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Abstract

Several studies have demonstrated the effectiveness of Haar wavelets in reducing large amounts of

data down to compactwavelet synopsesthat can be used to obtain fast, accurate approximate query an-

swers. While Haar wavelets were originally designed for minimizing the overall root-mean-squared (i.e.,

L2-norm) error in the data approximation, the recently-proposed idea ofprobabilistic wavelet synopses

also enables their use in minimizing other error metrics, such as the relative error in individual data-

value reconstruction, which is arguably the most important for approximate query processing. Known

construction algorithms for probabilistic wavelet synopses employ probabilistic schemes for coefficient

thresholding that are based on optimal Dynamic-Programming (DP) formulations over the error-tree

structure for Haar coefficients. Unfortunately, these (exact) schemes can scale quite poorly for large

data-domain and synopsis sizes. To address this shortcoming, in this paper, we introduce a novel, fast

approximation schemefor building probabilistic wavelet synopses over large data sets. Our algorithm’s

running time is near-linear in the size of the data-domain (even for very large synopsis sizes) and pro-

portional to1/ε, whereε is the desired approximation guarantee. The key technical idea in our approx-

imation scheme is to make exact DP formulations for probabilistic thresholdingmuch “sparser”, while

ensuring a maximum relative degradation ofε on the quality of the approximate synopsis, i.e., the de-

sired approximation error metric. Extensive experimental results over synthetic and real-life data clearly

demonstrate the benefits of our proposed techniques.
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1 Introduction

Approximate query processing over compact, precomputed data synopses has attracted a lot of interest re-

cently as a viable solution for dealing with complex queries over massive amounts of data in interactive

decision-support and data-exploration environments. For several of these application scenarios, exact an-

swers are not required, and users may in fact prefer fast, approximate answers to their queries. Examples

include the initial, exploratory drill-down queries in ad-hoc data mining systems, where the goal is to quickly

identify the “interesting” regions of the underlying database; or, aggregation queries in decision-support sys-

tems where the full precision of the exact answer is not needed and the first few digits of precision suffice

(e.g., the leading digits of a total in the millions or the nearest percentile of a percentage) [1, 2, 5, 11].

Background and Earlier Results. Haar waveletsare a mathematical tool for the hierarchical decomposi-

tion of functions with several successful applications in signal and image processing [12, 17]. A number of

recent studies has also demonstrated the effectiveness of the Haar wavelet decomposition as a data-reduction

tool for database problems, including selectivity estimation [13] and approximate query processing over

massive relational tables [2, 18] and data streams [8, 14]. Briefly, the key idea is to apply the decomposition

process over an input data set along with a thresholding procedure in order to obtain a compact data synopsis

comprising of a selected small set ofHaar wavelet coefficients. The results of the recent research studies

of Matias, Vitter and Wang [13, 18], Chakrabarti et al. [2, 3], and others [4, 16] have demonstrated that fast

and accurate approximate query processing engines can be designed to operate solely over such compact

wavelet synopses.

Until very recently, a major criticism of wavelet-based approximate query processing techniques has

been the fact that unlike, e.g., random samples, conventional wavelet synopses (such as those used in all the

above-cited studies) cannot provide useful guarantees on the quality of approximate answers. The problem

here is that coefficients for such conventional synopses are typically chosen in a greedy fashion in order to

optimize the overall root-mean-squared (i.e.,L2-norm) error in the data approximation. However, as pointed

out by Garofalakis and Gibbons [6, 7], conventional,L2-optimized wavelet synopses can result in approx-

imate answers of widely-varying quality (even within the same data set) and approximation errors that are

heavily biased towards certain regions of the underlying data domain. Their proposed solution, termedprob-

abilistic wavelet synopses[6, 7], employs the idea ofrandomized coefficient roundingin conjunction with

Dynamic-Programming-basedthresholding schemes specifically tuned for optimizing themaximum relative
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error in the approximate reconstruction of individual data values. By optimizing for relative error (with a

sanity bound), which is arguably the most important metric for approximate query answers, probabilistic

wavelet synopses offer drastic reductions in the approximation error over conventional deterministic tech-

niques and, furthermore, enable unbiased data reconstruction with meaningful, non-trivialerror guarantees

for reconstructed values [6, 7]. While the use of the traditional Haar wavelet decomposition gives the user

no knowledge on whether a particular answer is highly-accurate or off by many orders of magnitude, the use

of probabilistic wavelet synopses provides the user with an interval where the exact answer is guaranteed to

lie into.

Our Contributions. The Dynamic-Programming (DP) algorithms of [6, 7] for constructing probabilistic

wavelet synopses are based on anoptimal, continuous DP formulationover the error-tree structure for Haar

coefficients, in conjunction with the idea ofquantizingthe possible choices for synopsis-space allocation

using an integer parameterq > 1 (in other words, fractional space is allotted to coefficients in multiples

of 1/q). Unfortunately, the problem with these exact (modulo the quantization) DP techniques is that they

can scale poorly for large data-domain and synopsis sizes – with a domain size ofN and synopsis storage

of B, the worst-case running time of the optimized algorithm presented in [7] (which uses binary-search

to optimize the DP search) isO(Nq2B log(qB)), which becomesO(N2q2 log(Nq)) for large synopsis

sizesB = Θ(N). Our own experience with the DP schemes in [6, 7] has demonstrated that the times

required for building a probabilistic wavelet synopsis can increase very rapidly for large domain sizesN

and synopsis sizesB; this certainly raises some concerns with respect to the applicability of probabilistic

wavelet techniques on massive, real-life data sets. Note that large domain sizes in the range of105–107 are

not at all uncommon, e.g., for massive time-series data sets where one or more readings/measurements are

continuously recorded on every time-tick.

To address these concerns, we propose a novel, fastapproximation schemefor building probabilistic

wavelet synopses over large data sets. Given a quantization parameterq and a desired approximation factor

ε, our algorithm can be used to build a probabilistic synopsis ofany sizeB ≤ N in worst-case time of

O(Nq log N log q log R/ε) (whereR is roughly proportional to the maximum absolute Haar-coefficient

value in the decomposition), while guaranteeing that the quality of the final solution is within a factor of

(1 + ε) of that obtained by the (exact) techniques of Garofalakis and Gibbons [6, 7] for the same problem

instance. In a nutshell, the key technical idea in our proposed approximation scheme is to make the original
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DP formulations in [6, 7]much “sparser”, while ensuring a maximum relative degradation of(1 + ε) on

the quality of the approximate solution, i.e., the desired maximum error metric. This is accomplished by

restricting the DP search to a carefully-chosen, logarithmically-small subset of“breakpoints” that cover the

entire range of possible space allotments within the required error guarantee. Our results clearly validate

our approach, demonstrating that our algorithm (1) exhibits significantly smaller running times, often by

more than one or even two orders of magnitude, than the exact DP solution; and, (2) typically produces

significantly tighter approximations than the specified(1 + ε) factor.

