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Abstract

Several studies have demonstrated the effectiveness of Haar wavelets in reducing large amounts of
data down to compaastavelet synopsdbat can be used to obtain fast, accurate approximate query an-
swers. While Haar wavelets were originally designed for minimizing the overall root-mean-squared (i.e.,
Lo-norm) error in the data approximation, the recently-proposed idpeobhbilistic wavelet synopses
also enables their use in minimizing other error metrics, such as the relative error in individual data-
value reconstruction, which is arguably the most important for approximate query processing. Known
construction algorithms for probabilistic wavelet synopses employ probabilistic schemes for coefficient
thresholding that are based on optimal Dynamic-Programming (DP) formulations over the error-tree
structure for Haar coefficients. Unfortunately, these (exact) schemes can scale quite poorly for large
data-domain and synopsis sizes. To address this shortcoming, in this paper, we introduce a novel, fast
approximation schem@r building probabilistic wavelet synopses over large data sets. Our algorithm’s
running time is near-linear in the size of the data-domain (even for very large synopsis sizes) and pro-
portional tol /¢, wheree is the desired approximation guarantee. The key technical idea in our approx-
imation scheme is to make exact DP formulations for probabilistic threshotdirgp “sparser”, while
ensuring a maximum relative degradationeain the quality of the approximate synopsis, i.e., the de-
sired approximation error metric. Extensive experimental results over synthetic and real-life data clearly

demonstrate the benefits of our proposed techniques.



1 Introduction

Approximate query processing over compact, precomputed data synopses has attracted a lot of interest re-
cently as a viable solution for dealing with complex queries over massive amounts of data in interactive
decision-support and data-exploration environments. For several of these application scenarios, exact an-
swers are not required, and users may in fact prefer fast, approximate answers to their queries. Examples
include the initial, exploratory drill-down queries in ad-hoc data mining systems, where the goal is to quickly
identify the “interesting” regions of the underlying database; or, aggregation queries in decision-support sys-
tems where the full precision of the exact answer is not needed and the first few digits of precision suffice

(e.g., the leading digits of a total in the millions or the nearest percentile of a percentage) [1, 2, 5, 11].

Background and Earlier Results. Haar waveletsare a mathematical tool for the hierarchical decomposi-
tion of functions with several successful applications in signal and image processing [12, 17]. A number of
recent studies has also demonstrated the effectiveness of the Haar wavelet decomposition as a data-reduction
tool for database problems, including selectivity estimation [13] and approximate query processing over
massive relational tables [2, 18] and data streams [8, 14]. Briefly, the key idea is to apply the decompaosition
process over an input data set along with a thresholding procedure in order to obtain a compact data synopsis
comprising of a selected small setldaar wavelet coefficientsThe results of the recent research studies
of Matias, Vitter and Wang [13, 18], Chakrabarti et al. [2, 3], and others [4, 16] have demonstrated that fast
and accurate approximate query processing engines can be designed to operate solely over such compact
wavelet synopses

Until very recently, a major criticism of wavelet-based approximate query processing techniques has
been the fact that unlike, e.g., random samples, conventional wavelet synopses (such as those used in all the
above-cited studies) cannot provide useful guarantees on the quality of approximate answers. The problem
here is that coefficients for such conventional synopses are typically chosen in a greedy fashion in order to
optimize the overall root-mean-squared (ile;;norm) error in the data approximation. However, as pointed
out by Garofalakis and Gibbons [6, 7], conventional;optimized wavelet synopses can result in approx-
imate answers of widely-varying quality (even within the same data set) and approximation errors that are
heavily biased towards certain regions of the underlying data domain. Their proposed solution pietmmed
abilistic wavelet synopsds8, 7], employs the idea afandomized coefficient roundirig conjunction with

Dynamic-Programming-basedtiresholding schemes specifically tuned for optimizingttaimum relative



error in the approximate reconstruction of individual data values. By optimizing for relative error (with a
sanity bound), which is arguably the most important metric for approximate query answers, probabilistic
wavelet synopses offer drastic reductions in the approximation error over conventional deterministic tech-
nigues and, furthermore, enable unbiased data reconstruction with meaningful, noretrivigluarantees

for reconstructed values [6, 7]. While the use of the traditional Haar wavelet decomposition gives the user
no knowledge on whether a particular answer is highly-accurate or off by many orders of magnitude, the use
of probabilistic wavelet synopses provides the user with an interval where the exact answer is guaranteed to

lie into.

Our Contributions. The Dynamic-Programming (DP) algorithms of [6, 7] for constructing probabilistic
wavelet synopses are based orogtimal, continuous DP formulatioover the error-tree structure for Haar
coefficients, in conjunction with the idea gfiantizingthe possible choices for synopsis-space allocation
using an integer parametgr> 1 (in other words, fractional space is allotted to coefficients in multiples
of 1/q). Unfortunately, the problem with these exact (modulo the quantization) DP techniques is that they
can scale poorly for large data-domain and synopsis sizes — with a domain $Vzaraf synopsis storage
of B, the worst-case running time of the optimized algorithm presented in [7] (which uses binary-search
to optimize the DP search) 9(Ng?Blog(qB)), which become®)(N2q?log(INq)) for large synopsis
sizesB = O(N). Our own experience with the DP schemes in [6, 7] has demonstrated that the times
required for building a probabilistic wavelet synopsis can increase very rapidly for large domaimVsizes
and synopsis sizeB; this certainly raises some concerns with respect to the applicability of probabilistic
wavelet techniques on massive, real-life data sets. Note that large domain sizes in the ddfigéGfare
not at all uncommon, e.g., for massive time-series data sets where one or more readings/measurements are
continuously recorded on every time-tick.

To address these concerns, we propose a novelafgsbximation schemtor building probabilistic
wavelet synopses over large data sets. Given a quantization pargnagteia desired approximation factor
€, our algorithm can be used to build a probabilistic synopsianyf sizeB < N in worst-case time of
O(Nqlog N logqlog R/e) (whereR is roughly proportional to the maximum absolute Haar-coefficient
value in the decomposition), while guaranteeing that the quality of the final solution is within a factor of
(1 + ¢) of that obtained by the (exact) techniques of Garofalakis and Gibbons [6, 7] for the same problem

instance. In a nutshell, the key technical idea in our proposed approximation scheme is to make the original



DP formulations in [6, 7much “sparser”, while ensuring a maximum relative degradation bft+ ¢) on

the quality of the approximate solution, i.e., the desired maximum error metric. This is accomplished by
restricting the DP search to a carefully-chosen, logarithmically-small subSaeaikpoints” that cover the

entire range of possible space allotments within the required error guarantee. Our results clearly validate
our approach, demonstrating that our algorithm (1) exhibits significantly smaller running times, often by
more than one or even two orders of magnituttein the exact DP solution; and, (2) typically produces

significantly tighter approximations than the specifiéd- ¢) factor.

