes)(D x 2P x (NM+ BMqlogmazD)). Note, of course, that in
most real-life scenarios using wavelet-based data reduction, the number of dimensions is typically a small
constant (e.g.4-6) and, most importantly, that the number of tuples can be exponett@ )) to the

maximum domain sizéV.

Improving the complexity of GreedyRel. In the wavelet decomposition process of a multi-dimensional
data set, the number of non-zero coefficients produced may be significantly larger than the nurober
non-zero data values. In [9] the authors proposed an adaptive coefficient thresholding procedure that retains
at mostN, wavelet coefficientavithout introducing any reconstruction bias. Using this procedure, the
authors in [9] demonstrated how thenRelvar algorithm can be modified so that its running time and space
complexities have a dependencydp, and not onV (i.e., the total number of cells in the multi-dimensional

data array). It would thus be desirable if tBeeedyRel algorithm could be modified in a similar way, in
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order to decrease its running time and space requirements.

Let V, denote the number of error tree nodes that contain non-zero coefficient values, possibly after the
afore-mentioned thresholding process. We will first illustrate that for any node in the error tree containing
zero coefficient values, and which has at most one node in its subtree that does contain non-zero coefficient
values, no computation is needed. Equivalently, our algorithm will need to coraputg,; values in only:

() nodes containing non-zero coefficient values; or (b) nodes that contain zero coefficient values, but which
are the least common ancestor of at least two non-zero tree nodes beneath it in the error tree.

Let £ be a node that is the only node in its subtree with non-zero coefficient values. Obviously we do
not need to consider th&, G, values in the descendant nodes:psince they will be zero. An important
observation is that for any ancestor jothat contains just a single non-zero error tree beneath it (which
is certainly the subtree of nodg, no computation is necessary, since the’,,; values ofk can always
be used instead. The only additional computation is needed in anyrneith zero-coefficients that has at
least two non-zero error tree nodes beneath it in the error tree (in different subtrees). In this d@s€ the
values of node: needs to be calculated, using as input the’,,; values of its non-zero descendant tree
nodes. Itis easy to demonstrate that at midst- 1 such nodes may exist. Thus, tBesedyRel algorithm
will need to calculate thé&, G, values in at mosD (2N, — 1)=0O(N) nodes, thus yielding running time
and space complexities 6f(D x 2P x (N, M+ BMdlogmaxD)) andO(N, M), respectively. We here
need to note that in order to implement our algorithm as described here, we need to sarctedficients
based on their postorder numbering in the error tree. This requires an addi#igNalog V) time for the
sorting process. However, this running time is offen significantly smaller than the benefits of having running

time and space dependencies based/girather than onV.
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procedure GreedyRel(W 4, B, q, S)

Input: N x M arrayW, of Haar wavelet coefficients; space constrahiguantization parametey > 1;
vector of per-measure sanity bourgls

Output: Array y of retention probabilitieg;; for all N x M coefficients.

begin

1. fori:=N — 1downto0do //traverse error tree bottom-up

2 for j:=1to M do

3 Yij =0

4. ComputeG|[i, j], Gpotli, j], potSpace[i, j], andch;;

5. endfor

6. endfor

7. spacelLeft=h

8. while (spaceLeft>- 0) do

9.  jmax:=argmax;{G]0, j]}

10. occupiedSpace maverse(0, jmax d, ¥, Spaceleft)

11. spaceleft ;= spaceleft - occupiedSpace

12. if (occupiedSpace 6) then return(y) //not enough space

13. endwhile

14. return (y)

end

proceduretraverse(i, j, 4, y, spacelLeft)

Input: Index: of error-tree node; measujechosen for space allocation; quantization paramgter
arrayy of current retention probabilities; maximum synopsis space to allocate (spacelLeft).

Output: Space allocated to tHg; subtree at this step.

begin

1. allocatedSpace &

2. if (Chz‘j =1 ) then

3.  neededSpace & (E[|EC;|],1/q) /I see Equation (4)
4 if (neededSpace spaceleft Yhen

S. vij =y +1/4

6 allocatedSpace := neededSpace

7 endif

8. elseif(ch;; =2)then

9. Find indexk of child subtree through whict[4, j] occurs
10. allocatedSpace maverse(k, j, 4, y, SpacelLeft)

11. else

12.  Find indext of child subtree through whict[i, j] occurs
13.  Let! be the index of the other subtree

14. allocatedSpace mwaverse(k, j, 4, y, SpacelLeft)

15. if ( spaceleft> allocatedSpacethen

16. allocatedSpace +raverse(l, j, q, v, Spaceleft-allocatedSpace)
17. endif

18. Recompute the node’s, Gy, potSpace, andch values

19. return (allocatedSpace )

end

Figure 18:GreedyRel Algorithm Pseudocode.
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