Roadmap. The remainder of this paper is organized as follows. Section 2 gives background material

on wavelets, as well as conventional and probabilistic wavelet synopses. In Section 3, we discuss our

approximation scheme for constructing probabilistic wavelet synopses in detail. Section 5 describes the

results of our empirical study and, finally, Section 6 gives some concluding remarks.

2 Preliminaries

In this section we provide a brief overview of some techniques and algorithms, developed in prior work, that

are utilized as helpful tools by our thresholding algorithms.

The Haar Wavelet Transform. Wavelets are a useful mathematical tool for hierarchically decomposing

functions in ways that are both efficient and theoretically sound. Broadly speaking, the wavelet decomposi-

tion of a function consists of a coarse overall approximation along with detail coefficients that influence the

function at various scales [17]. Suppose that we are given the one-dimensional data vectorA containing the

N = 8 data valuesA = [2, 2, 0, 2, 3, 5, 4, 4]. The Haar wavelet transform ofA can be computed as follows.

We first average the values together pairwise to get a new “lower-resolution” representation of the data with

the following average values[2, 1, 4, 4]. In other words, the average of the first two values (that is,2 and

2) is 2, that of the next two values (that is,0 and2) is 1, and so on. Obviously, some information has been

lost in this averaging process. To be able to restore the original values of the data array, we need to store

somedetail coefficients, that capture the missing information. In Haar wavelets, these detail coefficients are

simply the differences of the (second of the) averaged values from the computed pairwise average. Thus, in

our simple example, for the first pair of averaged values, the detail coefficient is0 since2 − 2 = 0, for the

second we again need to store−1 since1− 2 = −1. Note that no information has been lost in this process

– it is fairly simple to reconstruct the eight values of the original data array from the lower-resolution array
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containing the four averages and the four detail coefficients. Recursively applying the above pairwise aver-

aging and differencing process on the lower-resolution array containing the averages, we get the following

full decomposition:

Resolution Averages Detail Coefficients
3 [2, 2, 0, 2, 3, 5, 4, 4] —
2 [2, 1, 4, 4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [-5/4]

Thewavelet transform(also known as thewavelet decomposition) of A is the single coefficient repre-

senting the overall average of the data values followed by the detail coefficients in the order of increasing

resolution. Thus, the one-dimensional Haar wavelet transform ofA is given byWA = [11/4, −5/4, 1/2, 0,

0, −1, −1, 0]. Each entry inWA is called awavelet coefficient. The main advantage of usingWA instead

of the original data vectorA is that for vectors containing similar values most of the detail coefficients tend

to have very small values. Thus, eliminating such small coefficients from the wavelet transform (i.e., treat-

ing them as zeros) introduces only small errors when reconstructing the original data, resulting in a very

effective form of lossy data compression [17]. Furthermore, the Haar wavelet decomposition can also be

extended tomulti-dimensionaldata arrays through natural generalizations of the one-dimensional decom-

position process described above. Multi-dimensional Haar wavelets have been used in a wide variety of

applications, including approximate query answering over complex decision-support data sets [2, 18].

Error Tree and Conventional Wavelet Synopses.A helpful tool for exploring the properties of the Haar

wavelet decomposition is theerror treestructure [13]. The error tree is a hierarchical structure built based

on the wavelet transform process. Figure 1 depicts the error tree for our example data vectorA. Each

internal nodeci (i = 0, . . . , 7) is associated with a wavelet coefficient value, and each leafdi (i = 0, . . . , 7)

is associated with a value in the original data array; in both cases, the indexi denotes the positions in the

data array or error tree. For example,c0 corresponds to the overall average ofA. The resolution levelsl

for the coefficients (corresponding to levels in the tree) are also depicted. We use the terms “node” and

“coefficient” interchangeably in what follows.

Given a nodeu in an error treeT , let path (u) denote the set of all proper ancestors ofu in T (i.e.,

the nodes on the path fromu to the root ofT , including the root but notu) with non-zero coefficients. A

key property of the Haar wavelet decomposition is that the reconstruction of any data valuedi depends only
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Figure 1: Error tree for our data arrayA (N = 8).

M∗[i, βi]=



min
yi∈(0,min{1,βi}];
bL∈[0,βi−yi]

max


Var(i,yi)
Norm(2i) + M∗[2i, bL] ,

Var(i,yi)
Norm(2i+1) + M∗[2i + 1, βi − yi − bL]


 if i<N , ci 6=0,

andβi > 0

minbL∈[0,βi] { max{M∗[2i, bL] , M∗[2i + 1, βi − bL] } } if i < N and
ci = 0

0 if i ≥ N
∞ otherwise

(1)

on the values of coefficients onpath (di); more specifically, we havedi =
∑

cj∈path (di) δij · cj , where

δij = +1 if di is in the left child subtree ofcj or j = 0, andδij = −1 otherwise. For example, in Figure 1,

d4 = c0 − c1 + c6 = 11
4 − (−5

4)+ (−1) = 3. Thesupport regionfor a coefficientci is defined as the set

of (contiguous) data values thatci is used to reconstruct; the support region for a coefficientci is uniquely

identified by its indexi.

Given a limited amount of storage for building awavelet synopsisof the input data arrayA, a threshold-

ing procedure retains a certain numberB � N of the coefficients as a highly-compressed approximate rep-

resentation of the original data (the remaining coefficients are implicitly set to0). Conventional coefficient

thresholding is a deterministic process that seeks to minimize the overall root-mean-squared error (L2 error

norm) of the data approximation [17] by retaining theB largest wavelet coefficients inabsolute normalized

value[17]. L2 coefficient thresholding has also been the method of choice for the bulk of existing work on

Haar-wavelets applications in the data-reduction and approximate query processing domains [2, 13, 14, 18].

Probabilistic Wavelet Synopses.Unfortunately, wavelet synopses optimized for overallL2 error using the

above-described process may not always be the best choice for approximate query processing systems. As

observed in a recent study by Garofalakis and Gibbons [6, 7], such conventional wavelet synopses suffer

from several important problems, including the introduction of severe bias in the data reconstruction and

wide variance in the quality of the data approximation, as well as the lack of non-trivial guarantees for
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individual approximate answers. To address these shortcomings, their work introducesprobabilistic wavelet

synopses, a novel approach for constructing data summaries from wavelet-transform arrays. In a nutshell,

their key idea is to apply a probabilistic thresholding process based onrandomized rounding[15], that

randomly rounds coefficients either up to a largerroundingvalue or down to zero, so that the value of each

coefficient is correcton expectation. More formally, each non-zero wavelet coefficientci is associated with

a rounding valueλi and a correspondingretention probabilityyi = ci
λi

such that0 < yi ≤ 1, and the value

of coefficientci in the synopsis becomes a random variableCi ∈ {0, λi}, where,

Ci =

 λi with probability yi

0 with probability 1− yi.