Roadmap. The remainder of this paper is organized as follows. Section 2 gives background material
on wavelets, as well as conventional and probabilistic wavelet synopses. In Section 3, we discuss our
approximation scheme for constructing probabilistic wavelet synopses in detail. Section 5 describes the

results of our empirical study and, finally, Section 6 gives some concluding remarks.

2 Preliminaries

In this section we provide a brief overview of some techniques and algorithms, developed in prior work, that
are utilized as helpful tools by our thresholding algorithms.

The Haar Wavelet Transform. Wavelets are a useful mathematical tool for hierarchically decomposing
functions in ways that are both efficient and theoretically sound. Broadly speaking, the wavelet decomposi-
tion of a function consists of a coarse overall approximation along with detail coefficients that influence the
function at various scales [17]. Suppose that we are given the one-dimensional dataivemitaining the

N = 8 data valuesA = [2,2,0,2,3,5,4,4]. The Haar wavelet transform &f can be computed as follows.

We first average the values together pairwise to get a new “lower-resolution” representation of the data with
the following average valueg, 1,4, 4]. In other words, the average of the first two values (tha2 iand

2) is 2, that of the next two values (that 8,and2) is 1, and so on. Obviously, some information has been

lost in this averaging process. To be able to restore the original values of the data array, we need to store
somedetail coefficientsthat capture the missing information. In Haar wavelets, these detail coefficients are
simply the differences of the (second of the) averaged values from the computed pairwise average. Thus, in
our simple example, for the first pair of averaged values, the detail coefficiesinge2 — 2 = 0, for the

second we again need to storé sincel — 2 = —1. Note that no information has been lost in this process

— it is fairly simple to reconstruct the eight values of the original data array from the lower-resolution array



containing the four averages and the four detail coefficients. Recursively applying the above pairwise aver-
aging and differencing process on the lower-resolution array containing the averages, we get the following

full decomposition:

Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5,4,4] —
2 [2,1, 4, 4] [0,-1,-1, 0]
1 [3/2, 4] [1/2, O]
0 [11/4] [-5/4]

The wavelet transfornfalso known as thavavelet decompositigrof A is the single coefficient repre-
senting the overall average of the data values followed by the detail coefficients in the order of increasing
resolution. Thus, the one-dimensional Haar wavelet transforsiefgiven by, = [11/4, —5/4, 1/2, 0,

0, —1, —1, 0]. Each entry init4 is called awavelet coefficientThe main advantage of usiing, instead

of the original data vectaoA is that for vectors containing similar values most of the detail coefficients tend

to have very small values. Thus, eliminating such small coefficients from the wavelet transform (i.e., treat-
ing them as zeros) introduces only small errors when reconstructing the original data, resulting in a very
effective form of lossy data compression [17]. Furthermore, the Haar wavelet decompaosition can also be
extended tamulti-dimensionabdata arrays through natural generalizations of the one-dimensional decom-
position process described above. Multi-dimensional Haar wavelets have been used in a wide variety of

applications, including approximate query answering over complex decision-support data sets [2, 18].

Error Tree and Conventional Wavelet SynopsesA helpful tool for exploring the properties of the Haar
wavelet decomposition is therror tree structure [13]. The error tree is a hierarchical structure built based
on the wavelet transform process. Figure 1 depicts the error tree for our example dataAve&ach
internal node:; (i = 0, ..., 7) is associated with a wavelet coefficient value, and eachdlg@f=0,...,7)
is associated with a value in the original data array; in both cases, theim#aotes the positions in the
data array or error tree. For exampig,corresponds to the overall averageAf The resolution levels
for the coefficients (corresponding to levels in the tree) are also depicted. We use the terms “node” and
“coefficient” interchangeably in what follows.

Given a nodeu in an error tre€l’, let path (u) denote the set of all proper ancestorsuah 7 (i.e.,
the nodes on the path fromto the root ofT", including the root but not) with non-zero coefficients. A

key property of the Haar wavelet decomposition is that the reconstruction of any data ydepends only



2O O
,,,,,,,,,,,,,,,,,,,,,,,, /T

do d1 d2 d3  d4 ds d6 d7

Figure 1: Error tree for our data arraly(\N = ).
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on the values of coefficients quath (d;); more specifically, we havé; = >_. cpath (a,) 9ij - ¢;, Where
d;; = +1if d; is in the left child subtree of; or j = 0, andd;; = —1 otherwise. For example, in Figure 1,
dys =co—c1 +cg = 3 — (—2)+ (1) = 3. Thesupport regiorfor a coefficientc; is defined as the set
of (contiguous) data values thatis used to reconstruct; the support region for a coefficigig uniquely
identified by its index.

Given a limited amount of storage for buildingvavelet synopsisf the input data arrayl, a threshold-
ing procedure retains a certain numier N of the coefficients as a highly-compressed approximate rep-
resentation of the original data (the remaining coefficients are implicitly S8t t6onventional coefficient
thresholding is a deterministic process that seeks to minimize the overall root-mean-squared, esnar
norm) of the data approximation [17] by retaining tielargest wavelet coefficients absolute normalized

value[17]. L, coefficient thresholding has also been the method of choice for the bulk of existing work on

Haar-wavelets applications in the data-reduction and approximate query processing domains [2, 13, 14, 18].

Probabilistic Wavelet SynopsesUnfortunately, wavelet synopses optimized for overallerror using the
above-described process may not always be the best choice for approximate query processing systems. As
observed in a recent study by Garofalakis and Gibbons [6, 7], such conventional wavelet synopses suffer
from several important problems, including the introduction of severe bias in the data reconstruction and

wide variance in the quality of the data approximation, as well as the lack of non-trivial guarantees for



individual approximate answers. To address these shortcomings, their work intrpdofeaisilistic wavelet
synopsesa novel approach for constructing data summaries from wavelet-transform arrays. In a nutshell,
their key idea is to apply a probabilistic thresholding process basedrmiomized roundingl5], that
randomly rounds coefficients either up to a largemdingvalue or down to zero, so that the value of each
coefficient is correcon expectationMore formally, each non-zero wavelet coefficients associated with
arounding value\; and a correspondingtention probabilityy; = i— such thab < y; < 1, and the value
of coefficiente; in the synopsis becomes a random variaBiles {0, \; }, where,
o A;  with probability y;
b 0 with probability 1 — y;.
In other words, a probabilistic wavelet synopsis essentially “rounds” each non-zero wavelet coefficient
independentlyo either\; or zero by flipping a biased coin with success probabiljtyNote that the above
rounding process ignbiased that is, the expected value of each rounded coefficien{G§|E= \; - y;+
0-(1—y) = ¢, i.e., the actual coefficient value, while its variance is
1=y

Var(i,yi) = Var(CZ) = ()\z — Cz’) cCp = " - Gy (2)

and the expected size of the synopsis is simg|gyBopsi§ = Diles#£0 Yi = Diles#0 j— Thus, since each
data value can be reconstructed as a simple linear combination of wavelet coefficients, and by linearity
of expectation, it is easy to see that probabilistic wavelet synopses guarantee unbiased approximations of
individual data values as well as range-aggregate query answers [6].

Garofalakis and Gibbons [6, 7] propose several different algorithms for building probabilistic wavelet
synopses. The key, of course, is to select the coefficient rounding vialiesuch that some desired er-
ror metric for the data approximation is minimized while not exceeding a prescribed spacg liarithe
synopsis (i.e., Esynopsi§ < B). Their winning strategies are based on formulating appropbigteamic-
Programming (DP)recurrences over the Haar error-tree that explicitly minimize either (a) the maximum
normalized standard erravi{nRelVar), or (b) the maximum normalized biaslinRelBias), for each recon-
structed value in the data domain. As explained in [6, 7], the rationale for these probabilistic error metrics

is that they are directly related to theaximum relative errofwith an appropriatsanity bounds)® in the

The role of the sanity bound is to ensure that relative-error numbers are not unduly dominated by small data



approximation of individual data values based on the synopsis; that is, ba#irtRelvVar andMinRelBias

|di—d;|

m}, whered; denotes the data value

schemes try to (probabilistically) control the quantityix; {
reconstructed based on the wavelet synopsis. Note, of coursel; tiseagain arandom variable defined
as the+1 summation of all (independent) coefficient random variablepath (d;). Bounding the max-
imum relative error in the approximation also allows for meaningiubr guaranteedo be provided on
reconstructed data values [6, 7].

As an example, Equation (1) depicts the DP recurrence in [6, 7] for minimizing the maximum squared

Normalized Standard Erron6E?) in the data reconstruction, defined as

A Var(d;
max NSE?(d;) = max Imax{c(igj)SQ}’

where Vatd;) = > e;epath (d;) Var(j,y;). M*[i, 5;] here denotes the minimum maximum value of the
squaredNsE (i.e., NSE?) among all data values in the subtree of the error-tree rooted at coefficassum-
ing a space budget @f;, and Norn{i) = max{dmin(7)?, S*}, wheredmin(i) is the minimum absolute data
value under;’s subtree, is a normalization term for that subtree. (Indi@esnd2: + 1 in the recurrence
correspond to the left and right child (respectively)xpfn the error-tree structure (Figure 1).) Intuitively,
the DP recurrence in Equation (1) states that, for a given space hgjdaiet, the optimal fractional-storage
allotments{y;} and the corresponding maximunse? are fixed by minimizing the larger of the costs for
paths viac;’s two child subtrees (including the root in all paths), where the cost for a path via a subtree is the
sum of: (1) the variance penalty incurredcattself, assuming a setting gf, divided by the normalization
term for that subtree, and (2) the optimal cost for the subtree, assuming the given space budget. This min-
imization, of course, is over all possible valuegpaind, given a setting aj;, over all possible allotments
of the remaining3; — y; space “units” amongst the two child subtrees:of Of course, ifc; = 0 then no
space budget needs to be allocated to npaéhich results in the simpler recurrence in the second clause
of Equation (1). Finally, data-value nodes (characterized by indicesV, see Figure 1) cost no space and
incur no cost, and the “otherwise” clause handles the case where we have a non-zero coefficient but zero
budget ¢; # 0 andg; = 0).

As demonstrated in [6, 7], the DP recurrence in Equation (1) characterizes the optimal solution to the

maximumnNsE? minimization problem for the case ebntinuoudfractional-storage allotmentg € (0, 1]

values [10, 18].



(modulo certain technical conditions that may require small “perturbations” of zero coefficients [6, 7]). A
similar DP recurrence can also be given for the maximum normalized bias metric. MihRiglvar and
MinRelBias algorithms then proceed hyuantizing the solution spag¢hat is, they assume the storage
allotment variableg; andb;, in Equation (1) to take values from a discrete set of choices corresponding to
integer multiples ofi /q, whereq > 1 is an input integer parameter to the algorithms. (Larger values of
imply results closer to the optimal, continuous solution.) Furthermore,MintRelvVar andMinRelBias cap

the variance of a coefficientat ¢?, thus allowing for zero-space allotments to unimportant coefficients (this
also implies that non-zero allotments of s'r_Ze;— are useless, as they result in larger variance (Equation (2))
while utilizing more space).The running time of their (quantizdiiRelvVar andMinRelBias algorithms is
O(Ng2Blog(qB)) with an overall space requirement@f NqB) (and an in-memory working-set size of
0O(gBlog N)); furthermore, their techniques also naturally extend to multi-dimensional data and wavelets,
with a reasonable increase in time and space complexity [7]. Experimental results over synthetic and real-life
data in [6, 7] have demonstrated the superioritiofRelVar andMinRelBias probabilistic synopses as an
approximate query answering tool over conventional wavelet synopses. In our discussionM@[u:ﬁg]

to denote the result of the quantized (exact) algorithms of [6, 7] (e.g., maxikgEhfor MinRelVar) for

the error subtree rooted at coefficienassuming a space budget®f

3 Our Approximation Scheme

In this section, we present our efficient approximation scheme, tesmegdroxRV, for constructing prob-
abilistic wavelet synopses over large data sets. QapproxRV is a guaranteedl + ¢) approximation
algorithm for theMinRelvar scheme of Garofalakis and Gibbons [6, 7]; that is, it focuses on minimizing
the maximumNsE? in the data reconstruction. Our techniques can easily be extended to handle other er-
ror metrics, such as the maximum normalized bias employedihRelBias [6, 7]. We here present our
e-ApproxRV algorithm for the case of one-dimensional Haar wavelets, and defer the extensions to multiple

dimensions for the full paper.

3.1 The One-Dimensionak-ApproxRV Algorithm

Consider the error-tree structure for a one-dimensional Haar wavelet decomposition, Ardeledte the

maximum absolute normalized valokany coefficient in the tree, defined as



where, as previously/min(i) denotes the minimum absolute data value in the subtree of ho@&ypi-
cally, e.g., for frequency-count vectors, the denominator in the above expression isvhich implies
that R is in the order of the maximum absolute coefficient value.) ©ApproxRV algorithm runs in

O (Nl NlogQlos Ry time and computes an approximate solution for all possible values of the synopsis

€

space budgeB < N; the corresponding time complexity of the exsiitRelVar algorithm (forB = O(N))
is significantly higher:O(N2g?log(Nq)) [6, 7]. Again, the key idea in ou-ApproxRV algorithm is to
speed up the DP search by making it much “spafserin a nutshell, our approximate “sparse” DP al-
gorithm will only search over a few possible space allotments for each error subtree, which are carefully
chosen to guarantee a maximum deviatiofilof- ¢) from the optimal solution. Ou-ApproxRV algorithm
proceeds in a bottom-up fashion over the input error tree — to simplify the exposition in this section, we
assume that levels in the error tree are numbered bottom-up, with leaf-node coefficients @ialedehe
root (overall average) at levialg N — 1.