In other words, a probabilistic wavelet synopsis essentially “rounds” each non-zero wavelet coefficientci

independentlyto eitherλi or zero by flipping a biased coin with success probabilityyi. Note that the above

rounding process isunbiased; that is, the expected value of each rounded coefficient is E[Ci] = λi · yi+

0 · (1− yi) = ci, i.e., the actual coefficient value, while its variance is

Var(i, yi) = Var(Ci) = (λi − ci) · ci =
1− yi

yi
· c2

i (2)

and the expected size of the synopsis is simply E[|synopsis|] =
∑

i|ci 6=0 yi =
∑

i|ci 6=0
ci
λi

. Thus, since each

data value can be reconstructed as a simple linear combination of wavelet coefficients, and by linearity

of expectation, it is easy to see that probabilistic wavelet synopses guarantee unbiased approximations of

individual data values as well as range-aggregate query answers [6].

Garofalakis and Gibbons [6, 7] propose several different algorithms for building probabilistic wavelet

synopses. The key, of course, is to select the coefficient rounding values{λi} such that some desired er-

ror metric for the data approximation is minimized while not exceeding a prescribed space limitB for the

synopsis (i.e., E[|synopsis|] ≤ B). Their winning strategies are based on formulating appropriateDynamic-

Programming (DP)recurrences over the Haar error-tree that explicitly minimize either (a) the maximum

normalized standard error (MinRelVar), or (b) the maximum normalized bias (MinRelBias), for each recon-

structed value in the data domain. As explained in [6, 7], the rationale for these probabilistic error metrics

is that they are directly related to themaximum relative error(with an appropriatesanity boundS)1 in the

1The role of the sanity bound is to ensure that relative-error numbers are not unduly dominated by small data
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approximation of individual data values based on the synopsis; that is, both theMinRelVar andMinRelBias

schemes try to (probabilistically) control the quantitymaxi{ |d̂i−di|
max{|di|,S}}, whered̂i denotes the data value

reconstructed based on the wavelet synopsis. Note, of course, thatd̂i is again arandom variable, defined

as the±1 summation of all (independent) coefficient random variables onpath (di). Bounding the max-

imum relative error in the approximation also allows for meaningfulerror guaranteesto be provided on

reconstructed data values [6, 7].

As an example, Equation (1) depicts the DP recurrence in [6, 7] for minimizing the maximum squared

Normalized Standard Error (NSE2) in the data reconstruction, defined as

max
i

NSE2(d̂i) = max
i

Var(d̂i)
max{d2

i , S2}
,

where Var(d̂i) =
∑

cj∈path (di) Var(j, yj). M∗[i, βi] here denotes the minimum maximum value of the

squaredNSE (i.e.,NSE2) among all data values in the subtree of the error-tree rooted at coefficientci assum-

ing a space budget ofβi, and Norm(i) = max{dmin(i)2, S2}, wheredmin(i) is the minimum absolute data

value underci’s subtree, is a normalization term for that subtree. (Indices2i and2i + 1 in the recurrence

correspond to the left and right child (respectively) ofci in the error-tree structure (Figure 1).) Intuitively,

the DP recurrence in Equation (1) states that, for a given space budgetβi atci, the optimal fractional-storage

allotments{yi} and the corresponding maximumNSE2 are fixed by minimizing the larger of the costs for

paths viaci’s two child subtrees (including the root in all paths), where the cost for a path via a subtree is the

sum of: (1) the variance penalty incurred atci itself, assuming a setting ofyi, divided by the normalization

term for that subtree, and (2) the optimal cost for the subtree, assuming the given space budget. This min-

imization, of course, is over all possible values ofyi and, given a setting ofyi, over all possible allotments

of the remainingβi − yi space “units” amongst the two child subtrees ofci. Of course, ifci = 0 then no

space budget needs to be allocated to nodei, which results in the simpler recurrence in the second clause

of Equation (1). Finally, data-value nodes (characterized by indicesi ≥ N , see Figure 1) cost no space and

incur no cost, and the “otherwise” clause handles the case where we have a non-zero coefficient but zero

budget (ci 6= 0 andβi = 0).

As demonstrated in [6, 7], the DP recurrence in Equation (1) characterizes the optimal solution to the

maximumNSE2 minimization problem for the case ofcontinuousfractional-storage allotmentsyi ∈ (0, 1]

values [10, 18].
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(modulo certain technical conditions that may require small “perturbations” of zero coefficients [6, 7]). A

similar DP recurrence can also be given for the maximum normalized bias metric. TheirMinRelVar and

MinRelBias algorithms then proceed byquantizing the solution space; that is, they assume the storage

allotment variablesyi andbL in Equation (1) to take values from a discrete set of choices corresponding to

integer multiples of1/q, whereq > 1 is an input integer parameter to the algorithms. (Larger values ofq

imply results closer to the optimal, continuous solution.) Furthermore, bothMinRelVar andMinRelBias cap

the variance of a coefficientc atc2, thus allowing for zero-space allotments to unimportant coefficients (this

also implies that non-zero allotments of size≤ 1
2 are useless, as they result in larger variance (Equation (2))

while utilizing more space).The running time of their (quantized)MinRelVar andMinRelBias algorithms is

O(Nq2B log(qB)) with an overall space requirement ofO(NqB) (and an in-memory working-set size of

O(qB log N)); furthermore, their techniques also naturally extend to multi-dimensional data and wavelets,

with a reasonable increase in time and space complexity [7]. Experimental results over synthetic and real-life

data in [6, 7] have demonstrated the superiority ofMinRelVar andMinRelBias probabilistic synopses as an

approximate query answering tool over conventional wavelet synopses. In our discussion, we useM∗
q [i, βi]

to denote the result of the quantized (exact) algorithms of [6, 7] (e.g., maximumNSE2 for MinRelVar) for

the error subtree rooted at coefficientci assuming a space budget ofβi.

3 Our Approximation Scheme

In this section, we present our efficient approximation scheme, termedε-ApproxRV, for constructing prob-

abilistic wavelet synopses over large data sets. Ourε-ApproxRV is a guaranteed(1 + ε) approximation

algorithm for theMinRelVar scheme of Garofalakis and Gibbons [6, 7]; that is, it focuses on minimizing

the maximumNSE2 in the data reconstruction. Our techniques can easily be extended to handle other er-

ror metrics, such as the maximum normalized bias employed byMinRelBias [6, 7]. We here present our

ε-ApproxRV algorithm for the case of one-dimensional Haar wavelets, and defer the extensions to multiple

dimensions for the full paper.

3.1 The One-Dimensionalε-ApproxRV Algorithm

Consider the error-tree structure for a one-dimensional Haar wavelet decomposition, and letR denote the

maximum absolute normalized valueof any coefficient in the tree, defined as
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R = max
i

|ci|
max{dmin(i), S}

,

where, as previously,dmin(i) denotes the minimum absolute data value in the subtree of nodei. (Typi-

cally, e.g., for frequency-count vectors, the denominator in the above expression is> 1, which implies

that R is in the order of the maximum absolute coefficient value.) Ourε-ApproxRV algorithm runs in

O(Nq log N log q log R
ε ) time and computes an approximate solution for all possible values of the synopsis

space budgetB ≤ N ; the corresponding time complexity of the exactMinRelVar algorithm (forB = Θ(N))

is significantly higher:O(N2q2 log(Nq)) [6, 7]. Again, the key idea in ourε-ApproxRV algorithm is to

speed up the DP search by making it much “sparser”2 – in a nutshell, our approximate “sparse” DP al-

gorithm will only search over a few possible space allotments for each error subtree, which are carefully

chosen to guarantee a maximum deviation of(1 + ε) from the optimal solution. Ourε-ApproxRV algorithm

proceeds in a bottom-up fashion over the input error tree – to simplify the exposition in this section, we

assume that levels in the error tree are numbered bottom-up, with leaf-node coefficients at level0 and the

root (overall average) at levellog N − 1.

Fix a quantization parameterq, and letMq [v, βv] denote the approximate maximum squaredNSE(NSE2)

computed byε-ApproxRV for any data value in the error subtree rooted at nodev. As earlier,M∗
q [v, βv] is

the corresponding optimalNSE2 value computed byMinRelVar. Note that, for any nodev, theM∗
q [v, βv]

values are clearlymonotonically decreasingin βv; that is,M∗
q [v, x] ≤ M∗

q [v, y] for x > y [7].

For the base case, consider a leaf-node coefficientv (at level0) – clearly, in this case

M∗
q [v, βv] =

Var(cv,min{1, βv})
min{Norm(2v), Norm(2v + 1)}

i.e., the maximum normalized variance of the corresponding random variable with a success probability

of βv (values ofβv larger than 1 obviously result in zero normalized variance). It is easy to see that all

possible values forM∗
q [v, βv], for anyβv value, can be computed in timeO(q), whereq is the designated

quantization parameter. Out of theseO(q) variance values and possible allotments tocv, our ε-ApproxRV

algorithm picks a subset of allotmentsb1 > . . . > bh such that: (1) for each allotmentx ∈ [bi, bi−1) we have

M∗
q [v, bi] ≤ (1 + ε)M∗

q [v, x]; and, (2)b1 throughbh cover the entire possible range of space allotments to

cv, i.e.,b1 = 1 andbh = 0. This can obviously be done inO(q) time by simply going over allM∗
q values

2Guha et al. [9] also discuss sparse DP algorithms in an entirely different context, namely in building approximate V-optimal
histograms over data streams.
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and selectingbi+1 as the first allotment≤ bi such thatM∗
q [v, bi+1] > (1+ ε)M∗

q [v, bi]. Since the maximum

normalized variance for a coefficient valuecv is at most (see Section 2) c2v
min{Norm(2v),Norm(2v+1)} ≤ R2, is

easy to see that the numberh of allotment “breakpoints” selected in this fashion is at mostO(log1+ε R2) =

O( log R
log(1+ε)) ≈ O( log R

ε ) (for small values ofε < 1). The approximate error values determined by our

ε-ApproxRV algorithm for coefficientcv are defined only by theseh breakpointsb1, . . . , bh – specifically,

Mq [v, bi] = M∗
q [v, bi] = Var(cv ,bi)

min{Norm(2v),Norm(2v+1)} for i = 1, . . . , h, and for any other possible allotment

x ∈ [bi, bi−1), we defineMq [v, x] = Mq [v, bi]. Thus, it is easy to see that, by construction, the approxima-

tion error of ourε-ApproxRV algorithm is bounded by a factor of(1 + ε) at leaf coefficients (at level0); in

other words, all dropped allotments are “covered” by a logarithmic number of breakpoints to within an (1 +

ε) factor.

Now, proceeding inductively, consider an internal error-tree nodev at levelj, with childrenu andw

(at levelj − 1), and assume that the subtree rooted atu (w) has determined a collection oflu (resp.,lw)

error-function breakpointsa1 > . . . > alu (resp.,b1 > . . . > blw ), and corresponding approximateNSE2

valuesMq [], that cover the range of allotments to each subtree and such that, for eachx ∈ [ai, ai−1)

(i = 2, . . . , lu), we haveMq [u, ai] ≤ (1 + ε)jM∗
q [u, x] (and similarly forw). Our ε-ApproxRV algorithm

computes the allotment breakpoints and approximate error valuesMq [] at the parent nodev by iterating over

all possible space allotments to nodev and the breakpoints determined by theu andw subtrees (rather than

all possible allotments to child subtrees), and retaining the minimumMq values for each total allotment.

The following lemma shows that, for each fixed space allotment to the coefficient at nodev, it actually

suffices to look at onlylu + lw combinations(ai, bk) for the subtree allotments rather than all possiblelulw

combinations.

Lemma 1: When minimizing the maximum (approximate)NSE2 error at nodev, for any fixed space allotment

to nodev, it suffices to consider onlylu + lw combinations of allotments(ai, bk) to the child subtrees rooted

at u, w.

Proof: Assume a fixed space allotment to the coefficient at nodev, and letleftV ar (rightV ar) denote

the variance of nodev (for the given allotment) divided by the normalization factor of its left (resp., right)

subtree. LetLu denote the sorted list of approximateNSE2 valuesM ′
q [u, ai] = Mq [u, ai] + leftV ar,

i.e.,Mq [u, a1] + leftV ar < . . . < Mq [u, alu ] + leftV ar, with Lw defined similarly using therightV ar

quantity and theMq [w, bk] entries. LetL = merge(Lu, Lw), i.e., M ′
q [y1] ≤ . . . ≤ M ′

q [ylu+lw ], where
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yi ∈ {(u, ak) : k = 1, . . . , lu} ∪ {(w, bk) : k = 1, . . . , lw}. Now assume thatai space is allocated to

theu-subtree ofv. Then, it is easy to see that, when considering the allotment to thew-subtree, out of all

the b-values that lie to the left ofai in L we really only need to consider the rightmostb-value, saybk –

the reason of course is that lower values ofM ′
q [w, b] (i.e., allotmentsb > bk) result in configurations that

use more total space without improving the error atv (since that is dominated by theu-subtree). These

configurations are clearly useless in our error-minimization procedure. For theb-values to the right ofai in

L, a similar argument again applies: when a valuebk is assumed, only the closesta-value to its left inL

needs to be considered.

Thus, our approximate error-minimization procedure atv only needs to consider, for each fixed space

allotments = 0, 1/q, . . . , 1 to nodev, lu + lw breakpoint combinations(ai, bk) for theu andw subtrees,

which can be determined easily inO(lu + lw) time based on the proof of Lemma 1. LetS(s) denote the

list of the obtainedlu + lw (ai, bk) combinations for each space allotments to nodev. The sorted list of

approximate error values at nodev can be computed inO(q(lu+lw) log q) time by merging these lists using

a heap structure or, alternatively, pair-wise merging them inlog q steps. Thus, an initial list ofO(q(lu+ lw))

breakpoints for thev subtree is determined based on the “useful” space-allocation configurations found

through the above equation – clearly, configurations that give the same (or, larger)NSE2 values for the same

(or, larger) amount of total space are useless and should be discarded. In other words, we define the initial set

of space-allotment breakpoints for thev subtree asC = {c = ai+bk+s : Mq [v, ai+bk+s] ≤ Mq [v, a+b+t]

for all a + b + t ≤ ai + bk + s}. (Useless configurations and configurations with space larger thanB can

easily be discarded in the merging pass for theO(q) sub-lists described above.) It is easy to verify that,

based on our inductive assumption, this set of breakpointsC covers the entire range of possible allotments

for thev subtree; furthermore, the following lemma shows that it also preserves the approximation properties

guaranteed by the individual subtrees.