Fix a quantization parametar and letVq (v, 3,] denote the approximate maximum squaxee (NSE?)
computed by-ApproxRV for any data value in the error subtree rooted at nadas earlier,Ma [v, By] is
the corresponding optimalse? value computed bwinRelVar. Note that, for any node, theMc’i [v, By]
values are clearlynonotonically decreasing 3,; that is,Mgq [v, 2] < Mg[v,y| for z > y [7].

For the base case, consider a leaf-node coefficiéat level0) — clearly, in this case

Var(cv, min{l, Bv})
min{Norm(2v), Norm(2v + 1)}

Mo, 8] =

i.e., the maximum normalized variance of the corresponding random variable with a success probability
of 3, (values ofg, larger than 1 obviously result in zero normalized variance). It is easy to see that all
possible values fon/g [v, B,], for any 3, value, can be computed in tini®(q), whereq is the designated
quantization parameter. Out of the®¢q) variance values and possible allotmentg tpour e-ApproxRV
algorithm picks a subset of allotmerits> . .. > by, such that: (1) for each allotmentc [b;, b;,_1) we have
Mglv,bi] < (14 €)Mg[v,z]; and, (2)b; throughb,, cover the entire possible range of space allotments to

¢y, I.€.,b = 1 andb, = 0. This can obviously be done 0(q) time by simply going over alMa values

2Guha et al. [9] also discuss sparse DP algorithms in an entirely different context, namely in building approximate V-optimal
histograms over data streams.
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and selecting; . ; as the first allotment b; such thaMa [v,bir1] > (1 +e)Ma [v, b;]. Since the maximum

2

. . . . . . 9\ C’U 2 .
normalized variance for a coefficient valagis at most (see Section 2 TNoOFM(20) Norm@o 1] < R, is

easy to see that the numbeof allotment “breakpoints” selected in this fashion is at mofog; , . R?) =

O(bﬁi)) ~ O('2%) (for small values of < 1). The approximate error values determined by our

e-ApproxRV algorithm for coefficient,, are defined only by these breakpoints, ..., b, — specifically,

* V Cy,04 . .
Mqlv, b;] = Mg[v,bi] = min{Normgqrj(),Ngzm(sz)} fori =1,...,h, and for any other possible allotment

x € [b;, b;i_1), we defineMq v, 2] = Mq|v, b;]. Thus, itis easy to see that, by construction, the approxima-
tion error of oure-ApproxRV algorithm is bounded by a factor ¢f + ¢) at leaf coefficients (at levél); in
other words, all dropped allotments are “covered” by a logarithmic number of breakpoints to within an (1 +
€) factor.

Now, proceeding inductively, consider an internal error-tree nodelevelj, with childrenu andw
(at levelj — 1), and assume that the subtree rooted &iv) has determined a collection &f (resp.,l.,)
error-function breakpoints; > ... > a;, (resp.,b; > ... > b ), and corresponding approximatese
values Mq[], that cover the range of allotments to each subtree and such that, forreachu;, a; 1)
(i =2,...,1,), we haveMq[u, a;] < (1 + e)jMa [u, z] (and similarly forw). Oure-ApproxRV algorithm
computes the allotment breakpoints and approximate error vafggsat the parent nodeby iterating over
all possible space allotments to nadand the breakpoints determined by thandw subtrees (rather than
all possible allotments to child subtrees), and retaining the minimignvalues for each total allotment.
The following lemma shows that, for each fixed space allotment to the coefficient atndtdactually
suffices to look at only,, + [,, combinationga;, b) for the subtree allotments rather than all possibilg

combinations.

Lemma 1: When minimizing the maximum (approximais)? error at nodev, for any fixed space allotment
to nodev, it suffices to consider only, + [,, combinations of allotments;, bx) to the child subtrees rooted

atu, w. |

Proof: Assume a fixed space allotment to the coefficient at ngdend letle ftVar (rightVar) denote
the variance of node (for the given allotment) divided by the normalization factor of its left (resp., right)
subtree. LetlL, denote the sorted list of approximatese? valuesMq[u, a;] = Mqlu,a;] + leftVar,
i.e., Mqlu,a1] +leftVar < ... < Mq[u,a;,] + leftVar, with L,, defined similarly using theightV ar
quantity and thel/q[w, bg] entries. LetL = merg€ Ly, Ly), i.e., Mg[y1] < ... < Mgqly,+1,], where

11



yi € {(u,ag) : k= 1,...,0,} U{(w,bg) : Kk =1,...,1,}. Now assume that; space is allocated to
the u-subtree ofv. Then, it is easy to see that, when considering the allotment tattbtree, out of all
the b-values that lie to the left of; in L we really only need to consider the rightmastalue, sayb, —
the reason of course is that lower vaIuesMS(ﬁ [w, b] (i.e., allotmentd > by) result in configurations that
use more total space without improving the errowdsince that is dominated by thesubtree). These
configurations are clearly useless in our error-minimization procedure. Fontdees to the right of; in
L, a similar argument again applies: when a valés assumed, only the closestvalue to its left inL

needs to be considered. ]

Thus, our approximate error-minimization procedure anly needs to consider, for each fixed space
allotments = 0, 1/q, ..., 1 to nodev, l,, + l,, breakpoint combination&;, b;) for theu andw subtrees,
which can be determined easily (I, + [,,) time based on the proof of Lemma 1. L&(s) denote the
list of the obtained,, + [,, (a;, b;) combinations for each space allotmertb nodev. The sorted list of
approximate error values at nodean be computed i@(q(l,,+1.,) log q) time by merging these lists using
a heap structure or, alternatively, pair-wise merging thelagy steps. Thus, an initial list ad(q (., +1.,))
breakpoints for they subtree is determined based on the “useful” space-allocation configurations found
through the above equation — clearly, configurations that give the same (or, lesg&nalues for the same
(or, larger) amount of total space are useless and should be discarded. In other words, we define the initial set
of space-allotment breakpoints for theubtree a€ = {c = a;+by+s : Mq[v, a;+by+s] < Mqlv, a+b+t]
forall a4+ b+t <a; + by + s}. (Useless configurations and configurations with space largerRhzam
easily be discarded in the merging pass for ¢hg|) sub-lists described above.) It is easy to verify that,
based on our inductive assumption, this set of breakpd@imisvers the entire range of possible allotments
for thew subtree; furthermore, the following lemma shows that it also preserves the approximation properties

guaranteed by the individual subtrees.