Lemma 2: Let s1 > . . . > sh denote the sorted list of space-allotment breakpointsC for the v subtree,

computed as described above, and letx ∈ [si, si−1) for anyi. Then,Mq [v, si] ≤ (1 + ε)jM∗
q [v, x], where

j is the level of nodev.

Proof: Assume that the optimal error valueM∗
q [v, x] is obtained through the allotment configuration

(yu, yw, s), that is:
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M∗
q [v, x] = max


V ar(cv ,s)
Norm(u)

+ M∗
q [u, yu]

V ar(cv ,s)
Norm(w)

+ M∗
q [w, yw]

where, of course,x ≥ yu + yw + s. Since the breakpoints for theu andw subtrees cover all possible

allotments, letyu ∈ [ai, ai−1) andyw ∈ [bk, bk−1). By our inductive hypothesis, it is easy to see that the

configuration(ai, bk, s) (which is obviously examined by theε-ApproxRV algorithm) will giveMq [v, ai +

bk + s] ≤ (1 + ε)jM∗
q [v, x] and, clearly,ai + bk + s ≤ si ≤ x. SinceMq [v, si] ≤ Mq [v, ai + bk + s], the

result follows.

A potential problem with our approximation scheme, as described so far, is that the list of space-

allotment breakpointsC would appear to grow exponentially as the DP moves up the error-tree levels. (So,

starting withr breakpoints at the leaf nodes, we getO(qj2jr) breakpoints at levelj of the tree.) How-

ever, not allsi’s in C are necessary – we can actually “trim”C to a small number of breakpoints, while

incurring an additional(1 + ε) worst-case factor degradation on our approximation error. We perform this

trimming process at every node of the error tree (except for the final, root node). More specifically, assume

a chain of computed breakpointssi−k > si−k+1 > . . . > si such that, for eachl = i − k, . . . , i − 1 we

haveMq [v, si] ≤ (1 + ε)Mq [v, sl]. Then, clearly,Mq [v, si] can “cover” all the points that are covered by

si−k, . . . , si−1 at an additional(1 + ε) degradation, since, for anyl = i− k, . . . , i− 1:

Mq [v, si] ≤ (1 + ε)Mq [v, sl] ≤ (1 + ε)j+1M∗
q [v, x] ∀x ∈ [sl, sl−1).

Thus, in this situation, the allotment pointssi−k, . . . , si−1 can be eliminated andsi can cover their ranges

to within a(1 + ε)j+1 factor. Now, note that the maximum value of the overallNSE2 value at levelj (and,

thus, the range of values for theMq [] array) is certainly upper-bounded by(j + 1)R2. This means that

the total number of breakpoints obtained in the manner described above is at mostlog1+ε((j + 1)R2) ≈

O( log(j+1)+log R
ε ), which is an upper bound for the size of our “breakpoint” list constructed at levelj of the

error tree. Thus, with an overall computational effort of

log N−1∑
j=0

O(
N

2j+1

q log q(log(j + 1) + log R)
ε

) ≤ O(
Nq log q log R

ε

log N−1∑
j=0

1
2j+1

) +

+O(
Nq log q

ε

log N−1∑
j=0

j + 1
2j+1

) = O(
Nq log q log R

ε
),
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we get a (collection of) approximate solutions at the root node of the error tree that are guaranteed to cover

the optimalMinRelVar solutions to within a(1 + ε)log N factor. Then, it is easy to see that, settingε′ =

ε/ log N , we get a guaranteed(1 + ε) approximation in timeO(Nq log q log N log R
ε ). Note that, to find the

approximate solution for any specific choice of the allotment spaceB, we simply start out at the root and

re-trace the steps of the algorithm for the largest root breakpointsi that is≤ B; to do that, we just need

to keep track of the(ai, bk, s) configuration that generated each of the breakpoints at each error tree node

and proceed recursively down the tree. It is easy to see that the overall space required by theε-ApproxRV

algorithm is
log N−1∑

j=0

O(
N

2j+1

log(j + 1) + log R

ε′
) = O(

N log N log R

ε
),

while the working set size (maximum amount of memory-resident data) is only

O(q(log log N+log R)
ε′ ) = O(q log N(log log N+log R)

ε ). To see this, note thatε-ApproxRV works in a bottom-up

fashion and, when computing the breakpoint-list for a given nodev, we only need access to (1) thelu + lw

breakpoints of its child nodes in the error tree; and, (2) theO(q(lu + lw)) initial breakpoints for nodev that

are computed just before the trimming process. Thus, the maximum working set will occur in the top-level of

the error tree (levellog N -1), wherelu+lw = O( log R+log log N
ε′ ). Finally, note that the overall space required

by ourε-ApproxRV algorithm can never exceed the space requirements ofMinRelVar (i.e.,O(NqB)), since

for each of theN nodes in the error tree we cannot have more thanqB different breakpoints. The following

theorem summarizes the results of our analysis for the one-dimensionalε-ApproxRV algorithm.

Theorem 3: Theε-ApproxRV algorithm correctly computes a list of breakpoints at the root node such that,

for any space budgetB ≤ N and approximation factorε, the estimated maximumNSE2 value is within

a factor of (1 + ε) from the optimalMinRelVar solution. The overallε-ApproxRV computation requires

O(Nq log q log N log R
ε ) time andO(N log N log R

ε ) space, with a working set size ofO(q log N(log log N+log R)
ε ).

3.2 Analyzing the Complexity ofε-ApproxRV

Both the running time and space complexities of theε-ApproxRV algorithm represent a significant improve-

ment over theMinRelVar algorithm whenlog N = O(B). Moreover, as we describe in Section 3.3, the

ε-ApproxRV algorithm can be slightly modified to calculate all the necessary breakpoints in one pass, thus

making it suitable for large data sets that do not fit in main memory. On the contrary, theMinRelVar algo-
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rithm does not exhibit such a desirable characteristic, and its performance may deteriorate significantly in

such data sets.3

A natural question that arises is whether theε-ApproxRV algorithm will get outperformed for small

synopsy sizes (B = o(log N)). When considering the space requirements of theε-ApproxRV algorithm,

one observes that the number of distinct breakpoints at each node of the error tree cannot possibly exceed

the valueq × B. The ε-ApproxRV algorithm, thus, cannot require assymptotically more space than the

MinRelVar algorithm, independently of the values ofB andε. Similarly, the list of breakpoints at each node

can be calculated in a running time of:O(q × (qB) log q)=O(Bq2 log q). Thus, the overall running time

complexity is bounded byO(NBq2 log q), an improvement overMinRelVar, even for very small values of

B.

An important observation that we need to make is that the running time and space complexities of theε-

ApproxRV algorithm are based on a worst-case analysis and scenarios that are not very likely to occur in real-

life data sets. For example, one of the advantages of the wavelet decomposition process is that in data sets

with similar data values, several of the produced wavelet coefficients have either zero, or near-zero values

and, thus, not storing them only introduces small errors in the approximation. A similar observation is also

true when trying to minimize the maximum relative error of the approximation, meaning that many of the

produced coefficients will have an absolute normalized value much smaller thanR. This, in turn, implies that

in many nodes of the error tree the maximum value of the overallNSE2 value at levelj will be significantly

smaller than(j + 1)R2. This results not only in reduced space requirements by theε-ApproxRV algorithm,

since smaller lists of breakpoints are stored in each node than in the worst-case analysis, but also to a

reduced running time, since smaller lists of breakpoints are scanned and merged. Moreover, notice that any

breakpoints that correspond to space larger thanB are automatically trimmed by our approach, something

not depicted in the worst-case complexity analysis of theε-ApproxRV algorithm. For the above reasons,

and as our experimental evaluation will demonstrate, theε-ApproxRV algorithm manages to significantly

outperform theMinRelVar algorithm even for small values ofB andε.

3A modified version ofMinRelVar can also be applied over a single pass, but exhibits an increased running time complexity
of O(Nq3B2).

15



3.3 Improving I/O Complexity

While theε-ApproxRV algorithm that we have detailed so far contains all the essential concepts for an effi-

cient in-memory computation of the necessary breakpoints in all nodes, it may still be, as described above,

inefficient when applied to very large data sets. The algorithm’s main drawback is its space requirements,

which are asymptotically larger than the size of the data set. In large domain sizes, the produced breakpoints

will not fit in main memory and the I/O incurred during the algorithm’s execution may be substantial.

A simple modification to resolve this issue is to calculate the breakpoints of the nodes in the error

tree using a postorder traversal. A sketch of the I/O efficientε-EfficientApproxRV algorithm is presented in

Figure 2.4 The modifiedε-EfficientApproxRV algorithm operates on the nodes in the same manner in which

the wavelet coefficients are calculated during the decomposition process (Line 7). The algorithm requires

as input the indexv of the currently processed coefficient in the error tree, the space constraintB, the

quantization parameterq, the domain sizeN and theε factor. The return value of theε-EfficientApproxRV

algorithm is the average data value within the node’s support region (Section 2), and is used in the calculation

of the wavelet coefficients. Lines 1-4 simply serve as boundary cases. For any nodev in the error tree, the

algorithm first performs the joint decomposition process and calculation of the breakpoints for its left and

right subtrees (Lines 5-6) and then calculates the coefficient valuecv (Line 7). Then, for each meaningful

space allotment (which must be a multiple of1/q) to the node’s coefficient (Lines 9-11), it calculates a list

of at most|L2×v|+ |L2×v+1| breakpoints (whereL2×v andL2×v+1 are the breakpoint lists of the node’s left

and right subtrees, correspondingly). These lists are then merged in one pass, in which a trimming process

(described in the Section 3.1) that incurs an additional (1+ε) degradation at each level is also performed

(Lines 12-13).

Memory Requirements. In order for the modifiedε-EfficientApproxRV algorithm to be I/O efficient, for

each processed nodev we need to keep into main memory the breakpoint lists calculated at its children

nodes. Due to the recursive nature of the algorithm, nodev will be processed immediately after its right

child. At any point during the algorithm’s execution, only nodes belonging in the path fromv to the root

of the error tree need to keep the breakpoint lists of their children nodes in main memory. All other nodes

have either already computed their breakpoint lists, or have not been visited by the algorithm. Since at most

O(logN) nodes may exist in any path from a node to the root of the error tree, the algorithm can compute

4The presented algorithm can be applied to any node containing two subtrees. The algorithm’s extension for the root of the error
tree is straightforward.
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procedure ε-EfficientApproxRV(v, B, q, N , ε)
Input: index/coordinatev of current coefficient; space constraintB;

quantization parameterq > 1; domain sizeN ;
Output: list Lv of breakpoints; returns average of data values in node’s subtree
1. if v ≥ N then
2. Lv = 0
3. return 0
4. endif

// traverse children nodes first
5. leftAvg = ε-EfficientApproxRV(2× v, B, q, S)
6. rightAvg =ε-EfficientApproxRV(2× v + 1, B, q, S)
7. cv = leftAvg−rightAvg

2 // calculate value of coefficient
8. if cv > 0 then maxAllot = q elsemaxAllot = 0
9. for s := 0 to maxAllot do
10. Calculate breakpoint listPartialLj for space allotments/q to cv

// at most|L2v|+ |L2v+1| breakpoints ifv is non-leaf
11. endfor
12. Merge allmaxAllot + 1 PartialL lists and trim resulting list based onB, ε
13. Store resulting breakpoint list inLv

14. return (leftAvg + rightAvg)/2

Figure 2: The I/O Efficientε-EfficientApproxRV Algorithm

all breakpoints in one pass of the data with a memory size of:

log N−1∑
j=0

O(
log(j + 1) + log R

ε′
) = O(

(log N)2(log R + log log N)
ε

),

In this case, the algorithm will incur a total I/O cost (for a disk page size ofP ) of: O(N
P + N log N log R

P×ε ) =

O(N(log N log R+ε)
P×ε ).

4 Extensions to Multi-Dimensional Wavelets

4.1 Key Ideas

We now discuss the key ideas for extending our techniques to multi-dimensional data sets. (For a detailed

discussion of multi-dimensional wavelets we refer the reader to the analysis presented in [7].) Briefly, for

a D-dimensional data set, the error-tree structure becomes significantly more complex. Each node in the

error tree (besides the root node) corresponds to aset of (at most)2D − 1 wavelet coefficients with the

same support region, but different signed contributions for each region quadrant. Furthermore, each error-

tree nodei (besides the root) may have up to2D children, corresponding to the quadrants of the common
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support region for all coefficients ini.

Extension of MinRelVar to Multiple Dimensions. The dynamic programming solution of [6] considers

at each node of the error tree the optimal way of distributing the available space to its child subtrees, and

to the coefficient values of the node itself. We now explain how this is achieved by appropriately altering

the DP formulation of Equation (1). A more detailed description of the approach can be found in [7]. In

Equation (1), for the 1-dimensional case, we considered allocating spaceB to a subtree rooted at the node

with index i. The multi-dimensional formulation considers allocating spaceB to a list of subtrees rooted

at nodes〈i1, i2, . . . , ik〉. To achieve this, every time this input list contains more than one subtrees, we

consider the optimal assignment of spacebL to the first subtree of the list (rooted at nodei1), and assigning

the remainingB − bL space to the list of the remaining subtrees〈i2, . . . , ik〉. If the input list contains just

a single subtree, then the algorithm considers the optimal allocation of spaceyj to the root nodej of the

subtree (which in this case contains at most2D − 1 coefficients), of spacebL to the first child subtree of

nodej, and of spaceB − yj − bL to the list of remaining child subtrees. The space partitioning process in

the root node of the subtree among its coefficients can be computed optimally with a computation cost of

O(D2D), as shown in [7]. Finally, similarly to the 1-dimensional case, the algorithms in [6, 7] quantize the

search space and consider space allotments that are a multiple of 1/q to each list of subtrees.