Lemma 2: Lets; > ... > s, denote the sorted list of space-allotment breakpaoihfer the v subtree,
computed as described above, anddet [s;, s; 1) for anyi. Then,Mq|v, s;] < (1 + e)J'Ma [v, z], where

j is the level of node. |

Proof: Assume that the optimal error vaILMé [v,z] is obtained through the allotment configuration

(yuy Yw, 5), that is:

12



Var(cy,s) %
Nor(m( ) + Mg [, 9]
5)

Var(cy,

Mgqlv, z] = max
Norm( ) + Ma [wvyw]

where, of courser > y, + v + s. Since the breakpoints for the andw subtrees cover all possible
allotments, lety, € [a;,a;,—1) andy,, € [bk,bx—1). By our inductive hypothesis, it is easy to see that the
configuration(a;, by, s) (which is obviously examined by theApproxRV algorithm) will give Mq([v, a; +

b +s] < (1+ e)jM(-f] [v, ] and, clearlya; + b, + s < s5; < x. SinceMq|v, s;] < Mq[v, a; + bx + 5], the

result follows. |

A potential problem with our approximation scheme, as described so far, is that the list of space-
allotment breakpoint§ would appear to grow exponentially as the DP moves up the error-tree levels. (So,
starting withr breakpoints at the leaf nodes, we @&tq’27r) breakpoints at levej of the tree.) How-
ever, not alls;’s in C are necessary — we can actually “trir"to a small number of breakpoints, while
incurring an additionall + ¢) worst-case factor degradation on our approximation error. We perform this
trimming process at every node of the error tree (except for the final, root node). More specifically, assume
a chain of computed breakpoinds > s; 11 > ... > s; such that, foreach=1i — k,...,i — 1 we

haveMq|[v, s;] < (1 + €)Mq[v, s;]. Then, clearlyMq|v, s;] can “cover” all the points that are covered by

Si—ks-- -, S;—1 atan additionall + ¢) degradation, since, for ay=i — k,...,i — 1:
Mqlv, 5] < (1+€)Mqlv,s] < (1 + E)J'HMa [v, z] YV € [s1,51-1)-
Thus, in this situation, the allotment poinis ¢, ..., s;_1 can be eliminated ang can cover their ranges

to within a(1 + €)’*! factor. Now, note that the maximum value of the overaE? value at levelj (and,
thus, the range of values for thdgq|[] array) is certainly upper-bounded iy + 1)R%. This means that
the total number of breakpoints obtained in the manner described above is abmost(j + 1)R?) ~
O(w), which is an upper bound for the size of our “breakpoint” list constructed at jevktlhe

error tree. Thus, with an overall computational effort of

1°gN‘1O N qlogq(log(j + 1) + log R) OquogqlogRlogN_l 1
3 o EAsU £D TR, o Naloslos RIS L
]:
quogqlogN 1]+1 Nqglogqlog R
+0 S ) = OIS,
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we get a (collection of) approximate solutions at the root node of the error tree that are guaranteed to cover
the optimalMinRelVar solutions to within a1 + ¢)!°¢V factor. Then, it is easy to see that, settiig=

NUUTR NQlogqlog Nlog R -
¢/log N, we get a guaranteed + ¢) approximation in timeD(Y91eedloe Nloe 'y " Note that, to find the

approximate solution for any specific choice of the allotment sgacee simply start out at the root and
re-trace the steps of the algorithm for the largest root breakppithiat is< B; to do that, we just need

to keep track of thé€a;, bx, s) configuration that generated each of the breakpoints at each error tree node
and proceed recursively down the tree. It is easy to see that the overall space required-hyptoeRYV

algorithm is
log N—1 .
N 1 1 1 Nlog N1
Z o og(j+1)+ ogR):O( og Nlog R
7=0

27+1 € € ),

while the working set size (maximum amount of memory-resident data) is only

O(QUoalos Vo R) y = () Gloa Nllogloa N+los )y g gee this, note thatApproxRV works in a bottom-up
fashion and, when computing the breakpoint-list for a given ngdee only need access to (1) the+ 1,
breakpoints of its child nodes in the error tree; and, (2)(l,, + l,,)) initial breakpoints for node that

are computed just before the trimming process. Thus, the maximum working set will occur in the top-level of
the error tree (levabg N-1), wherel,, +1,, = O(w). Finally, note that the overall space required

by oure-ApproxRV algorithm can never exceed the space requirementin®elVar (i.e., O(NgB)), since

for each of theV nodes in the error tree we cannot have more th&rdifferent breakpoints. The following

theorem summarizes the results of our analysis for the one-dimensiapptoxRV algorithm.

Theorem 3: Thee-ApproxRV algorithm correctly computes a list of breakpoints at the root node such that,
for any space budgeB < N and approximation factoe, the estimated maximumseg? value is within

a factor of (1 + ¢) from the optimalMinRelVar solution. The overalk-ApproxRV computation requires

O(N9leeQloe Nlog Ry fime and0(M1es Moz ) space, with a working set size ©f 910a ¥ (losloa Ntloa /)y

€

3.2 Analyzing the Complexity ofe-ApproxRV

Both the running time and space complexities ofdt#gproxRV algorithm represent a significant improve-
ment over theMinRelVar algorithm whenlog N = O(B). Moreover, as we describe in Section 3.3, the
e-ApproxRV algorithm can be slightly modified to calculate all the necessary breakpoints in one pass, thus

making it suitable for large data sets that do not fit in main memory. On the contraiyjrtRelVar algo-
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rithm does not exhibit such a desirable characteristic, and its performance may deteriorate significantly in
such data sets.

A natural question that arises is whether th&pproxRV algorithm will get outperformed for small
synopsy sizesiB = o(log N)). When considering the space requirements ofetAgproxRV algorithm,
one observes that the number of distinct breakpoints at each node of the error tree cannot possibly exceed
the valueg x B. The e-ApproxRV algorithm, thus, cannot require assymptotically more space than the
MinRelVar algorithm, independently of the values Bfande. Similarly, the list of breakpoints at each node
can be calculated in a running time @(q x (qB)log q)=0(Bg?logq). Thus, the overall running time
complexity is bounded by (N Bg?log q), an improvement ovevinRelVar, even for very small values of
B.

An important observation that we need to make is that the running time and space complexities of the
ApproxRV algorithm are based on a worst-case analysis and scenarios that are not very likely to occur in real-
life data sets. For example, one of the advantages of the wavelet decomposition process is that in data sets
with similar data values, several of the produced wavelet coefficients have either zero, or near-zero values
and, thus, not storing them only introduces small errors in the approximation. A similar observation is also
true when trying to minimize the maximum relative error of the approximation, meaning that many of the
produced coefficients will have an absolute normalized value much smalleRthEmis, in turn, implies that
in many nodes of the error tree the maximum value of the ovessf value at levelj will be significantly
smaller thar(j + 1) R?. This results not only in reduced space requirements by-fmoroxRV algorithm,
since smaller lists of breakpoints are stored in each node than in the worst-case analysis, but also to a
reduced running time, since smaller lists of breakpoints are scanned and merged. Moreover, notice that any
breakpoints that correspond to space larger thaare automatically trimmed by our approach, something
not depicted in the worst-case complexity analysis ofdag@proxRV algorithm. For the above reasons,
and as our experimental evaluation will demonstrate,cthpproxRV algorithm manages to significantly

outperform theMinRelVar algorithm even for small values @ ande.

3A modified version oMinRelVar can also be applied over a single pass, but exhibits an increased running time complexity
of O(Ng®B?).
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3.3 Improving I/O Complexity

While thee-ApproxRV algorithm that we have detailed so far contains all the essential concepts for an effi-
cient in-memory computation of the necessary breakpoints in all nodes, it may still be, as described above,
inefficient when applied to very large data sets. The algorithm’s main drawback is its space requirements,
which are asymptotically larger than the size of the data set. In large domain sizes, the produced breakpoints
will not fit in main memory and the 1/O incurred during the algorithm’s execution may be substantial.

A simple modification to resolve this issue is to calculate the breakpoints of the nodes in the error
tree using a postorder traversal. A sketch of the I/O efficieEfficientApproxRV algorithm is presented in
Figure 2¢ The modifiede-EfficientApproxRV algorithm operates on the nodes in the same manner in which
the wavelet coefficients are calculated during the decomposition process (Line 7). The algorithm requires
as input the index of the currently processed coefficient in the error tree, the space condiathe
guantization parametey, the domain sizeéV and thee factor. The return value of theEfficientApproxRvV
algorithm is the average data value within the node’s support region (Section 2), and is used in the calculation
of the wavelet coefficients. Lines 1-4 simply serve as boundary cases. For any mmotie error tree, the
algorithm first performs the joint decomposition process and calculation of the breakpoints for its left and
right subtrees (Lines 5-6) and then calculates the coefficient valdiene 7). Then, for each meaningful
space allotment (which must be a multiplelgfy) to the node’s coefficient (Lines 9-11), it calculates a list
of at most Loy, | + | L2xy+1| breakpoints (wherés,, and Lo, 11 are the breakpoint lists of the node’s left
and right subtrees, correspondingly). These lists are then merged in one pass, in which a trimming process
(described in the Section 3.1) that incurs an additionak)tiegradation at each level is also performed

(Lines 12-13).

Memory Requirements. In order for the modified-EfficientApproxRV algorithm to be 1/O efficient, for

each processed nodewe need to keep into main memory the breakpoint lists calculated at its children
nodes. Due to the recursive nature of the algorithm, nodell be processed immediately after its right

child. At any point during the algorithm’s execution, only nodes belonging in the pathdrtarthe root

of the error tree need to keep the breakpoint lists of their children nodes in main memory. All other nodes
have either already computed their breakpoint lists, or have not been visited by the algorithm. Since at most

O(logN) nodes may exist in any path from a node to the root of the error tree, the algorithm can compute

“The presented algorithm can be applied to any node containing two subtrees. The algorithm’s extension for the root of the error
tree is straightforward.
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procedure e-EfficientApproxRV(v, B, g, N, ¢€)
Input: index/coordinate of current coefficient; space constraiBf
gquantization parametey > 1; domain sizeV;
Output: list L,, of breakpoints; returns average of data values in node’s subtree
if v > N then
L,=0
return O
endif
/[ traverse children nodes first
leftAvg = e-EfficientApproxRV(2 x v, B, q, S)
rightAvg =e-EfficientApproxRV(2 x v + 1, B, q, S)
, = leftAvgorightdvg // calculate value of coefficient
if ¢, > 0thenmaxAllot = g elsemaxAllot =0
for s:=0tomaxAllot do
0. Calculate breakpoint ligtartial L; for space allotment/q to ¢,
Il at most| Lo, | + | L2y+1| breakpoints ifv is non-leaf
11. endfor
12. Merge allmax Allot + 1 Partial L lists and trim resulting list based ds, ¢
13. Store resulting breakpoint list i,
14. return (leftAvg + rightAvg)/2

PobPE

HoOoo~NOoO

Figure 2: The 1/O Efficient-EfficientApproxRV Algorithm

all breakpoints in one pass of the data with a memory size of:

log N—1 2
log(j+ 1)+ log R log N)*(log R + loglog N
3o ) +logR) () (log N )

€ €

Y

In this case, the algorithm will incur a total I/O cost (for a disk page sizB)abf: O(%

log N log R+e¢
O( (Ongoeg +))

4 Extensions to Multi-Dimensional Wavelets

4.1 Key ldeas

NlogNlogR) —

Pxe

We now discuss the key ideas for extending our techniques to multi-dimensional data sets. (For a detailed

discussion of multi-dimensional wavelets we refer the reader to the analysis presented in [7].) Briefly, for

a D-dimensional data set, the error-tree structure becomes significantly more complex. Each node in the

error tree (besides the root node) corresponds setaf (at most)2” — 1 wavelet coefficients with the

same support region, but different signed contributions for each region quadrant. Furthermore, each error-

tree node (besides the root) may have up28 children, corresponding to the quadrants of the common
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support region for all coefficients in

Extension of MinRelVar to Multiple Dimensions. The dynamic programming solution of [6] considers

at each node of the error tree the optimal way of distributing the available space to its child subtrees, and
to the coefficient values of the node itself. We now explain how this is achieved by appropriately altering
the DP formulation of Equation (1). A more detailed description of the approach can be found in [7]. In
Equation (1), for the 1-dimensional case, we considered allocating gp&xa subtree rooted at the node

with indexi. The multi-dimensional formulation considers allocating spBc® a list of subtrees rooted

at nodes(iy, io, ..., ix). TO achieve this, every time this input list contains more than one subtrees, we
consider the optimal assignment of spagdo the first subtree of the list (rooted at nagg and assigning

the remainingB — by, space to the list of the remaining subtréés . . ., ix). If the input list contains just

a single subtree, then the algorithm considers the optimal allocation of gpacehe root node of the
subtree (which in this case contains at m@3t— 1 coefficients), of spacé;, to the first child subtree of
nodej, and of space3 — y; — by, to the list of remaining child subtrees. The space partitioning process in
the root node of the subtree among its coefficients can be computed optimally with a computation cost of
O(D2P), as shown in [7]. Finally, similarly to the 1-dimensional case, the algorithms in [6, 7] quantize the

search space and consider space allotments that are a multiptptofeldch list of subtrees.

Extending the e-ApproxRV Algorithm to Multiple Dimensions. We now show how to extend the
ApproxRV algorithm to multi-dimensional data sets. Similarly to tM&RelVar algorithm, we consider
allocating a space budgét to a list L of subtrees, and carefully choose a set of space allotments that
will guarantee a maximum deviation effrom the optimal DP solution. To achieve this, we modify the
e-ApproxRV algorithm to handle the two cases mentioned above: (1) When the inpit dightains more

than one subtrees; and (2) When the inputligtontains a single subtree.

e Handling Input Lists with Multiple Subtrees. When the input list. consists of more than one subtrees,

we need to decide how much space to assign to the first subtree of the list, and then assign the remaining
space budget to the li§tail of the remaining subtrees. This case is similar to the process that we followed

in the 1-dimensional case in order to determine for each node and for each fixed space allotment to the
node’s coefficient, the set @f, + [, space allotments that we needed to consider. Here, we again have

to consider combining space allotments from two lists; the first list corresponds to the space allotments

of the first subtree, and the second list is the space allotments of tHeulisbf the remaining subtrees.
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However, in this procedure we no longer have to take into account, in this step, the normalized variance of
any coefficient value. The merging procedure is, therefore, identical to the one described in Section 3, if
we setleftVar = rightVar = 0. Similarly to the analysis in Section 3, if the root nodes of the subtrees
belong to levelj and the maximum level of the error treelg then the number df, space allotments will

beO(wy wheree’ = ¢/H. Therefore, for any list of{ subtrees with root nodes at levglthe

number of resulting space allotments will &g (15Ut tloa /)y

. Finally, to determine the normalization
term for the listL of subtrees, we consider the minimum absolute data véhg L) under any of the

subtrees in., and set Norril.) = max{dmin(L)?, S*}.