Extending the ε-ApproxRV Algorithm to Multiple Dimensions. We now show how to extend theε-

ApproxRV algorithm to multi-dimensional data sets. Similarly to theMinRelVar algorithm, we consider

allocating a space budgetB to a list L of subtrees, and carefully choose a set of space allotments that

will guarantee a maximum deviation ofε from the optimal DP solution. To achieve this, we modify the

ε-ApproxRV algorithm to handle the two cases mentioned above: (1) When the input listL contains more

than one subtrees; and (2) When the input listL contains a single subtree.

• Handling Input Lists with Multiple Subtrees. When the input listL consists of more than one subtrees,

we need to decide how much space to assign to the first subtree of the list, and then assign the remaining

space budget to the listTail of the remaining subtrees. This case is similar to the process that we followed

in the 1-dimensional case in order to determine for each node and for each fixed space allotment to the

node’s coefficient, the set oflu + lw space allotments that we needed to consider. Here, we again have

to consider combining space allotments from two lists; the first list corresponds to the space allotments

of the first subtree, and the second list is the space allotments of the listTail of the remaining subtrees.
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However, in this procedure we no longer have to take into account, in this step, the normalized variance of

any coefficient value. The merging procedure is, therefore, identical to the one described in Section 3, if

we setleftV ar = rightV ar = 0. Similarly to the analysis in Section 3, if the root nodes of the subtrees

belong to levelj and the maximum level of the error tree isH, then the number oflu space allotments will

beO( log (j+1)+log R
ε′ ), whereε′ = ε/H. Therefore, for any list ofK subtrees with root nodes at levelj, the

number of resulting space allotments will beO(K(log (j+1)+log R)
ε′ ). Finally, to determine the normalization

term for the listL of subtrees, we consider the minimum absolute data valuedmin(L) under any of the

subtrees inL, and set Norm(L) = max{dmin(L)2, S2}.

• Handling Input Lists with a Single Subtree. If the input list L contains just a single subtree, then

in the ε-ApproxRV algorithm we need to determine a list of space allotments in the root nodev of this

subtree, that guarantees a maximum deviation ofε from the optimal solution. For any fixed space allotment

to v, we can use the algorithm in [7] to optimally partition this space to the node’s coefficient values and

calculatev’s variance as the sum of variances of its coefficient values. LetLu (Lw) denote the list of space

allotments ofv’s first (resp., list ofK − 1 remaining) subtree(s). Then, with an identical procedure to the

one of Section 3, we can select, for each fixed space allotment tov, a list of |Lu| + |Lw| sorted space

allotments for nodev. The only differences are: (1) The number of different space allotments to nodev

is O(q2D); and, (2) The merging of these lists, therefore, requires timeO(q2D log (q2D)(|Lu| + |Lw|)) =

O(q2D(log q+D)K(log (j+1)+log R)
ε′ ), wherej is the level ofv.

•Running Time and Space Complexities.For each node in the error tree, there are at mostO(2D) different

lists of its children subtrees (assuming a fixed ordering of these subtrees). For a nodev at levelj, in order to

compute its space allotments, we need to first compute the space allotments in allO(2D) lists containing sub-

trees rooted at children nodes ofv. This procedure dominates the computation time in the node and requires

a computational effort of:O(q2D(log q + D)
∑2D

i=1
i(log (j+1)+log R)

ε′ ) = O(q(log q+D)8D(log (j+1)+log R)
ε′ ).

Let N denote the total number of cells in the multi-dimensional data array andmaxD denote the maximum

domain size of any dimension. Then, the overall running time isO(Nq log(q+D) log maxD log R8D

ε ), while the

space requirements areO(N log maxD log R4D

ε ). Note, of course, that in most real-life scenarios employing

wavelet-based data reduction, the number of dimensions is typically a small constant (e.g.,2–6) [2, 5, 7].
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4.2 Improving the Running Time

In the wavelet decomposition process of a multi-dimensional data set, the number of non-zero coefficients

produced may be significantly larger than the numberNz of non-zero data values. In [7] the authors pro-

posed an adaptive coefficient thresholding procedure that retains at mostNz wavelet coefficientswithout

introducing any reconstruction bias. Using this procedure, the authors in [7] demonstrated how theMinRel-

Var algorithm can be modified so that its running time and space complexities have a dependency onNz,

and not onN (i.e., the total number of cells in the multi-dimensional data array). It would thus be desirable

if the ε-ApproxRV algorithm could be modified in a similar way, in order to decrease its running time and

space requirements.

Let Nz denote the number of error tree nodes that contain non-zero coefficient values, possibly after the

aforementioned thresholding process. We will first illustrate that for any node in the error tree containing

zero coefficient values, and which has at most one node in its subtree that does contain non-zero coefficient

values, no computation is needed. Equivalently, our algorithm will need to compute breakpoint lists in only:

(i) nodes containing non-zero coefficient values; or (b) nodes that contain zero coefficient values, but which

are the least common ancestor of at least two non-zero tree nodes beneath it in the error tree.

Let k be a node that is the only node in its subtree with non-zero coefficient values. Obviously we do

not need to consider the breakpoint lists in the descendant nodes ofk, since theNSE2 values in them will be

zero. We can thus calculate the breakpoint list ink by treating it as a leaf-node. An important observation

is that for any ancestor ofk that contains just a single non-zero error tree beneath it (which is certainly the

subtree of nodek), no computation is necessary, since the breakpoint lists ofk can always be used instead.

The only additional computation is needed in any noden with zero-coefficients that has at least two non-

zero error tree nodes beneath it in the error tree (in different subtrees). In this case, the breakpoint list of

noden needs to be calculated, using as input the breakpoint lists of its non-zero descendant tree nodes. It is

easy to demonstrate that at mostNz − 1 such nodes may exist. Thus, theε-ApproxRV algorithm will need to

calculate the breakpoint lists in at mostO(2Nz − 1)=O(Nz) nodes, thus yielding running time and space

complexities ofO(Nzq log(q+D) log maxD log R8D

ε ) andO(Nz log maxD log R4D

ε ), respectively. We here need to

note that in order to implement our algorithm as described here, we need to sort theNz coefficients based on

their postorder numbering in the error tree.5 This requires an additionalO(Nz log Nz) time for the sorting

5Notice that this ordering is similar to the one suggested in Section 3.3 for an I/O efficient computation of the breakpoints.
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process. However, this running time is offen significantly smaller than the benefits of having running time

and space dependencies based onNz, rather than onN .

5 Experimental Study

In this section, we present an extensive experimental study of our proposedε-ApproxRV algorithm for con-

structing probabilistic wavelet synopses over large data sets. The objective of this study is to evaluate both

the scalability and the obtained accuracy of our proposedε-ApproxRV algorithm when compared to the dy-

namic programming algorithmMinRelVar of [6, 7] for a large variety of real-life and synthetic data sets.