e Handling Input Lists with a Single Subtree. If the input list L contains just a single subtree, then

in the e-ApproxRV algorithm we need to determine a list of space allotments in the root nadehis
subtree, that guarantees a maximum deviationfadm the optimal solution. For any fixed space allotment

to v, we can use the algorithm in [7] to optimally partition this space to the node’s coefficient values and
calculatev’s variance as the sum of variances of its coefficient valuesZL€t.,,) denote the list of space
allotments ofv’s first (resp., list of K — 1 remaining) subtree(s). Then, with an identical procedure to the
one of Section 3, we can select, for each fixed space allotment aolist of |L,,| + |L,,| sorted space
allotments for node. The only differences are: (1) The number of different space allotments tomnode

is 0(q2”); and, (2) The merging of these lists, therefore, requires tr@2” log (q2°)(|Ly| + |Lw|)) =

O(9220ogq+D) K log (F+ 1) Hog )y \yherey is the level ofv.

€

« Running Time and Space ComplexitiesFor each node in the error tree, there are at g8t’) different
lists of its children subtrees (assuming a fixed ordering of these subtrees). Foraatddeel;, in order to
compute its space allotments, we need to first compute the space allotmene(@/3llists containing sub-

trees rooted at children nodes:0fThis procedure dominates the computation time in the node and requires

2P i(log (j+1,)+logR)) - O(Q(loqurD)SD(l?g(j+1)+1ogR)).

=1 € €

a computational effort ofO(q2”(logq + D)

Let N denote the total number of cells in the multi-dimensional data arrayrand) denote the maximum

g+D) log mazD log R8P )
€

domain size of any dimension. Then, the overall running tin@(i§ 9122 , while the

N log maxD log R4P )

€

space requirements af . Note, of course, that in most real-life scenarios employing

wavelet-based data reduction, the number of dimensions is typically a small constat®.[2, 5, 7].
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4.2 Improving the Running Time

In the wavelet decomposition process of a multi-dimensional data set, the number of non-zero coefficients
produced may be significantly larger than the numierof non-zero data values. In [7] the authors pro-
posed an adaptive coefficient thresholding procedure that retains atNmasavelet coefficientsvithout
introducing any reconstruction bias. Using this procedure, the authors in [7] demonstrated iMinRéle

Var algorithm can be modified so that its running time and space complexities have a depend@hgy on
and not onN (i.e., the total number of cells in the multi-dimensional data array). It would thus be desirable

if the e-ApproxRV algorithm could be modified in a similar way, in order to decrease its running time and
space requirements.

Let V, denote the number of error tree nodes that contain non-zero coefficient values, possibly after the
aforementioned thresholding process. We will first illustrate that for any node in the error tree containing
zero coefficient values, and which has at most one node in its subtree that does contain non-zero coefficient
values, no computation is needed. Equivalently, our algorithm will need to compute breakpoint lists in only:
(i) nodes containing non-zero coefficient values; or (b) nodes that contain zero coefficient values, but which
are the least common ancestor of at least two non-zero tree nodes beneath it in the error tree.

Let & be a node that is the only node in its subtree with non-zero coefficient values. Obviously we do
not need to consider the breakpoint lists in the descendant nodesiote thense? values in them will be
zero. We can thus calculate the breakpoint list iby treating it as a leaf-node. An important observation
is that for any ancestor d@f that contains just a single non-zero error tree beneath it (which is certainly the
subtree of nodé), no computation is necessary, since the breakpoint listscaih always be used instead.

The only additional computation is needed in any nadeith zero-coefficients that has at least two non-

zero error tree nodes beneath it in the error tree (in different subtrees). In this case, the breakpoint list of
noden needs to be calculated, using as input the breakpoint lists of its non-zero descendant tree nodes. Itis
easy to demonstrate that at m@ét — 1 such nodes may exist. Thus, thépproxRV algorithm will need to

calculate the breakpoint lists in at ma@st2N, — 1)=0(N,) nodes, thus yielding running time and space

... D D .
complexities of0( =91 +D)loamarDlog By gy ( Nz loamarDlog A7) | regpectively. We here need to

€

note that in order to implement our algorithm as described here, we need to stttbefficients based on

their postorder numbering in the error ted@his requires an additiond? (N, log N.) time for the sorting

SNotice that this ordering is similar to the one suggested in Section 3.3 for an I/O efficient computation of the breakpoints.
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process. However, this running time is offen significantly smaller than the benefits of having running time

and space dependencies basedvgnrather than onvV.

5 Experimental Study

In this section, we present an extensive experimental study of our prop@gptoxRV algorithm for con-
structing probabilistic wavelet synopses over large data sets. The objective of this study is to evaluate both
the scalability and the obtained accuracy of our propestgbroxRV algorithm when compared to the dy-
namic programming algorithriinRelVar of [6, 7] for a large variety of real-life and synthetic data sets.

For the later DP solution, we used the significantly faster version of the algorithm that was very recently

proposed in [7]. The main findings of our study for th&pproxRV algorithm include:

e Near Optimal Results. The e-ApproxRV algorithm consistently provides near-optimal solutions. More-
over, the actual deviation of theApproxRV solution from the optimal one is typically significantly smaller

(usually by a factor larger than 5) than the specifiedlue.

¢ Significantly Faster Solution. Our e-ApproxRV algorithm provides a fast and scalable solution for con-
structing probabilistic synopses over large data sets. Compared tditRelVar algorithm of [7], the
running time of the--ApproxRV algorithm is often more than an order of magnitude (and in some times
more than two orders of magnitude) smaller, while at the same time providing highly-accurate answers. In
fact, thee-ApproxRV algorithm is significantly faster even for cases when the optimal solution is required (

= 0).

5.1 Testbed and Methodology

Techniques and Parameter SettingsOur experimental study compares t&pproxRV andMinRelVar al-
gorithms for constructing probabilistic wavelet synopses. Both algorithms utilize the quantization parameter
¢, which is assigned a value of 10, as suggested in [6], in our experiments. Larger values of this quantization
parameter improved the running time performance ottApproxRV algorithm when compared to tidin-

Relvar algorithm, as expected by the running time complexities of the two algorithms. Finally, the sanity

bound of each data set is set tofifé-quantile data value.