For the later DP solution, we used the significantly faster version of the algorithm that was very recently

proposed in [7]. The main findings of our study for theε-ApproxRV algorithm include:

• Near Optimal Results. The ε-ApproxRV algorithm consistently provides near-optimal solutions. More-

over, the actual deviation of theε-ApproxRV solution from the optimal one is typically significantly smaller

(usually by a factor larger than 5) than the specifiedε value.

• Significantly Faster Solution. Our ε-ApproxRV algorithm provides a fast and scalable solution for con-

structing probabilistic synopses over large data sets. Compared to theMinRelVar algorithm of [7], the

running time of theε-ApproxRV algorithm is often more than an order of magnitude (and in some times

more than two orders of magnitude) smaller, while at the same time providing highly-accurate answers. In

fact, theε-ApproxRV algorithm is significantly faster even for cases when the optimal solution is required (ε

= 0).

5.1 Testbed and Methodology

Techniques and Parameter Settings.Our experimental study compares theε-ApproxRV andMinRelVar al-

gorithms for constructing probabilistic wavelet synopses. Both algorithms utilize the quantization parameter

q, which is assigned a value of 10, as suggested in [6], in our experiments. Larger values of this quantization

parameter improved the running time performance of theε-ApproxRV algorithm when compared to theMin-

RelVar algorithm, as expected by the running time complexities of the two algorithms. Finally, the sanity

bound of each data set is set to its5%-quantile data value.

Data Sets.We experiment with several one-dimensional synthetic and real-life data set. Due to space con-
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straints we only present here the results for the real-life data sets (the performance of the algorithms in the

synthetic data sets is qualitatively similar). TheWeather data set contains meteorological measurements

obtained by a station at the university of Washington (data at http://www-k12.atmos.washington.edu/k12/grayskies).

This is a one-dimensional data set for which we extracted the following 6 measured quantities: wind speed,

wind peak, solar irradiance, relative humidity, air temperature and dewpoint temperature, and present here

the results for the wind speed (AirSpeed) and the air temperature (AirTemp), which represent a noisy and

a smooth signal, correspondingly. ThePhone data set includes the total number of long distance calls per

minute originating from several states in USA. We here present the results for the states of New York (NY)

and Indiana (IN), with NY having large numbers of calls per minute and IN being a state with significantly

fewer calls. The presented results for each real-life data set are also indicative of the results for the other

measured quantities in these data sets.

Approximation Error Metrics. To compare the accuracy of the studied algorithms we focus on the maxi-

mum relative error of the approximation, since it can provide guaranteed error-bounds for the reconstruction

of any individual data value. Since the objective function that both studied algorithms try to minimize is

the maximumNSE2 of any data value, for a more direct and clear comparison we present the results for this

metric and for both algorithms. The results for the maximum relative error are qualitatively similar to the

presented ones.

5.2 Experimental Results

Sensitivity to ε. We now evaluate the accuracy and running time of theε-ApproxRV algorithm in comparison

to theMinRelVar algorithm, using the real-life data sets. In Figures 3 and 4 we plot the running times for the

two algorithms and for the two data sets, correspondingly, as we vary the value ofε from 0 to 0.3. We set

the domain size for all data sets to 65536, and the synopsis space to 5% of the input size. Theε-ApproxRV

algorithm is consistently faster than theMinRelVar algorithm in both real-life data sets, often by more than

an order of magnitude, and is considerably faster even when the optimal solution is required (ε = 0). Unlike

the MinRelVar algorithm which may perform multiple lookups of each computed entry,6 the ε-ApproxRV

algorithm processes all node entries in a single pass, therefore resulting in significantly faster running times.

We also observe in these figures that, with the increase ofε, the running time ofε-ApproxRV decreases, as

6In theMinRelVar algorithm the optimal solution of allocating spaceB to any nodev may be probed for any space allotment
≥ B to v’s parent node in the error tree.
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the algorithm effectively prunes a larger number of breakpoints.

The correspondingNSE2 values for both algorithms are presented in Figures 5 and 6. In order for the

reader to be able to observe the difference in the accuracy of the two algorithms, in each figure we plot the

ratio of the maximumNSE2 values produced by theε-ApproxRV algorithm to the corresponding results of

theMinRelVar algorithm. Theε-ApproxRV algorithm, as expected, always provides solutions that are within

the specified error factorε from the optimal solution. It is interesting to note though that in all cases the

produced solution is significantly closer to the optimal one (by more than a factor of 5), than the specifiedε

value. This is not surprising, asε represents a worst-case error bound.

Sensitivity to the Domain Size.We now evaluate the accuracy and running time of theε-ApproxRV algo-
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rithm in comparison to theMinRelVar algorithm, using the real-life data sets, when we vary the domain size

of the data sets from 128 to 65536, and plot the resulting running times for the two algorithms in Figures 7

and 8. The synopsis space is set to 5% of the input size, while the value ofε is set to 0.10. Again, the

ε-ApproxRV algorithm significantly outperforms theMinRelVar algorithm, with the savings in running time

increasing rapidly as the domain size increases. For large domain sizes, theε-ApproxRV algorithm is up to

23.8 times faster than theMinRelVar algorithm.

In Figures 9 and 10 we plot the corresponding ratios of the maximumNSE2 values obtained by the

two algorithms. Again, theε-ApproxRV algorithm always produced solutions that are significantly closer to

the optimal solution (less than 1.7% and 1.4% difference, correspondingly, for the two data sets), than the
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specified error factorε.

Sensitivity to the Synopsis Space.In Figures 11 and 12 we present the running times for both algorithms

and for the real-life data sets, as the synopsis space is varied from 1% to 30% of the size of the input. The

domain size is set to 65536, while the value ofε is set to 0.10. The running time of theMinRelVar algorithm

increases rapidly with the increase in the used synopsis space, while the corresponding running time of the

ε-ApproxRV algorithm remains practically unaffected. For large synopsis spaces, theε-ApproxRV algorithm

is more than two orders of magnitude faster than theMinRelVar algorithm. However, the solutions obtained

from theε-ApproxRV algorithm are again very close to the optimal ones (less than 1.7% and 1.5% difference

for the two data sets), as we can see in Figures 13 and 14.
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6 Conclusions

We have proposed a novel, fast approximation scheme for constructing probabilistic wavelet synopses over

large data sets. Our proposed techniques employ a much “sparser” version of previously proposed Dynamic-

Programming (DP) solutions, which restricts its search to a carefully chosen, logarithmically-small subset of

“breakpoints” that cover the entire range of possible space allotments, while always ensuring a maximum

relative degradation of(1 + ε) in the quality of the obtained solution. Our experimental evaluation has

demonstrated that our approximation algorithm typically provides significantly tighter solutions than the

maximum(1 + ε) error factor, while at the same time providing running times that are up to two orders of

magnitude smaller than known exact DP solutions.
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