Data Sets.We experiment with several one-dimensional synthetic and real-life data set. Due to space con-
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straints we only present here the results for the real-life data sets (the performance of the algorithms in the
synthetic data sets is qualitatively similar). TWaeather data set contains meteorological measurements

obtained by a station at the university of Washington (data at http://www-k12.atmos.washington.edu/k12/grayskies)
This is a one-dimensional data set for which we extracted the following 6 measured guantities: wind speed,

wind peak, solar irradiance, relative humidity, air temperature and dewpoint temperature, and present here

the results for the wind speed (AirSpeed) and the air temperature (AirTemp), which represent a noisy and

a smooth signal, correspondingly. TRaone data set includes the total number of long distance calls per

minute originating from several states in USA. We here present the results for the states of New York (NY)

and Indiana (IN), with NY having large numbers of calls per minute and IN being a state with significantly

fewer calls. The presented results for each real-life data set are also indicative of the results for the other

measured quantities in these data sets.

Approximation Error Metrics. To compare the accuracy of the studied algorithms we focus on the maxi-
mum relative error of the approximation, since it can provide guaranteed error-bounds for the reconstruction
of any individual data value. Since the objective function that both studied algorithms try to minimize is
the maximunnsE? of any data value, for a more direct and clear comparison we present the results for this
metric and for both algorithms. The results for the maximum relative error are qualitatively similar to the

presented ones.

5.2 Experimental Results

Sensitivity to e. We now evaluate the accuracy and running time ottApproxRV algorithm in comparison

to theMinRelVar algorithm, using the real-life data sets. In Figures 3 and 4 we plot the running times for the
two algorithms and for the two data sets, correspondingly, as we vary the vadifeoaf 0 to 0.3. We set

the domain size for all data sets to 65536, and the synopsis space to 5% of the input sizéppioeRV
algorithm is consistently faster than thEnRelVar algorithm in both real-life data sets, often by more than

an order of magnitude, and is considerably faster even when the optimal solution is reggi@d (nlike

the MinRelVar algorithm which may perform multiple lookups of each computed éhthe e-ApproxRV
algorithm processes all node entries in a single pass, therefore resulting in significantly faster running times.

We also observe in these figures that, with the increasetok running time of-ApproxRV decreases, as

®In the MinRelVar algorithm the optimal solution of allocating spaBeto any nodey may be probed for any space allotment
> Btowv's parent node in the error tree.
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the algorithm effectively prunes a larger number of breakpoints.

The correspondingse? values for both algorithms are presented in Figures 5 and 6. In order for the
reader to be able to observe the difference in the accuracy of the two algorithms, in each figure we plot the
ratio of the maximunNseg? values produced by theApproxRV algorithm to the corresponding results of
theMinRelVar algorithm. The:-ApproxRV algorithm, as expected, always provides solutions that are within
the specified error factar from the optimal solution. It is interesting to note though that in all cases the
produced solution is significantly closer to the optimal one (by more than a factor of 5), than the specified

value. This is not surprising, agepresents a worst-case error bound.

Sensitivity to the Domain Size.We now evaluate the accuracy and running time ofetA@proxRV algo-

23



Synopsis Space = 5% of input, € = 0.10

Synopsis Space = 5% of input, € = 0.10

3
S

G-© MinRelVar: AirSpeed
&£ €-ApproxRV: AirSpeed
&-¢ MinRelVar: AirTemp
A g-ApproxRV: AirTemp

=N =
=) S

-
[
A
A
i

%3
S

B
S

Running Time (sec)

Running Time (sec)

S}
S

10

5

2048 4096 8192 16384 32768

Domain Size

512 1024

E’R

256

Figure 7: Running Time vs
Domain Size in Weather data

Synopsis Space = 5% of input, € = 0.10

1.018
G—© MinRelVar \ 1014
£ e-ApproxRV: AirSpeed ’

A—A g-ApproxRV: AirTemp

1.016

1.012

1.014

1012 101

1.01
1.008

1.008
1.006
1.006

1
1.004 1.004

A
1.002 1.002

O%E@Bﬁ\ &
65536 128 256 512 1024

G-© MinRelVar: NY I
=1 e-ApproxRV: NY |
&-¢ MinRelVar: IN /
A g-ApproxRV: IN I

2048 4096 8192 16384 32768 65536

Domain Size

Figure 8: Running Time vs
Domain Size in Phone data

Synopsis Size = 5% of input, € = 0.10

G- MinRelVar
&£ e-ApproxRV: NY
A—A e-ApproxRV: IN

NSE’ ratio of e-ApproxRV to MinRelVar

|
8192

|
32768

| | |
1024 2048 4096

Domain Size

0.998 !

256 65536

|
512 16384

Figure 9:NSE? ratio vs
Domain Size in Weather data

NSE’ ratio of e-ApproxRV to MinRelVar

| | | | | | | |
1024 2048 4096 8192 16384 32768

Domain Size

65536

Figure 10NSE? ratio vs
Domain Size in Phone data

rithm in comparison to th&linRelVar algorithm, using the real-life data sets, when we vary the domain size

of the data sets from 128 to 65536, and plot the resulting running times for the two algorithms in Figures 7

and 8. The synopsis space is set to 5% of the input size, while the values gkt to 0.10. Again, the

e-ApproxRV algorithm significantly outperforms thginRelVar algorithm, with the savings in running time

increasing rapidly as the domain size increases. For large domain size\gh®xRV algorithm is up to

23.8 times faster than theinRelVar algorithm.

In Figures 9 and 10 we plot the corresponding ratios of the maximsg? values obtained by the

two algorithms. Again, the-ApproxRV algorithm always produced solutions that are significantly closer to

the optimal solution (less than 1.7% and 1.4% difference, correspondingly, for the two data sets), than the
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Domain Size = 65536, € =0.10
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specified error factor.

Sensitivity to the Synopsis Spaceln Figures 11 and 12 we present the running times for both algorithms
and for the real-life data sets, as the synopsis space is varied from 1% to 30% of the size of the input. The
domain size is set to 65536, while the value: & set to 0.10. The running time of thinRelVar algorithm
increases rapidly with the increase in the used synopsis space, while the corresponding running time of the
e-ApproxRV algorithm remains practically unaffected. For large synopsis spacesAt@oxRV algorithm

is more than two orders of magnitude faster thanMiveRelVar algorithm. However, the solutions obtained

from thee-ApproxRV algorithm are again very close to the optimal ones (less than 1.7% and 1.5% difference

for the two data sets), as we can see in Figures 13 and 14.
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6 Conclusions

We have proposed a novel, fast approximation scheme for constructing probabilistic wavelet synopses over
large data sets. Our proposed techniques employ a much “sparser” version of previously proposed Dynamic-
Programming (DP) solutions, which restricts its search to a carefully chosen, logarithmically-small subset of
“breakpoints” that cover the entire range of possible space allotments, while always ensuring a maximum
relative degradation ofl + ¢) in the quality of the obtained solution. Our experimental evaluation has
demonstrated that our approximation algorithm typically provides significantly tighter solutions than the
maximum(1 + ¢) error factor, while at the same time providing running times that are up to two orders of

magnitude smaller than known exact DP solutions.
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